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Abstract

Diffusion and Precipitation Models for Silicon Gettering and Ultra Shallow Junction

Formation

Hsiu-Wu Guo

Chair of the Supervisory Committee:

Professor Scott T. Dunham

Electrical Engineering

The progress of MOSFET evolution in the IC industry over the past few years has relied on

rapid miniaturization, new materials, or new structures. At the same time, more constraints

on the level of metal contamination were established to maintain device characteristics and

chip yield. A fully kinetic precipitation model (FKPM) was previously developed to de-

scribe the complex behavior of precipitates, which depended on the thermal history of the

samples, and a reduced moment-based model (RKPM) further improved the computing

efficiency. In this work, these models were further developed and adapted to study ultra

shallow junction (USJ) formation and gettering processes.

Low energy implantation is necessary to achieve shallow dopant distribution in USJ

formation. A very short annealing at high temperature follows to ensure high dopant acti-

vation and minimize dopant diffusion. Modeling of transient enhance diffusion (TED) was

performed with the incorporation of interstitial clusters and 311 defects. In addition, it is

known that C can provide a highly efficient sink for excess interstitials during the annealing

process. C diffusion path and clustering mechanisms were confirmed by utilizing ab-initio

calculations. Studies of stress effects on TED and C diffusion/clustering were done to pro-

vide insightful guidance for optimizing the fabrication processes.

Metal contamination degrades gate oxide integrity and increases leakage currents. Get-

tering is a common method to reduce these unintentional metal impurities in the electrical





active regions of semiconductor devices. This work includes modeling of the Cu out-diffusion

process, and iron gettering via ion implantation. Through simulations based on physically-

based models, gettering behavior over a wide range of conditions can be well predicted.
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Chapter 1

INTRODUCTION

Rapid scaling of the metal-oxide-semiconductor field-effect transistor (MOSFET) has

driven the silicon industry after the first experimental observation of the transistor at Bell

Laboratories in 1947 [136]. In the early stage of transistor scaling, Gordon Moore postu-

lated in 1945 that the number of transistors on a chip would increase exponentially over

time [50, 51] and this has held as the feature size decreased exponentially from microm-

eters to nanometers. In the last two decades, the International Technology Roadmap for

Semiconductors (ITRS) [1] has presented a world-wide consensus on the research and devel-

opment required to meet Moore’s law. Table. 1.1 shows the 2005 technology requirements

for current and future devices. Future progress requires new materials and device struc-

tures to fulfill the challenge set by ITRS. Both commercially employed strained silicon [150]

and silicon-on-insulator (SOI) [133] can increase the performance of the MOSFET without

scaling channel length. In an example of MOSFETs at the 90-nm logic technology node

(Fig. 1.1) [150], stress was introduced to enhance the carrier mobility using a novel low

cost process flow. Other research work has been focused on the ultra thin body devices,

carbon nanotubes, and III-V materials to improve the device performance. Furthermore,

high-k/metal-gate material and self-aligned silicide for gate and contact are expected to be

widely adopted in 45-nm logic technology node.

Due to the extremely high cost of fabrication processes, technology computer aided

design (TCAD) is used to provide an economical way to study materials and devices. The

effective application of TCAD requires substantial development of physical models from

atomistic to continuum levels. In this work, we focus on the modeling and simulation in

the area of front end of line processes (FEOL). ITRS pointed out that modeling of ultra-

shallow-junction (USJ) formation is one of the key challenges. Approaches include very low
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Table 1.1: Overall Roadmap Technology Characteristic (ORTC) table for the 2005 ITRS [1].

Year of production 2005 2007 2010 2013 2016

DRAM stagger-contacted (M1) 1/2 pitch [nm] 80 65 45 32 22

MPU/ASIC stagger-contacted (M1) 1/2 pitch [nm] 90 68 45 32 22

Flash Unconnected Poly Si 1/2 pitch [nm] 76 57 40 28 20

MPU printed gate length [nm] 54 42 30 21 15

MPU physical gate length [nm] 32 25 18 13 9

Figure 1.1: TEM images of 90-nm p-type and n-type MOSFET from Thompson et al. [150].
Uniaxial strain is introduced using Si1−xGex in source and drain regions for p-type MOS-

FET, while Si nitride-capping layer gives large tensile stress to n-type MOSFET.

energy implantation (<500 eV) with particular focus on thermal annealing and diffusion of

dopants [1]. With the incorporation of stress/strain in the modern device, such as 90-nm

MOSFETs shown in Fig. 1.1, modeling of stress and its influence on dopant diffusion and

activation becomes necessary.

This work is categorized into two main parts in order to understand and overcome the

issues of “contamination” and “dopant diffusion.” Wafer cleaning and surface preparation

continue to evolve in parallel to the development of future devices. Metal contamination

degrades the integrity of gate dielectrics, because the impurity atoms tend to precipitate at

the silicon/gate dielectric interface, which lowers the gate dielectric breakdown voltage [65],

and become recombination/generation centers for free carriers. Therefore, ITRS requires
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the critical metal concentration to be below 0.5×1010cm−2 at the gate dielectric interface

and 1×1010cm−2 at other surface [1]. Gettering is a common method to reduce these un-

intentional metal impurities in the electrically active regions of semiconductor devices. It

dissolves unwanted metal impurities followed by their diffusion to and capture in the regions

where they do not have an impact on device performance. The work on gettering includes

modeling of the copper out-diffusion process, which has a strong dependence on the surface

conditions, and iron gettering via ion implantation.

In today’s technology, dopant atoms are commonly introduced through ion implantation

to give accurate dose and distribution. To accompany the scaling of semiconductor devices,

the doping concentrations at source/drain (S/D) regions need to be increased in order to

keep the sheet resistance low at the junctions. The challenge of controlling “dopant diffu-

sion” arises at such small feature sizes, when both high doping and dopant activation have

to be simultaneously achieved. Ion implantation creates substantial damage (excess inter-

stitials (I) and vacancies (V)) in the lattice which must be repaired by subsequent annealing

at high temperature. These excess point defects can either form clusters, recombine with

each other, or diffuse and recombine at the surface during the annealing process. {311}

and dislocation loops are the products of I clustering process, which control the level of

excess interstitials. From a microscopic view, dopant atoms diffuse with the assistance of

the excess point defects, leading to challenges in the formation of USJ. B atoms diffuse via

interstitial mechanism, and a substantial amount of B diffusion is observed during annealing

due to the transient interstitial supersaturation, a phenomenon which is known as transient-

enhanced diffusion (TED). In addition, the implanted dopant atoms must a occupy lattice

site to contribute to the electrical activity. However, the formation of electrically-inactive

dopant-interstitial pairs often occurs under the presence of excess interstitials during this

high temperature annealing. Therefore, high temperature and short annealing time are de-

sired to minimize the TED effect and further increase the dopant activation. Rapid thermal

annealing (RTA) and laser thermal annealing are currently the common method to fulfill

this goal.

A background review of impurity diffusion is first given including point defects, dopants,

and metals in Chapter 2. Kinetic precipitation models [19, 31, 40, 135] are discussed, fol-



4

lowed by the incorporation of delta-function approximation (DFA) in Chapter 3. These

precipitation models are used to study the gettering mechanism for both copper and iron

in Chapter 4. Furthermore, we are able to investigate the boron diffusion and activation in

Chapter 5 by using the reduced moment-based kinetic precipitation model (RKPM) with

DFA. The stress effects on TED and {311} evolution are also addressed by using the results

from Ahn’s ab-initio calculations [2]. In Chapter 6, using first-principles calculations and

kinetic Monte Carlo simulations, we study the stress effects on C diffusion and clustering

mechanisms in silicon. Finally, Chapter 7 summarizes this work and gives directions for

future work.
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Chapter 2

IMPURITY DIFFUSION IN SILICON

Diffusion in silicon is an elementary process step in the fabrication of today’s integrated

circuits. Fick’s laws have formed the basis for the understanding and prediction of diffusion

profiles. However, the general solutions require the diffusivity to be constant over time and

space during a particular process step. In real VLSI fabrication sequences, these constraints

are rarely met. Therefore, numerical solutions with modifications of Fick’s laws are neces-

sary for better understanding the physics of diffusion, and predicting resulting profiles.

Point defects can be categorized in two groups: native point defects and impurity-related

defects [35]. Native point defects, such as vacancies, interstitials, and interstitialcies, exist in

the pure silicon lattice, while impurity-related defects are the foreign impurities introduced

into the silicon lattice. Group-III elements (B, Al, Ga, and In) and Group-V elements (P,

As, and Sb) are a special class of impurities known as dopants.

In Chapter 2, the properties of point defects are first discussed in Section 2.1 because of

their involvement in impurity diffusion (Section 2.2). Solubilities and diffusivities of relevant

3d transition metals are discussed in Section 2.3.

2.1 Properties of Native Point Defects

Point defects are limited in size to atomic dimensions. An impurity atom can be considered

as a point defect. However, we often limit the definition of point defects to include only

the native point defects (or intrinsic point defects), which are vacancy, interstitial, and

interstitialcy. A vacancy (V) is defined as an empty lattice site. An interstitial is a silicon

atom sitting in one of the interstices of the silicon lattice. Tetrahedral and hexagonal

interstitials are the two possible configurations with the highest symmetry. An interstitialcy

consists of two Si atoms in a lattice site, or any small region of silicon with more atoms than

in an ideal crystal. Both interstitials and interstitialcies are commonly referred to as self-
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interstitials, silicon interstitials, or, simply, interstitials (I), since they are indistinguishable

at the continuum scale.

Under equilibrium conditions, point defects can be created as Frenkel pairs in the bulk or

generated independently from the surface. Frenkel pairs are the results of Si atoms leaving

their substitutional lattice sites and creating a pair of point defects (I and V).

I + V ⇐⇒ ∅ (2.1)

In equilibrium, the number of I and V does not have to be equal due to independent surface

recombination. In the case of a surface generation process, an interstitial is created by a Si

atom at the surface moving into the bulk, while a vacancy is created by a substitutional Si

atom relocating to the surface.

Under non-equilibrium conditions, ion implantation damage introduces both interstitials

and vacancies, where the vacancy-rich region is usually closer the surface. Oxidation at the

silicon surface injects interstitials into the bulk [14, 83, 131, 139], while nitridation generates

vacancies (or extracts I) [26, 81]. Dislocations can also serve as both sources and sinks of

point defects.

From thermodynamics, the Gibbs Free Energy (G) tends to be a minimum,

G = H − TS. (2.2)

H is enthalpy, which is lowest for the perfect crystal. Entropy, S, is a measure of disorder

and T is the temperature. One can calculate the equilibrium concentrations for point defects

(X) by minimizing the Gibbs Free Energy (G) [35].

CX

CSi
= θX exp

[

Sf
X

k

]

exp

[

−
Hf

X

kT

]

(2.3)

CSi is the number of the available lattice sites in crystal, Hf
X and Sf

X represents the formation

enthalpy and entropy, and θX is the number of degrees of internal freedom for the defect on

a site.

2.1.1 Point Defects in Multiple Charge States

It is well established that point defects can exist in different multiple charge states [35].

They exhibit deep energy levels within the bandgap, and the ionization depends on the
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location of the Fermi level in the system. Acceptor (donor) behavior is shown when Fermi

level is above (below) the deep energy level. Shockley and Last et al. [137] presented the

point defect concentrations of the charged states to be directly related to the concentration

of neutral defects as

CX−

CX0

=
θX−

θX0

exp

(

−
EX− − Ef

kT

)

(2.4)

CX=

CX0

=
θX=

θX0

exp

(

−
EX= + EX− − 2Ef

kT

)

(2.5)

CX+

CX0

=
θX+

θX0

exp

(

−
Ef −EX+

kT

)

(2.6)

CX++

CX0

=
θX++

θX0

exp

(

−
2Ef −EX++ − EX+

kT

)

, (2.7)

where

CX0

CS
= θX0 exp

[

Sf
X0

k

]

exp

[

−
Hf

X0

kT

]

. (2.8)

EX− , EX=, EX+, and EX++ are the positions of deep energy levels for point defects within

the silicon bandgap [126].

2.1.2 Self-Diffusion of Point Defects

The migration of point defects includes the movements of interstitials, interstitialcies, va-

cancies and dopant/defect pairs. Here we focus on the diffusion of point defects (X) only.

For simplicity, we consider only two charged states (X0 and X+), but the analysis is easily

generalized. Using Fick’s first law, the self-diffusion of point defects, including the different

charge states, can be expressed as [35]

Jtotal
X = −deff

X

Ctotal
X

∂x
, (2.9)

where

deff
X = dX0

CX0

CX0 + CX+

+ dX+

CX+

CX0 + CX+

. (2.10)

The effective diffusivity depends on the relative point defect concentrations in different

charge states, which gives a Fermi level dependence. The diffusion of point defects via

dopant/defect complexes will be discussed in Section 2.2.
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2.2 Dopant Diffusion

Dopant diffusion is discussed commonly from either a macroscopic or a microscopic view-

point. The macroscopic viewpoint considers the overall motion of a dopant profile and

predicts the diffusion process via Fick’s first law

F = −DA
∂CA

∂x
, (2.11)

where F is the flux. DA and ∂CA/∂x are the diffusivity and concentration gradient. DA is

usually extrapolated by fitting an Arrhenius equation to the experimental measurements.

DA = DA0
exp

(

−
EA

m

kT

)

(2.12)

DA0
is the diffusion prefactor, and EA

m is the apparent activation energy of diffusion, also

known as the migration barrier.

The microscopic viewpoint explains that diffusion is mediated by a point defect X (I or

V) at the atomic level. The corresponding diffusivity under an intrinsic doping condition is

given by

DAX = dAX

(

−
CAX

CA

)

. (2.13)

DA (= DAI + DAV) is often measured from experiments.

In this section, we will first discuss the diffusion mechanisms via vacancy, interstitial,

and interstitialcy. The coupled diffusion is followed by considering all the possible pairing

and recombination reactions over all the charge states.

2.2.1 Dopant Diffusion Mechanisms

It is believed that dopant diffusion is intimately linked to point defects (interstitials and

vacancies) on the atomic scale. P and B appear to have an enhanced diffusion because of the

oxidation of silicon at the surface, while Sb has a retarded diffusion [126]. This variation is

postulated to be due to the deviation of point defect concentrations from the equilibrium val-

ues caused by the surface oxidation. Oxidation-induced stacking faults are non-equilibrium

defect structures, which grow only under supersaturated interstitial concentration [71]. We

will discuss three mechanisms of how point defects interact with dopant atoms and diffuse

away: (1) vacancy mechanism; (2) interstitial mechanism; (3) interstitialcy mechanism.
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Figure 2.1: Schematic of vacancy diffusion-assisted mechanism [126]. The lightly colored
atom is the dopant atom.

Vacancy diffusion mechanism

A substitutional dopant atom can migrate through the lattice by moving into an adjacent

empty site, as shown in Fig. 2.1. After the exchange between the dopant atom and vacancy,

the vacancy must diffuse away to at least a third-nearest neighbor from the dopant atom to

complete one diffusion step in silicon [35].

Interstitial diffusion mechanism

Fig. 2.2 shows the dopant diffusion by the substitutional/interstitial interchange mechanism.

A dopant atom is first displaced into an interstitial site, which can be referred to as the

kick-out process [38]. This process is described by the reaction

As + I⇐⇒ Ai, (2.14)

where an interstitial (I) kicks a dopant atom (As) from the lattice site into an interstitial

location (Ai). Then the dopant atom migrates through the interstices as a dopant interstitial

until it replaces a Si atom at a substitutional site. Alternatively, the interstitial dopant can
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Figure 2.2: Schematic of interstitial-assisted (kick-out) diffusion mechanism [126]. A Si
atom at the interstitial site first replaces the dopant atom at the lattice site. The dopant

atom then diffuses through the interstices as a dopant interstitial until it kicks out another
Si atom and takes up a substitutional site (kick-in).

fill a vacant site (Frank-Turnbull [37]). The following reaction describes this process as

Ai + V⇐⇒ As. (2.15)

Interstitialcy diffusion mechanism

Fig. 2.3 shows the dopant diffusion by the substitutional/interstitialcy interchange mecha-

nism. A dopant and silicon atom form a pair and share a lattice site [39]. This process is

described as

A + I⇐⇒ AI. (2.16)

The diffusing pair migrates through the lattice, until the pair breaks up leaving the dopant

atom in a substitutional site and releasing the silicon interstitial. Note that the interstitial

and interstitialcy mechanisms are similar in nature. Because they are mathematically equiv-

alent, both mechanisms are often referred to as interstitial-assisted diffusion and considered
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Figure 2.3: Schematic of interstitialcy-assisted diffusion mechanism [126]. The silicon in-
terstitial and dopant atom occupy one lattice site, forming an interstitial-dopant pair, and

diffuse to another lattice point.

the same throughout this work.

