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N-MOSFET Schematic

 Four structural masks: Field, Gate, Contact, Metal.
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 Reverse doping polarities for pMOSFET in N-well.
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N-MOSFET Schematic
polysilicon
          gate gate

oxideVg oxide

z

g

Vds
 Source terminal:       Ground 
potential.
 Gate voltage: Vgs
 Drain voltage: Vds

Do you remember 
what is quasi-
Fermi level? 

y
n  source+ n  drain+

0 L

z g ds
 Substrate bias voltage: Vbs

(Vsb)

x
depletion 
region inversion

Depletion 
region edge

(x,y): Band bending at 
any point (x,y).
V(y): Quasi-Fermi

p-type substrate 

region
channel

W

V(y): Quasi-Fermi 
potential along the 
channel.
Boundary conditions: 
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-Vbs
ou da y co d t o s

V(y=0) = 0, V(y=L) = Vds.
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Long Channel Behavior

The electric field in the channel is essentiall one The electric field in the channel is essentially one-
dimensional (normal to the semiconductor 
surface) polysilicon

gate gateV

 Mathematically: Ex >> Ey

          gate g
oxide

z

Vg

Vds
Silicon
surface
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Electron concentration: kTVqi e
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Drain Current Model

Electric field:
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Condition for surface inversion:

ByVy  2)(),0(  mequilibriu-nonunder capacitor  MOS ain 
bias reverse  theof role  theplays )(yV

Maximum depletion layer width at inversion:
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Current Density Equation
drift diffusion


dy
dnqDnEqJ nnn 
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Current density equation (both drift and diffusion):

J x y q n x y
dV y

( ) ( )
( )


Quasi-

Department of Electrical EngineeringH.-S. Philip Wong EE 3163-9

 J x y q n x y
dyn n( , ) ( , )   Fermi level
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Gradual Channel Approximation
Assumes that vertical field (Ex) is stronger than lateral field (Ey) in 
the channel region, thus 2-D Poisson’s equation can be solved in 
terms of 1 D vertical slicesterms of 1-D vertical slices.

Current density equation (both drift and diffusion):
dV y( ) Quasi-

Integrate in x- and z-directions,

 J x y q n x y
dV y

dyn n( , ) ( , )
( )

  

dV dV

Fermi level

where                                     is the inversion charge per unit area. 

 I y W dV
dy

Q y W dV
dy

Q Vds eff i eff i( ) ( ) ( )    

 Q y q n x y dxi

xi( ) ( , )  0
Current continuity requires Ids independent of y, integration with 
respect to y from 0 to L yields

 I W Q V dV
Vds

 ( )
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L

Q V dVds eff i
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Pao-Sah’s Double Integral H. C. Pao and C. T. Sah, “Effects of diffusion current on characteristics 
of metal-oxide (insulator)-semiconductor transistors,” Solid-State 
El t l 9 10 927 937 O t 1966

Change variable from (x,y) to (,V),

V
ni q V kT( ) ( ) ( )/
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g
Electron., vol. 9, no. 10, pp. 927–937, Oct. 1966.
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Substituting into the current expression,
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How do you get this 

approximation?

(see Lecture Notes 
p. 2-12 and 2-22 

and makewhere  (V) is solved by the gate voltage eq for a
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and make 
approximations)

where s(V) is solved by the gate voltage eq. for a 
vertical slice of the MOSFET:
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Example of ψs vs VG Relationship
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R. van Langevelde, F.M. Klaassen / Solid-State Electronics 44 (2000) 409 - 418
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Charge Sheet Approximation 

Assumes that all the inversion charges are located at the 
silicon surface like a sheet of charge and that there is no 

t ti l d th i i l

g

potential drop across the inversion layer.

After the onset of inversion, the surface potential is pinned at 
 = 2 + V(y)s = 2B + V(y).

