

Final Presentation Predicting Macroscopic Phenomena with Density-Functional Theory

Milan Diebel and Scott T. Dunham (University of Washington)

Srini Chakravarthi and Chuck Machala (Texas Instruments)

Outline

Density-Functional Theory (DFT)

- Motivation
- Introduction to DFT (Hartree-Fock \Rightarrow Kohn-Sham)
- DFT implementation in VASP
- Sample applications of DFT (formation energies, transition barriers, band structure, bulk properties)

Anomalous F diffusion modeled via DFT

- Full $F_n V_m$ model
- Continuum model based on DFT results
- Simplified F_3V model
- Calibration of simplified F model to SIMS data

Summary and conclusion

Motivation

Goal: Study N electron quantum systems **Requires:** N particle wave function

$$\Psi(r_1,...,r_N)$$

Exact treatment is numerical challenging: (m # of sampling points in one direction)

memory $\propto m^{3N}$

Example: bulk Si (2 atoms in primitive cell, 14 electrons per Si atom)

memory = 8Byte
$$\cdot 10^{3 \cdot 2 \cdot 14} \approx 10^{73}$$
 TB \Rightarrow "currently" impossible

Remember: Solving single particle Schrödinger equation is relative easy and fast

Need to find a way out !!!

Idea: Find effective one particle Hamiltonian for N electron system and treat remaining N-1 electrons as an effective potential.

$$\begin{array}{ll} \textbf{Approximation:} \quad \Psi(r_{1},...,r_{N}) = \mathbf{A} \coprod_{i=1}^{N} \phi_{i}(r_{i}) \qquad \text{(Slater determinant)} \\ \textbf{Minimize:} \quad E = \left\langle \Psi \left| H_{0} + V_{ext} \right| \Psi \right\rangle = \qquad \textbf{Density:} \quad n(r) = \sum_{i=1}^{N} |\phi_{i}(r)|^{2} \\ \dots = \underbrace{\sum_{i} \int d^{3}r \frac{\hbar^{2}}{2m} |\bar{\nabla}\phi_{i}|^{2}}_{T} + \underbrace{\frac{1}{2} e^{2} \iint d^{3}r d^{3}r \frac{n(r)n(r)}{|r-r|}}_{E_{direct}} - \underbrace{e^{2} \sum_{i < j} \left\langle \phi_{i}\phi_{j} \right| \frac{1}{|r-r|} |\phi_{j}\phi_{i}}_{E_{xx}} + \underbrace{\int d^{3}r V_{ext}(r)n(r)}_{E_{ext}} \right\rangle}_{E_{ext}} \end{array}$$

Variational principle:

$$\frac{\delta \left(E\left[\phi_{i},\phi_{i}^{*}\right] + \lambda \left\langle \psi \mid \psi \right\rangle \right)}{\delta \phi_{a}^{*}} = 0$$

 \Rightarrow N Hartree-Fock-Equation

Hohenberg-Kohn Theorem

Theorem: "There is a variational functional for the ground state energy E[n] of the many electron problem in which the varied quantity is the electron density."

- **Hamiltonian:** $H = T + U + V_{ext} = H_0 + V_{ext}$
- **N particle density:** $n(r) \equiv \left\langle \Psi \middle| \Psi^{\dagger}(r) \Psi(r) \middle| \Psi \right\rangle$

Universal functional:

$$F[n(r)] \equiv \left\langle \Psi \left| T + U \right| \Psi \right\rangle$$

$$E_{V_{ext}}[n(r)] \equiv \int dr V_{ext}(r) n(r) + F[n(r)]$$

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)

Free Electron Gas

Fermi gas (non-interacting electron gas):

DOS
$$d^3n = 2 \cdot \frac{V}{(2\pi)^3} d^3k$$

$$N = \frac{V}{3\pi^2} k_F^3 \\ T = \frac{V\hbar^2}{10m} k_F^5 \end{bmatrix} \qquad t = \frac{T}{V} = \frac{3}{10} \frac{\hbar^2 (3\pi^2)^{2/3}}{m} n^{5/3}$$