Dopant atoms may diffuse via either interstitial- or vacancy-assisted mechanisms by

forming dopant/defect pairs. Dopant/defect pairs can also recombine with an opposite point

defect leaving the dopant atom in a substitutional site. In the system, I, V, AI and AV are

considered as mobile species, and the reactions between point defects, dopant atoms, and

dopant/defect pairs are

I + A ⇐⇒ AI (2.17)

V + A ⇐⇒ AV (2.18)

I + V ⇐⇒ ∅ (2.19)

I + AV ⇐⇒ A (2.20)

V + AI ⇐⇒ A (2.21)

AI + AV ⇐⇒ 2A, (2.22)
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where A is the dopant atom sitting at a substitutional site, I and V are point defects

(interstitial and vacancy), and AI and AV are dopant/defect pairs.

In general, the reaction between A and B can be described as

A + B⇐⇒ AB. (2.23)

The resulting net reaction rate is the difference between forward and reverse rates.

RA/B = kf

(

CACB −
CAB

Keq
AB

)

, (2.24)

where C’s are the respective concentrations, kf is the forward reaction coefficient, RA/B is

the reaction rate per unit volume, and Keq
AB represents the equilibrium constant. Under

local equilibrium,

CAB = Keq
AB (T )CACB. (2.25)

Using Fick’s first law, the sum of the dopant diffusion fluxes via interstitial- and vacancy-

assisted mechanisms can then be expressed as

−JA =
∑

X

dAX∇CAX, (2.26)

where A and X are the dopant and point defects. AX and dAX are the diffusing pair and its

diffusivity. The total dopant concentration is the sum of substitutional dopant (CAs) and

mobile dopant/defect pair (AI and AV) concentrations.

CA = CAs +
∑

X

CAX (2.27)

Taking the gradient of Eq. 2.25 on both sides,

∇CAX = Keq
AX (T ) (CX∇CAs + CAs∇CX) . (2.28)

If there is no spatial variation in the point defect concentrations (∇CX = 0), as for an

example under intrinsic and equilibrium conditions:

−JA = DA∇CA =
∑

X

dAXKeq
AXCX∇CAs . (2.29)

If the number of AX is small compared to the total A, (CAs ≈ CA), we can then obtain

DA =
∑

X

DAX =
∑

X

dAX
CAX

CA
. (2.30)
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We can expand Eq. 2.30 in terms of the interstitial and vacancy concentrations as

DA = DAI + DAV = dAI
CAI

CA
+ dAV

CAV

CA
, (2.31)

where DAI and DAV are the contributions via interstitial and vacancy mechanisms. Note

that they also include all the possible charge states for each point defect. After some

mathematical manipulation,

DA

D∗

A

=
D∗

AI

D∗

A

DAI

D∗

AI

+
D∗

AV

D∗

A

DAV

D∗

AV

(2.32)

= fI
DAI

DAI
∗

+ fV
DAV

D∗

AV

(2.33)

where * denotes the equilibrium condition. The fraction, fI = D∗

AI/D∗

A, indicates the

proportion of diffusion via interstitial mechanism. DA is the effective diffusivity of the

dopant, while D∗

A represents the equilibrium diffusivity measured under inert conditions.

By the definition, fI + fV = 1. Using Eqs. 2.25 and 2.30, Eq. 2.33 results in

DA

D∗

A

= fI
CI

C∗

I

+ fV
CV

C∗

V

. (2.34)

The overall dopant diffusivity is split into two components dominated by interstitial-

and vacancy-assisted mechanisms. Eq. 2.34 gives the instantaneous dopant diffusivity when

the point defect concentrations are perturbed from their equilibrium values. To capture

the behavior of dopant diffusion, one needs to understand how point defect concentrations

deviate from the equilibrium because of different process steps. However, there are no

reliable ways to measure the interstitial or vacancy population directly via an experiment.

2.2.2 Dopant Coupled Diffusion

Earlier we mentioned in Section 2.1.1 that point defects can exist in different multiple charge

states. Since donors and acceptors can be easily ionized, pairing between dopant/pair

complexes with different charge states needs to be included. For a system containing a

single acceptor species, A−, Eqs. 2.17 to 2.22 should be modified as

A− + Ij ⇔ (AI)−1+j, (2.35)

A− + Vj ⇔ (AV)−1+j , (2.36)
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Ii + Vj ⇔ (−i− j)e−, (2.37)

(AI)i + Vj ⇔ A− − (1 + i + j)e−, (2.38)

(AV)i + Ij ⇔ A− − (1 + i + j)e−, (2.39)

(AI)i + (AV)j ⇔ 2A− − (2 + i + j)e−, (2.40)

where i and j represent charge states.

To describe the coupled diffusion, which is also known as the pair diffusion model [29,

35, 108, 109, 163, 164], reactions in Eqs. 2.35 to 2.40 are included. Dopant diffusion occurs

through the formation of mobile pairs (dopant/point defect). The following continuity

equations for five species, (I, V, A, AI, and AV), are included in this model.

∂CA

∂t
= −RA/I − RA/V + R(AI)/V + R(AV)/I + 2R(AI)/(AV)

∂C(AI)

∂t
= −∇ · ~J(AI) + RA/I − R(AI)/V − R(AI)/(AV )

∂C(AV)

∂t
= −∇ · ~J(AV) + RA/V − R(AV)/I − R(AI)/(AV) (2.41)

∂CI

∂t
= −∇ · ~JI −RA/I −RI/V

∂CV

∂t
= −∇ · ~JV −RA/I −RI/V

R’s are the reaction rates between different species, corresponding to Eqs. 2.17 to 2.22. J’s

are the fluxes of mobile species, which include both diffusion and drift terms. The detailed

derivations for all the reactions are given in Appendix A.

2.3 Metal Diffusion

The behavior of metal impurities depends on the properties of the respective impurity

metal during different heat treatment, as well as the conditions at the sample surfaces. For

a better understanding of 3d transition metal at elevated temperatures, one has to consider

the following parameters [54]:

• The solubilities and diffusivities of respective impurities as a function of temperature.

• Surface conditions which determine the diffusion into and out of the silicon sample.

• The cooling rate at the end of the thermal process.

• The doping concentrations in the silicon sample which may affect the solubilities and
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diffusivities of the impurities in extrinsic silicon.

In the following sections, we will first discuss the solubilities of relevant 3d metals.

Atomistic diffusion mechanisms with the incorporation of point defects including all charged

states will be followed. The diffusion and pairing with boron for copper and iron will be

studied specifically as an illustration.

2.3.1 Metal Solid Solubility

The solid solubility is defined as the maximum concentration of an impurity that can be

dissolved in silicon under equilibrium conditions at a given temperature. It is often written

as function of the temperature (T ) according to the following Arrhenius equation (similar

to Eq. 2.3):

Css = CSi exp

(

SS −
HM

kT

)

, (T < Teut) (2.42)

where SS and HM stand for the solution entropy and enthalpy respectively, k is the Boltz-

mann constant, and CSi is the concentration of available sites in silicon. Solubilities of the

relevant 3d metals are shown in Table. 2.1. Note that Eq. 2.42 only holds for temperatures

below eutectic temperature (Teut). The solid solubility also depends on the surface condi-

tions of the sample because the thermal equilibrium is adjusted by the balance of in- and

out-diffusion of the impurity atoms at the sample surface.

Table 2.1: Solubilities of the 3d transition metals [54]. Css = 5× 1022 exp (SS−HM/kT ).

Metal SS HS T region [◦C] Css (1100 ◦C) Ref.

Ti 4.22 3.05 950-1200 2.1× 1013 [66]

Cr 4.7 2.79 900-1300 3.1× 1014 [158]

Mn 7.11 2.80 900-1200 3.2× 1015 [45, 158]

Fe 8.2 2.94 900-1200 2.9× 1015 [158]

Co 7.6 2.83 700-1100 4.0× 1015 [158]

Ni 3.2 1.68 500-950 5.0× 1017 [158]

Cu 2.4 1.49 500-800 8.0× 1017 [158]
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2.3.2 An Atomic View of Metal Diffusion

Table. 2.2 shows the macroscopic diffusivity for some 3d metals. Before the diffusion of

Table 2.2: Diffusivities of the 3d transition metals [54]. D = D0 exp
(

−EM
m/kT

)

.

Metal D0(cm
−2) EM

m T region [◦C] D (1100 ◦C) Ref.

Ti 1.45× 10−2 1.79 900-1200 3.9× 10−9 [66]

Cr 1.0× 10−2 0.99 900-1250 2.3× 10−6 [53]

Mn 5.7× 10−4 0.6 900-1200 3.6× 10−6 [45]

Fe 1.3× 10−3 0.68 30-1200 4.1× 10−6 [158]

Co 4.2× 10−3 0.53 900-1100 4.7× 10−5 [47, 67]

Ni 2.0× 10−3 0.47 800-1300 3.8× 10−5 [53]

Cu 4.7× 10−3 0.43 400-900 1.2× 10−4 [53]

the metals (M) is discussed, it is necessary to describe the mechanism for making them

mobile. Most of the metals considered in the gettering process either sit at substitutional

lattice sites (Ms) or interstitial sites (Mi). Metals can diffuse through either state, but their

diffusivity is generally higher by orders of magnitude in an interstitial state. This is partly

due to breaking of bonds involved in the interstitial diffusion process. Some of the metals

(e.g., Cu) have a much higher solubility in an interstitial form. On the other hand, some

metals (e.g., Au and Pt) are more stable in a substitutional state, but diffuse rapidly once

they become interstitials. In the latter case, it is necessary to know the mechanisms by

which metals can become interstitials from the substitutional state. This can be explained

through kick-out [38] (Eq. 2.14) or Frank-Turnbull [37] (Eq. 2.15) mechanisms, mentioned

in Section 2.2.1. The reaction rate equations for Eqs. 2.14 and 2.15 are written as

Rko = kko(CMi
−Keq

koCMsCI) (2.43)

Rft = kft(CMi
CV −Keq

ftCMs) (2.44)
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where C’s are the concentrations of the respective species, and Keq
ko and Keq

ft represent the

thermal equilibrium constants. If the reaction is assumed to be diffusion limited, the forward

rate coefficients, k’s, can be approximated as

kko = 4πrkoDMi
(2.45)

kft = 4πrft(DV + DMi
) (2.46)

where r is the effective capture radius for a certain reaction, and D’s are the diffusivities.

Due to the fact that metal diffusion is assisted by point defects, I/V recombination (RI/V

in Eq. 2.19) needs to be included in the system as well. Assuming that substitutional metals

are immobile, the full set of equations describing metal diffusion in the absence of pairing

with dopant and precipitation can then be written as

∂CMs

∂t
= Rko + Rft (2.47)

∂CMi

∂t
= −∇ · ~JMi

−Rko − Rft (2.48)

∂CI

∂t
= −∇ · ~JI + Rko −RI/V (2.49)

∂CV

∂t
= −∇ · ~JV − Rft −RI/V, (2.50)

where J’s are the diffusion fluxes of mobile species including all charged states.

2.3.3 Cu

Copper not only diffuses interstitially, but also primarily sits at interstitial sites. Thus,

substitutional copper can be neglected, giving a simple diffusion behavior uncoupled to

point defects.

∂CCu

∂t
= ∇ · (DCu∇CCu) (2.51)

Due to the fact that metals exist in the positively charged (e.g., Cu+) as well as neutral

state (e.g., Cu0), multiple charge states need to be included. Assuming that the electronic

processes are fast,

CCu+ = KCu+CCu0(p/ni), (2.52)
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where KCu+ is equilibrium constant. The total CCu is the sum of concentrations in all

charged states.

CCu = CCu0 [1 + KCu+(p/ni)] (2.53)

Using the same approach as in Appendix A for the dopant diffusion, we can combine

the fluxes (both diffusion and drift) for all the charge states as

∂CCu

∂t
= ∇ ·

{

[DCu0 + DCu+KCu+(p/ni)]∇
CCu

[1 + KCu+(p/ni)]

}

(2.54)

where DCu0 and DCu+ are the diffusivities for Cu0 and Cu+ respectively.

A positively charged copper atom (Cu+) is likely to pair with an acceptor (B−) in the

bulk region, as described by Eq. 2.55. This pairing reaction will affect the copper diffusion

and precipitation.

Cu+
i + B−

s ←→ CuB (2.55)

Under equilibrium conditions,

CCuB = KCuBCCu+CB− (2.56)

CCu = CCu0 + CCu+ + CCuB

= CCu0 [1 + KCu+(p/ni)(1 + KCuBCB−)] (2.57)

where CCuB is the concentration of CuB pairs, CCu is the total concentration of solute,

and KCuB is the thermal equilibrium pairing constant. The dissociation energy (Ediss)

is the sum of binding energy (Eb) and the diffusion barrier height (Ed), which can be

written as Ediss ≈ Eb + Ed. The experimental studies of copper-acceptor dissociation

energy reported by Wagner et al. [155] show that the dissociation energy (Ediss) varies with

different acceptors (0.61 eV for CuB). To include the CuB pairing in a boron-doped silicon,

Eq. 2.54 has to be modified as:

∂CCu

∂t
= ∇ ·

{

[DCu0 + DCu+KCu+(p/ni)]∇
CCu

[1 + KCu+(p/ni)(1 + KCuBCB−)]

}

(2.58)

Therefore, the effective diffusivity is calculated as

Deff
Cu =

DCu0 + DCu+KCu+(p/ni)

1 + KCu+(p/ni)(1 + KCuBCB−)
. (2.59)
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Thus, the intrinsic diffusivity of copper (p = ni, when CB− is small) is expressed as [78]

Dint
Cu =

DCu0 + DCu+KCu+

1 + KCu+

= (3.0± 0.3)× 10−4 × exp

(

−
0.18± 0.01eV

kBT

)

(cm2/s) (2.60)

For copper, DCu
∼= DCu+ , because CCu

∼= CCu+ [36, 77].

2.3.4 Fe

It is believed that the iron atom remains at the interstitial site with two possible charge

states (Fe0
i and Fe+

i ). The expression for Fe diffusivity was reported by Weber [158]. Due

to the difficulties of separating the diffusion behavior in both neutral and positive charged

iron atoms, Istratov et al. [79] described the “effective diffusion coefficient of iron” including

two charge states by fitting the experimental data from different groups with

D(Fei) = 1.0+0.8
−0.4 × 10−3 exp

(

−
0.67± 0.02eV

kBT

)

cm2/s. (2.61)

FeB pairing was first suggested by Collins and Carlson [21] in 1957, and the evidence of

this was reported by Ludwig and Woodbury [103]. The reported binding energy (Eb) for

FeB ranges from 0.58 [160] to 0.65eV [89]. The dissociation energy (Ediss) lies between 1.25

and 1.32eV, which is larger than Ediss for Cu (0.61eV). This indicates that FeB is more

stable than CuB.

Fe+
i + B−

s ←→ FeB (2.62)

2.4 Summary

In this chapter, we have discussed both dopant and metal diffusion behavior in silicon with

the incorporation of point defects. Properties of these point defects were reviewed in terms

of their charged states and diffusivities. In the following chapters, we will describe the

clustering models based on these fundamental models.
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Chapter 3

PRECIPITATION MODELS

Numerous models have been previously developed to study the precipitation process.

Many analyses only consider the total concentration of the precipitate, and are thus only

useful for qualitative understanding. In reality, the behavior of precipitates is a strong

function of size, which depends on the thermal history of the sample. In order to cap-

ture the complex behavior, the full kinetic precipitation model (FKPM) solves discrete rate

equation for each precipitate size [31, 40] The rediscretized full kinetic precipitation model

(RFKPM) [31, 40] reduces the computing time by rediscretizing the size distribution for

larger sizes coarsely. To further improve the computing efficiency, the reduced moment-based

model (RKPM) [19] calculates the time evolution of various moments. A delta-function ap-

proximation (DFA) is applied to simplify the analysis and give a more physical meaning to

expressions in RKPM [135]. We will discuss these precipitation models in this chapter, and

use them to describe the precipitation behavior of impurities and point defects in Chap-

ters 4 and 5. This work follows the analysis from several previous efforts. Clejan et al. [19]

introduced the reduced moment-based model of extended defects and applied it to dopant

activation kinetics. Gencer et al. [43] used RKPM to describe the evolutions of {311} defects

and dislocation loops. The RKPM with DFA is developed in conjunction with Chen-Luen

Shih [135] to study the TED effect due to the presence of {311} defects and the gettering

process for iron.

