Molecular Dynamics and Accelerated Molecular Dynamics

Arthur F. Voter
Theoretical Division
Los Alamos National Laboratory

Tutorial Lecture Series
Institute for Pure and Applied Mathematics (IPAM)
UCLA
September 13-16, 2005

Acknowledgment: DOE/BES
Overall Outline

Day 1: Molecular dynamics methods

Day 2: Molecular dynamics methods

Day 3: Infrequent events, transition state theory, saddle finding, etc.

Day 4: Accelerated molecular dynamics methods
Molecular Dynamics (MD)

Evolve a system of atoms according to the classical equations of motion (F=ma)

N atoms ---> 6N coordinates \(\{x, p\}\)

\[x_i = \text{position of atom } i\]
\[p_i = \text{momentum of atom } i\]
\[v_i = \frac{p_i}{m_i} = \text{velocity of atom } i\]

Equations of motion:

\[\frac{\partial x_i}{\partial t} = \frac{p_i}{m}\]
\[\frac{\partial p_i}{\partial t} = -\frac{\partial V}{\partial x_i}\]

Typically, potential \(V\) is solely due to interactions among the atoms (but need not be).
Brief History of MD

First MD simulation

B.J. Alder and T.E. Wainwright, 1956 - hard sphere liquid, phase transition

First MD simulations with a continuous potential

G.H. Vineyard et al, 1959 -- radiation damage simulation with a pair potential

A. Rahman, 1964 - Lennard-Jones liquid
Some points

In nature, V comes from the electronic interactions -- the electronic wavefunction. In MD, this is typically swept under the rug, leaving just a relatively simple functional form for V. (Although sometimes we do better than this.)

The system is evolved on the Born-Oppenheimer surface -- i.e., V is for the ground state of the system, and the electronic wavefunction is assumed to instantaneously adapt to the current configuration of atoms ($m_{\text{electron}} < m_{\text{nucleus}}$).
Why do we do MD?

MD is the highest level (i.e., the largest scale) model that gives dynamics in full atomistic detail in an unbiased fashion.

There is no approximation beyond the choice of interatomic potential and the assumption of (nonrelativistic) classical mechanics.

Interatomic potential + boundary conditions

Integrate equations of motion

Observations, predictions

Gives the “truth” for the chosen interatomic potential -- very appealing.
Why do we do MD? (cont)

With a good-quality potential, we can use MD to interpret experiment, make experimentally testable predictions, and gain a physical understanding of real systems at the atomic level.

Also, MD simulations can themselves be considered to be “experiments.”

- test higher-level models
- parameterize higher-level models
- to simply see what happens*

*Often, MD simulations show unexpected, surprising results, forcing the development of better theory, better understanding, and new experiments.
Properties we can calculate/study

<table>
<thead>
<tr>
<th>liquid properties</th>
<th>solid properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pair distribution function</td>
<td>Shock waves</td>
</tr>
<tr>
<td>Diffusion constant in a liquid</td>
<td>Detonation</td>
</tr>
<tr>
<td>Structure factor in a liquid</td>
<td>Radiation damage events</td>
</tr>
<tr>
<td>Pressure vs. volume</td>
<td>Grain boundary structure</td>
</tr>
<tr>
<td>Thermal expansion</td>
<td>Vapor deposition (*)</td>
</tr>
<tr>
<td>Melting point</td>
<td>Fast fracture</td>
</tr>
<tr>
<td>Surface melting</td>
<td>Nanoindentation</td>
</tr>
<tr>
<td>Free energy differences between phases</td>
<td>Fast plastic flow</td>
</tr>
<tr>
<td>Defect dynamics and diffusion in solid (*)</td>
<td>Grain boundary sliding (*)</td>
</tr>
<tr>
<td>Surface diffusion (*)</td>
<td>Protein structure (*)</td>
</tr>
<tr>
<td>Surface sputtering</td>
<td>Protein function (*)</td>
</tr>
<tr>
<td>Surface scattering</td>
<td>Protein dynamics (*)</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td></td>
</tr>
</tbody>
</table>

(* = may be limited by MD time scale)

Limited primarily by imagination.
Interatomic Potentials - first pass

Simplest: pair potential

\[V = \frac{1}{2} \sum_{i \neq j}^{N} \phi(r_{ij}) \]

e.g., Lennard-Jones 6-12:

\[\phi(r_{ij}) = 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right] \]

- \(\sigma = \) length scale
- \(\varepsilon = \) energy scale
- short-range repulsion
- dispersion interactions

LJ is appropriate for argon, for example.

