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Atomistic simulations of the effect of Coulombic interactions on carrier fluctuations
in doped silicon
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Carrier distributions associated with point charges in silicon are calculated via the quantum perturbation
method and used to determine Coulombic interactions between charged defects in the presence of carrier
screening. The resulting interactions are used in kinetic lattice Monte Carlo simulations of defect-mediated
diffusion to study dopant redistribution and associated variations in carrier concentration. Over a broad range
of doping concentrations, Coulombic repulsion between like dopants leads to ordering, resulting in a more
uniform electrical potential distribution~and therefore reduced threshold voltage variations! compared with
random doping, the standard condition assumed in previous doping fluctuation analyses.
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Fluctuations in carrier density associated with discr
dopant atoms have been identified as a critical issue in c
trolling threshold voltage (Vth) in nanoscale metal-oxide
semiconductor field-effect transistors~MOSFET’s!.1–3 To
date, analysis of this phenomenon has largely assumed
the dopants are distributed randomly within the act
region.4–8 However, interactions between dopants during
vice fabrication can lead to correlations in dopant locatio
modifying the resultingVth variations. One source of thes
correlations is the Coulombic interactions between ioniz
dopants, screened by nearby free carriers. In this paper
examine the effect of these interactions on variations in e
trical potential within doped regions via kinetic lattice Mon
Carlo ~KLMC ! simulations9–11 which simultaneously solve
for free carrier distributions and include the effect of asso
ated potential variations on the diffusion of charged dopa
and point defects.

To study doping fluctuations, a tool must first be capa
of tracking dopant locations within the system. Tradition
continuum simulators lack such capability since they foc
on macroscopic-level averages~e.g., dopant concentrations!
within the system without giving any information on loc
tions of individual atoms. Kinetic lattice Monte Carlo simu
lations, on the other hand, are well suited to this task. T
KLMC simulations utilized in this work operate on a silico
~diamond! lattice structure with impurities and point defec
mapped to lattice sites.9–11 The system evolves through tran
sitions from one atomic configuration to the next, by virt
of point defect migration and reactions. The rates of th
transitions are determined by the migration barriers co
bined with changes in system energy associated with tra
tions:

n5n0 expS 2Em

kBT DexpS Ei2Ef

2kBT D , ~1!

whereEm is the unbiased migration barrier,Ei andEf are the
system energies before and after the transition, andT is the
system temperature. The system energies are calcu
based on the atomic arrangements of impurities and defe
with parameters fromab initio calculations and/or experi
mental observations. At each simulation step, one transi
is chosen from the possible set based on the relative ra
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and the system time is advanced by the inverse of the sum
the rates. By only considering transitions~and not lattice
vibrations! associated with defects and impurities presen
the system, the KLMC method overcomes the time-sc
limits associated with molecular dynamics to consider m
roscopic system and processing time scales.

As a result of the pointlike nature of charges associa
with ionized dopants and statistical variations in local dop
density, the electrical potential varies within the syste
~even for a region which is nominally homogeneous!. These
variations affect the dopant redistribution in two key way
~i! ionized dopant atoms as well as charged point defe
experience electrical fields due to the spatial variation in
potential and~ii ! the population of point defects, which me
diate dopant diffusion, depends on the local potential lev
Traditionally, the free carrier concentrations and associa
electrical potential have been calculated from dopant profi
using the charge neutrality assumption. However, at
atomic scale dopant atoms are discrete and nearly point
and thus dopant concentration is no longer a valid meas
To obtain free carrier concentrations, we are forced to so
the Poisson equation in the presence of discrete p
charges.

To clearly define the problem, we consider a system w
a locally uniform background carrier~electron or hole! con-
centration. To maintain charge neutrality in the region,
equal but oppositely charged dopant~donor or acceptor! con-
centration is also assumed. A pair of charges is then in
duced into the system with the positive~negative! charge
held at the origin~point like! and the other mobile, negativ
~positive! charge released in the system. The challenge
then to solve the redistribution of mobile charges in t
neighborhood of the point charge at the origin under cons
eration of the background carrier screening.

There exists a classical solution to the problem, b
known in its potential form as the screened Coulomb pot
tial. The classical approach applies Boltzmann statistics
assumes the validity of linearization of the Boltzma
equation.12 The induced charge distribution has the sa
form as the screened Coulomb potential,

r~r !5
2e

4pLD
2 r

expS 2
r

LD
D , ~2!
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FIG. 1. Excess electron distributions in the neighborhood of a positive point charge, calculated using quantum perturbation m
~a! three distinct background carrier~electron! concentrations of 531018, 131019, and 531019 cm23 at temperature of 1000 °C, and~b!
three different system temperatures of 800, 900, and 1000 °C with the background carrier~electron! concentration set to 1019 cm23. As the
carrier concentration increases, the distribution profile drops off more rapidly due to stronger screening. In contrast, the profiles s
dependence on temperature.
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whereLD is the Debye length:

LD5AkSi«0kBT

e2~n1p!
. ~3!

