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Accurate modeling of extended defect kinetics is of primary importance for prediction of transient
enhanced diffusion(TED) following ion implantation of silicon. Our previously developed
moment-based modeGencer and Dunham, J. Appl. Phgd, 631(1997] accurately accounts for
formation and evolution of311} defects and can be used to predict TED under subamorphizing
conditions. Using experimental knowledge about the distribution of3h# defect population, and
making approximations on the sums that are encountered in the model, we are able to simplify this
model. We demonstrate that these simplifications don't affect the predictive capabilities of the model
for {311} defect kinetics and TED. Furthermore, we are able to extend the model, under the same
simplifying assumptions, to account for dislocation loop formation f{8&1} defect unfaulting and
dislocation loop evolution, giving a unified model for interstitial aggregation in silicon. The
resulting analytical model does not impose any computational speed penalty when the loop
extension is turned on, making it applicable to a wide range of problem20@2 American
Institute of Physics.[DOI: 10.1063/1.1446223

I. INTRODUCTION define f,, as the number of aggregates of sizeper unit

It is well accepted that interstitial agglomerates, namelyvOlume The net rate of transformation from siaeto n
+1, may be written as

{311 defects and dislocation loops, play the central role in"
In=DXn(Cifn=CsLh frsa), @

transient enhanced diffusiaifED) following ion implanta-
tion of silicon. By controlling point defect concentrations,
the formation, evolution, and transformation of these defectsvhereD is the solute(interstitial) diffusivity, A, is a kinetic
determine the total movement of the dopant profiles. Physirate factor which can be determined from the geometry of the
cally based, and yet computationally efficient models aredefects and the interface reaction ra@e,is the solutginter-
needed to accurately simulate extended defect kinetics arstitial) concentrationf,, is the density per unit volume of
TED. clusters of sizen, C is the “solid solubility” associated

In our previous work, we developed a physically based with a reference structur@sually an infinitely large precipi-
model for simulating the kinetics of extended defect forma-ate), and C* is a reverse rate constant which can be deter-
tion and dlSSOlUtlor(klnetlc preCIpItatlon mOdéland also mined from the excess surface and strain enemﬁr(‘)
developed a computationally efficient version of the modelassociated with finite-size defectselative to reference
based on the evolution of the moments of the extended d%‘[ructure 1 In this System the free- -energy Change associated

fect S|ze distributior(reduced kinetic precipitation model or \jth the formation of a precipitate of sizefrom free solute
RKPM).2 However, even the efficient model required the cal-atoms is given by

culation of a large lookup table, which led to speed and

stability problems. In this article, we present a more efficient C exc.
moment-based model which addresses these issues. At the AGy=nkTin| = C. TAG, @
same time, we extend the model to account for dislocation

which gives

loop formation and evolution, thereby allowing the accurate’’
simulation of nucleation, growth, transformation, and disso- AGES — AGE®
lution of self-interstitial aggregates following high dose and C’=e r{¥)

3
high-energy implants. kT

C* represents the ratio between the solute concentrations at
equilibrium with a finite-size precipitate and with the refer-
ence precipitate.

Evolution of an extended defect population can be mod-  To reduce the number of solution variables, we follow
eled by explicitly considering aggregates of different sizes ashe moment-based approdand keep track of only the low-
independent species and accounting for their kinetics by corest ordermomentsf the distribution(m;==”_,n'f,,, where
sidering the attachment and emission of solute atbM& i=0,1,2,..). The system of equations is then reduced to