 Depletion charge: )2(2 max VqNWqNQ Basidad  

 Total charge:

 Inv. charge:

Q C V V C V V Vs ox g fb s ox g fb B        ( ) ( ) 2

 Q Q Q C V V V qN Vi s d ox g fb B si a B        ( ) ( )2 2 2  

W V
Substituting in                                        and integrate:
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J.R. Brews, “A charge-sheet model of the MOSFET,” Solid-State Electronics, Volume 21, Issue 2, February 1978, Pages 345-355 
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Linear Region I-V Characteristics
For Vds << Vg ,

      I C W
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0 0.5 1 1.5 2 2.5 3
Gate Voltage,     (V)

VonVt

Vg
P. Bai et al., “A 65nm Logic Technology Featuring 35nm Gate 
Lengths, Enhanced Channel 8 Cu Interconnect Layers, Low-k ILD 
and 0.57 μm2 SRAM Cell,” IEDM, p. 657 (2004). 
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Experimental Determination of the Threshold Voltage

Linear e trapolation (LE) at the ma im m G point Linear extrapolation (LE) at the maximum Gm point

 Constant current (CC) method Often used in industry

 Transconductance change (TC) method Used for 
modeling of 

devices
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D.K. Schroeder Semiconductor material and device characterization, 2nd ed, Wiley, New York (1998).
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Example Id (and Gm) vs VGS curves
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R. van Langevelde, F.M. Klaassen / Solid-State Electronics 44 (2000) 409 - 418
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Example log(Id) vs VGS curves
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R. van Langevelde, F.M. Klaassen / Solid-State Electronics 44 (2000) 409 - 418
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Threshold Voltage Extraction Method Illustrationg

Department of Electrical EngineeringH.-S. Philip Wong EE 3163-18

H.S. Wong, M.H. White, T.J. Krutsick and R.V. Booth, Modeling of transconductance degradation and extraction of 
threshold voltage in thin oxide MOSFET's. Solid State Electron 30 (1987), p. 953. 
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2 2Example ∂Id / ∂VGS and ∂2Id / ∂VGS 
2 vs VGS curves
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R. van Langevelde, F.M. Klaassen / Solid-State Electronics 44 (2000) 409 - 418
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Saturation Region I-V Characteristics 
  

Keeping the 2nd order terms in Vds:  I C W
L

V V V mVds eff ox g t ds ds  
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Drain Voltage
Typically, m  1.2
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Pinch-off Condition
From inversion charge density point of view,

 Q V C V V mVi ox g t( ) ( )   

while   I W
L

Q V dVds eff i

Vds  ( )
0

At V V (V V )/
Q Vi( )

At Vds = Vdsat = (Vg  Vt)/m,
Qi = 0 and Ids = max.

Qi( )

C V Vox g t( )
Integrated area under

 Ids

g Integrated area under 
the curve (shaded 
area)

Vd0 VVd t
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Beyond Pinch-off

Channel length 
modulation
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modulation



Stanford University

Saturation Characteristics – Experimental Example

65 nm technology

CML DIBL

Slope due to:

C Channel length 
modulation (CLM)

 Drain induced barrier 
lowering (DIBL) – to be 
di d l tdiscussed later
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P. Bai et al., “A 65nm Logic Technology Featuring 35nm Gate 
Lengths, Enhanced Channel 8 Cu Interconnect Layers, Low-k ILD 
and 0.57 μm2 SRAM Cell,” IEDM, p. 657 (2004). 
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Subthreshold Region
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Subthreshold Currents
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Subthreshold log(ID)
ISubthreshold 

Slope (S)
MOSFET
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60 V/d i MOSFET d tG t t h l t ti l
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60 mV/dec in MOSFETs due to 
Fermi-Dirac distribution

Gate to channel potential 
coupling: >1 in MOSFETs
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Q ti ?Questions?
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Body Effect: Dependence of Threshold Voltage on y p g
Substrate Bias

You can either 

1 Start with the Poisson’s1. Start with the Poisson’s 
equation solution for Qs, Qd, 
Qi with the quasi-Fermi levels 
of the holes and electrons 
separated by the substrate 
bias Vbs, or