3.1 Full Kinetic Precipitation Model (FKPM)

3.1.1 The Driving Force of Precipitation

Precipitation is driven by the fact that above the solubility the formation of a separate

phase reduces the total free energy of the system. The free energy change upon precipitate
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n−1 n n+1
I In+1n

1 1

Figure 3.1: A schematic shows how precipitates grow or shrink by absorbing or emitting

solute atoms [31].

formation can be written as

4Gn = −nkT ln
C

Css

+4Gexc
n (3.1)

where C and Css are the solute concentration and the effective solid solubility of the impu-

rities associated with the formation of very large aggregates which can also be considered

as the equilibrium concentration of impurities in the presence of an arbitrarily large solute-

rich phase. ∆Gexc
n is the excess energy associated with a precipitate of finite size n, which

depends on the geometry of a specific precipitate and includes interface and strain energies.

3.1.2 The Evolution of Size Distribution

The precipitation process proceeds by adding a solute atom to existing precipitates as shown

in Fig. 3.1, generating a size n+1 precipitate from a size n precipitate. The precipitate size

n can also dissolve by releasing a solute atom. The time evolution of precipitate density is

described as














df1

dt
= −2I2 −

∑

n=3

In

dfn

dt
= In − In+1 n ≥ 2,

(3.2)

where fn is the concentration of aggregates of size n, and In is the net flux from size n− 1

to n. Note that in Eq. 3.2 an additional term must be calculated to keep track of solute

atoms (f1 = C), since they are involved in the growth of precipitates of all sizes. In can be

written as

In = gn−1fn−1 − dnfn

= Deff λn−1(Cfn−1 − C∗

nfn),
(3.3)
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Figure 3.2: A schematic of rediscretization. Here we rediscretized the precipitates in size
space after size 30, and d > 1 is chosen to increase the interval between larger sizes.

where gn−1 and dn are the growth and dissolution rate coefficients for precipitate size n− 1

and n, Deff is the diffusivity of impurities, λn is the kinetic growth factor, which can

be determined from the reaction and diffusion rates at the interface of the precipitates.

However, diffusion-limited growth is often assumed in modeling, as suggested by Ham et

al. [58]. The detailed derivation of growth rate for different precipitate geometries (spherical,

disc-shaped, and {311} defects) is included in Appendix B. C∗

n is the local equilibrium

constant, which is defined such that there is no energy difference with the transition from

size n − 1 to size n (∆Gn−1 = ∆Gn in Eq. 3.1). It can also be considered as the solute

concentration that would be in equilibrium with a size n precipitate.

C∗

n = Css exp

(

−
∆Gexc

n −∆Gexc
n−1

kT

)

(3.4)

3.2 Rediscretized Full Kinetic Precipitation Model (RFKPM)

FKPM produces accurate results but it requires a very heavy calculation. Many equations

are needed to describe the system when the size of precipitates becomes very large. To reduce

the number of equations and increase the time efficiency, the system can be assumed to be

nearly continuous for large precipitate sizes and then the size distribution is rediscretized

more coarsely with a linear function (as shown in Fig. 3.2). Thus, each point represents a

range of sizes rather than just a single size. We replace n with n[i], where fn[i] represents
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1 2 k k+1k−1

RKPM
FKPM

Figure 3.3: A schematic shows the concept of RKPM. The FKPM is used for small clusters,
while RKPM describes the behavior of precipitation from size k.

the concentrations between sizes (n[i−1]+n[i])/2 and (n[i]+n[i+1])/2. The Fokker Planck

equation (Eq. 3.5) [20, 27] describes the discrete system with a continuous equation as

∂f

∂t
=

∂

∂x
[A(x)f(x, t)] +

∂2

∂x2
[B(x)f(x, t)], (3.5)

where A(x) = (gn − dn) and B(x) = 1
2 (gn + dn). Eq. 3.5 is then rediscretized as

In[i] =
1

2
[
(gn[i] + dn[i])fn[i] − (gn[i+1] + dn[i+1])fn[i+1]

n[i + 1]− n[i]
+

(gn[i] − dn[i])fn[i] + (gn[i+1] − dn[i+1])fn[i+1]]. (3.6)

Through this method, FKPM and RFKPM are applied to small and large sizes respec-

tively. The discrete behavior for small size can be well captured, while the total number of

rate equations and time for calculation are reduced. Note that Eq. 3.6 reduces to Eq. 3.3 if

n[i + 1] = n[i] + 1.

3.3 Reduced Moment-Based Kinetic Precipitation Model (RKPM)

Clejan et al. [19] introduced the reduced moment-based model (RKPM) to enhance the

computational efficiency beyond that possible with RFKPM. This type of approach, which

is commonly used for carrier and fluid transport, states that one can go from a Boltzmann

equation to simpler hydrodynamic equations by computing moments and introducing a

closure assumption [72]. Instead of calculating all the rate equations (Eq. 3.2) over a size

space, the RKPM keeps track of the lowest moments of the distribution of larger precipitates.

In Fig. 3.3, discrete equations are still applied on small clusters (n < k). These moments
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are defined as

mi =
max
∑

n=k

nifn i = 0, 1, .... (3.7)

Note k is the size where RKPM is started as shown in Fig. 3.3. The rate equations of these

moments can then be written as

∂mi

∂t
= kiIk +

max
∑

n=k

[(n + 1)i − ni]In+1

= kiDeff λk−1

(

Cfk−1 −m0C
∗

k f̂k

)

+ Deff m0(Cγ+
i − Cssγ

−

i ), (3.8)

where

γ+
i =

max
∑

n=k

[(n + 1)i − ni]λnf̂n

γ−

i =
max
∑

n=k

[ni − (n− 1)i]λn
ˆC∗

n+1
ˆfn+1, i > 0

(3.9)

f̂n is the normalized size distribution (f̂n = fn/m0, which is always smaller than 1), and

Ĉ∗

n = C∗

n/Css. The number of moments that need to be considered depends on the com-

plexity of the system. In this work, the first two moments (m0 and m1) are considered,

therefore, f̂k, γ+
1 , and γ−

1 have to be determined.

γ+
1 =

max
∑

n=k

λnf̂n

γ−

1 =
max
∑

n=k

λn
ˆC∗

n+1
ˆfn+1.

(3.10)

The zero-th order moment of the distribution, m0, is the concentration of all precipitates

and the first order moment, m1, represents the total concentration of atoms in those precip-

itates. Thus, m̂1 = m1/m0 is simply the average size of the precipitate. The γ terms can be

generated from either the FKPM or the RFKPM, and described mathematically as function

of average size m̂1 with Arrhenius dependence. The γ’s can also be calculated analytically

by assuming the distribution function f̂n to be parameterized non-linear equations [43].

In RKPM, the system consists of only a few rate equations (Eq. 3.3) for small precip-

itates, which depend on k, and the time evolution of lowest moments (Eq. 3.7), described



25

by the γ’s. This approach sacrifices the detailed size distribution of clusters, including only

information about the solute concentration, the average size, and the total number of atoms

within precipitates.

3.4 RKPM with the Delta-Function Approximation (DFA)

In the previous work [19, 31, 40], FKPM and RKPM have been used to describe the precip-

itation process. A significant problem with RKPM is the complexity of the expression for

the γ’s. Instead of using an analytical approach [43] by assuming the distribution function

f̂n to be given by a non-linear equation, a delta function approximation (DFA) for size

distribution can be used to simplify the model implementation [135].

f̂n = δ(m̂1 − n) (3.11)

In DFA, the values of both summation terms (γ+
1 and γ−

1 ) are assumed to be equal to the

values for a single defect with size equal to the average size in the system (m̂1). This not only

simplifies the mathematical procedures for calculating γ−

1 and γ+
1 in an analytical method

but also equips them with more physical meaning. Therefore, if the first two moments are

considered (m0 and m1), Eqs. 3.10 can be rewritten as

γ+
1 = λm̂1

(3.12)

γ−

1 = λm̂1
C∗

m̂1+1 (3.13)

γ+
1 is simply the kinetic growth factor associated with average size of precipitates

(m1/m0). γ−

1 is the product of the kinetic growth factor and local equilibrium constant,

which are functions of the average size of precipitates (m1/m0) as well. γ−

1 is often an

Arrhenius function due the temperature dependence of the equilibrium constant. Note that

f̂k can not be derived from the DFA method and has to be described mathematically as a

function of average size, m̂1, and temperature.

3.5 Comparison of Precipitation Models for Vacancy Clustering

The FKPM for vacancy clustering was first introduced by Gencer et al. [40]. Demon-

stration of converting the rediscretized full kinetic precipitation model (RFKPM) to the
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reduced moment-based kinetic precipitation model (RKPM) with delta-function approxi-

mation (DFA) for vacancy clustering is shown in this section. The reactions in the vacancy

clustering model include the recombination between point-defects, the growth of vacancy

clusters, and the dissolution of vacancy clusters by consuming an interstitial.

I + V ⇐⇒ ∅ (3.14)

Vn−1 + V ⇐⇒ Vn (3.15)

Vn + I ⇐⇒ Vn−1 (3.16)

The flux rate equation can be written from Eq. 3.3 as

RIV = 4πa0(DI + DV)(CICV −C∗

I C∗

V), (3.17)

Rn = DVλn−1(CVfn−1 − C∗

nfn), (3.18)

RIV
n = DIλn(CIfn −CIV∗

n fn−1), (3.19)

where D and C∗ are the diffusivities and equilibrium constants for free interstitials and

vacancies. a0 and λn are the silicon lattice constant and the kinetic factor for a precipitate

with size n, given as

λn = 4πa0n
2/3, (3.20)

where a spherical geometry of voids (vacancy precipitates) is assumed. C∗

n is the equilibrium

constant and defined as

C∗

n = CSi exp

(

−
EB(n)

kT

)

, (3.21)

where CSi is the atomic density for silicon, and EB(n) is the binding energies reported by

Bongiorno et al. [10] and Jaraiz et al. [82] for adding an nth V to a n − 1 size void. The

first two moments of RKPM can be calculated via Eq. 3.7.

m0 =
max
∑

n=36

fn

m1 =
max
∑

n=36

nfn,

(3.22)
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where k = 36 in our vacancy clustering model. For k < 35, we use FKPM to describe the

vacancy clustering with Eq. 3.2. The time evolution of m0 and m1 can be derived as

∂m0

∂t
= DVλk−1 [CVfk−1 −m0C

∗

k−1 f̂k]− λV
k DIm

V
0

(

CIf̂k

)

(3.23)

∂m1

∂t
= kRk + DV m0(γ

+
1 CV −Cssγ

−

1 )− kRIV
k −DIm

V
0

(

λV
m̂V

1
CI

)

. (3.24)

Note that Eqs. 3.23 and 3.24 include both reactions in Eqs. 3.15 and 3.16.

γ+
1 , γ−

1 , and f̂k were calculated via Eqs. 3.10 as points and shown in Figs. 3.4, 3.5,

and 3.6. These points were generated under different conditions, such as initial vacancy

concentration (1× 1016, 1× 1017, 1× 1018, and 1× 1019cm−3), temperature (500, 700, 800,

and 900◦C), and time. DFA method was applied for γ+
1 and γ−

1 to fit these points. In

Fig. 3.4, γ+
1 is a function of kinetic factor, λn, and independent of temperature. The slope

of the fitting curve is 2/3, which can be derived from the the kinetic factor in Eq. 3.20,

(λn ∝ n2/3). In Fig. 3.5, note that γ−

1 is an Arrhenius function due to the temperature

dependence of C∗

m̂1+1 term in Eq. 3.13. The DFA method accurately described the γ’s as

shown in Fig. 3.4 and 3.5. An Arrhenius dependent function (Eq. 3.25) was fitted for f̂k in

Fig. 3.6, because the DFA method can not be used in this situation. In Fig. 3.6, results from

RFKPM give an obvious deviation between average size 102 and 104 due to the different

initial vacancy concentration. Although Eq. 3.25 can only fit well at larger size, we will

show later that this does not substantially affect the overall behavior of the model.

f̂k(m̂1) = 1022m̂−8
1 + 4× 105m̂−4

1 + 7m̂−0.9
1 exp

(

−0.75

kT

)

(3.25)

Note that f̂k → 1 when m̂1 → k. The general form of f̂k can be referred to Eq. 5.6.

An initial vacancy concentration of 1 × 1017cm−3 was run at 900◦C for the time as

specified. While both models share the discrete behavior for vacancy clustering from size

2 to 35, the RKPM describes the clustering nature for larger size (n ≥ 35) with moments

(m0 and m1). Thus, the RKPM substantially reduces the number of precipitation rate

equations (Eq. 3.3) and improves the computing efficiency. CV first drops in Fig. 3.7[a]

because of the formation of smaller vacancy clusters, which explains the increase of m0 and

m1 in Fig. 3.7[b]. While CV continues to decrease, m0 starts to drop and m1 remains nearly

constant. This indicates the growth of larger vacancy clusters and the dissolution of smaller
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[a]

[b]

Figure 3.6: f̂k (k = 36) vs. the average size for vacancy cluster at different temperatures:

[a] 500 and 700◦C; [b] 800 and 900◦C. Points are generated from RFKPM using Eqs. 3.9
under different conditions. Lines are the fitting functions with an Arrhenius dependence for

larger sizes (last term in Eq. 3.25).
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clusters (Ostwald ripening). The simulation results from both RFKPM and RKPM-DFA

are compared and shown in Fig. 3.7. As can be seen, RKPM-DFA accurately describes the

time evolution of m0, m1 and free vacancy concentration (CV ).

3.6 Summary

We have first discussed the FKPM [31, 40] as used to capture the behavior of the precipitate

size distribution, which depends on the thermal history of the sample, but it is computation-

ally intensive. RFKPM takes advantage of a gradual change in behavior for large precipitate

sizes to more coarsely rediscretize the size distribution. The RKPM [19] calculates the time

evolution of the precipitation process more efficiently by only considering evolution of the

lowest moments of the distribution. The RKPM with the delta-function approximation

(DFA) [135] simplifies the mathematical procedures for calculating γ’s and equips them

with more physical meaning. Other than vacancy clustering, the example shown in Sec-

tion 3.5, the RKPM-DFA can also be used for metal precipitation and interstitial clustering

to study the gettering process, transient enhanced diffusion (TED), and boron activation

more efficiently (see Sections 4.2, 5.1, and 5.2).
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Figure 3.7: The comparison of time evolutions for vacancy concentration [a], m0, and m1 [b]

between the rediscretized kinetic precipitation model (RFKPM) and the reduced moment-
based precipitation model with the delta-function approximation (RKPM-DFA).
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Chapter 4

GETTERING

It is challenging to remove unwanted contaminants such as metals (e.g., Cu, Fe, Ni, etc)

to levels where they no longer affect device performance. Three levels of contamination con-

trol are used in current IC technology: clean factories, wafer cleaning, and gettering [126].

One can reduce the particles by working in clean rooms. Wafer cleaning requires the re-

moval of particles, films, and any other contaminations on the wafer surface before each

fabricational process step. Gettering is a technique that collects impurities to regions where

they do minimal harm. The advantages of this technology are that devices often occupy

the top layer of the wafer, and most of the contaminants concerned are highly mobile. To

maintain high yield in the case of process variations and accidental contamination, gettering

is necessary in today’s device manufacturing.

In silicon, dissolved transition metals often are electrically active and exhibit deep energy

levels, which act as donor or acceptor states. They may affect the doping concentration if the

impurity concentration approaches the carrier concentration. However, a possible change

in doping concentration is limited to very lightly doped silicon wafers, because unwanted

impurity concentrations in processed silicon wafers rarely exceed 1013cm−3. A more seri-

ous issue is that metallic impurities introduce generation-recombination centers within the

silicon band gap, which provide deep energy states. A severe deterioration in electrical

properties can arise due to the generation/recombination of free carriers from dissolved im-

purities and their complexes. Impurity metals also have the tendency to precipitate at the

silicon-silicon dioxide interface, which lowers gate-oxide breakdown voltages [65].

The indirect recombination is termed as Shockley-Read-Hall recombination (SRH) [138].

The net SRH recombination rate is written as:

U =
pn− n2

i

τp

[

n + ni exp Et−Ei

kT

]

+ τn

[

p + ni exp Ei−Et

kT

] , (4.1)
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where Et and Ei are the deep energy trapping level and intrinsic Fermi level respectively,

and τ is the minority-carrier recombination lifetime.

τn = 1
vthnσnNt

τp = 1
vthpσpNt

(4.2)

vthn and σn are the thermal velocity and capture cross-section of electrons. Subscripts n

and p stand for electrons and holes respectively. Nt is the density of trapping sites. The

capture cross-sections for different transition metals can differ by several orders of magni-

tude. Therefore, the tolerable impurity concentrations depend on the chemical nature of

the respective impurities.

Impurity concentration also affects the generation leakage current [100]. The emission

rates for electrons and holes are the inverse of carrier lifetimes (Eq. 4.2). Thus the leakage

current is proportional to the impurity concentration and also depends on the capture cross-

sections of transition metals. In fact, the system is more complicated because transition

metals often exhibit more than a single deep energy level (trapping level).