Il. MOMENT-BASED MODEL FOR EXTENDED
DEFECTS
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500 aC, amy
ot gt
_ 400 1 . R
& Normalizing the defect population such thaf,
u; 00| = /[(Zh-,fn)=f,/my, we get the following system:
) amg )
E 200l | —t 1= DAM[CT=meCysyol,
£ amy _
A 100} . 7:2|1+D)\m0[cl_cssyl]v (8
0 } } } (9C| &ml
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Defect size (atoms)
FIG. 1. Distribution of{311} defect densities over defect sizes and best fit to with
log—normal distribution.z,= 0.8 has been used in all fits. Data from Pan —é*f
and Tu(see Ref. B Yo~ %1 l2,
3 71= 2 Crfncaha/, 9
t9mi . . . n=2
—= =213+ 2, [(n+1)'=n']l,. (4) .
&t n=2 —
. . . = 2 b
Since no finite number of moments can fully describe a com- n=2

plete distribution, we need a closure assumption, which is ane te further be simolified by noting that /@it
assumption about the form of the distributidn=f(n,z), SYSIEm can Irner be Simpi y noting that{Bi.L

wherez; represent a set of parameters that characterize th efects t.he geometry factok) 1S almost independent of t.h €
distribution. In cases where we have a@riori knowledge efect size for large defectssince {311} defegs grow pri-
about the distribution of defect sizes, we have used afharily in one direction. Thus, we can replakewith size-
energy-minimizing closure assumptibiwe simply argued mdep_en_den_lx. For a_log-normal dlstr|but|on,_the integral of
that the size distribution will be the one that minimizes theth€ distribution function can be found analytically, and there-
free energy given the moments, as found from constrainefpre the parameters of the distribution can be calculated from
minimization of the free energyNG,). This results in the the moments by means of analytical functions. This elimi-
following distribution with three parameters, and hence ahates the need for the lookup table and interpolation, giving

three-moment modeBKPM), speed and robustness advantages. Howenesill needs to
be calculated by numerical sums, which is an iterative pro-
fo=20exp —AGIKT+2z,n+2z,n?). (5)  cess.

For {311} defects and dislocation loops, the size distri-

bution has been measured experimentallyie results sug-
gest that the distribution is roughly log normal: '(&Q’T\AA)LYHCAL KINETIC PRECIPITATION MODEL
fo=2zoexd —In(n/z,)%z,]. (6)

Pan and Tu noted that the breadth of the size distributionaistNOte that in the above equationk, is based on the

they observed scales with the average 3i#e.accordance . Aribution funqtion_we assume, and can be dete_rmﬁned fully
with this, we find that a constant value @ (z,=0.8) i m1_=l”f11/mo IS given.. Fgr e.xample,.|fAthe distribution
matches all the size distributions, independent of annealinﬁ_“ncu,‘m.'S a geometric distribution functiof (= zz3), then
time (Fig. 1). Thus, we can reduce the number of parameter&1€ dIStI’IbutI'On can be determined by solving the following
(and hence also the number of moments2. The resuling  S€t Oof equations:

system is a two-moment systef@KPM): *

Mo _| —pxr [C2—C.L* 1)) "
at 1 1 | S 1121 . (10)
o) N — n
om, M, ngz nzoz;.
7=2|1+ 2 In,
n=2 The solution of this system gives
R . My —2
=2DNy[CP - Co L1121+ D[ C 2 Nofy 2=t =
n=2 ml_l
0 1-2, (12)
—Css2, MChfnia|s (7) Zy= 72
n=2 1
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Hence the normalized distribution can be written in terms of 100 pF—r—r—rrrm T T
my: 9 |- ® vy (From 2KPM) -
N _ i — 7, (AKPM fit)
.1 [(mg—2)\n? 1 80 ® v, (From 2KPM)
"~ E—1|m—1 12 01 — Y (AKPMfi) |
60
Since we also assume a functional form & , the v; = 50
are uniquely defined ifh; is known. Thus, in fact, the; are 40
functions offh;, with the appropriate limits: 30
Yo=Yo(My), y1=y1(My), 20
. 10
lim y,=C%}, lim y,=0, (13 N .
my—2 my—2 10t 102 103
. . Average size
I|m ’}/020, ||m ’}/1=1 (a)
my—o My —o

For every AGY¢ f, pair, we can find a corresponding
vo(My), y1(fMy) pair, and instead of using the parameters of
AG{ as our fitting parameters, we can use corresponding
parameters ofyy(;) and y,(r,) as fitting parameters.

