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LOSSANALYSISAND IMPROVEMENTSOF INDUSTRIALLY FABRICATED
CZ-SI SOLAR CELLSBY MEANS OF PROCESS AND DEVICE SIMULATIONS

SUMMARY

We model Cz cells, fabricated in a pilot line, witttombination of process, device and
circuit simulations. This allows us to separatethgous resistive losses and to determine
the recombination losses contributed from varioeg@e components. Such data are vital
for identifying performance improvement strategids. the model is based on currently
fabricated cells, it gives precise predictions Bpecific cell improvements and the
associated thermal budgets. We forecast the extenthich the emitter needs to be
improved until the recombination losses in the bedoped Cz base dominate. At that
point, the cell reaches an efficiency of 18.9% raflegradation. To increase the efficiency
beyond about 19.4% after degradation, the borored@x material needs to be improved.

1. INTRODUCTION

In the IC industry, numerical process and devicel@iag are well established tools for
accelerating device development. The PV industrg hbso started to employ such
modeling for developing advanced device architestusuch as selective emitters and
improved rear surfaces.

To make reliable predictions, the models need tdeséed and calibrated based on
fabricated solar cells. Over the last decades, raevaodels have been developed
specifically for PV applications, see [1-6] for exales. Because solar cells are large-area
diodes, a combination of device and circuit modgiras shown to account for all relevant
losses [7]. We show how such models can be useacdelerate the development of
improved cells.

2. LOSSANALYSIS

2.1. Resistive losses

As a first step, it is important to separate cdhgftesistive and recombination losses,
because their optimization strategies differ ggeatls both these losses influence the IV
curve, separating them is a rather delicate tasmRhe IV curves, the lumped series
resistance RV) is commonly extracted as a function of voltagen two different ways
(see e.g. [8]): either by comparing the 1-sun IMveuwith the JV.. curve, or by
comparing two illuminated IV curves at slightly féifent light intensities. Figure 1 shows
that the dV,c method underestimates; Bt low V due to the injection-dependent SRH
lifetime in Cz material (see below). At MPP, 0@2n is extracted instead of 0.&cn?
obtained using the double light-level (dIl) methddhe difference between the simulated
internal and the lumped resistance in Fig. 1 amdsesto losses in the front metallization.

2.2. Recombination losses

Knowing the contribution of the recombination lcs$em various device parts is vital
for improvement strategies. Nevertheless, manyitutgins and companies do not
accurately know the limiting losses of their cellde express the losses as recombination
currentsgR(V), as shown in Fig. 2, wheRis the recombination rate agdhe unit charge.

Three main features become apparent: (i) the enhitsses dominate the overall losses,
(ii) shortly followed by the SRH losses in the Casb material, which (iii) increase sub-
exponentially between W, and V.. The reason for (iii) is that the excess cariifetime
in boron-doped Cz material strongly improves wiidgjhler injection levels [4,5], i.e. toward
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higher voltages. This has important consequencéseoaptimization as explained below.
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Fig. 1 Left: The lumped series resistance extrafttaa the 1-sun IV and the¥ ... Right: the experimental
and simulated IV curves.
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Fig. 2 Left: The simulated recombination lossegdrious device regions. Right: The ideality factarves
(symbols/lines: experiment, thick red line: simida).

3. PREDICTION OF EFFECTS OF DESIGN CHANGES

3.1. Improvement of the emitter

Figure 3 shows a process simulation of our emdiffusion by means of the 3-stream
coupled diffusion model [9]. Because there is nadet@vailable for the phosphosilicate
glass (PSG), the peak dopant density must be aslsdrhis inhibits a proper prediction of
process changes. Therefore, we develop a PV-spetifidel for the PSG layer. By
combining this improved process model with devicd eircuit simulations, we predict the
minimal thermal budget required for fabricating iride-passivated emitter that is just
good enough so the cell efficiency is limited bgambination in the base. Additionally,
this emitter is compatible with the minimum finggistance and minimum finger width
attainable by screen printing. The dashed cunkgare 3 shows an example.

3.2. Potential cell efficiency

As discussed in Fig. 2, the recombination lossesthem Cz base increase sub-
exponentially with V due to the injection-dependertess carrier lifetime. Therefore, an
improvement of the emitter to the extent that tesés in the base dominate the overall
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Fig. 3 The phosphorus dopant profile,
measured by ECV (symbols) and simulated
(line). Process simulation of an improved
emitter is shown by the dashed line.

Tab. 1 Comparison of measured and simulated cedinpeters.

\]s_c Voc Jmnr anr Eff
Experiment: before degradat 36.€ 627.¢ 34.31 527.% 18.0¢
Experimentafter degradatic 362 626.1 33.8¢ 523.¢ 17.7¢
Simulatior: as it 36.2 625.¢ 33.7¢ 525.¢ 17.7¢
Simulationimprovec emitter, samdingers 37.41 644.¢ 34.9¢ 540.] 18.8¢
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