There are three key steps in the gettering process [73]: (i) mobilization of metal atoms

from localized and stable precipitate sites; (ii) diffusion of metal atoms to gettering sites;

and (iii) capture of metal atoms at gettering sites away from the device region. These three

steps are shown in Fig. 4.1. For effective gettering, the energy barrier for the release of

impurity atoms from the original sites should be low, while the entrapped impurities should

not be released easily. The impurity diffusion length should be longer than the distance

between the impurity’s original site and the gettering site.

Gettering mechanisms can be categorized into three groups: (1) relaxation gettering;

(2) segregation gettering; and (3) phosphorus diffusion gettering [80]. In relaxation getter-

ing, heterogeneous precipitation sites are formed intentionally in the region away from the

device/surface region. An impurity supersaturation during a cool down from high temper-

ature is required. Mobile and supersaturated impurity atoms diffuse and precipitate at the

heterogeneous precipitation sites. Segregation gettering is driven by a gradient or a discon-

tinuity of the impurity solubility. The region of higher solubility acts as a sink for impurities

due to lower electrochemical potential. No supersaturation is required, therefore, lower im-
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Figure 4.1: A simple schematic of 3 steps for gettering process [73].

purity concentration in the device region can be achieved. The segregation effect can result

from differences in phases, materials, and doping levels. Strain also can have an impact

on the local solubility of impurities [74, 112]. In phosphorus diffusion gettering, a heavily

phosphorus doped layer provides several mechanisms for gettering: solubility enhancement

by Fermi level effects, by an increase of the substitutional fraction of impurities, and by ion

pairing; gettering to dislocations and SiP particles generated by phosphorus diffusion, and

silicon interstitial injection-assist gettering [80].

The gettering techniques are classified into two groups, (see Fig. 4.2): extrinsic gettering

(EG) and intrinsic gettering (IG) [85]. EG is generated by external means via mechanical

damage [6, 114, 127], chemical [5, 69, 121], substrate doping (p/p+ structure) [4, 9, 142],

deposition of a metal thin film [113, 149] or a polysilicon layer [122], or ion implanta-

tion [9, 11, 90], which leads to the creation of defects or gettering sites for segregation or

precipitate nucleation, etc. IG involves the localization of unwanted impurities at extended

defects (e.g., silicon-dioxide precipitates.) formed in the bulk region of the wafer during

thermal pretreatment [3, 46, 63, 70, 114].

In this chapter, we specifically investigate the gettering behavior for copper and iron.

By utilizing the precipitation models from Chapter 3, simulation results are compared to

the experimental data reported from different groups.
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Figure 4.2: A schematic represents intrinsic and extrinsic gettering via the three-step get-
tering process: release, diffusion, and trapping [162].

4.1 Cu Gettering

Among 3d transition metals, Cu has the high solubility and diffusivity in silicon [158]. It

can be easily introduced to the thermal process of silicon device fabrication, as Cu inter-

connect has become widespread. Several gettering techniques for Cu have been studied,

such as intrinsic gettering, phosphorus-diffusion gettering, Si surface and Si/SiO2 gettering,

ion implantation gettering, chemical gettering, backside damage gettering and Al-backside

gettering [64].

Previous work [55] is summarized in Section 4.1.1 and emphasized Cu diffusion and pre-

cipitation processes in the bulk silicon. In Section 4.1.2, we will focus on the mechanism

of Cu out-diffusion, which has a strong dependence on the wafer surface condition. In Sec-

tion 4.1.3, Cu precipitation at the wafer surface is studied by using FKPM from Chapter 3.

Shabani et al. [132] and McCarthy et al. [104] reported that the wet wafer surface treat-

ment has a significant impact on Cu out-diffusion and the surface precipitation. Ohkubo et
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al. [120] suggested that Cu precipitates and organic molecules lower the surface potential

and enhances the out-diffusion process. We proposed a possible explanation for this unusual

behavior of Cu out-diffusion. In section 4.1.4, the simulation results are compared to the

experimental data.

4.1.1 Cu Diffusion and Precipitation in Bulk Si (Previous Work)

We investigated copper precipitation models that provide the foundation for simulating

copper diffusion and precipitation processes in silicon [55]. Three major mechanisms were

considered for copper redistribution in silicon: pairing, diffusion, and precipitation. Pos-

itively charged copper (Cu+) [57] pairs with acceptors (e.g., B−) in bulk regions [155].

Copper diffuses interstitially with rapid redistribution at room temperature. Precipitation

kinetics involves nucleation and growth. We captured this behavior by considering the evo-

lution of precipitate size density (FKPM). Two important factors regarding the free energy

in Eq. 3.1 must be considered: charge and strain. While positive-charged (Cu+) copper is

dominant, copper precipitates must be nearly neutral, due to Coulomb repulsion. A huge

volume change is involved in copper precipitation process; VCu3Si ≈ 2.3VSi. The formation

of three-dimensional (3D) precipitates must incorporate vacancies and/or eject interstitials.

However, at at low temperature, self-diffusion is very slow. Thus, the formation of 3D

precipitates is possible only near point defect sinks/sources. Since homogeneous nucleation

cannot satisfy free volume at low temperatures, stress is minimized via formation of flat

disc-shaped precipitates. The details of these models can be found in Guo et al. [55].

These models were verified by comparison to experimental measurements from Flink et

al. [36, 77] in Figs. 4.3, and demonstrated the effectiveness for modeling copper behavior

in silicon. In these experiments, Flink et al. [36, 77] evaluated Cu precipitation behavior

under three boron concentrations (CB = 4 × 1014, 4 × 1015, and 2 × 1016cm−3) with vari-

ous copper contamination levels. Concentrations of mobile copper and precipitated copper

were measured with transient ion drift (TID) and X-ray fluorescence (XRF) in silicon after

a high temperature in-diffusion and quench. Initially, copper was in-diffused at selected

high temperatures for sufficient time for the solubility level to be achieved. Next, samples
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were quenched in silicone oil at a rate of approximately 1000 K/s. The concentration of

electrically-active copper was then measured with transient ion drift (TID) after 30 minutes

at room temperature, and the bulk concentration of precipitated copper was measured with

X-ray fluorescence (XRF). These measurements were performed after sufficient storage time

at room temperature to let interstitial copper complete its preferred reaction path: either

to diffuse out to the surface or to precipitate in the bulk [36, 77].

Fig. 4.3(a) shows the comparison between experimental data and simulation results for

remaining interstitial copper concentration versus the initial copper concentration. The

simulation results agree very well with experimental data, and predict the peak value for

different CB. For initial copper concentration less than the boron concentration, almost no

precipitation occurs even though the concentration is well above room temperature solubil-

ity. The main reason for this phenomenon is dependence of solubility, and thus nucleation

barrier on Fermi level. Also, due to that fact the Fermi level is pinned at the interface,

it causes a built-in electric field, repelling Cu+ near the periphery of the precipitate more

significantly in strongly p-type material (CB = 2 × 1016cm−3). For higher initial copper

concentration, the copper precipitation process continues dropping the interstitial copper

well below the boron concentration since critical nuclei already exist. Fig. 4.3(b) shows

the comparison between experimental data and simulation results for precipitated copper

concentration versus initial copper concentration. Again the model does an excellent job of

capturing behavior. For high dopant concentration (CB = 2 × 1016cm−3), solute tends to

out-diffuse instead of precipitating in the bulk, due to increased nucleation barrier in p-type

material.

This previous work addressed the modeling of copper precipitation in silicon. The nucle-

ation barrier depends strongly on the supersaturation and thus the solubility, which leads

to strong Fermi level effects due to dominant positive charge state of interstitial copper.

Once the nucleation barrier is overcome, precipitate will keep growing as long as the solute

concentration is above the solubility. We have demonstrated that models can predict the

behavior of the copper precipitation for low thermal budget process, where the precipitates

are plate-like, by comparing the simulation results to experimental findings reported by

Flink et al. [36, 77].
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Figure 4.3: [a] Interstitial copper concentration as measured with TID 30 minutes after
quench at room temperature vs. the solubility concentration of copper at in-diffusion tem-

perature in three samples with different dopant concentrations. [b] Precipitated copper
concentration measured with XRF vs. the solubility concentration of copper at in-diffusion

temperature. Points are the experimental data and lines are simulation results.
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4.1.2 Cu Out-Diffusion

As mentioned in Section 2.3.3, free copper diffuses interstitially and remains primarily in

positive charge state (Cu+). Also, Cu+ is likely to pair with acceptors (B−) in the bulk

region, as described by Eq. 2.55.

The transport of Cu is driven by two mechanisms:

(1) the diffusion of Cu atoms due to the concentration gradient in silicon.

Jdiff = −Deff
Cu

∂CCu

∂x
(4.3)

(2) the drift due to the presence of an electric field.

Jdrift = qµnCCuE = Deff
CuCCu

∂

∂x

[

ln

(

n

ni

)]

(4.4)

The electric field, E , is derived from Poisson’s equation and the mass action equation. The

detailed derivation is located in Appendix. C. Combining Eqs. 4.3 and 4.4, the continuity

equation for Cu can then be expressed as

∂CCu

∂t
= (Jdiff + Jdrift) = Deff

Cu

∂

∂x

{

∂CCu

∂x
+ CCu

∂

∂x

[

ln

(

n

ni

)]}

(4.5)

In a simple analysis, the boundary condition at the surface, Eq. 4.6, is assumed to be

that the outward flux is proportional to the surface concentration of Cu with a surface

reaction velocity (S). As discussed in Section 4.1.4, S has a strong dependence on the

surface condition, and may vary when Cu atoms diffuse to the surface and precipitate.

−J(0, t) = − (Jdiff + Jdrift) = SCCu(0, t) (4.6)

We also assumed that the Fermi level is pinned near mid-gap at the surface, which acts as

a potential barrier for Cu+ out-diffusion. In Fig. 4.4, the energy-band diagram shows the

downward band bending due to the fact that the Fermi level is pinned near mid-gap at the

surface in a p-type material. This resulting surface field lowers the Cu+ concentration near

the surface, which may effectively lower the surface reaction velocity (S).

To illustrate the importance of the drift mechanism and the energy-band bending, we

compared the simulation results with and without the drift mechanism in Fig. 4.5. The

resulting potential barrier builds an electrical field and prevents Cu+ from out-diffusion to
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Figure 4.4: The energy-band diagram near the surface in a p-type material. Sur-

face/interface states result in Fermi level pinning near the mid-gap. This causes the energy
band to bend downwards and forms an electric field, which retards Cu+ out-diffusion to the

surface.

the surface. Therefore, Cu out-diffusion is much slower if the drift mechanism and Fermi

level pinning are included.

4.1.3 Cu Precipitation at Wafer Surface

To accurately model precipitation kinetics, it is necessary to include the effect of charge

exchange as the positively-charged Cu reacts to form neutral silicide. In the simplest pre-

cipitation model, which is only useful for qualitative understanding, the precipitation rate is

proportional to the difference between free Cu concentration and Cu solubility. In contrast,

the full kinetic precipitation model (FKPM) [31] (see Section 3.1) describes the evolution

of the precipitate size distribution to account for thermal history effects. Precipitation is

driven by the fact that above solubility formation of a solute-rich phase reduces the total

energy of the system. The surface precipitation analysis in this work is similar to that used

in our previous work on bulk Cu precipitation [55], with the difference that precipitates are

assumed to be hemispherical rather than disc-shaped because the free volume is available

at surface. Before surface precipitation can proceed, nuclei need to be formed. A free Cu
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Figure 4.5: The comparison of Cu out-diffusion with and without the drift mechanism.

Points are the depth profile of Cu concentration including both the diffusion and drift
terms in Eq. 4.5, while lines only include the diffusion mechanism. The simulations are run
at 60◦C with the initial conditions of CB = 1.5× 1016 and CCu = 1× 1013cm−3.

atom can segregate to an available surface site and act as a starting point for the surface

precipitation. Cu precipitates at the surface of wafers then grow or shrink by absorbing

or emitting Cu+ atoms. Fig. 4.6 illustrates the schematic of the surface segregation and

precipitation. The evolution of precipitate density can be described as














∂CCu

∂t
= −Iseg −

∑

m=2

Im

∂fm

∂t
= Im − Im+1 m ≥ 2

(4.7)

where fm is the precipitate density of size m, and Iseg accounts for the segregation of free

Cu to an empty surface site. Im is the flux from size m − 1 to m in precipitate size space.

Im is given by the difference between the growth and dissolution rates:

Im = DCuλm−1 {CCufm−1 − fmC∗

m} , m ≥ 2 (4.8)

where λm is the kinetic growth factor for precipitate size m, which can be determined from

the interface reaction rate and geometry of the precipitates [30]. C∗

m is the local equilibrium

constant (similar to Eq. 3.4), which is defined such that there is no energy difference with
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Figure 4.6: A schematic shows how Cu precipitates grow or shrink at the wafer surface by

absorbing or emitting free Cu atoms. To form a nucleus, a free Cu atom is segregated to
an empty site ∅.

the transition from size m− 1 to m, and this constant can be expressed as

C∗

m = Css exp

(

−
∆Gexc

m −∆Gexc
m−1

kT

)

= Ci
ss

(

n

ni

)

−1

exp

[

Am2/3 − A(m− 1)2/3

kT

]

, (4.9)

where Ci
ss is the solubility of copper in intrinsic silicon, and A is proportional to the sur-

face/strain energy per unit area. Note that the local equilibrium constant, C∗

m, is a function

of the electron density, which depends on the position of Fermi level. The factor (n/ni)
−1

accounts for electron incorporation required for positively charge copper (Cu+) to form

neutral precipitates. Assuming the total volume of the hemispherical-shaped precipitates is

equal to the product of the number m of Cu atoms and its unit volume (mΩ = 2
3πR3

m), we

get

Rm =

(

3mΩ

2π

)1/3

, (4.10)

where Ω is the volume density. ∆Gexc
m is a function of the surface area of size m precipitate

(2πR2
m), which is proportional to m2/3.

4.1.4 Comparison to Experimental Data

In Ohkubo et al.’s experiment [120], the samples were boron-doped (10 Ωcm), single side

polished, and 200mm Czochralski silicon wafers. These Si wafers were immersed in deionized

water containing Cu, followed by 900◦C annealing for one hour to drive Cu contamination
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into the wafers. Fig. 4.7 [top] shows the experimental procedure for the annealing condi-

tions and measurements. Out-diffused Cu (C1st) was measured by total reflection X-ray

fluorescence (TXRF) after the first bake, in either a quartz box or a plastic box, at 60◦C

for varying time up to 48 hours. Then surface cleaning was performed with a solution to

remove the surface Cu precipitates. TXRF measurements (C2nd) were repeated again after

second bake at 80◦C for 24 hours in a plastic box to out-diffuse the rest of the Cu. A sur-

face precipitation ratio (Cs/C0) (see Fig. 4.7 [bottom]) was defined as the ratio of surface

precipitated Cu after the first step (C1st) to the initial total Cu concentration in silicon

bulk (C0 ≈ C1st + C2nd). Fig. 4.7 [bottom] also shows the enhancement of Cu out-diffusion

caused by organics. In this experiment, organic molecules were released from plastic box

and absorbed by the contaminated wafers. In Fig. 4.8, electrostatic potential measurements

were performed by the Kelvin probe method for different surface Cu concentrations (∆V

up to 100 mV) and different levels of organic contamination on the Si surface (∆V up to

50 mV) [120].

In Fig. 4.7 [bottom], simulation results with a simple approximation using fixed surface

velocities S (Eq. 4.6) are shown with lines. Note that these surface velocities are several

orders smaller than the diffusion-limited rate D/a (∼5 cm/s). This suggests that the effect

of Fermi level pinning at the surface may need to be included. In Section 4.1.2, Fig. 4.4

illustrates that the Fermi level at the surface is pinned near the mid-gap in a p-type wafer

because of the presence of surface states. The electrical field generated by energy band-

bending slows the Cu out-diffusion process. In Fig. 4.9, surface velocities required to match

experiments are substantially increased because the Fermi level pinning at the surface is

included. Moreover, measurements from Ohkubo et al. [120] indicate that both existing

Cu precipitates and organics on the surface shift the surface Fermi level, which lower the

diffusion barrier and enhance Cu out-diffusion. This phenomenon is described as

Esurf
F = ECu3Si

F + q∆V, (4.11)

where ECu3Si
F is the surface Fermi level for high surface coverage of Cu silicide, and the

electrostatic potential shift (∆V ) depends on the amount of Cu precipitates and organics

absorbed from the plastic box. In Fig. 4.10, we show fitting functions used to describe the
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Figure 4.7: [top] Experimental flow from Ohkubo et al. [120]; [bottom] resulting surface
precipitation ratio vs. the baking time at 60◦C [120]. Points are the experimental data
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diffusion of Cu is substantially faster when the first bake is done with samples in a plastic
box, which results in organic contamination on surface.
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Figure 4.8: Surface electrostatic potential measurements from Ohkubo et al. [120]. [top]

Surface potential vs. surface organic concentration for clean wafers baked in a plastic
box at 60◦C for 0-24 hours. Surface potential drops approximately 50mV because of the

absorption of organics on surface. [bottom] Surface potential vs. surface Cu concentration
after wafers were stored at room temperature in a plastic box for one month. The presence

of precipitated Cu at the surface lowers the surface potential by up to 100mV.
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Figure 4.9: A comparison of experimental data (points) from Ohkubo et al. [120] and

simulation results. In these simulations, both diffusion and drift mechanisms are included.
Note the increase of surface velocity (S) compared to Fig. 4.7 [bottom] when Fermi level
pinning is included.

experimental measurements of ∆V , which depend on the concentrations of Cu precipitates

and absorbed organics. Because of the Fermi level dependence on the local equilibrium

constant (C∗

m) in Eq. 4.9, the position of Fermi level strongly affects the surface precipitation

behavior.

