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A combined model for ˆ311‰ defect and dislocation loop evolution:
Analytical formulation of kinetic precipitation model
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Accurate modeling of extended defect kinetics is of primary importance for prediction of transient
enhanced diffusion~TED! following ion implantation of silicon. Our previously developed
moment-based model@Gencer and Dunham, J. Appl. Phys.81, 631~1997!# accurately accounts for
formation and evolution of$311% defects and can be used to predict TED under subamorphizing
conditions. Using experimental knowledge about the distribution of the$311% defect population, and
making approximations on the sums that are encountered in the model, we are able to simplify this
model. We demonstrate that these simplifications don’t affect the predictive capabilities of the model
for $311% defect kinetics and TED. Furthermore, we are able to extend the model, under the same
simplifying assumptions, to account for dislocation loop formation from$311% defect unfaulting and
dislocation loop evolution, giving a unified model for interstitial aggregation in silicon. The
resulting analytical model does not impose any computational speed penalty when the loop
extension is turned on, making it applicable to a wide range of problems. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1446223#
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I. INTRODUCTION

It is well accepted that interstitial agglomerates, nam
$311% defects and dislocation loops, play the central role
transient enhanced diffusion~TED! following ion implanta-
tion of silicon. By controlling point defect concentration
the formation, evolution, and transformation of these defe
determine the total movement of the dopant profiles. Ph
cally based, and yet computationally efficient models
needed to accurately simulate extended defect kinetics
TED.

In our previous work,1 we developed a physically base
model for simulating the kinetics of extended defect form
tion and dissolution~kinetic precipitation model! and also
developed a computationally efficient version of the mo
based on the evolution of the moments of the extended
fect size distribution~reduced kinetic precipitation model o
RKPM!.2 However, even the efficient model required the c
culation of a large lookup table, which led to speed a
stability problems. In this article, we present a more effici
moment-based model which addresses these issues. A
same time, we extend the model to account for disloca
loop formation and evolution, thereby allowing the accur
simulation of nucleation, growth, transformation, and dis
lution of self-interstitial aggregates following high dose a
high-energy implants.

II. MOMENT-BASED MODEL FOR EXTENDED
DEFECTS

Evolution of an extended defect population can be m
eled by explicitly considering aggregates of different sizes
independent species and accounting for their kinetics by c
sidering the attachment and emission of solute atoms.1 We
2880021-8979/2002/91(5)/2883/7/$19.00
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define f n as the number of aggregates of sizen per unit
volume. The net rate of transformation from sizen to n
11, may be written as

I n5Dln~CI f n2CssĈn* f n11!, ~1!

whereD is the solute~interstitial! diffusivity, ln is a kinetic
rate factor which can be determined from the geometry of
defects and the interface reaction rate,CI is the solute~inter-
stitial! concentration,f n is the density per unit volume o
clusters of sizen, Css is the ‘‘solid solubility’’ associated
with a reference structure~usually an infinitely large precipi-
tate!, andĈn* is a reverse rate constant which can be de
mined from the excess surface and strain energy (DGn

exc)
associated with finite-size defects~relative to reference
structure!.1 In this system, the free-energy change associa
with the formation of a precipitate of sizen from free solute
atoms is given by

DGn5nkT lnS CI

Css
D1DGn

exc, ~2!

which gives

Ĉn* 5expS DGn11
exc 2DGn

exc

kT D . ~3!

Ĉn* represents the ratio between the solute concentration
equilibrium with a finite-size precipitate and with the refe
ence precipitate.

To reduce the number of solution variables, we follo
the moment-based approach2 and keep track of only the low
est ordermomentsof the distribution~mi5(n52

` ni f n , where
i 50,1,2,...!. The system of equations is then reduced to
3 © 2002 American Institute of Physics
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]mi

]t
52i I 11 (

n52

`

@~n11! i2ni #I n . ~4!

Since no finite number of moments can fully describe a co
plete distribution, we need a closure assumption, which is
assumption about the form of the distribution,f n5 f (n,zi),
wherezi represent a set of parameters that characterize
distribution. In cases where we have noa priori knowledge
about the distribution of defect sizes, we have used
energy-minimizing closure assumption.1 We simply argued
that the size distribution will be the one that minimizes t
free energy given the moments, as found from constrai
minimization of the free energy (DGn). This results in the
following distribution with three parameters, and hence
three-moment model~3KPM!,

f n5z0 exp~2DGn
exc/kT1z1n1z2n2!. ~5!