To demonstrate this transformation, we use an example
For simplicity of arithmetic, assume th& is given by an =
exponential functiorC* =ab" '+ 1. Also, assume that the
size distribution is again geometrical as given by Eip).
Simply substituting these functions into the definitionpf
yields

l+a .
Vo=, 10t 102 108
m;—1 Average size
- n—1 ml_ 2 " ©
Y17 22 (ab +1) ml_ 1 ml_ 1 d (14) FIG. 2. Values ofy, (l) and y, (@), as calculated from Eq10) and as
fitted by AKPM functions[Eq. (14)]. The AG*° parameters and the corre-
M. —2 ab sponding parameters foy; are (a) ap=3.855,a,=15.9, a,=—1.4, with
1 Ko=3, K;=14.5 andK,=366. (b) ag=1, a;=4.7, a,=0, which corre-

=— ~ +1
m;—1|m(1-b)—1+b spond toK,=8, K;=0.14, andK,=8.

For{311} defects, we used a generalized polynomial approxi-
mation for the form ofAGE*®in our previous work:

exc_ B B1... . . . .
AG,"=agn”o+a;n---. (19 Note that the approximations have the right asymptotic be-

Starting with this form ofAG*® and the log-normal distri- havior as given in Eq(13). _
bution of the defect sizes as given in E6), we calculate the Since they; calculated from 2KPM and determined by
correspondingy,(fiy), y,(M;) pairs numerically. Figure 2 the analytical functions of AKPM are approximately equal,

shows sets of calculateg, for different sets of coefficients We would expect that both models would give the same
for the generalized polynomial &G, Although it is pos- simulation results. Indeed, when we test both models under
exc,

sible to solve the log-normal form exactly in order to deter-the same conditions, the results are almost indistinguishable
mine the parameterg, andz,) from the momentém, and (Fig. 3). To obtain Fig. 3, we have used the parameters of
i, ,) it is not possible to calculate the sum7q analytically ~ Fig- 2@, with an initial 5x 10'° cm™ intersitial dose.

with the assumed form af G®°. It is computationally much It is also possible to fin€y , and hence\GF™, if the
faster to be able to express tleas analytic functions af,  fitting parameters ofy; (namely, K;) and the distribution
rather than using a numeric sum. Our calculations show thefunction (f,,) are given, although this procedure is less
the results can be approximated by the following functions oktraightforward. Sincey, is the product of:’l* andf,, know-

e ing yg, we can easily finof:’l‘ . On the other handy; is
i L dependent o€ throughC* . So we can findC¥ by solv-
Yo(My) = m ing a large set of linear equations defined by
m;—2 (Ko+2)K (16) ”
N 1 0 2 N o R
y1(ing) = M+ Ko M+ Ko ) 71(m1):r§2 Chfhia(y) (17)
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FIG. 3. Comparison of 2KPM and AKPM under identical implant and an- FIG. 4. Comparison of one-, two-, and three-moment models for evolution

neal conditions where equivalent parameters as given in Fayage used.  ©f {311 defects. Both two- and three-moment models capture the exponen-
q P 9 oy tial decay of interstitials i{311} defects as observed by Eagleshatal.

(see Ref. &

at differentm, . OnceC? is determinedA G can be found
by solving the expression f& [Eq. (3)] for AG®, which

gives a recurrence relation: When we apply AKPM to the same set of data, we find

that it also describes the Ostwald ripening process equally
AGEC =AGP+kTIn (;:_ (18) well (Figs. 5 and & Note that the model parameters are
calibrated using only the experimental data in Fig. 5, and
hence Fig. 6 shows the prediction of the model for the Ost-
wald ripening process and is not a curve fit. Thus, the good
IV. COMPARISON OF MODELS TO EXPERIMENTAL agreement in the averagd11} defect size further validates
DATA the modeling approach.