Ohkubo et al. [120] assumed a simple precipitation model at the surface, but this model

required non-constant surface reaction velocity, which was chosen as an empirical function

of baking time.

S = exp(α + βt), (4.12)

where α and β are the fitting parameters. This approximation suggested that the surface

reaction velocity was a function of time, rather than the surface condition. It is only useful

for qualitative understanding, because important factors, such as the pinned Fermi level

and electrostatic potential changes, were not taken into account.

In this work, the evolution of precipitate size distribution at the surface (FKPM) was

applied to describe the surface precipitation process, such that precipitation behavior de-
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Figure 4.10: Surface potential change vs. surface Cu concentration: fitting functions were

applied to describe the change of surface potential because of the presence of existing Cu
precipitates and organics from the plastic box. These plots can be compared to the data
shown in Fig. 4.8.

pends on the thermal history of the sample and is a strong function of the precipitate size

and shape. The position of the surface Fermi level was determined by the surface conditions,

including the amount of precipitated Cu and organics. Cu diffusion and CuB pairing were

included with a Fermi level dependence. An excellent agreement in the comparison between

the experimental data and simulation results are shown in Fig. 4.11. During the first bake

in either quartz or plastic boxes, Cu out-diffuses to the surface nonlinearly because Cu pre-

cipitation at the surface lowers the pinned Fermi level and enhances the Cu out-diffusion

process. Additionally, in the case in which the organics were absorbed at the surface, Cu

out-diffusion was enhanced because of the fact that organics shift the surface Fermi level

and thus lower the energy barrier for Cu out-diffusion.
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Figure 4.11: A comparison of experimental data (points) from Ohkubo et al. [120] and

simulation results (lines). Compared to Figs. 4.7 and 4.9 in which no single S value captures
experimental behavior.

4.2 Fe Gettering

Kaiser et al. [70] and Mets et al. [114] were the first to establish that silicon-oxide precip-

itates are sinks for metal impurities. Gilles et al. [46], Hieslmair et al. [63], and Aoki et

al. [3] confirmed that silicon-oxide precipitates are sinks for iron gettering and proved that

internal gettering is a relaxation-type gettering. The use of p/p+ wafers provides another

method for gettering iron out of the epitaxial layer and into substrate, where the enhanced

solubility of iron in the heavily doped substrate is the driving force [4, 142].

Techniques that form gettering sites very close to the device region are known as proxim-

ity gettering techniques. One of the proximity gettering techniques is by ion implantation,

started by the work of Buck et al. [11]. Iron gettering via implantation of MeV B [9] or

Si [90] ions has been shown to reduce Fe concentrations to below 1010cm−3. Ion implan-

tation creates two damage regions: an interstitial-rich region near ion projection range,

Rp, and a near surface (Rp/2) vacancy-rich region. Kononchuk et al. [91] suggested that

Rp defects provided gettering sites for relaxation of supersaturated Fe during cooling and
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Figure 4.12: A schematic of experimental procedure. Implantation of 100keV Fe ions was

performed after 2.3MeV Si ion implantation. Rp and Rp/2 are the projected range for
interstitials and vacancies [92].

is limited by diffusion of point defects from the bulk. Other 3d metals, such as Cu, can

also be captured by MeV implantation defects [86, 90]. To isolate the intrinsic gettering

via oxygen, Koveshnikov et al. [92] introduced MeV Si defects into both Czochralski (Cz)

substrates and epitaxial silicon doped with boron. Boron doped epitaxial Si wafers with 4.5

µm thick epilayer and 20 Ωcm for both epilayer and substrate were used. Implantation of

2.3MeV Si ions was performed into the epilayer with the dose of 5× 1014 or 1× 1015cm−2.

The wafers were subsequently implanted with 100keV Fe ions with a dose of 1× 1013cm−2

from the back side, as shown in Fig. 4.12. The samples were annealed in the furnace for

1 h at 900◦C to allow interstitials coalesce into dislocation loops and to diffuse Fe through

the wafer. After samples were slowly cooled down, iron distribution shown in Fig. 4.15 was

measured by secondary ion mass spectrometry (SIMS) and deep level transient spectroscopy

(DLTS).

In this section, we will focus on Fe gettering via implantation of MeV Si ions into epi-

taxial silicon. Precipitation models introduced in Chapter 3 are used to describe growth of

the MeV Si implant defects in both damage regions. The mechanism of Fe decoration on

interstitial and vacancy clusters is first introduced, following by a comparison between the

experimental data and simulation results.
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4.2.1 Mechanism for Fe Gettering via Ion Implantation

We have mentioned earlier that gettering requires 3 steps: (1) release of metal atoms; (2)

diffusion to gettering sites; (3) capture of metal atoms, as shown in Fig. 4.1 [92]. Annealing

enables Fe atoms to mobilize from the wafer backside and redistribute through the substrate

and the silicon epilayer. Fe atoms were captured at the voids and dislocation loops in the

silicon epilayer during the slow cooling. The formation of vacancy clusters is described by the

reduced moment-based precipitation model (RKPM) with the delta-function approximation

(DFA) discussed in Chapter 3.

Analytical kinetic precipitation model (AKPM) from Gencer [40] was adopted for the

formation of dislocation loops. Gencer assumed that the formation of I clusters in smaller

sizes is energetically favorable over {311} defects, while dislocation loops are more stable

above a critical size (ncrit = 1500 in this model). The transfer rate from {311} defects to

dislocation loops can therefore be expressed as

DI

b2

[

f311
n − f loop

n exp

(

−
∆G311

n −∆Gloop
n

kT

)]

, (4.13)

where b and DI are the capture distance and diffusivity for the interstitial. fn and ∆Gn are

the concentration and free energy at size n, where the superscripts (311 and loop) stand for

different species. The reduced moment-based model (RKPM) were then used to describe

the time evolution of moments.

Fig. 4.14 demonstrates the segregation process of Fe atoms to vacancy clusters or

dislocation loops. An Fe atom lands on an empty site at the surface of a void or dislocation

loop and is stabilized due to the relaxation. The forward reaction is proportional to the

product of concentrations of iron and empty sites on the defect’s surface, while the reverse

reaction is proportional to the concentration of sites that are occupied. Therefore, the

decoration rate for voids can be written as

Ratevoid
decor(n) = kvoid

inf (n)

{

CFe ∗
[

Cvoid
site (n)−Cvoid

full (n)
]

−
Cvoid

full (n)

Kvoid
eq

}

, (4.14)

where Kvoid
eq is an equilibrium constant with an Arrhenius dependence.

Kvoid
eq =

1

CSi
exp

(

−Evoid
B

kT

)

(4.15)
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Figure 4.13: A schematic of Fe atoms captured by a vacancy cluster.

kvoid
inf (n) = 4πrvoid(n)Deff

Fe , (4.16)

rvoid (n) =

(

3n

4πCSi

)1/3

, (4.17)

kvoid
inf (n) is the kinetic factor which depends on Fe diffusivity [158] and void’s size. n and

rvoid are the size and radius of a cluster. In Eq. 4.14, Cfull is the density of the site occupied

by a Fe atom. Csite(n) is the concentration of sites available for Fe atoms to sit on and can

be expressed as

Cvoid
site (n) = fvoid

n ∗Nsite ∗ Avoid (n)

= fvoid
n ∗Nsite ∗

[

4πr2
void(n)

]

, (4.18)

where Nsite is the site density per area (≈ 7× 1014cm−2), and fvoid
n is the concentration of

the void with size n.

For the Fe decoration of dislocation loops, a similar analysis is used. However, a different

kinetic factor kloop
inf (n) (Eq.4.15) and Cloop

site (n) (Eq. 4.18) need to be used due to the fact

that vacancy clusters and dislocation loops have difference geometries. Also, the equilibrium

constant (Keq) in Eq. 4.15 should have a different Arrhenius dependence (E loop
B ).
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Figure 4.14: A SRIM simulation [169] of net I and V profiles resulting from implantation

of 2.3MeV silicon ions with the dose of 1× 1015cm−2 into a silicon epilayer. The projected
ranges for net excess I and V are Rp/2 ≈ 1µm and Rp ≈ 2µm.

4.2.2 Comparison to Experimental Data

Fig. 4.14 shows the initial profiles for point defects generated by SRIM [169] with 2.3MeV

Si ion implantation at the dose of 1015cm−2. Rp/2 ≈ 1µm and Rp ≈ 2µm are the projected

ranges for net excess vacancy and interstitial respectively. Interstitial- and vacancy-rich

regions form dislocation loops and vacancy clusters to provide the gettering sites for the

relaxation of supersaturated Fe. Fig. 4.15 shows a good agreement between the experimental

data and simulation results. The capture of Fe atoms near Rp/2 is due to the presence of

vacancy clusters, which provide the open volume for Fe precipitation. A reduction of the

gettering capacity in the Rp/2 region due to the different doses of Si ion implantation

(5 × 1014 and 1 × 1015cm−2) can be seen from Fig. 4.15. Fig. 4.16 shows the locations of

dislocation loops and vacancy clusters. After 900◦C annealing for 1h, the concentration of

vacancy clusters is much higher with a higher dose of Si ion implantation. The concentration

of vacancy clusters reduces because of the interstitial flux from dislocation loops, and the
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vacancy flux toward the wafer surface. As a result, vacancy clusters disappear earlier in

the case of lower Si+ ion implantation dose, while the concentrations of dislocation loops

remain constant due to the energetic stability.

4.3 Summary

We have individually discussed the gettering models for both copper and iron. Rediscretized

fully kinetic precipitation model (RFKPM) was used to account for copper precipitation in

the bulk silicon. The Cu out-diffusion process shows a strong dependence of the surface

condition, where the surface states and Fermi level vary with the presence of copper pre-

cipitates and organic molecules at the surface. Based on the measurement of electrostatic

potentials under different Cu precipitate and organic molecule concentrations, we were able

to explain and characterize the unusual Cu out-diffusion behavior reported by Ohkubo et

al. [120].

Iron gettering via ion implantation has been shown to be highly effective. This tech-

nique can introduce gettering sites just a few µm away from the device region, allows a

low thermal-budget process, and can also be used for SOI wafers. We have used reduced

moment-based kinetic precipitation models (RKPM) for both interstitials and vacancies to

study the evolution of gettering sites, vacancy clusters and dislocation loops. The capture

of iron atoms by gettering was described and characterized by the experimental data from

Koveshnikov et al. [92].
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Figure 4.15: Comparisons of simulation results and experimental data. Iron in epi-Si was

measured by SIMS after annealing at 900◦C for 1 h followed by slow cooling [92]. Before
annealing, 2.3MeV Si ion implantation was done to a dose of 1015 [a] and 5×1014cm−2 [b].
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Figure 4.16: Point defect distribution with 2.3MeV Si ion implantation at dose of 1015

[a] and 5×1014cm−2 [b], followed by 900◦C annealing for 1 h. Total CI and CV represent

the sum of total point defect concentration in the clusters and free point defect concen-
tration respectively. The concentration of vacancy clusters in (b) is much lower, while the

concentrations of dislocation loops remain approximately equal in both cases.
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Chapter 5

USJ FORMATION

Ion implantation is the dominant doping method in today’s IC manufacturing. It pro-

vides tremendous flexibility in terms of the doping species, dose and physical location of

dopants. In this method, dopant ions are accelerated to hundreds or thousands of electron-

volts and create a cascade of damages in the silicon lattice. The implanted ions lose energy

through elastic nuclear collisions and inelastic interaction with electrons before coming to

rest. The projected range, Rp, depends on the energy and type of ion used for the implan-

tation, with higher energy and lighter ions having a deeper range. The standard deviation,

±∆Rp, of the projected range depends on the number of random stopping events within

the ion’s traveling range. Heavy ions with a smaller projected range have a more narrow

distribution than light ones. Due to the collisions between the silicon atoms and implanted

dopant ions, Frenkel pairs (I+V) are generated. The displaced Si atoms can also collide

with other Si atoms in other lattice sites and create more point defects. A vacancy-rich

region forms near surface, while an interstitial-rich region is present deeper into the silicon

wafer. Most of the dopants do not sit at substitutional sites after implantation, and there-

fore, they are not electrically active. The final junction requires careful annealing to repair

the damage from the ion implantation and to activate the dopants.

During annealing to activate the dopants, diffusion also occurs, which makes it difficult

to form shallow junctions. Enhanced dopant diffusion following ion implantation was first

observed by Hofker et al. [68]. A burst of diffusion is observed, much faster than for a sim-

ilar annealing condition when no implant damage is present. This phenomena is referred

to transient-enhanced diffusion (TED). Fig. 5.1 illustrates TED of a B profile implanted

into float-zone (FZ) crystalline silicon [146]. After 35 min annealing at 800◦C, the tail of B

profile has diffused more over 700Å, where the equilibrium diffusion length is only ∼25Å for

the same annealing condition. It is believed that the supersaturation of excess interstitials
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Figure 5.1: SIMS (lines) and SRP (solid circles) profiles of implanted boron in FZ silicon

(30keV, 1.5×1014 cm−2) before and after damage annealing at 800◦C for 35 min. The peak
of the profile is immobile and shows relatively low electrical activation. Data is from Stolk
et al. [146].

is the source of TED. Stolk et al. [144] suggested that TED occurs by the emission of silicon

self-interstitials from {311} clusters (also called rod-like defects) during the annealing of ion

implanted silicon. Eaglesham [32] and Stolk et al. [146] observed the presence and evolution

of {311} defects (Figs. 5.2 and 5.3) during annealing.

Another feature in Fig. 5.1 is that the peak portion of B profile above 1×1018 cm−3

is immobile and not electrically activated. Cowern et al. [22, 23, 24, 25] suggested that

excess interstitials react with B atoms and form boron interstitial clusters (BICs) when

a high concentration of B is present. BICs reduce the number of electrically active (and

mobile) boron atoms, which degrade the conductivity of ultra shallow junctions (USJ). In

the past, boron marker-layer structures have been widely used to study the mechanisms of
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Figure 5.2: Cross-section high resolution electron microscopy showing {311} habit plane
and typical contrast of {311} defects from Stolk et al. [146].

formation and ripening of boron-interstitial clusters (BICs) and their influence on transient

enhanced diffusion (TED) [33, 105, 106, 107, 124, 125, 140, 145, 146]. In these experiments,

implantation damage acts as a localized source of the interstitial on well-separated dopant-

profiles. This provides insight about TED due to the supersaturation of interstitials and

the formation of immobile BICs.

Several methods have been used to suppress the TED effect. Preamorphization can be

done prior to dopant implantation to achieve a reduction in TED [156], but the Si a/c

interface increases the junction leakage [16]. C co-implantation can be used to reduce the

TED of B [22], which is due to the fact that C provides a sink for excess interstitials during

annealing [76].

In this chapter, we will first study the transient enhanced diffusion with the incorpo-

ration of interstitial clusters and {311} defects. We will then focus on the mechanisms of

dopant activation for a comprehensive understanding of the formation of USJ.
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Figure 5.3: Stolk et al. [146] reported the plan-view < 220 > dark-field image of FZ silicon

implanted with 5 × 1013cm−2, 40keV Si after RTA at 815◦C for (a) 5s and (b) 30s. The
density of {311} defects drops substantially from 5s to 30s, while the average length of these

defects increases roughly from 5 to 20 nm.
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5.1 TED and {311} Evolution

It is well established that TED arises from the excess silicon interstitials generated after ion

implantation. The enhanced dopant diffusivity, Denh
A , is given by [35]

Denh
A = D∗

A

CI

C∗

I

, (5.1)

where D∗

A and C∗

I are the dopant diffusivity and interstitial concentration under equilib-

rium. The interstitial supersaturation therefore enhances the dopant diffusivity via Eq. 5.1.