For $311% defects and dislocation loops, the size dist
bution has been measured experimentally.3 The results sug-
gest that the distribution is roughly log normal:

f n5z0 exp@2 ln~n/z1!2/z2#. ~6!

Pan and Tu noted that the breadth of the size distributi
they observed scales with the average size.3 In accordance
with this, we find that a constant value ofz2 (z250.8)
matches all the size distributions, independent of annea
time ~Fig. 1!. Thus, we can reduce the number of parame
~and hence also the number of moments! to 2. The resulting
system is a two-moment system~2KPM!:

]m0

]t
5I 15Dl1@CI

22CssĈ1* f 2#,

]m1

]t
52I 11 (

n52

`

I n ,

52Dl1@CI
22CssĈ1* f 2#1DFCI (

n52

`

lnf n

2Css(
n52

`

lnĈn* f n11G , ~7!

FIG. 1. Distribution of$311% defect densities over defect sizes and best fi
log2normal distribution.z250.8 has been used in all fits. Data from Pa
and Tu~see Ref. 3!.
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Normalizing the defect population such thatf̂ n

5 f n /((n52
` f n)5 f n /m0 , we get the following system:

]m0

]t
5I 15Dl1@CI

22m0Cssg0#,

]m1

]t
52I 11Dl̄m0@CI2Cssg1#, ~8!

]CI

]t
52

]m1

]t
,

with

g05Ĉ1* f̂ 2 ,

g15 (
n52

`

Ĉn* f̂ n11ln /l̄, ~9!

l̄5 (
n52

`

lnf̂ n .

The system can further be simplified by noting that for$311%
defects the geometry factor (l̄) is almost independent of th
defect size for large defects,4 since $311% defects grow pri-
marily in one direction. Thus, we can replacel̄ with size-
independentl. For a log-normal distribution, the integral o
the distribution function can be found analytically, and the
fore the parameters of the distribution can be calculated fr
the moments by means of analytical functions. This elim
nates the need for the lookup table and interpolation, giv
speed and robustness advantages. However,g1 still needs to
be calculated by numerical sums, which is an iterative p
cess.

III. ANALYTICAL KINETIC PRECIPITATION MODEL
„AKPM …

Note that in the above equations,f̂ n is based on the
distribution function we assume, and can be determined f
if m̂15m1 /m0 is given. For example, if the distribution
function is a geometric distribution function (f̂ n5z0z1

n), then
the distribution can be determined by solving the followi
set of equations:

15 (
n52

`

z0z1
n ,

~10!

m̂15 (
n52

`

nz0z1
n .

The solution of this system gives

z15
m̂122

m̂121
,

~11!

z05
12z1

z1
2 .
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Hence the normalized distribution can be written in terms
m̂1 :

f̂ n5
1

m̂121 S m̂122

m̂121D n22

. ~12!

Since we also assume a functional form forĈn* , the g i

are uniquely defined ifm̂1 is known. Thus, in fact, theg i are
functions ofm̂1 , with the appropriate limits:

g05g0~m̂1!, g15g1~m̂1!,

lim
m̂1→2

g05Ĉ1* , lim
m̂1→2

g150, ~13!

lim
m̂1→`

g050, lim
m̂1→`

g151.

For every DGn
exc f̂ n pair, we can find a correspondin

g0(m̂1), g1(m̂1) pair, and instead of using the parameters
DGn

exc as our fitting parameters, we can use correspond
parameters ofg0(m̂1) andg1(m̂1) as fitting parameters.

To demonstrate this transformation, we use an exam
For simplicity of arithmetic, assume thatĈn* is given by an
exponential functionĈn* 5abn2111. Also, assume that th
size distribution is again geometrical as given by Eq.~12!.
Simply substituting these functions into the definition ofg i

yields

g05
11a

m̂121
,

g15 (
n52

`

~abn2111!
1

m̂121 S m̂122

m̂121D n21

, ~14!

5
m̂122

m̂121 F ab

m̂1~12b!211b
11G .