Here,n andp are the background carrier concentrations. T
solution has a simple analytic form, but diverges asr ap-
proaches zero, which is physically incorrect and causes p
lems with the carrier concentration derivation. To overco
this characteristic of the classical solution, a quantum
proach is necessary.

In order to solve the problem in a practical way, two a
sumptions are made. The first assumption regards the sys
We assume that the conduction band has a parabolic s
near its minima and conduction electrons are free. The
ond assumption is made on the approach, where we ass
the quantum perturbation method is applicable to t
problem.13 Based on these two assumptions, the general
susceptibility of the system, characterizing the system’s
sponse to an external sinusoidal perturbation, can be ca
lated as a function of spatial frequency of the perturbation14

x~qW !52
6me*

p3\2E f ~EkW !

2kW•qW 1q2
d3kW , ~4!

where q represents the spatial frequency of the sinuso
perturbation,me* is the effective mass of electrons (0.33me),
and the factor of 6 accounts for multiple conduction ba
minima. The background carrier concentration and sys
temperature enter as parameters throughf (EkW), the Fermi-
Dirac distribution function, with the Fermi energy chosen
match the defined background carrier concentration. Eq
tion ~4! characterizes the response of conduction electro
Had the response of holes been sought,me* must be replaced
by the hole effective massmh* (0.51me) and the factor of 6
changes to 2. Note that the effective masses are base
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equivalent spherically symmetric extrema. We have repea
the calculations using heavy and light holes with nearly id
tical results.

Equation ~4! describes the system’s response to a si
soidal perturbation. A perturbation consisting of a po
charge has uniform components at all spatial frequenc
and the induced charge distribution can be integrated as14,15

r~rW !5eE FkSi«0

e~qW !
21G exp~ iqW •rW !

d3qW

~2p!3
, ~5!

where«(qW ) is the dielectric function of the system:

«~qW !5kSi«02
e2

q2
x~qW !. ~6!

Equation 5 was evaluated numerically and the results
depicted in Fig. 1. Figure 1~a! shows results for three distinc
background carrier concentrations: 531018, 131019, and 5
31019 cm23. Clearly, the charge distribution drops off mo
rapidly with an increasing background carrier concentrati
indicating a stronger screening effect. Figure 1~b! shows re-
sults for systems with temperatures of 800, 900, a
1000 °C, respectively. As seen, within the process temp
ture regime, the charge distribution depends only weakly
temperature.

Upon examination of numerical results for different bac
ground carrier concentrations and temperatures, we find
the quantum solution can be accurately modeled by

r~r !5r~0!
r 0

Ar 21r 0
2

expS 2
r

LD
D , ~7!

whereLD is the classical Debye length by Eq.~3!, r 0 is a
parameter representing best fitting to the numerical resu
and r(0) is determined by the normalization condition.
fact, r 0 is nearly independent of temperature and is only
1-2
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FIG. 2. ~a! Excess electron distributions in the neighborhood of a positive point charge from both the classical and quantum solu
a system with a background carrier~electron! concentration of 1019 cm23 and a temperature of 1000 °C. The classical Debye length in
case is 2.67 nm. Also plotted is the fitting curve 1.4831019exp(2r/2.67)30.8/Ar 210.82, which shows excellent agreement with th
quantum solution over the entire range.~b! Excess hole distributions in the neighborhood of a negative point charge for three (p-type!
background doping levels at 1000 °C. The fitting curves are plotted using Eq.~7! with r 050.4010.021 ln(p/1018) nm andr(0) from the
normalization requirement.
a

m
la

lu
ic
th

v
r
ti
ls
i-
o

r
e-

h-
en-
om
tive

f
ive

s
an

is-

to

n
ntly
weak function of background carrier concentrations. It c
be represented as 0.6510.065 ln(n/n0) nm for n-type back-
ground doping and 0.4010.021 ln(p/n0) nm for p-type back-
ground doping, withn051018 cm23.

In Fig. 2~a!, quantum and classical solutions are co
pared. The quantum solution deviates strongly from the c
sical solution at short range (,1 –2 nm). Most significantly,
it gives a finite value at the origin, where the classical so
tion diverges. The quantum solution parallels the class
solution at long range, but is 15%–20% higher due to
reduction in compensating charge near the ion. Equation~7!
shows excellent agreement with the quantum solution o
the entire range. Figure 2~b! shows quantum solutions fo
excess hole concentration in the neighborhood of a nega
point charge for three different background doping leve
with fitting curves matching solutions in all cases. All prev
ous calculations are carried out over background carrier c

FIG. 3. Histogram over lattice sites (23104) of the electrical
potential before and after annealing at 1000 °C. Annealing lead
a narrower potential distribution, indicating effect of dopant-dop
repulsion on the dopant redistribution.
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centrations up to 331020 cm23. Beyond this concentration
limit, Friedel oscillations16 characteristic of a metal appea
and Eq.~7! no longer accurately predicts the numerical r
sults.