TED is believed to be correlated with {311} defects in silicon, and has been attributed

to the excess point defects introduced by ion implantation [144]. The atomic structure of

{311} defects has been characterized experimentally by high resolution transmission elec-

tron microscopy (HRTEM) [146], shown in Figs. 5.2. Rod-like {311} defects are formed

by the agglomeration of self-interstitials into planar defects which are elongated primarily

along <100> directions (interstitial chain) and lie in {311} planes. Although TED has less

impact under rapid thermal annealing conditions, it remains a severe constraint due to the

down-scaling of the device dimension. Suppressing TED therefore becomes an important

technological challenge.

In addition to {311} defects, Zhang et al. [165] suggested the existence of small compact

interstitial clusters (IC’s), and observation from Benton et al. [8] confirmed the presence of

small IC’s by DLTS. Therefore, to be able to accurately predict TED, we should model the

evolution of small interstitial clusters as well as {311} defects.

Stress/strain has been incorporated into the process of today’s VLSI technology to en-

hance carrier mobility [130, 159]. It has a substantial impact on transient enhanced diffusion

(TED) and dopant activation in ultra-shallow junctions. In conjunction with Chen-Luen

Shih [135], we have applied the RKPM-DFA to the analysis of the dynamic behavior of

{311} defects followed by a comparison to experimental data. Together with the ab-initio

calculation from Chihak Ahn [2], we study stress effects on point defect clustering.
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Figure 5.4: A schematic shows the concept of RKPM for I clustering. FKPM is used for
small interstitial clusters, while RKPM describes the behavior of {311} precipitation from

size k=3.

5.1.1 RKPM-DFA for {311} and Vacancy Clustering

The evolution of {311} defects plays an important role in transient enhance diffusion (TED).

The excess vacancies either recombine with interstitials in the bulk, diffuse the the surface, or

cluster as voids in the vacancy-rich region. In this section, we use the reduced moment-based

kinetic precipitation model (RKPM) with delta-function approximation (DFA), introduced

in Chapter 3, to describe the clustering mechanisms for both interstitials and vacancies. Kim

et al. [87] reported lower formation energy for small IC’s up to size 4 compared to {311}

defects. In this work, these small clusters are described by the full kinetic precipitation

model (FKPM) using Eqs. 3.2 and 3.3, while RKPM-DFA is used for the {311} defects to

enhance the computing efficiency. A schematic for the formation of small interstitial clusters

and {311} defects is shown in Fig. 5.4.

The RKPM-DFA is applied on both {311} and vacancy clustering, where k is chosen as

3 and 36 respectively. Following the approach from Section 3.4, the time evolution of the

first two moments for both {311} defects and vacancy clusters, (mI
0, m

I
1, m

V
0 , and mV

1 ), can

then be derived as

∂mI
0

∂t
= I I

3 = DIλ
I
2

[

CIf
I
2 −mI

0C
∗I
2 f̂ I

3

]

, (5.2)

∂mI
1

∂t
= 3I I

3 + DIm
I
0λ

I
m̂I

1

(

CI −CI
ssC

∗

m̂I
1+1

)

, (5.3)
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∂mV
0

∂t
= IV

36 = DVλV
35

[

CVfV
35 − C∗V

35 f̂V
36

]

, (5.4)

∂mV
1

∂t
= 36IV

36 + DVmV
0 λV

m̂V
1

(

CV −CV
ssC

∗

m̂V
1 +1

)

, (5.5)

where m̂1 is the average size of precipitates, fn is the concentration of precipitates with size

n, and C∗

n is the solute concentration that would be in equilibrium with a size n precipitate.

DI and DV are the diffusivities for point defects. The kinetic growth factor, λn, depends on

the size and geometry of precipitates. Often the system is assumed to be diffusion-limited,

and λn is defined as An/Rn, where An and Rn are the surface area and effective radius for

a size n precipitate. The detailed derivation of λn for {311} defects is given in Appendix B.

f̂ I
3 (Eq. 5.6) and ˆfV

36 (Eq. 3.25) were described mathematically as functions of average size.

Fig. 5.5 demonstrates how Eq. 5.6 matches the simulation results from the FKPM under

different conditions.

f̂ I
k(m̂

I
1) =

[

1−

(

m̂I
1 − k

k + 1

)]3

· [1− ξ] + ξ ·

(

k

m̂I
1

)2.5

, (5.6)

where k = 3 and ξ = 0.84 exp
(

−0.115
kT

)

in our model. The first part of Eq. 5.6 describes

the asymptotic behavior for small clusters (f̂k → 1 as m̂1 → k), and ξ gives the Arrhenius

dependence for f̂ I
k = f̂ I

3.

5.1.2 Recombination of Point Defects with {311} and Vacancy Clusters

The recombination of excess point defects is taken into account, because a free interstitial

is very likely to occupy a vacancy site. An interstitial cluster can also recombine with a

vacancy and vice versa.

I + V ⇐⇒ ∅ (5.7)

In+1 + V ⇐⇒ In (5.8)

Vn+1 + I ⇐⇒ Vn (5.9)

The reactions rates for the recombination can be written as

RI/V = 4πa0(DI + DV)(CICV − C∗

I C∗

V), (5.10)
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Figure 5.5: f̂ I
3 vs. the average size for {311} defects at different temperatures: 600, 700,

800 and 900◦C. Points are generated from RFKPM under different conditions. Lines are

the fitting functions with an Arrhenius dependence for larger sizes (Eq. 5.6).

RIn+1/V = 4πλI
n+1DV

(

CVf I
n+1 −

f I
n

KIn+1/V

)

, (5.11)

RVn+1/I = 4πλV
n+1DI

(

CIf
V
n+1 −

fV
n

KVn+1/I

)

, (5.12)

where C∗

I and C∗

V are the equilibrium concentrations of interstitials and vacancies, a0 is the

silicon lattice space, and KVn+1/I and KIn+1/V are the equilibrium constants. Since the re-

verse reactions in Eqs. 5.8 and 5.9 are very unlikely to proceed due to high activation barrier,

we assumed that the 2nd terms in Eqs. 5.11 and 5.12 could be omitted for simplification.

RIn+1/V = 4πλI
n+1DV

(

CVf I
n+1

)

(5.13)

RVn+1/I = 4πλV
n+1DI

(

CIf
V
n+1

)

(5.14)

Combining both the precipitation and recombination of {311} defects and vacancy clus-

ters (Eqs. 5.2 to 5.5 and Eqs. 5.13 to 5.14), the time evolution of the first two moments for

both {311} defects and vacancy clusters, (mI
0, m

I
1, m

V
0 , and mV

1 ), can then be expressed as

∂mI
0

∂t
= λI

2DI

[

CIf
I
2 −mI

0C
∗I
2 f̂ I

3

]

− λI
3DVmI

0

(

CV f̂ I
3

)

(5.15)
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= 3I I

3 + λI
m̂I
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DIm
I
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(

CI − CI
ssC

∗

m̂I
1
+1

)

−3RI3/V − λI
m̂I

1

DVmI
0CV (5.16)

∂mV
0

∂t
= λV

35DV

[

CVfV
35 −mV

0 C∗V
35

ˆfV
36

]

− λV
36DIm

V
0

(

CIf̂V
36

)

(5.17)

∂mV
1

∂t
= 36IV

36 + λV
m̂V

1

DVmV
0

(

CV − CV
ssC

∗

m̂V
1

+1

)

−36RV36/I − λV
m̂V

1

DIm
V
0 CI. (5.18)

The time evolution of small I (n < 3) and V (n < 36) clusters are described with the FKPM

using Eqs. 3.2 and 3.3. We also keep track of the concentrations of point defects through each

reaction. This set of equations fully describes the system for transient enhanced diffusion

(TED).

5.1.3 Comparison to Experimental Data

The simulation results from both FKPM and RKPM-DFA are compared to the experimental

data from Cowern et al. [24] (Fig. 5.7[a]). Cowern et al. performed 25keV Si ion implanta-

tion with a dose of 2×1013cm−2, and then tracked diffusion of a buried boron epitaxy layer.

Interstitial supersaturation can be obtained, assuming that boron diffuses via interstitials.

The initial profiles for point defects after ion implantation were first generated via

SRIM [169] and shown in Fig. 5.6. The total interstitial and vacancy profiles overlap with

each other, but the net concentration profiles show a distinction between interstitial-rich

and vacancy-rich regions. In Fig. 5.7[a], it is shown that the time evolution of interstitial su-

persaturation is well characterized by both FKPM and RKPM. At 600◦C, TED lasts about

five orders of magnitude longer than at 800◦C. Note that two regions of supersaturation un-

der each temperature have a steeper slope. This can be explained by the existence of small

clusters and {311} defects. As shown in Fig. 5.8, the dissolution of small clusters causes

a sudden decrease of supersaturation first, while the dissolution of {311} defects gives the

later drop. The comparison of the average {311} size is shown in Fig. 5.7 [b]. RKPM-DFA

again shows the ability to enhance the computing efficiency, while the accuracy from FKPM

is still maintained.
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Figure 5.6: The initial profiles of Si ions and point defects generated by SRIM [169] at

25keV with a dose of 2×1013cm−2 Si ions. The vacancy-rich region is closer to the surface
while the interstitial-rich region is deeper into the epitaxy layer.

5.1.4 Stress Effects on {311} Formation

In today’s VLSI technology, the incorporation of stress/strain is one of the trends in

nanoscale device technology, due to the fact that strain can enhance carrier mobility [130,

159]. Stress/strain also has a large impact on transient enhanced diffusion (TED) and

dopant activation in ultra-shallow junctions. It changes the small cluster binding ener-

gies, effective solubility for {311} defects, diffusivities (DI and DV), and the equilibrium

point-defect concentration (C∗

I and C∗

V). Chihak Ahn [2] used the density functional theory

(DFT) code VASP [94] with ultrasoft Vanderbilt type pseudopotentials [93, 153] for the cal-

culations. All calculations were performed in general gradient approximation (GGA) with

a 64 silicon atom supercell and a 23 Monkhorst-Pack k-point sampling. The energy cut-off

was 250eV. The change in energy due to strain is

∆Ef(~σ) = −Ω0∆~ε · ~σ, (5.19)
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Figure 5.7: [a] Interstitial supersaturation as a function of annealing time and tempera-
ture. Symbols represent the experimental data reported by Cowern et al. [24] and lines are

the simulation results from discrete and moment-based models using the delta function ap-
proximation. [b] The comparison of the time evolution of {311} average size (m̂1) between

FKPM and RKPM-DFA at different temperatures.
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Figure 5.8: The time evolutions of m1, free interstitial, and total interstitials in small IC’s at

700◦C. After ion implantation, excess interstitials form small IC’s and {311} defects during
the beginning of annealing. Small clusters then dissolve, follow by the ripening and then

dissolution of {311} defects.
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Figure 5.9: The {311} structure used for ab-initio calculation [88].

where Ω0 is the atomic volume, and ~σ is the applied stress tensor. Induced strain (∆~ε) is the

amount of lattice change because of relaxation after introducing the defect. The calculated

induced strain (∆~ε) for interstitial clusters is shown in Tables 5.1. The reader interested in

the detailed method using Hooke’s law to extrapolate the induced strains is referred to the

work of Diebel [28].

For the two most important structures, isolated interstitial and {311} defects, asym-

metric induced strains were taken into account in the calculations. The possible {311} plane

configuration reported by Kim et al. [88] was adopted and is shown in Fig. 5.9. The induced

strains for I3 and I4 were derived from hydrostatic calculations. Given the strain/stress state,

the energy change for interstitial cluster growth reaction

In−1 + I⇔ In (5.20)

can be written as

∆En(~σ) = −Ω0

∑

[

n ·∆~εIn − (n− 1) ·∆~εIn−1
−∆~εI

]

· ~σ. (5.21)
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Table 5.1: Induced strains for interstitial clusters. For two key structures (Isplit and I311),
asymmetry was fully accounted for. Single number indicates all diagonal components of the

vector have same value.

Isplit I2 I3 I4

∆ε (eV) [0.26, 0.26, 0.047] 0.16 0.36 0.36

I311

∆ε (eV)



















0.29 0.086 0.084

0.086 0.29 0.084

0.084 0.084 0.57



















The local equilibrium constant (Eq. 3.4) with the transition of precipitate size from n − 1

to n under stress can then be modified to

C∗

n(~σ) = C∗

n(0) exp

[

∆En(~σ)

kT

]

, (5.22)

where C∗

n(0) is the equilibrium constant under a stress-free condition. The modification of

I diffusivity under stress can be calculated as [28]

DI(~σ)

DI(0)
= exp

[

Ω0(∆~εT −∆~εI) · ~σ

kT

]

, (5.23)

where ∆~εT and ∆~εI are the induced strains for I transition state and Isplit.

We have used parameters under both tensile and compressive strain conditions to sim-

ulate the corresponding behaviors. Both interstitials and interstitial clusters reduce their

energy under tensile stress condition. However, I clusters (I3, I4 , and I311) have a even

stronger stress dependence due to the larger induced strains. Thus, compressive stress favors

the formation of free interstitials relative to small IC’s and {311} defects. Figs. 5.10 [a], [b],

and [c] show the predictions for I cluster evolution under ε = 1% biaxial strain compared

to stress free conditions. Tensile stress favors both small I clusters and {311} formation,

giving a longer but less intense TED period, while compressive stress has the opposite effect

(higher I supersaturation but for shorter TED time). Also, the formation and dissolution

of {311} defects take place earlier under compressive stress.
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Figure 5.10: Simulation results of {311} defect evolution under ε = 1% biaxial strain com-

pares to stress-free condition. (a) Interstitial supersaturation; (b) interstitial concentration
in I clusters; (c) {311} defect average size. Supersaturation lasts longer under tensile stress,

while I supersaturation is larger for compressive stress.
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5.2 Boron Activation/Deactivation

Ion implantation and high temperature annealing are currently the most common process

steps for ultra-shallow-junction (USJ) formation. Dopant TED and deactivation due to clus-

tering remain as the critical issues when Si device dimensions continue down-scaling below

50nm [146]. In Section 5.1, we have discussed the TED effects due to interstitial supersatu-

ration, and we will focus on the formation of BICs and the dopant activation/deactivation

in this section.

Eaglesham et al. [33] and Stolk et al. [145, 146] observed that significant fractions of

implanted B are immobile and inactive during thermal annealing; this phenomenon occurs

when the B concentration is above 1×1018cm−3, as shown in Fig. 5.1. Cowern et al. [23, 24]

assumed that the formation of immobile boron-interstitial clusters is due to the participation

of excess interstitials. BICs must contain only a few boron atoms due to the fact that no

indication of BICs was found from high-resolution transmission-electronic-microscopy anal-

ysis by Stolk et al. [145] and Zhang et al. [165]. In the experiments by Pelaz et al. [124, 125],

boron marker-layer structures with 40keV Si ion implantation were annealed at 790◦C for

10 min. Resulting SIMS profiles are shown in Fig. 5.11. All the peaks of boron profiles expe-

rienced TED, while only the ones within the damaged region (or near the surface) remained

sharp. This indicates that boron atoms within the damaged region are immobile due to the

formation of BICs. The model they used to match data states that immobile precursors,

BI2, were first formed during the earlier stage of annealing, and acted as nucleation centers

for the formation of B3I or B4I [124, 125].

Haynes et al. [59] and Lilak et al. [99] concluded that there is a significant decrease of

interstitials in {311} defects with an increase of B concentration and suggested the forma-

tion of BICs, which reduces the free interstitials available for B diffusion and the formation

of {311} defects. Lilak et al. [99] concluded that B3I or B4I complexes are responsible for

the majority of BICs. Mannino et al. [105] studied the formation, evolution and stability of

BICs by comparing diffusion data from boron-marked layers with and without a BIC defect

band near the surface of wafers. Mannino et al. [107] further investigated the effects of

different damaging implant doses on boron activation via measurement of chemical (SIMS)
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Figure 5.11: (a) SIMS profiles in B-doped MBE silicon layer after 40keV Si implantation
with a dose of 5×1013 cm−2 and 10 min annealing at 790◦C. (b) Deconvolution of the doping

markers into Gaussian diffusion profiles and an immobile fraction in the near-surface spikes,
along with the MARLOWE calculation of the initial distribution after implantation. Less

B peak broadening in the damaged region indicates the formation of immobile BICs. Data
is from Pelaz et al. [125].
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and electrically active doping concentration (SRP). Comparing SRP to SIMS profiles reveals

that higher implant doses result in lower boron activation. Mannino et al. [105] also con-

cluded that BICs are more stable than small interstitial clusters and {311} defects. Solmi

et al. [140] further confirmed that BICs act as a sink for interstitials in the early stage of

annealing, substantially reducing TED. Therefore, BICs provide a moderate Si-interstitial

supersaturation even when interstitial clusters and {311} defects are dissolved.