For $311% defects, we used a generalized polynomial appro
mation for the form ofDGn

exc in our previous work:1

DGn
exc5a0nb01a1nb1

¯ . ~15!

Starting with this form ofDGn
exc and the log-normal distri-

bution of the defect sizes as given in Eq.~6!, we calculate the
correspondingg0(m̂1), g1(m̂1) pairs numerically. Figure 2
shows sets of calculatedg i for different sets of coefficients
for the generalized polynomial ofDGn

exc. Although it is pos-
sible to solve the log-normal form exactly in order to det
mine the parameters~z0 andz1! from the moments~m0 and
m̂1 ,! it is not possible to calculate the sum ing1 analytically
with the assumed form ofDGn

exc. It is computationally much
faster to be able to express theg i as analytic functions ofm̂1

rather than using a numeric sum. Our calculations show
the results can be approximated by the following functions
m̂1 :

g0~m̂1!5
K1

m̂121
,

~16!

g1~m̂1!5
m̂122

m̂11K0
S 11

~K012!K2

m̂11K0
D .
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Note that the approximations have the right asymptotic
havior as given in Eq.~13!.

Since theg i calculated from 2KPM and determined b
the analytical functions of AKPM are approximately equ
we would expect that both models would give the sa
simulation results. Indeed, when we test both models un
the same conditions, the results are almost indistinguish
~Fig. 3!. To obtain Fig. 3, we have used the parameters
Fig. 2~a!, with an initial 531013 cm22 interstitial dose.

It is also possible to findĈn* , and henceDGn
exc, if the

fitting parameters ofg i ~namely, Ki! and the distribution
function (f̂ n) are given, although this procedure is le
straightforward. Sinceg0 is the product ofĈ1* and f̂ 2 , know-
ing g0 , we can easily findĈ1* . On the other hand,g1 is
dependent onĈ2* throughĈ*̀ . So we can findĈn* by solv-
ing a large set of linear equations defined by

g1~m̂1!5 (
n52

`

Ĉn* f̂ n11~m̂1! ~17!

FIG. 2. Values ofg0 ~j! and g1 ~d!, as calculated from Eq.~10! and as
fitted by AKPM functions@Eq. ~14!#. The DGn

exc parameters and the corre
sponding parameters forg i are ~a! a053.855, a1515.9, a2521.4, with
K053, K1514.5 andK25366. ~b! a051, a154.7, a250, which corre-
spond toK058, K150.14, andK258.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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at differentm̂1 . OnceĈn* is determined,DGn
exc can be found

by solving the expression forCn* @Eq. ~3!# for DGn
exc, which

gives a recurrence relation:

DGn11
exc 5DGn

exc1kT ln Ĉn* . ~18!

Obviously,DG1
exc must be defined as a reference point.

IV. COMPARISON OF MODELS TO EXPERIMENTAL
DATA

In this section, we compare four extended defect mod
a three-moment model~3KPM! which was demonstrated i
our previous work,1 the two-moment model~2KPM! de-
scribed above, a one-moment or simple solid solubility~SSS!
model, and the AKPM described above. We first review
assumptions of these four models:

~1! One-moment model~SSS!: In this model, we assume
that solute atoms above solid solubility precipitate to e
tended defects with a diffusion limited rate. This mod
does not account for Ostwald ripening.

~2! Two-moment model~2KPM!: We use log-normal distri-
bution of extended defects with fixedz2 . The variables
we have arem0 andm1 .

~3! Three-moment model~3KPM!: We use an energy mini
mizing closure assumption with three moments.

~4! Analytical model~AKPM!: We use analytical functions
for the reaction rates that depend on average size.

Figure 4 shows the comparison of one-, two- and thr
moment models to the$311% dissolution data from Eagle
shamet al.5 It can be observed that both the two- and thre
moment models accurately capture the observed beha
However, the one-moment model cannot account for the
ponential decay in the number of interstitials stored in$311%
defects. Since it neglects the Ostwald ripening process
predicts an approximately linear decay in the number of
terstitials stored in$311% defects. The exponential decay ra
is mainly a result of decreasing supersaturation of inter
tials with time, which is, in turn, a result of the increase
average size of the extended defect population and the
crease in the number of extended defects remaining.