In this section, we compare four extended defect models: We find that the computation time with the AKPM

a three-moment modéBKPM) which was demonstrated in glgg(le\/ll ';on;glc hT;.r:e::grkgzﬂ]Kgﬁ fﬁ?g‘gggf gf tlcr;:ce)i'c?af fg]re
our previous work, the two-moment mode(2KPM) de- I :

scribed above, a one-moment or simple solid solub{B$S simulation of {311} defects in large systems. The fact that

model, and the AKPM described above. We first review theAKPNI does not require any proprietary operators enables

; i easy integration into many PDE solvers.
assumptions of these four models: If we look at TED data from Packéghthe differences
(1) One-moment mode(SSS: In this model, we assume between the three models is relatively smiig. 7). One
that solute atoms above solid solubility precipitate to ex-can readily observe that the final amount of TED predicted
tended defects with a diffusion limited rate. This modelby all three models is approximately the same. For large
does not account for Ostwald ripening. thermal budgets at constant temperature, as is the case with
(2) Two-moment mode(2KPM): We use log-normal distri- this data, all extended defects created by the implant damage
bution of extended defects with fixemy. The variables are dissolved. In such a case, the amount of TED depends
we have areny, andm; .
(3) Three-moment mod€BKPM): We use an energy mini-
mizing closure assumption with three moments. 1014 =
(4) Analytical model(AKPM): We use analytical functions N
for the reaction rates that depend on average size.

Obviously, AG*® must be defined as a reference point.

[ ] Data (Eaglesham)
B : —— Analytical model
| s ---  3-moment model

Figure 4 shows the comparison of one-, two- and three-
moment models to thé311; dissolution data from Eagle-
shamet al® It can be observed that both the two- and three-:
moment models accurately capture the observed behavio/z
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ponential decay in the number of interstitials stored3ml}
defects. Since it neglects the Ostwald ripening process, if
predicts an approximately linear decay in the number of in- oy oy oy oy oy, o,
terstitials stored i{311} defects. The exponential decay rate 20 40 60 80 100 120 140 160 180 200
is mainly a result of decreasing supersaturation of intersti- Time (s)

tials with t.lme’ which is, in turn, a result of th,e Increase in FIG. 5. Evolution of density of interstitials i§311} defects (n,) from
average size of the extended defect populatlon_ a_md the d@zgleshamet al. (see Ref. 5 and comparison to the analytical model
crease in the number of extended defects remaining. (AKPM) and three-moment modésKPM).
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) o ) FIG. 8. Comparison of one- and two-moment models for short-time diffu-
FIG. 6. The analytical model'SAKPM) prediction of the evolution of the sivity enhancements. Data from Chéee Ref. ¥ for a 5x 10" cm~2 50
average length of311 defects and comparison to data from Eaglesham keV implant with anneals at 750 °C
et al. (see Ref. &k '

only on how much the initial damage was and how effective
the surface is in terms of consuming interstitials. Therefore
all three models give similar results.

However, before the damage is completely annealed an

while the interstitial super-saturation is still evolving, we ex- has b b d i INirvigitu TEM L
pect significant differences between the models. Indeed, jprocess has been observed experimentallyrnvatu '

we look at short-time behavior more closely using data fromFor a more detailed discussion of the loop formation process,
Chao’ the difference between the models becomes eviderI?Iease refer to Ref. 4. . . .