Interacting electron gas: $E_{HF} = T + E_{direct} + E_{XC} + E_{ext}$

$$\Rightarrow \text{ exchange term} \qquad e_{XC} = \frac{E_{XC}}{V} = -\frac{3}{4\pi} e^2 (3\pi^2)^{1/3} n^{4/3}$$

Simplest DFT: Thomas-Fermi theory

- Positive backgroud field (jellium model)
- T of Fermi gas
- Drop exchange term

$$\Rightarrow E_{TF} = E[n]$$

Kohn-Sham Theory

The Nobel Prize in Chemistry 1998

Kohn: "for development of density-functional theory" Pople: "for development of comput. methods in quant. chemistry"

Walter Kohn

John A. Pople

Kohn-Sham functional:

$$E_{KS}[\phi_{1},...,\phi_{N}] = \underbrace{\sum_{i} \int d^{3}r \frac{\hbar^{2}}{2m} |\bar{\nabla}\phi_{i}|^{2}}_{T} + \underbrace{\frac{1}{2} e^{2} \iint d^{3}r d^{3}r \frac{n(r)n(r)}{|r-r|}}_{E_{direct}} + \underbrace{E_{XC}[n]}_{E_{ext}} + \underbrace{\int d^{3}r V_{ext}(r)n(r)}_{E_{ext}}$$

Different exchange functionals:

Local Density Approx. (LDA) Local Spin Density Approx. (LSD) General Gradient Approx. (GGA)
$$\begin{split} E_{XC}[n] &\propto n^{4/3} \\ E_{XC}[n] &\propto (n_{\uparrow}^{4/3} + n_{\downarrow}^{4/3}) \\ \text{adding term } f(\bar{\nabla}n) \end{split}$$

Other: PW91, B3LYP

W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965)

Predictions of DFT

Atomization energy:

Method	Li ₂	C ₂ H ₂	20 simple molecules	
			(mean absolute error)	
Experiment	1.04 eV	17.6 eV	-	
Theoretical errors:				
Hartree-Fock	-0.94 eV	-4.9 eV	3.1 eV	
LDA	-0.05 eV	2.4 eV	1.4 eV	
GGA	-0.20 eV	0.4 eV	0.35 eV	

Si properties:

Property	Experiment	LDA	GGA
Lattice constant	2.35 Å	2.34 Å	2.36 Å
Bulk modulus	99 GPa	96 GPa	92 GPa
Band gap	1.17 eV	0.52 eV	0.7 eV

Summary of DFT Properties

Features:

- Ground-state theory (excitations can be treated with TDFT)
- Zero temperature theory $(T=0^{\circ} K)$
- High quality predictions for non-correlation effects

Justification:

"Justification of DFT is given through the quality of its predictions. However it is an *ab-initio* Method, since all parameters are determined *a priori* by general considerations."

Limitations:

- Phenomena which rely on correlation effects (superconductivity, Van der Waals, interactions) can not be predicted. Correlation effects are not built into wave functions.
- System size is limited by CPU power available.

Absolute observables are meaningless, only differences are sensitive quantities.

Implementation of DFT in VASP

VASP features:

- Plane wave basis
- Ultra-soft Vanderbilt type pseudo-potentials
- Quantum-mechanical molecular dynamics (MD)

VASP output:

- Charge density and wave functions
- Relaxed ion location
- Total energy
- •DOS
- ■...

Numerical features:

•Highly optimized serial and parallel version

Sample Applications of DFT

◆ Formation energies (F model)

◆ Transition barriers (migration energies, diffusivities)

◆ Interface properties (segregation coefficients)

• Bulk properties (lattice constant, bulk modulus, strain effects)

Band structure (effect of dopants and defects)

Band structure

- DFT band gap 0.7eV (experimental 1.12eV)
- Study band structure changes due to:
 - Dopants
 - Defects
 - Strain
 - Temperature

...