FIG. 3. Comparison of 2KPM and AKPM under identical implant and a
neal conditions where equivalent parameters as given in Fig. 2~a! are used.
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When we apply AKPM to the same set of data, we fi
that it also describes the Ostwald ripening process equ
well ~Figs. 5 and 6!. Note that the model parameters a
calibrated using only the experimental data in Fig. 5, a
hence Fig. 6 shows the prediction of the model for the O
wald ripening process and is not a curve fit. Thus, the go
agreement in the average$311% defect size further validate
the modeling approach.

We find that the computation time with the AKPM
model is much smaller than the computation time of t
RKPM model. This makes AKPM the model of choice fo
simulation of $311% defects in large systems. The fact th
AKPM does not require any proprietary operators enab
easy integration into many PDE solvers.

If we look at TED data from Packan,6 the differences
between the three models is relatively small~Fig. 7!. One
can readily observe that the final amount of TED predic
by all three models is approximately the same. For la
thermal budgets at constant temperature, as is the case
this data, all extended defects created by the implant dam
are dissolved. In such a case, the amount of TED depe

- FIG. 4. Comparison of one-, two-, and three-moment models for evolu
of $311% defects. Both two- and three-moment models capture the expo
tial decay of interstitials in$311% defects as observed by Eagleshamet al.
~see Ref. 5!.

FIG. 5. Evolution of density of interstitials in$311% defects (m1) from
Eagleshamet al. ~see Ref. 5! and comparison to the analytical mode
~AKPM! and three-moment model~3KPM!.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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only on how much the initial damage was and how effect
the surface is in terms of consuming interstitials. Therefo
all three models give similar results.

However, before the damage is completely annealed
while the interstitial super-saturation is still evolving, we e
pect significant differences between the models. Indeed
we look at short-time behavior more closely using data fr
Chao,7 the difference between the models becomes evid
~Fig. 8!. The one-moment model predicts a constant
hancement of diffusivity until TED is over, whereas the tw
moment model accounts for the reduction of diffusiv
enhancement—or interstitial supersaturation—during TE
Again, this is an effect caused by the Ostwald ripening p
cess. These differences in TED kinetics play an import
role in the final amount of diffusion when TED occurs ov
more than one temperature, such as for spike anneals w
most of the diffusion occurs during the ramp up.8

V. COMBINED ANALYTICAL DISLOCATION LOOP
AND ˆ311‰ DEFECT MODEL

As a next step, we seek to find an analytical model
loop evolution based on the analytical model for$311% de-

FIG. 6. The analytical model’s~AKPM! prediction of the evolution of the
average length of$311% defects and comparison to data from Eaglesh
et al. ~see Ref. 5!.

FIG. 7. Comparison of one-, two-, and three-moment models for TED
dictions. The models differ significantly only at short-time behavior, wh
this data~Packan, see Ref. 6! cannot distinguish.
Downloaded 08 Feb 2006 to 128.95.104.66. Redistribution subject to AIP
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fects ~AKPM! and combine these two models in one. W
assume that$311% defects transform into dislocation loops b
an unfaulting reaction once they reach a critical size.9,10 This
process has been observed experimentally viain situ TEM.11

For a more detailed discussion of the loop formation proce
please refer to Ref. 4.

We can note the following points for the functions th
are involved in AKPM:

~1! Loops have a lower solid solubility than$311% defects,
typically close toCI* . Therefore, we have to set the sol
solubility of the $311% defects/dislocation loop distribu
tion to Css

loop. Since theg i are inversely proportional to
the solid solubility, the values determined from$311%
defects have to be multiplied by theCss ratio.

~2! To ensure lim
n→`

g151, we need a functional change aft

the $311%/loop crossover point (ncrit).
~3! Theg i have to be continuous at the$311%/loop crossover

point (ncrit).

To understand what type of function these restrictio
give, we proceed as earlier. We useDGn

exc for the joint popu-
lation of $311% defects and dislocation loops, which is ide
tical to DGn

exc for $311% defects at sizes smaller thanncrit ,
except for an offset due toCss difference~a3 term!, and is
proportional to the loop perimeter (}n0.5) for sizes larger
thanncrit :

9,10

DGn
exc5H a0nb01a1nb11a2nb21a3n for n,nc ,

b0n0.51b1 for n>nc .
~19!