(Fig. 8. The one-moment model predicts a constant en- We can note the following points for the functions that
hancement of diffusivity until TED is over, whereas the two- are involved in AKPM:

moment model accounts for the reduction of diffusivity (1) Loops have a lower solid solubility tha{311} defects,
enhancement—or interstitial supersaturation—during TED. typically close toC} . Therefore, we have to set the solid

Again, this is an effect caused by the Ostwald ripening pro-  solubility of the {311} defects/dislocation loop distribu-
cess. These differences in TED kinetics play an important  tion to C'SOSOP_ Since they, are inversely proportional to

role in the final amount of diffusion when TED occurs over the solid solubility, the values determined frof811}
more than one temperature, such as for spike anneals where defects have to be multiplied by ti@ ratio.

fects (AKPM) and combine these two models in one. We
gssume thaf311} defects transform into dislocation loops by
an unfaulting reaction once they reach a critical SiZ&This

most of the diffusion occurs during the ramp p. (2) To ensure limy,=1, we need a functional change after
n—oo

V. COMBINED ANALYTICAL DISLOCATION LOOP the {311L}/loop crossover pointrc;).

AND {311} DEFECT MODEL (3) Thev; have to be continuous at th@11}/loop crossover

As a next step, we seek to find an analytical model for point (Nei).

loop evolution based on the analytical model {841 de- To understand what type of function these restrictions

give, we proceed as earlier. We us&;*“ for the joint popu-

8000 . . 1 . 1 1 . lation of {311} defects and dislocation loops, which is iden-
200k ] tical to AG;* for {311} defects at sizes smaller tham,
except for an offset due t€4 difference(a; term), and is
6000 1- 1 proportional to the loop perimeter<0®9) for sizes larger
5000 1+ E than ncrit:g’lO
E 4000 1 .
P ol | AGT agnfo+a nfi+a,nP2+azn  for n<ng,
// ° Data (Packan) n b0n0'5+ bl fOI’ n= nc .
2000 - ,’ ——  3-moment model 7 (19
1000 /7 —-— 2-moment model |
I." I MYMNWeV S 00000 seeees -]
N 830°C, 81, 200keV | , ! o emmoldel Together with a log-normal distribution function we find
0 5 10 15 20 25 30 35 the corresponding; as we did fo{311 defects by Eq(10).
Time (min) The results are shown in Fig. 9, together with analytical

FIG. 7. Comparison of one-, two-, and three-moment models for TED pre-funcuons_ that capture the beha\”or 9{ .
dictions. The models differ significantly only at short-time behavior, which We find a set Of'yi functions to be used with AKPM by

this data(Packan, see Ref)@&annot distinguish. extending the set of functions we used {8d.1} defects:
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FIG. 9. They; function for both{311} defects and dislocation loops as
derived fromAG{*°and a log-normal closure assumption. Bor<ng;, y1

is identical to that fo{311} defects, except for a multiplier to account for
differences in solid solubility.
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FIG. 10. Evolution of the total number of interstitials stored in dislocation
loops and{311} defects for the AKPM. Data for % 10'6 cm™2 Si implant at
50 keV with anneal at 850 °C from Paat al. (see Ref. 12

and energies. The model predicts that at higher doses and

(cB% K, . energies, where TED lasts longer, a significant portion of the
To% -1 for My <nei, {311} defect population turns into dislocation loops. Since
Yo= s N (200  loops sustain a smaller supersaturation tfahl} defects,
1 A _ this reduces the total amount of TED for higher doses and
K3 = for My > Nyt . . . . .
| m,— energies, resulting in a better match with the experimental
. R data.
CRM™ -2 [ (Ko+2)K, 3
o5 = _ for my<ngq,
Cg P M +Ky m;+ Ky
‘}/1: K +2 ™ T T Tt T T T Trtr UL | T 1 LT T \\IIII_\
« [ ]
1+ Kyl o for finy>ney, i ]
m;+ Ky
\ 10000

(21)

whereK 5 andK, are chosen such that continuity ¢f and
v, are ensured. In our simulations, we have used a crossove

=TT
bt ]

(atoms)

1Z&

00iNt Of Ny = 1000 and lefte as a fiting parameter, Please g [« o s
. “ . ] 1000 =

note thatn.;; should not be interpreted as “the point where g F E
the {311} defect to dislocation loop transformation happens,” < - ®  Data(1000°C)
but rather “the size below which n{811} defect to disloca- i . ﬁi‘g;gso"c) ]
tion loop transformation happens.” The transformation will