Several studies using ab-initio calculation have been conducted to complement the ex-

perimental work and determine the structure and formation energies of BnIm [98, 102, 161,

166, 168]. Zhu et al. [166, 168] calculated the diffusion and activation energies for boron-

interstitial pair including charge-states. Liu et al. [102] and Windl et al. [161] later reported

the structures and formation energies for BICs, and concluded that B3I is a key cluster

while B12I7 is the most stable cluster. Recent work from Lenosky et al. [98] suggested that

neutral B3I is a stable nucleus that can grow to larger clusters.

Summarizing from the literature reviews, the mechanisms of boron activation/deactivation

involve TED and the formation of BICs. TED is driven by interstitial supersaturation due

to the presence of small interstitial clusters and {311} defects. Boron atoms interact with

point-defects to form clusters which appear to be electrically inactive. To form ultra-shallow-

junctions, TED has to be carefully controlled, while boron atoms need to be electrically

active. Post annealing is required to activate boron atoms after ion implantation. During

this process, interstitials agglomerate into either small interstitial clusters, {311} defects, or

BICs. Under high boron concentration and interstitial supersaturation, BI2 is first formed

in the early stage of annealing and grows into larger BICs. The formation of BICs lowers

the boron apparent solubility and slows the formation of {311} defects, which reduces TED

effects. Higher interstitial supersaturation results in lower boron activation. BICs are im-

mobile and appear to be more stable than small interstitial clusters and {311} defects.

In the following sections, we will study the boron interstitial clustering model, and com-

pare the simulation results from this model to experimental data reported by Mokhberi et

al. [116]. This work is developed in conjunction with Chen-Luen Shih et al. [135].
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Figure 5.12: Schematic of BIC formation [102]. BICs are formed via the addition of mobile

species, such as I and BI. The green BICs are the forms to be considered in the later work.

5.2.1 Boron Interstitial Clustering Model

To study the formation of BICs, the evolution of point-defects (I and V) is included. Point-

defects can either cluster or recombine as shown in the reactions below.

In + I ⇐⇒ In+1 (5.24)

Vn + V ⇐⇒ Vn+1 (5.25)

In + V ⇐⇒ In−1 (5.26)

Vn + I ⇐⇒ Vn−1 (5.27)

The reduced moment-based models (RKPM) with the delta-function approximation (RKPM-

DFA) of vacancy and interstitial clusters were discussed in Chapter 3 and Section 5.1.

Fig. 5.12 shows the schematic of BIC formation. BICs can grow via the attachment of I or

BI, which are mobile. These reactions can be expressed as:

BnIm + I ⇐⇒ BnIm+1 (5.28)

BnIm + BI ⇐⇒ Bn+1Im+1, (5.29)
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where n and m are the numbers of boron and interstitial atoms in the cluster. Similar to

the analysis from Chapter 3, the rate equations for Eqs. 5.28 and 5.29 can be written as:

RBnIm/I = 4πa0DI

(

CBnImCI −
CBnIm+1

KBnIm/I

)

(5.30)

RBnIm/BI = 4πa0DBI

(

CBnImCBI −
CBn+1Im+1

KBnIm/BI

)

(5.31)

where a0 is the capture radius for the reaction, the K’s stand for equilibrium constants, and

D and C are the diffusivity and concentration, respectively.

This work is following the analysis from Chakravarthi et al. [18] and Meyer et al. [115].

Chakravarthi et al. [18] first adopted the results from ab-initio calculations and concluded:

(1) all small clusters rapidly reach equilibrium with free boron and interstitial concentra-

tions; (2) BI2 is the dominant cluster during the early stage of annealing; (3) B3I becomes

the dominant cluster at longer times and needs to be solved numerically. Chakravarthi et

al. [18] further extend the modeling by including the charge states of clusters based on the

charged defect calculations from Lenosky [97], where (BI2)
+, (B2I)

0, and (B3I)
− are the

dominant charged clusters. Meyer et al. [115] only considered (BI2)
+, (B2I)

0, and (B3I),

where (B3I) is neutral compared to the one from Chakravarthi et al. [18]. Later work from

Lenosky et al. [98] suggested that (B3I) is neutral when present in heavily doped p-type ma-

terial. Ab-initio calculations from Henkelman et al. [62] further proposed that (B3I2)
Linear

and (B3I2)
Trigonal are the two intermediate species for the transformation between B2I +

BI and B3I + I. These two intermediate states have similar energies but are separated by a

substitutional barrier. Meyer et al. [115] expressed the proposed mechanism as:

(B2I)
0 + (BI)0

kf
1⇐⇒

kr
1

(B3I2)
Linear

kf
2⇐⇒

kr
2

(B3I2)
Trigonal

kf
3⇐⇒

kr
3

(B3I)
0 + I0. (5.32)

The resulting net formation rate was written as:

R(BI)0/(B2I)0 = kf
1γ

[

C(B2I)0C(BI)0 −
C(B3I)0CI0

K

]

, (5.33)

where

γ =

[

kf
2kf

3

kr
1k

r
2 + (kr

1 + kf
2 )kf

3

]

=
1

1 + A exp

(

Ea

kT

) (5.34)
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is the probability of (B3I2)
Linear dissociating to (B3I) + I, rather than (B2I) + BI for a

p-type material.

The formation energies for (BI2)
+, (B2I)

0, and (B3I) were from Windl et al. [161]. The

reaction rates were defined in terms of C(BI)− and CB− for the convenience of integrating

rate equations with different charge states. We will describe the clustering mechanisms for

(BI)−, (BI2)
+, (B2I)

0, and (B3I)
0 in the following work.

Mobile interstitials interact with boron atoms and form BI. The reactions and rate

equations are written as

B− + I0 ⇐⇒ (BI)− (5.35)

B− + I+ ⇐⇒ (BI)0 (5.36)

R(BI)− = 4πa0DI−

(

CB−CI0 −
C(BI)−

KB−/I0

)

(5.37)

R(BI)0 = 4πa0DI0

(

CB−CI+ −
C(BI)0

KB−/I+

)

, (5.38)

where K’s are the equilibrium constants.

The detailed derivations for (BI2)
+, (B2I)

0, and (B3I)
0 can be found in Appendix D.

We will only briefly discuss the reactions and the final results of rate equations. (B2I)
0 can

be formed by the reaction between the substitutional boron (B−) and the mobile species,

(BI)− or (BI)0.

(BI)− + B− ⇐⇒ (B2I)
0 + 2e−, (5.39)

(BI)0 + B− ⇐⇒ (B2I)
0 + e−. (5.40)

The sum of corresponding reaction rates for reactions 5.39 and 5.40 are

R(B2I)0 = 4πa0K
eq
(BI)−









1 +
D+

B

(

p

ni

)

D0
B



















C(BI)−CB−

Keq
(BI)−

−
C(B2I)0

(

n

ni

)2

Keq
(B2I)0











. (5.41)

(B2I)
0 can be converted into (B3I)

0 via the addition of mobile (BI)− and (BI)0. The

reactions are as follows:

(BI)− + (B2I)
0 ⇐⇒ (B3I)

0 + I0 + e−, (5.42)

(BI)0 + (B2I)
0 ⇐⇒ (B3I)

0 + I0. (5.43)
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The sum of corresponding reaction rates for reactions 5.42 and 5.43 are:

R(B3I)0 = γ4πa0
1

C∗

I0

[

D0
B + D+

B

(

p

ni

)]









C(BI)−C(B2I)0

Keq
(BI)−

−
Keq

(B2I)0
C(B3I)0CI0

K
eq
(B3I)0

(

p

ni

)









(5.44)

where γ is the probability factor for B3I, defined in Eq. 5.34.

Formation of (BI2)
+ involves more reaction processes because the primary reactants are

mobile species I and BI. In each of them, there are two different charged states associated

with it. They are I0, I+, (BI)0 and (BI)−. Hence, the reactions considered are

(BI)0 + I+ ⇐⇒ (BI2)
+ (5.45)

(BI)0 + I0 ⇐⇒ (BI2)
+ + e− (5.46)

(BI)− + I+ ⇐⇒ (BI2)
+ + e− (5.47)

(BI)− + I0 ⇐⇒ (BI2)
+ + 2e−. (5.48)

The corresponding reaction rates for reactions 5.45, 5.46, 5.47, and 5.48 are

R(B2I)+ = 4πa0

(

d(BI)− + dI0

)

Keq
(BI)−

[

1 + KI+

(

p

ni

)]

·









1 +
D+

B

(

p

ni

)

D0
B



















C(BI)−CI0

Keq
(BI)−

−
C(BI2)+

(

n

ni

)2

Keq
(BI2)+











. (5.49)

5.2.2 Comparison to Experimental Data

Mokhberi et al. [116] reported the experimental data of boron activation from Hall measure-

ment. In these experiments, boron with a dose of 2 × 1014cm−2 was implanted at 40keV.

The samples were then either furnace annealed for 30 minutes or rapid thermal annealed

for 1, 10, and 300 seconds at temperatures ranging from 500◦ to 1000◦C. Another ther-

mal anneal at 450◦C for 30 minutes was performed in order to form Al contacts for Hall

measurement. Using the BICs model discussed in Section 5.2.1 and the RKPM-DFA for

the {311} defects from Section 5.1, we compared our simulation results the experimental

data from Mokhberi et al. [116] in Fig. 5.13. A good agreement has been reached after two

periods of thermal annealing. In the 600 to 700◦C regime, the active dose decreases with
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Figure 5.13: A comparison of boron activation between the experimental data (points) [116]

and the simulation results (lines) at various temperature for 1, 10 , 300, and 1800 seconds.
Note that second furnace annealing is performed for the purpose of good Al contacts.

time, which is referred as the reverse annealing regime. The active dose then increases with

time at temperature above 750◦C. Figs. 5.14 [a]-[d] were generated to further understand

the kinetics of different BICs at different times. The dominant species is B2I in the low

temperature regime, while B3I clusters are stable in the higher temperature regime. The

high boron activation at temperatures above 900 ◦C is due to the dissolution of B3I clusters.

Fig. 5.15 shows the schematic of the three regions during annealing with the B activation

curve after 30 minutes of furnace annealing.

This BIC model along with the point-defect clustering model accurately captures the

kinetics of boron activation/deactivation for a wide range of times and temperatures. High

B activation can be achieved by the higher annealing temperature and longer annealing

time.
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Figure 5.14: Simulation results for the ratios of B, B2I, and B3I versus annealing temperature

at different time periods. B2I is the dominant BIC at lower temperatures, and B3I is the
stable BIC at the mid-level temperatures. The dissolution of B3I at temperatures above
900◦C provides the source of higher boron activation.
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Figure 5.15: A schematic of the three regions occurring during boron activation. The

curve in the plot represents the B activation after 30 minutes of furnace annealing. At
temperatures below 500◦C, the dominant species B2I is dissolving, thus increasing the active

fraction of boron. At moderate temperatures between 500 and 600◦C, B3I clusters are
stable and forming, while B2I is still dissolving, which explains the valley shape for boron
activation. At temperatures above 600◦C, the B3I clusters dissolve, which increases the

active fraction as a function of temperature. Note that the boundaries of the regions depend
on the annealing time.
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5.3 Summary

We were able to describe the transient enhanced diffusion (TED) and activation/deactivation

for B through the formation of {311} defects, vacancy clusters and BICs using an alternative

moment-based model (RKPM-DFA), which possesses excellent computational efficiency and

does not require table lookups. This model has been successfully calibrated to give good

agreement with the annealing of {311} defects following ion implantation. We also used

ab-initio calculations to study stress effects on point defect clustering. By including results

from first principle calculations into the kinetic precipitation model, predictions show that

stress effects play an important role in point defect clustering and dopant activation.
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Chapter 6

C DIFFUSION/CLUSTERING MODELS

Carbon co-implantation can reduce or eliminate B transient enhanced diffusion (TED) [119],

and several experiments have shown that C provides a highly efficient sink for excess in-

terstitials during annealing [117, 123, 143]. Napolitani et al. [117] found no detrimental

effects on B electrical activation with the incorporation of C, when a C-rich silicon layer

was placed between the damaged region and the implanted B profile. These results have

a significant impact on the formation of USJ in the development of CMOS technology. As

strain engineering, which can enhance free carrier mobility, is becoming more widely used

in current CMOS technology, the behavior of dopant diffusion and activation under stressed

conditions requires a thorough understanding. In the 90nm technology node [150], SiGe

was successfully introduced to replace the material in source and drain regions of the P-

MOSFET, which generates a compressive stress in the channel region and enhances hole

mobility. With a similar approach, SiC alloy has the potential to replace S/D material

for the N-MOSFET to generate a tensile stress in the channel region and enhance electron

mobility. However, this approach requires a more detailed understanding of C diffusion,

clustering, and precipitation.

In this chapter, we present our ab-initio calculations for different carbon complex config-

urations and confirm the diffusion path of carbon interstitial with the findings from Capaz

et al. [12]. Using “kinetic lattice Monte Carlo” (KLMC) simulations, we predict the impact

of stress on carbon diffusion. We also investigated the formation of small carbon/interstitial

clusters and silicon-carbide precipitates. Based on the understanding gained from the anal-

ysis described above, continuum models were implemented and characterized with reported

data from the literature.
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6.1 C Diffusion

Carbon is most stable as a substitutional impurity (Cs) in the neutral charge state. How-

ever, carbon interstitials (CI) can be generated through kick-out or Frank-Turnbull mecha-

nisms [34, 141, 157].

Cs + I⇐⇒ CI (KO) (6.1)

CI + V⇐⇒ Cs (FT) (6.2)

Experimental results [141, 157] and a theoretical study [12] suggested the 〈100〉 split

Table 6.1: Formation energies of various CI complexes relative to substitutional C and bulk

Si.

split 〈100〉 split 〈110〉 hex tet

Ef (eV) 1.97 2.96 3.11 4.22

carbon interstitial as the ground-state of CI configuration. Our DFT calculations of forma-

tion energies of carbon interstitials in different configurations confirmed the 〈100〉 split as

the most stable CI structure (see Table 6.1).

ECI
f = ESi64C − ESi63C −

1

64
ESi64 (6.3)

In this configuration, the C and Si atoms share a single lattice site displaced along a 〈100〉

direction. For all the VASP calculations in this chapter, a 64-atom supercell with an energy

cutoff of 340 eV and a 23 Monkhorst ~k-point sampling method with generalized gradient

approximation (GGA) were used.

Capaz et al. [12] identified the migration path for an interstitial carbon with an energy

barrier of 0.51 eV in silicon by first principle calculations. Using a 65-atom supercell,

Zhu [167] confirmed that the intermediate configuration is 0.5 eV higher in energy than the

C interstitial (〈100〉 split). The nudged elastic band (NEB) method [60, 61, 84] was used

in our calculations to find the migration path for a carbon interstitial. Fig. 6.1 shows the

migration path with an energy barrier (Em) of 0.53 eV, which is comparable to the results
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from both Capaz et al. [12] (0.51 eV) and Zhu [167] (0.5 eV). The initial state is [100] split,

while the final state at the neighbor has the [001] split orientation. For Cs to diffuse, the CI

(〈100〉 split) first needs to be formed and overcome the transition barrier (Em) by passing

through a transition state (CItrans). The structure of this transition state is shown in Fig. 6.1

(middle of top row). In this migration process, the Si atom remains in its original lattice

site while the C atom moves to the neighbor site with a different orientation. Thus, the

CI diffusion does not affect Si self-diffusion. Note that a CI reorientation is also completed

after each migration step.

Eq. 5.19 shows the general form of the formation energy change related to a stress state.

The existence of induced strains is due to the difference in equilibrium lattice constant from

the pure Si system. Table 6.2 lists the induced strains for various carbon complexes. The

induced strain for a substitutional carbon (∆εCs) can be easily extracted from the energy

vs. hydrostatic strain plot (see Fig. 6.2) because of its high symmetry, while the induced

strain for other complexes also requires an analysis of energy vs. uniaxial and/or biaxial

strain (detailed analyses can be referred to Diebel [28]). The system with a Cs reduces

the lattice constant by 0.41% in comparison to Si, while the system with a CIsplit shows

the opposite behavior (a 0.14% increase in lattice constant). This indicates that the Cs

equilibrium concentration (C∗

Cs
) increases in the presence of compressive strain, whereas

the CIsplit equilibrium concentration (C∗

CIsplit
) decreases. Tensile strain will have the reverse

effect: increasing C∗

CIsplit
and decreasing C∗

Cs
.

Based on the harmonic transition state theory (hTST) [49], the transition rate can be

Table 6.2: Induced strains for carbon complexes.