Together with a log-normal distribution function we fin
the correspondingg i as we did for$311% defects by Eq.~10!.
The results are shown in Fig. 9, together with analyti
functions that capture the behavior ofg1 .

We find a set ofg i functions to be used with AKPM by
extending the set of functions we used for$311% defects:

-

FIG. 8. Comparison of one- and two-moment models for short-time di
sivity enhancements. Data from Chao~see Ref. 7! for a 531013 cm22 50
keV implant with anneals at 750 °C.
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g055
Css

$311%

Css
loop

K1

m̂121
for m̂1,ncrit ,

K3S 1

m̂121D a

for m̂1.ncrit ,

~20!

g155
Css

$311%

Css
loop

m̂122

m̂11K0
S 11

~K012!K2

m̂11K0
D for m̂1,ncrit ,

11K4S K012

m̂11K0
D a

for m̂1.ncrit ,

~21!

whereK3 andK4 are chosen such that continuity ofg0 and
g1 are ensured. In our simulations, we have used a cross
point of ncrit51000 and lefta as a fitting parameter. Pleas
note thatncrit should not be interpreted as ‘‘the point whe
the $311% defect to dislocation loop transformation happen
but rather ‘‘the size below which no$311% defect to disloca-
tion loop transformation happens.’’ The transformation w
occur at any size greater thanncrit .

We again compare our model against data from P
et al.12 As one can readily observe, a good match can
found ~Figs. 10 and 11!. The model also captures the Os
wald ripening process of dislocation loops~Fig. 11!. Since
this model does not explicitly distinguish between the int
stitials contained in dislocation loops and the interstiti
contained in$311% defects, we can not plot them separate
However, to obtain an idea of how the$311% defects would
evolve, we can turn off the loop portion of the model a
plot $311% defects in the absence of loops~Fig. 10!.

As a check of the predictive capabilities of the unifi
$311% defect/dislocation loop model, we have resimulated
data by Packan6 with the dislocation loop model turned on
Since the model is analytic, and only the functions are d
ferent, there is no significant speed penalty associated
including the loop model along with the$311% defect model.
The results are depicted in Figs. 12 and 13. Since all
plants in this data set were under subamorphizing conditio
there is no significant difference between the$311% defect
model and the unified model, except for the highest do

FIG. 9. Theg1 function for both $311% defects and dislocation loops a
derived fromDGn

exc and a log-normal closure assumption. Form̂1,ncrit , g1

is identical to that for$311% defects, except for a multiplier to account fo
differences in solid solubility.
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and energies. The model predicts that at higher doses
energies, where TED lasts longer, a significant portion of
$311% defect population turns into dislocation loops. Sin
loops sustain a smaller supersaturation than$311% defects,
this reduces the total amount of TED for higher doses a
energies, resulting in a better match with the experimen
data.

FIG. 10. Evolution of the total number of interstitials stored in dislocati
loops and$311% defects for the AKPM. Data for 131016 cm22 Si implant at
50 keV with anneal at 850 °C from Panet al. ~see Ref. 12!.

FIG. 11. Evolution of average defect size for 131016 cm22 Si implants at
50 keV from Panet al. ~see Ref. 12! compared to the prediction of AKPM

FIG. 12. Prediction of the energy dependence of TED using the uni
loop/$311% defect model. Data from Packan~see Ref. 6!.
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VI. SUMMARY

We presented an alternative formulation of a previo
moment2based model for extended defect kinetics, which
more efficient and does not require lookup tables. The i
nite nonlinear sums in previous model~RKPM! can be rep-
resented by analytical functions with new fitting paramet
without loss of generality. The new formulation can
implemented in any PDE solver, without the need for spe
operators and can be used in multidimensional simulati
without a large performance penalty. The model has b
successfully calibrated to the evolution of$311% defects fol-
lowing ion implantation.

FIG. 13. Prediction of the dose dependence of TED using the unified l
$311% defect model. Data from Packan~see Ref. 6!.
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We have also presented an extension of the same m
to dislocation loop formation from$311% defect unfaulting.
This extension results in a unified model that accounts
the nucleation, growth, transformation, and dissolution
$311% defects and dislocation loops. Via application of th
model, we also demonstrated that loop formation can ef
TED significantly for high dose and energy implants, ev
when the implants are subamorphizing.
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