A.F. Voter, September, 2005 LAUR-05-8125
Interatomic potentials

Potential cutoff (typical for non-ionic materials)

With cutoff, forces depend only on nearby atoms, and overall computational work scales as N.
Interatomic potentials

Potential cutoff (typical for non-ionic materials)

With cutoff, forces depend only on nearby atoms, and overall computational work scales as N.

Los Alamos
Integrating the equations of motion

For each atom i:

$$\frac{\partial x_i}{\partial t} = \frac{p_i}{m}$$

$$\frac{\partial p_i}{\partial t} = -\frac{\partial V}{\partial x_i}$$
Verlet Algorithm

Most commonly used method for MD these days.

Given \(\mathbf{x}(t), \mathbf{p}(t-\Delta t/2) \),

First advance \(\mathbf{p} \):

\[
p_i(t + \Delta t/2) = p_i(t - \Delta t/2) - \frac{\partial V(\mathbf{x}(t))}{\partial x_i} \Delta t
\]

Then advance \(\mathbf{x} \):

\[
x_i(t + \Delta t) = x_i(t) + \frac{1}{m} p_i(t + \Delta t/2) \Delta t
\]

\(\mathbf{x} \) and \(\mathbf{p} \) jump over each other, staying out of phase by \(\Delta t/2 \).

This is “leapfrog Verlet.” There are other types of Verlet (e.g., velocity Verlet), but they all give the same integration.
Verlet Algorithm

Simple.

Error term is 4th order.

Symplectic (conserves volume in phase space, as real Hamiltonian dynamics should).

Time reversible.

Within stability limit ($\Delta t \leq \sim \text{period}/20$), conserves energy for an extremely long time.

Typical time step: metals 2-6 fs, proteins 0.5-1 fs

Typically the best choice for most any MD simulation.
Energy fluctuates, but mean is very stable over long times.
Verlet vs. Runge Kutta

Total energy \((V + \sum p^2/2m) \)

Verlet

4th order Runge Kutta

time
Verlet vs. Runge Kutta

\[\text{Total energy} = (V + \sum p^2/2m) \]

- Verlet
- 4th order Runge Kutta
10-atom Lennard-Jones cluster

Parameterized to be sort of like silver
Verlet time step = 5 fs
Kinetic temperature ~500K
10 ps movie
Verlet versus Runge Kutta

10-atom Lennard Jones system, time step = 2 fs

\[\Delta t = 2 \text{ fs} \]

Verlet

4th-order Runge Kutta

short time
Verlet versus Runge Kutta

10-atom LJ system, time step = 1 fs (RK), 10 fs (Verlet)

Verlet, $\Delta t = 10$ fs

Runge Kutta

long time
Verlet versus Runge Kutta

10-atom LJ system, time step = 1, 10 fs (RK), 10 fs (Verlet)

Verlet, $\Delta t = 10$ fs

Runge Kutta, $\Delta t = 1$ fs

even longer time
Integrators - other point(s)

Computational cost is almost always dominated by the cost of the force call (evaluating dV/dx), not by the integrator itself.
Periodic boundary conditions

We often use periodic boundary conditions to mimic infinite bulk system -- liquid, solid, surface, ...
Periodic boundary conditions

Primary period

Period length
Minimum-image condition

If \(r_c < \) period length/2, then only one image of each neighbor will be within cutoff distance of atom \(i \).

This simplifies construction of the neighbor lists, and reduces artificial behavior.
Verlet list

Make list of neighbors within a larger cutoff range.

Compute neighbor distances from this list.

Only update the list after some atom has moved more than Δr - typically many MD steps.
Cell list (for large N)

Make cells with edge length $> r_c$.
Assign each atom to its cell.
Only search adjacent cells when making neighbor list.
Overall work scales as N.
Cell list (for large N)

Make cells with edge length \(> r_c \).
Assign each atom to its cell.
Only search adjacent cells when making neighbor list.
Overall work scales as \(N \).
Cell list (for large N)

Make cells with edge length $> r_c$.
Assign each atom to its cell.
Only search adjacent cells when making neighbor list.
Overall work scales as N.