2. Keep the substrate at zero 
(as the reference) and shift 
the source , drain, and gate 
biases by Vbs
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Body Effect: Dependence of Threshold Voltage on 

If Vbs  0,

y p g
Substrate Bias You can either 

1. Start with the Poisson’s equation solution for Qs, Qd, 
Qi with the quasi-Fermi levels of the holes and 
electrons separated by the substrate bias Vbs, or

2. Keep the substrate at zero (as the reference) and 
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Body Biasing for Low Powery g
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Application of Body Bias for Controlling VariationsApplication of Body Bias for Controlling Variations
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Dependence of Threshold Voltage on Temperature 

For n+ poly gated nMOSFET, Vfb =  (Eg /2q)  B
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See Taur & 
Ning p. 167-

168 for 
derivation

From Table 2 1 dE /dT  2 7104 eV/K and (N N )1/2 
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1 derivation 
steps

From Table 2.1, dEg/dT  2.710 eV/K and (NcNv) 
2.41019 cm3.  

For Na  1016 cm3 and m  1.1, 

Note: Operating temperature is 
specified at 85 ○C for  
microprocessors and 150 ○C for

Department of Electrical EngineeringH.-S. Philip Wong EE 3163-33

a ,
dVt /dT is typically 1 mV/K.

microprocessors and 150 C for 
automotive applications 
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Carrier Transport and Gate Capacitance 

Linear Region:

dstgoxeffds VVV
L

WCI )(  

W V V( )2

Saturation Region:

 I I C W
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V V
mds dsat eff ox

g t 
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Will come back to a more elaborate discussion later in the course 
about carrier transport.

Let’s first digress briefl abo t the gate capacitance C and the
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Let’s first digress briefly about the gate capacitance Cox and the 
effective mobility µeff right now (we will return to them later again)
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MOSFET Channel Mobility Weighted average 

 


eff
n

x

x

n x dx

n x dx

i

i
 


( )

( )
0

MOSFET Channel Mobility
with inversion carrier 

density
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It was empirically found that when eff is plotted against an 
effective normal field Eeff, there exists a “universal 
relationship” independent of the substrate bias dopingrelationship  independent of the substrate bias, doping 
concentration, and gate oxide thickness (Sabnis and 
Clemens, IEDM 1979).
Here 
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 Low field region (low 
electron density): Limited by

Electron Mobility

electron density): Limited by 
impurity or Coulomb 
scattering (screened at high 
electron densities).

 Intermediate field region: 
Limited by phonon 
scattering, 

 High field region (> 1

3/132500  Eeff

 High field region (> 1 
MV/cm): Limited by surface 
roughness scattering (less 
temp dependence)

Department of Electrical EngineeringH.-S. Philip Wong EE 3163-36

temp. dependence).
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Temperature Dependence of MOSFET Current

Note: Operating temperature isNote: Operating temperature is 
specified at 85 ○C for  
microprocessors and 150 ○C for 
automotive applications 
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Hole Mobility







  id

si
eff QQ

3
11 


E

In general, pMOSFET mobility does not exhibit  
“universal” behavior as well as nMOSFET
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“universal” behavior as well as nMOSFET.
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Gate to 
body

 C WL
C C

WLCg d 








 


1 1
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 Subthreshold region:

Intrinsic MOSFET Capacitance body 
capacitance

C Cox d 
 C WLCg ox Linear region:

 Saturation region:

What is the gate 
to source and 
gate to drain 

capacitance in

Gate to 
channel 

 Q y C V V y
Li ox g t( ) ( )   1

 Saturation region: capacitance in 
subthreshold?

Wh t i th t

capacitance

Q y
Li ox g t( ) ( )

 C WLCg ox
2
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What is the gate 
to body 

capacitance in the 
linear region?

3

See Taur & Ning p. 
131 for derivation 
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steps