Si band structure

Remember: DFT predicts differences correct

DFT calculation W. Windl

Silicon Bulk Properties

Lattice Constant: Calculate E at varying box size

$$B(V) \equiv V \frac{d^2 E(V)}{dV^2}$$

$$E(a) \Longrightarrow E(V)$$

 $B_{exp} = 99 \text{ GPa}$ $B_{DFT} = 92 \text{ GPa}$

Straining Si with Pb

Strain effect of impurities: Ge, Sn, Pb

$$a_{eff} = \frac{C_{Si}}{C_S} a_{Si} + \frac{C_{Pb}}{C_S} a_{Pb}$$

Strain:
$$\delta = \frac{a_{eff} - a_{Si}}{a_{Si}}$$

Simple Model:~ 1% strainDFT:0.75% strain

Microscopic strain effects

64 atom supercell (63 Si + 1 Pb) \Rightarrow 1.56% Pb $C_{Pb} \approx 7.8 \cdot 10^{20} \text{ cm}^{-3}$

Transition Paths and Barriers

Goal: Find transition paths and barriers

Theory: (harmonic) transition state theory (hTST)

 $D = D_0 \cdot e^{-\frac{E_m}{kT}}$

Methods:

Nudged elastic band method (NEB)Dimer method

Challenging because:

- High dimensional
- Bumpy energy surface
- •End up in unwanted local minimum
- Do not find all reaction paths

Energy surface of 3N dim. space (N # of atoms)

NEB and Dimer Method

NEB method:

Chain of "images" connected by springs
Springs ensure equidistance between images
Force minimization converges into possible reaction path

Initial and final state need to be known

Dimer method:

Two images form a dimer

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

B₂I+BI

Energy (eV)

Dimer moves along the lowest curvature modeNumerically a little more expensive than NEBDo not need to know final state

5

10

Reaction Coordinate (A)

15

20

 \Rightarrow Possibility of exploring unknown terrain

G. Henkelman and H. Jónsson, J. Chem. Phys, 111, 7010 (1999)

Motivation: Fluorine Study

Importance of fluorine: B implantation with BF₂

Potential Advantages:

- Enhances B activation (Huang *et al.*)
- TED reduction (Park *et al.*)

Experiment:

Anomalous fluorine diffusion Behavior (Jeng *et al*.)

 $30 \text{keV F+ implant} \Rightarrow \text{anneal}$ QF = 1013 cm-2

Motivation: Fluorine Study

Why study F?

- Fluorine retards/enhances B, P
- B activation

F behavior is complex:

- Exhibits anomalous diffusion
- Mechanism debatable:
 - B + F interaction ?
 - F interacts with Si point defects (I,V) ?

Texas Instruments

No comprehensive model available in literature

F_nV_m Clusters

Idea: Fluorine decoration of vacancies \Rightarrow immobile clusters

TEXAS INSTRUMENTS

 \Rightarrow F₃V and F₆V₂ clusters favored for moderate/high F concentrations

Defect Model & Boundary Conditions:

- Extended defect model including I_n , V_n , and {311} defects
- Thin oxide layer on surface (20 Å) (segregation & diffusion of F_i)

M. Diebel and S.T. Dunham, Mat. Res. Soc. Symp. Proc. 717, Warrendale, PA, 2002

Possible Interactions:

F causes the incorporation of excess V during regrowth

 \Rightarrow TED reduction due to excess V

 \Rightarrow B activation due to reduced B/I clusters

Both seen in pre-amorphized samples

Dallas

Simplified Fluorine Model

Mechanism:

- F_i diffuses fast and forms FV
- Via cascade larger $F_n V_m$ clusters are formed
- $F_n V_m$ dissolves in presence of I

 \Rightarrow assume first two steps are fast

Simplified model:

- Implant large stable $F_n V_m$ cluster ($F_3 V$)
- Implant additional I (shifted Rp)
- Dissolve F_3V via: $F_3V + I \Leftrightarrow 3 F_i$

Higher T will shift formation to earlier times

09/20/02	Milan Diebel University of Washington	Texas Instruments
	, <u> </u>	-

Model Implementation

Implant:

- $F_3V \Rightarrow$ effectively +2/3 I
- Interstitials (40% shifted Rp) $\Rightarrow +1/3$ I

Reactions: $F_3V + I \Leftrightarrow 3 F_i$

Parameters:

- F implant moments (analytic expression)
- d.scale, d.plus \Rightarrow a/c
- F_3V dissolution rate
- F_i diffusivity

F Implant 10^{21} 10^{20} 10^{20} 10^{19} 10^{18} 10^{17} 0.05 0.1 0.15 0.2 0.25 0.3 x [µm]

Advantage:

Model can treat sub-amorphizing and amorphizing conditions together.

Fluorine Model

Sub-amorphizing condition: TED effect

Amorphizing condition:

Retardation effect

Effect depends on:

- F concentration
- Dopant concentration
- I concentration

Depth

Calibration to SIMS Data

Fluorine only (dose loss)

Fluorine + dopants (fluorine effect on dopants, a/c depth)

	S/D	MDD	Pocket
	high E + high Q	low E + high Q	high E + low Q
Boron (PMOS)			
Phosphorus (NMOS)			

Dallas 09/20/02	Milan Diebel University of Washington	TEXAS INSTRUMENTS

Fluorine Only

Analysis:

- General trend correct
- Underestimates dose loss

Experiment:

- 100A Poly Ox
- F 20keV 3e15
- 1050C spike anneal

Phosphorus-Fluorine S/D

TEXAS INSTRUMENTS

Dallas 09/20/02

Boron-Fluorine S/D

Boron-Fluorine-SD

Analysis:

- Trend correct
- Overestimates retardation

Experiment:

- P 25keV 5.5e13
- As 40keV 2e15
- P 10keV 1.5e15
- F 10keV 2e15
- 1050C spike anneal

B no F (w15 with F 10keV 2e15 (w16) B no F (SIMS w15) 10²¹ B B with F (SIMS w16) 10²⁰ 10¹⁹ 10¹⁸ a/c 10¹⁷ 0.05 0.1 0.2 0.15 0 x [µm]

Dallas 09/20/02

Concentration [cm⁻³]

Boron-Fluorine Pocket

Boron-Fluorine-Pocket

Dallas 09/20/02

Milan Diebel University of Washington

Texas Instruments

Phosphorus-Fluorine Pocket

Phosphorus-Fluorine-Pocket

Dallas 09/20/02

Milan Diebel University of Washington

Texas Instruments

Summary and Conclusion

Summary: New F₃V model developed for TS4

Predicts:

	S/D	MDD	Pocket
	high E + high Q	low E + high Q	high E + low Q
Boron (PMOS)	Ok	Poor	Ok
Phosphorus (NMOS)	Good		Ok

Confirms DFT calculation:

F effect is primarily due to changes in I and V, not B-F or P-F binding.

Problems: F₃V model predicts stronger retardation effects

Possible improvements:

- Initial conditions (formation of F_nV_m important)
- Larger clusters (2 or more clusters)

Density-Functional-Theory

♦ G.F. Bertsch, Les Houches Lecture July 2000

- G.F. Bertsch and K. Yabana, Lecture Notes Graduiertenkolleg Rostock, Germany 2001/Summer School Trieste, Italy 2001
- http://www.nobel.se

F Diffusion Model

M. Diebel and S.T. Dunham, Mat. Res. Soc. Symp. Proc. 717, Warrendale, PA, 2002.

Acknowledgements

Srini Charavarthi (Texas Instruments)

Chuck Machala (Texas Instruments)

Graeme Henkelman (Los Alamos National Laboratory)

