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LOSS ANALYSIS AND IMPROVEMENTS OF INDUSTRIALLY FABRICATED 
CZ-SI SOLAR CELLS BY MEANS OF PROCESS AND DEVICE SIMULATIONS 

SUMMARY 

We model Cz cells, fabricated in a pilot line, with a combination of process, device and 
circuit simulations. This allows us to separate the various resistive losses and to determine 
the recombination losses contributed from various device components. Such data are vital 
for identifying performance improvement strategies. As the model is based on currently 
fabricated cells, it gives precise predictions for specific cell improvements and the 
associated thermal budgets. We forecast the extent to which the emitter needs to be 
improved until the recombination losses in the boron-doped Cz base dominate. At that 
point, the cell reaches an efficiency of 18.9% after degradation. To increase the efficiency 
beyond about 19.4% after degradation, the boron-doped Cz material needs to be improved.  

1. INTRODUCTION 

In the IC industry, numerical process and device modeling are well established tools for 
accelerating device development. The PV industry has also started to employ such 
modeling for developing advanced device architectures such as selective emitters and 
improved rear surfaces.  

To make reliable predictions, the models need to be tested and calibrated based on 
fabricated solar cells. Over the last decades, several models have been developed 
specifically for PV applications, see [1-6] for examples. Because solar cells are large-area 
diodes, a combination of device and circuit modeling was shown to account for all relevant 
losses [7]. We show how such models can be used to accelerate the development of 
improved cells. 

2. LOSS ANALYSIS 

2.1. Resistive losses 
As a first step, it is important to separate carefully resistive and recombination losses, 

because their optimization strategies differ greatly. As both these losses influence the IV 
curve, separating them is a rather delicate task. From the IV curves, the lumped series 
resistance Rs(V) is commonly extracted as a function of voltage V in two different ways 
(see e.g. [8]): either by comparing the 1-sun IV curve with the JscVoc curve, or by 
comparing two illuminated IV curves at slightly different light intensities. Figure 1 shows 
that the JscVoc method underestimates Rs at low V due to the injection-dependent SRH 
lifetime in Cz material (see below). At MPP, 0.72 Ωcm2 is extracted instead of 0.84 Ωcm2 
obtained using the double light-level (dll) method. The difference between the simulated 
internal and the lumped resistance in Fig. 1 arises due to losses in the front metallization. 

2.2. Recombination losses 
Knowing the contribution of the recombination losses from various device parts is vital 

for improvement strategies. Nevertheless, many institutions and companies do not 
accurately know the limiting losses of their cells. We express the losses as recombination 
currents qR(V), as shown in Fig. 2, where R is the recombination rate and q the unit charge. 

Three main features become apparent: (i) the emitter losses dominate the overall losses, 
(ii) shortly followed by the SRH losses in the Cz base material, which (iii) increase sub-
exponentially between Vmpp and Voc. The reason for (iii) is that the excess carrier lifetime 
in boron-doped Cz material strongly improves with higher injection levels [4,5], i.e. toward 
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higher voltages. This has important consequences on the optimization as explained below. 
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Fig. 1 Left: The lumped series resistance extracted from the 1-sun IV and the JscVoc. Right: the experimental 
and simulated IV curves. 
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Fig. 2 Left: The simulated recombination losses in various device regions. Right: The ideality factor curves 
(symbols/lines: experiment, thick red line: simulation). 

3. PREDICTION OF EFFECTS OF DESIGN CHANGES 

3.1. Improvement of the emitter 
Figure 3 shows a process simulation of our emitter diffusion by means of the 3-stream 

coupled diffusion model [9]. Because there is no model available for the phosphosilicate 
glass (PSG), the peak dopant density must be assumed. This inhibits a proper prediction of 
process changes. Therefore, we develop a PV-specific model for the PSG layer. By 
combining this improved process model with device and circuit simulations, we predict the 
minimal thermal budget required for fabricating a nitride-passivated emitter that is just 
good enough so the cell efficiency is limited by recombination in the base. Additionally, 
this emitter is compatible with the minimum finger distance and minimum finger width 
attainable by screen printing. The dashed curve in Figure 3 shows an example. 

3.2. Potential cell efficiency 
As discussed in Fig. 2, the recombination losses in the Cz base increase sub-

exponentially with V due to the injection-dependent excess carrier lifetime. Therefore, an 
improvement of the emitter to the extent that the losses in the base dominate the overall 
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losses, leads to a bent IV curve and, accordingly, 
to a reduced fill factor (FF). This reduction in FF is 
not due to resistive losses, but due to recombination 
saturation effects in the base. This becomes obvious 
when the resistive losses are carefully separated 
from the recombination losses, as described above. 
This saturation effect increases with the wafer 
resistivity, and hampers efforts to reach efficiency 
levels higher than about 19.4% after degradation for 
standard CZ material. 
 
 

 

 

Tab. 1 Comparison of measured and simulated cell parameters. 

 Jsc Voc Jmpp Vmpp Eff 

Experiment: before degradation 36.6 627.8 34.31 527.3 18.09 

Experiment: after degradation 36.2 626.1 33.88 523.8 17.75 

Simulation: as is 36.2 625.8 33.78 525.4 17.75 

Simulation improved emitter, same fingers 37.41 644.8 34.95 540.1 18.88 
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Fig. 3  The phosphorus dopant profile, 
measured by ECV (symbols) and simulated 
(line). Process simulation of an improved 
emitter is shown by the dashed line. 
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