Given the solution for the charge distribution in the neig
borhood of a single point charge, the overall carrier conc
tration can be approximated by summing contributions fr
all ionized dopant atoms and charged defects, with a posi
point charge~e.g., an ionized donor! inducing an electron
cloud in its neighborhood and a negative charge~e.g., an
ionized acceptor! inducing a hole cloud. The calculation o
carrier distributions over the whole system is an iterat
process, since the Debye length appearing in Eq.~7! is itself
a function of local carrier concentrations@Eq. ~3!#. Initially,

to
t

FIG. 4. Evolution of the standard deviation of the potential d
tribution vs diffusion distance (ADt) for a doping level of 3
31019 cm23. The time constant for homogenization corresponds
a diffusion distance which varies from about 0.7 nm at 1020 cm23

to 1.4 nm at 1019 cm23. The diffusion distance for homogenizatio
is nearly independent of annealing temperature and is significa
less than the expected junction depths.
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FIG. 5. Standard deviation of electron potential vs concentrations for~a! donor and~b! acceptor doping before and after annealing at 7
or 1000 °C. The distribution is broader for higher doping due to more sharply peaked carrier distribution screening dopants and f
temperature due to the stronger role of entropy. However, in all cases, annealing shows a significant narrowing of the potential di
attributed to Coulombic interactions between charged dopants. Differences between donor and acceptor doping arises from diff
conduction and valence band structures.
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the carrier concentration is set equal to the dopant con
tration averaged over a broad region. The Debye lengt
then calculated using Eq.~3! and the carrier concentratio
recalculated using Eq.~7!. Subsequent iterations use the l
cal carrier concentration to recalculate the Debye leng
continuing until the carrier concentrations converge. The
fective local electrical potential for use in the KLMC diffu
sion simulation is then derived from the carrier concent
tions via the Boltzmann equation.

To analyze the effect of Coulombic interactions on dop
fluctuations, dopant atoms are first randomly initialized
the system. The initial carrier densities and associated po
tial distribution are evaluated at room temperature (27 °
The system is then annealed within the KLMC framework
an elevated temperature. After annealing, the potential di
bution is reevaluated at 27 °C. During the annealing proc
the carrier and potential distributions are calculated for
annealing temperature after each simulation step to re
the evolved system configuration with current locations
charged defects and/or ionized dopant atoms. Figure 3 c
pares histograms of the potential distribution within the s
tem, one for the initial random doping and the other af
annealing. Notice that the system has a narrower pote
distribution after annealing. We attribute this to dopa
dopant repulsion leading to a more uniform dopant distri
tion ~ordering!. In confirmation, no narrowing in the poten
tial distribution is observed if the effect of the potential o
dopant diffusion is neglected.

The extent of potential variations within the system c
be characterized in terms of its standard deviation. Figur
depicts the evolution of this characteristic as a function
diffusion distance for a system under annealing. The di
sion distance required to achieve homogenization in the
tem varies from 1.4 nm to 0.7 nm over doping concentrati
from 1019 to 1020 cm23. These values are all significantl
less than the expected junction depths of future devices@4–6
nm for the 22 nm technology node based on the Internatio
24520
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Technology Roadmap for Semiconductors~ITRS! ~Ref. 17!#,
and thus the full effect can be expected to be routinely
served. Figure 5 shows results from simulations on b
n-type andp-type systems annealed at 700 and 1000 °C.
all cases, we observed reduced standard deviation of po
tial distributions after annealing. As would be expected, n
rower potential distributions are achieved for both lowe
temperature anneals and lower-doping-concentra
systems. Lower temperatures lead to stronger ordering
Coulombic repulsion is more effective compared to rand
hopping. Lower doping levels result in longer Debye leng
@Eq. ~3!#, so the potential varies less sharply around ea
dopant. Small differences are seen betweenn-type and
p-type materials, arising from the differences in density
states and effective mass. The conduction band having m
extrema with larger curvature results in lower values ofk for
occupied states and thus weaker variations in carrier den

The KLMC simulation results reported above assum
that the dopant-interstitial pairs remained charged. Howe
for high doping levels, neutral dopant-interstitial pairs~dop-
ant paired with oppositely charged defect! dominate
diffusion.18 We repeated our simulations assuming neu
pairs and found that the narrowing of the Fermi level~or
carrier concentration! distribution was the same as fo
charged pairs~charged dopant paired with neutral defec!,
but that about 3–5 times more diffusion was required
order the dopant distribution. This suggests that the sys
may be reaching an equilibrium ordering at the simulat
temperature.

In conclusion, we use a quantum perturbation calculat
within the effective mass approximation to determine t
carrier distribution in the neighborhood of a point charge
silicon. The resulting distribution is effectively modeled by
simple analytical expression which can be expected to
application in future nanoscale process and device sim
tions. KLMC simulations based on this model have sho
that Coulombic interactions between like dopants causes
1-4
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dering during annealing, resulting in a more uniform elec
cal potential distribution within the active region compar
to the standard approach with random dopant placem
This leads to smaller variations in the threshold voltage,
abling further device scaling. Since lower temperatures g
stronger ordering, low-T annealing may be used to furthe
on

in

on

d
.
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reduceVth variations, since the thermal budget required
ordering is small compared to projected junction depths.
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