B . 100 L L Ll L IS EREI L Ll L iyl L ekl L LL
occur at any size greater thag,; . . o o1 ye ye yos 105

We again compare our model against data from Pan Time (s)

et al'? As one can readily observe, a good match can be

found (Figs. 10 and 11 The model also captures the Ost- FIG- 11. Evolution of average defect size fox10' cm™2 Si implants at
. . . . . . 50 keV from Paret al. (see Ref. 1pcompared to the prediction of AKPM.
wald ripening process of dislocation loofiSig. 11). Since

this model does not explicitly distinguish between the inter- S A B B e B
stitials contained in dislocation loops and the interstitials 1201 T
contained in{311} defects, we can not plot them separately. 100k ]
However, to obtain an idea of how t§811} defects would
evolve, we can turn off the loop portion of the model and _ gL J
plot {311 defects in the absence of looffsig. 10. E

As a check of the predictive capabilities of the unified & 60 .
{311} defect/dislocation loop model, we have resimulated theg&
data by Packahwith the dislocation loop model turned on. or m  Duw(Packan) |
Since the model is analytic, and only the functions are dif- ol ~—= (311}s only
ferent, there is no significant speed penalty associated witt ——  {311}s and loops
including the loop model along with tH@11} defect model. 0 T R T R T R T SR
The results are depicted in Figs. 12 and 13. Since all im- 0 20 40 60 80 100 120 140 160 180 200 220
plants in this data set were under subamorphizing conditions, Energy (keV)

there is no significant difference between #8141 defect
model and the unified model, except for the highest dose®op4311 defect model. Data from Packdsee Ref. &
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l ' L L B R * We have also presented an extension of the same model
160+ m Data L7

-—— {311}sonly . to dislocation loop formation fror{311 defect unfaulting.
1401 (311)sand loops 7 7 This extension results in a unified model that accounts for
1ol I i the nucleation, growth, transformation, and dissolution of

{311 defects and dislocation loops. Via application of this

model, we also demonstrated that loop formation can effect
1 TED significantly for high dose and energy implants, even
i when the implants are subamorphizing.

(DHV2 (nm)

201 -

0 L L L L L L [ | L
108 104 LA. H. Gencer and S. T. Dunham, J. Appl. Phg4, 631 (1997.
Dose (cm-?) 2], Clejan and S. T. Dunham, J. Appl. Phy&8, 7327(1995.
3G. Z. Pan and K. N. Tu, J. Appl. Phy82, 601 (1997.
FIG. 13. Prediction of the dose dependence of TED using the unified loop/4A. H. Gencer, Ph.D. thesis, Boston University, 1999.
{311 defect model. Data from Packdsee Ref. & 5D. J. Eaglesham, P. A. Stolk, H. J. Gossmann, and J. M. Poate, Appl. Phys.
Lett. 65, 2305(1994.
5p. A. Packan, Ph.D. thesis, Stanford University, 1991.
"H. S. Chao, Ph.D. thesis, Stanford University, 1997.
VI. SUMMARY 8S. T. Dunham, S. Chakravarthi, A. H. Gencer, and D. F. Downegiin

; ; : Front-End Processing—Physics and Technology of Dopant-Defect Inter-
we presented an alternative formulation of a Previous actions 1|, edited by H-J. L. Grossmann, T. E. Haynes, M. E. Law, A. N.

moment_'b_aSEd model for EXtend?d defect kinetics, thh '§ Larsen and S. Odanaka, Mater. Res. Soc. Symp. Proc. Proceedings No.

more efficient and does not require lookup tables. The infi- 568 (Materials Research Society, Pittsburgh, 1999

nite nonlinear sums in previous mod&KPM) can be rep- °A. H. Gencer and S. T. Dunham, iMicrostructure Evolution During

resented by analytical functions with new fitting parameters !"adiation, edited by I. M. Robertson, G. S. Was, L. W. Hobbs, and T.
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