A.F. Voter, September, 2005 LAUR-05-8125
Cell list (for large N)

Make cells with edge length $> r_c$.
Assign each atom to its cell.
Only search adjacent cells when making neighbor list.
Overall work scales as N.
Limitations of MD

• Accuracy of potential
• Length scale - not macroscopic
• Time scale - limited to ns
• Quantum dynamical effects
• Non adiabatic dynamics
Accuracy of potentials

Good systems:
 Noble gases (Ne, Ar, ...)
 Certain fcc metals (Cu, Ag, Ni)

OK systems:
 - many metal systems (Pt, Fe, V ...)
 - ionic systems (NaCl, MgO,...)
 - proteins, polymers (but not perfect, and bonds can’t break)
 - silicon (record number of fits)

Problem systems:
 - mixed ionic-covalent systems (e.g., Pt/MgO)
 - mixed metallic-covalent systems (e.g., C in Fe)
MD - achievable length scales

$10^3 - 10^4$ atoms easy on single processor

Much larger systems possible via parallelization

Each processor responsible for atoms in a physical cell
Communication required between adjacent cells

$>\sim 10^3-10^4$ atoms per processor to maintain good efficiency

Million atoms -- now fairly routine

Billion atoms -- possible
Cu Cascade simulation

Copper 25keV:
Cube faces (100)
Cube size = 25nm
2,048,000 atoms
Temperature=100K

time = 0.006ps
NFP = 1

Legend:
Displaced atoms
Vacant sites

D.J. Bacon et al (Liverpool)

Los Alamos
Cu Cascade simulation

25 keV, copper

green=interstitial
red=vacancy

D.J. Bacon et al
271 nm × 271 nm × 343 nm, with 0.41% porosity ⇒ 2,131,656,770 atoms

Centrosymmetry parameter to show only hcp (grey) and defect (red) atoms

⟨100⟩ loading

\(u_p = 200 \text{ m/s} \)
\(t = 2.0 \text{ ps} \)

Germann, Holian, Kadau, and Lomdahl, 2005
Germann, Holian, Kadau, and Lomdahl, 2005
$t = 11.0 \text{ ps}$
\[t = 17.0 \text{ ps} \]
$t = 19.0 \text{ ps}$
\[\langle 100 \rangle \text{ loading, } \quad u_p = 1 \text{ km/s, } \quad t = 0 \text{ ps} \]

116nm \times 116nm \times 181nm (1.41\% \text{ porosity}) \Rightarrow 202,872,066 \text{ atoms}
\langle 100 \rangle \text{ loading, } u_p = 1 \text{ km/s, } t = 10 \text{ ps}
\langle 100 \rangle \text{ loading, } \ p = 1 \text{ km/s, } t = 20 \text{ ps}
\langle 100 \rangle \text{ loading, } u_p = 1 \text{ km/s, } t = 30 \text{ ps}
\langle 100 \rangle \text{ loading}, \quad u_p = 1 \text{ km/s}, \quad t = 40 \text{ ps}

Increased local dislocation density provides “memory” of void locations.
\langle 100 \rangle \text{ loading}, \quad u_p = 1 \text{ km/s}, \quad t = 50 \text{ ps}

Nucleation of numerous small voids
\(\langle 100 \rangle \) loading, \(u_p = 1 \text{ km/s}, \ t = 60 \text{ ps} \)

Re-opening of preexisting void
$\langle 100 \rangle$ loading, $u_p = 1 \text{ km/s}$, $t = 70 \text{ ps}$
\langle 100 \rangle \text{ loading, } u_p = 1 \text{ km/s, } t = 80 \text{ ps}

- Re-opening of preexisting void
- Linkup of voids in main spall zone
Raleigh-Taylor instability

100 million LJ atoms
Raleigh-Taylor instability

MD - achievable time scales

With fast empirical potential

nanoseconds

With first-principles forces (e.g., density functional theory)

few ps
MD may never reach even one millisecond

* 1-week simulation of 1000-atom metal system, EAM potential