Cs CIsplit〈100〉 CItrans C2I〈100〉

∆~ε -0.41 (-0.23, -0.23, 0.90) (0.30, -0.46, 0.30) (-0.49, -0.49, 0.64)

written as

Γi(~ε) = Γ0 exp

[

−
Ei

m(~ε)

kT

]

= Γ0 exp

[

−
Ei

m(0) + ∆Ei
m(~ε)

kT

]

, (6.4)
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Figure 6.1: CIsplit[100]→ CItrans→ CIsplit[001] transition calculated using the NEB method

[84, 60, 61] in unstrained silicon (GGA Si equilibrium lattice parameter b0 = 5.4566 Å). The
structure for the transition state is shown in the middle of the top row. Blue and brown
atoms are silicon and carbon respectively. The migration barrier (≈ 0.53 eV), the difference

of formation energies between CItrans and CIsplit (ECItrans

f −E
CIsplit

f ), is shown in the bottom
figure. Notice that the migration barrier depends on the strain condition.
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where Γ0 is the attempt frequency, and i represents the different possible hopping directions.

Here we include the stress effect under a given strain condition (~ε), where Ei
m(~ε) represents

the migration barrier under a given strain state. ∆Ei
m(0) is the migration barrier under

stress free conditions, and ∆Ei
m(~ε) (Eq. 6.5) is the change in the migration barrier for a

given hopping direction under a given strain condition.

∆Ei
m(~ε) =

[

∆Etran
f (~ε)−∆ECI

f (~ε)
]

(6.5)

In the KLMC simulation, a lattice is used to define system states in a crystalline solid.

Eq. 6.4 describes the transition rate for a CI (〈100〉 split) to migrate from one lattice site to

the next. For a given orientation and position of CI, only 4 neighboring sites are accessible

via the low transition barrier (see Fig. 6.3). The hopping probabilities, pi(~ε), in the presence

of stress in different directions are defined as

pi(~ε) =
Γi(~ε)

∑4
j=1 Γj(~ε)

. (6.6)
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The diffusivity of CI (dCI) and transition rate (Γ) are directly linked by considering the

diffusion as a random walk process at the atomic level. To keep track of the actual physical

time, the average time for each migration step can be calculated as

∆t(~ε) =
1

∑4
j=1 Γj(~ε)

. (6.7)

In one dimension, the following relation holds for CI diffusivity (dCI):

dCI(~ε) =
1

2t(~ε)

〈

∆x(~ε)2
〉

, (6.8)

where 〈∆x2〉 is the average of the square of the displacement in the x-direction after an

N-step random walk process, and t is the physical system time, which can be calculated by

summing the time for each migration process (Eq. 6.7). The prediction of the relative dCI

change under biaxial strain is shown in Fig. 6.4[a]. The detailed information to setup this

KLMC simulation under biaxial stress condition using a random walk process can be found

in Appendix F. In the case of biaxial strain, the stress dependence of the equilibrium CI

concentration can be expressed as:

C∗

CI(~ε)

C∗

CI(0)
=

2

3
exp





−∆E
CI(in)
f (~ε)

kT



+
1

3
exp





−∆E
CI(out)
f (~ε)

kT



, (6.9)

where ∆E
CI(in)
f is the change in energy for the in-plane component of CIsplit, whereas

∆E
CI(out)
f is the change for out-of-plane components. With the multiplication of Eqs. 6.8

and 6.9, one can predict the effective diffusivity change (DC(~ε)/DC(0)) of C under biaxial

strain, which is shown in Fig. 6.4[b]. The prediction indicates that both in-plane and out-of-

plane diffusivities for C (DC) are enhanced under biaxially tensile strain and reduced under

biaxially compressive strain. Using the same approach, we can also predict the effective

diffusivity change of C under uniaxial stress (see Fig. 6.5).

6.2 C Clustering

A possible clustering reaction to reduce the silicon interstitial concentration is the CI-Cs

pairing (Eq. 6.10), which forms a stable and immobile carbon complex [147].

Cs + CI⇐⇒ C2I (6.10)
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[a] [b]

Figure 6.3: An example of accessible neighbor sites. The vertically-oriented [001] split CI
(brown atom) can only hop with a minimum migration energy to 4 possible neighbor sites

with orientations of [100], [010], [1̄00], and [01̄0] (green atoms). Left is the side view; right
is the top view.

Table 6.3: Formation energies of various carbon complexes with respect to substitutional C
and bulk Si.

CI 〈100〉 C2I 〈100〉 C2I (A) C2I (B) C2I2 CI2

Ef (eV) 1.97 0.51 0.98 0.95 2.16 3.34

In equilibrium,

C∗

C2I = 3
C2

Cs

CSi
exp



−
EC2I

f

kT



 , (6.11)

where EC2I
f is the formation energy for C2I, CSi is the density of lattice sites, CCs is the

concentration of substitutional carbon, and the factor of 3 accounts for the 3 possible ori-

entations on each lattice site.

Table 6.3 also shows the calculation results for formation energies of other small carbon

complexes. Our calculations confirmed the results from Liu et al. [101], which identified the

most stable C2I configuration as a 〈100〉 split (dumbbell), as shown in Fig. 6.6[a]. Leary

et al. [96] and Capaz et al. [13] identified two other C2I configurations in Si. The type “A”

configuration (see Fig. 6.6[b]) consists of a 〈100〉 split CI, slightly perturbed by a neighbor-

ing substitutional carbon. In the type “B” configuration (see Fig. 6.6[c]), a Si interstitial is
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Figure 6.4: The relative change of C diffusivity ([a] dCI and [b] DC) under biaxial strain

at 1000oC determined by the KLMC analysis. [a]: CI in-plane diffusivity (dCI) is reduced
under tensile strain, but has a weak dependence under compressive strain. The out-of-

plane diffusivity for CI shows the opposite behavior. [b]: both in-plane and out-of-plane
diffusivities for C (DC) are enhanced under tensile strain and reduced under compressive

strain. Note that out-of-plane diffusivity for C shows a stronger dependence on the strain
condition.
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Figure 6.5: The relative change of C diffusivity ([a]: dCI and [b]: DC) under uniaxial strain

(x-direction) at 1000oC determined by the KLMC analysis. [a]: CI diffusivity (dCI) in the
x-direction is reduced under tensile strain but enhanced under compressive strain. The

diffusivity of CI in the y- and z-directions is decreased under compressive strain, but has
a weak dependence under tensile strain. [b]: the diffusivities for C (DC) in the y- and
z-directions are enhanced under tensile strain and reduced under compressive strain. Note

that the diffusivity for C (DC) in the x-direction shows a much weaker dependence on the
strain condition.
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[a] [b] [c]

[d] [e]

Figure 6.6: Various small carbon clusters. C2I with different configurations are shown in
the top row: [a] 〈100〉 split, [b] type A, and [c] type B. [d] and [e] are C2I2 and CI2. Blue
and brown atoms are Si and C respectively.

accommodated between two substitutional carbon atoms. Mattoni et al. [110] reported the

type “A” configuration to be favored over the type “B” by 0.4 eV, and the formation energy

for a 〈100〉 split CI to be 0.2 eV higher than the type “A” configuration. However, we found

the formation energy of C2I in 〈100〉 split configuration to be lower than the two Capaz

structures by 0.4 eV or more, which is consistent with the results from Liu et al. [101]. A

possible explanation for this discrepancy could be the different setup for VASP calculations.

Mattoni et al. [110] used a much lower cutoff energy (160eV), which might not be sufficient

in this application. Mattoni et al. [110] further suggested two other possible stable carbon

complexes (C2I2 and CI2), as shown in Fig. 6.6[d] and [e]. We also performed calculations

to obtain their formation energies (see Table 6.3).

Note that the formation energies for all C complexes in Table 6.3 are positive, which

implies that in the absence of a strong interstitial supersaturation, the concentrations of all
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Figure 6.7: The local equilibrium concentrations of Cs, CI and C2I as a function of total C

concentration at 1000◦C at CI/C∗

I = 1.

these complexes are expected to be well below that of the substitutional carbon, Cs. The

equilibrium concentration of CnIm can be defined as

C∗

CnIm ≈ θCnImCSi

(

CCs

CSi

)n ( CI

CSi

)m

exp



−
E

CCnIm

f

kT



, (6.12)

where E
CCnIm

f is the formation energy for CCnIm, CSi is the silicon lattice site density

(≈ 5×1022cm−3), and θCnIm is the number of possible cluster configurations per lattice site.

Considering only three species (Cs, CI, and C2I), the total carbon concentration, Ctot
C , can

be written as Eq. 6.13, which is a function of CCs , Ef , and the interstitial concentration.

Fig. 6.7 illustrates the result at 1000◦C at CI/C∗

I = 1, which suggests that the cluster

concentrations are much lower than CCs . This indicates that C clustering is only significant

in the presence of a large interstitial supersaturation.

Ctot
C (CCs) = CCs + CCI + 2CC2I (6.13)
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6.3 SiC Precipitation

The formation of cubic SiC precipitates (β-SiC) can reduce the total energy in a SiC alloy

system. The structure of β-SiC is shown in Fig. 6.8. In the presence of SiC precipitates, car-

bon solubility has an Arrhenius dependence and can be expressed as (neglecting differences

in formation entropy)

CC
ss ∼ CSi exp

(

∆ESiC
f

kT

)

, (6.14)

where

∆ESiC
f =

1

32
ESi32C32

−ESi63Cs +
31

32
ESi64 = −2.0eV. (6.15)

ESi32C32
, ESi64, and ESi63Cs are the energies from VASP calculations with a 64-atom super-

cell. The comparison of carbon solubility between the experimental data and our calculated

result is shown in Fig. 6.9. The calculated energy (-2.0 eV) in Eq. 6.15 is close to the

reported value (-2.3 eV) from the literature [7].

In a simple analysis, assuming the precipitate has a spherical shape, the radius of a

precipitate of size n can be derived from Eq. 6.16.

4

3
πr3

n = nΩSiC (6.16)

ΩSiC is the atomic volume for a β-SiC. Our DFT calculations suggests the relaxed cubic

lattice constant of β-SiC to be 4.3750 Å, which is much smaller than the 5.4566 Å value for

silicon. The free energy for β-SiC precipitate with size n can be expressed as

∆GCnIn = −nkT ln

(

CC

CC
ss

CI

C∗

I

)

+ 4πr2
nσ

= −nkT ln

(

CC

CC
ss

CI

C∗

I

)

+ 4πσ

(

3nΩSiC

4π

)2/3

, (6.17)

where σ represents the associated interface energy per unit area (2000-8000 erg/cm2 [148]),

and CC
ss is the carbon solubility from Eq. 6.14. The equilibrium concentration (C∗

CnIn
) can

then be written as

C∗

CnIn = CSi

(

CC

CC
ss

)n
(

CI

C∗

I

)n

exp

[

−
(4π)1/3 σ (3nΩSiC4π)2/3

kT

]

. (6.18)

C∗

Cn In
under various interstitial supersaturations using σ = 8000 erg/cm2 is shown in

Fig. 6.10. Because of the incoherent interface between silicon and β-SiC, a high surface
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Figure 6.8: The structure of β-SiC. Si and C atoms are in blue and brown colors, respectively.

Note that the lattice constant of this stable β-SiC (4.3750 Å) is much smaller than the silicon
lattice constant (5.4566 Å).

energy leads to a large nucleation barrier and limits SiC precipitation. Thus, the nucleation

of β-SiC precipitates is only expected in the presence of a high interstitial supersaturation.

6.4 Continuum Models

It has been demonstrated that the incorporation of a high C concentration enhances vacancy-

assisted dopant diffusion (Sb, As) [95], while it retards interstitial-assisted dopant diffusion

(B, P) [128, 129]. Our DFT calculations indicate no significance of pairing and clustering in

modeling the dopant diffusion in a system with grown-in C. In these continuum models, we

included both kick-out (Eq. 6.1) and Frank-Turnbull (Eq. 6.2) mechanisms to form CI. In

the case of a high C concentration, mobile CI can diffuse out and pair with other substitu-

tional carbon atoms. This clustering reaction reduces the silicon interstitial concentration

via the formation of stable C2I [147] (Eq. 6.10). The reactions of Eqs. 6.1, 6.2, and 6.10

deplete interstitials in the C-rich region, which is a consequence of the “chemical-pump

effect”. The corresponding rate equations for the reactions of Eqs. 6.1, 6.2, and 6.10 are

RCs/I = 4πadCI

(

CCsCI − CCIC
∗

Cs/I

)

(6.19)

RCI/V = 4πa(dCI + dV)
(

CCICV − CCsC
∗

CI/V

)

(6.20)
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RCs/CI = 4πadCI

(

CCsCCI −CC2IC
∗

Cs/CI

)

(6.21)

where dx is the diffusivity for species x, a (∼ 5 Å) is the effective reaction distance, and

C∗s are the equilibrium constants for each reaction respectively. All the parameters are

listed in Table 6.4. Note that C∗

Cs/CI is taken from our ab-initio calculation, while the other

parameters were extrapolated and derived from the literature.

All these models were implemented in FLOOPS-ISE [75]. In the following sections,

Table 6.4: Physical parameters used in this work.

Parameters Prefactor Em, Ef(eV) Reference

DI 8.10× 101 cm2/s 0.90 [48]

CI∗ 9.16× 1022 cm−3 3.78 [48, 152]

DV 1.00× 10−4 cm2/s 0.43 [48]

CV∗ 3.17× 1028 cm−3 4.43 [48, 152]

DC 6.11 cm2/s 3.29 [34, 118]

dCI 4.40 cm2/s 0.88 [44]

C∗

Cs/I 6.60× 1021 cm−3 -1.37 [34, 44, 48, 118, 152]

C∗

CI/V 5.00× 1022 cm−3 -6.84 [34, 44, 48, 118, 152]

C∗

Cs/CI 4.40× 1029 cm−3 -1.46 DFT

we study the effects of high carbon concentrations on point defect concentrations and the

resulting dopant diffusion via both interstitial (B) and vacancy (Sb) mechanisms.

6.4.1 B Diffusion in the Presence of C

Rücker et al. [129] observed B diffusion in the presence of C. In these experiments, the

MBE-grown structure consisted of several delta B layers and a highly C-doped region.

After annealing at 900◦C for 45 min in an N2 atmosphere, the SIMS profiles showed the

reduction of B diffusion within the C-rich region. Our models exhibit good agreement

between the experimental data and simulation results (see Fig. 6.11 [top]). In the C-rich
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region, Si interstitials combine with carbon atoms and form CI and C2I, which depletes the

I concentration in the C-rich region (see Fig. 6.11 [bottom]). Boron atoms, which primarily

diffuse via an interstitial mechanism, therefore diffuse much slower in the C-rich region

because of the depletion of Si interstitials.

6.4.2 Sb Diffusion in the Presence of C

In the experiments performed by Lavëant et al. [95], enhanced Sb-diffusion was observed

in the presence of a high C concentration. An MBE-grown Sb-box (200 nm thick) close to

a highly C-doped region was annealed at 900◦C for 3 and 6 h in an Ar environment. The

SIMS profiles after 6 h annealing is shown in Fig. 6.12 [top]. Our models give an excellent

agreement between the experimental data and simulation results. We also performed simu-

lations which only included the kick-out mechanism (Eq. 6.1). However, this simple model

underestimates the V supersaturation and results in less Sb diffusion.

Boundary conditions for the point defect generation/recombination in simulations are

critical. In the experiments from Rücker et al. [129], a fast point defect generation/recombination

was used as is standard for the Si/SiO2 interface. In the case of Sb diffusion, the top surface

was bare Si exposed to an Ar/vacuum environment, and generation/recombination at the

top surface was modified with a much slower rate in order to match the experimental data

from Lavëant et al. [95].

6.5 Summary

We have confirmed the migration path for C diffusion, which is consistent with the findings

from Capaz et al. [12] and Zhu [167]. The results from first-principles calculations were used

to obtain induced strains in order to describe the stress effects on C diffusion. Through

KLMC simulations, we found that tensile stress enhances C diffusion under both uniaxial

and biaxial strain, while compressive stress has the opposite impact. Carbon/interstitial

clustering was investigated, and the ab-initio calculations suggested that these clustering

reactions are only possible under a sufficient interstitial supersaturation. Despite the low

C solubility in silicon, silicon carbide precipitates do not form readily in the absence of I
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Figure 6.11: The diffusion of B and C marker layers after 45 min annealing at 900◦C [129]. In
the top plot, points are the SIMS profiles and lines are the simulation results. Corresponding

point defect concentrations are shown in the bottom plot. An undersaturation of I is
predicted within the C-rich region.
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supersaturation. The incoherent interface has a high surface energy and leads to a nucleation

barrier, which prevents the formation of silicon carbide.

We have also implemented continuum models for dopant (B, Sb) diffusion with the

incorporation of C diffusion/clustering. These models predict suppressed B diffusion with

the incorporation of a high C-doped region, consistent with the experimental data [129]. In a

similar way, the enhancement of Sb diffusion is predicted in the presence of a high C-doped

region and a good agreement was shown in comparison to the experimental results [95].

With the incorporation of models for excess point defect evolutions and boron-interstitial

clustering (BICs) under stress conditions from Chapter 5, these models together can provide

an insight into the ultra-shallow-junction formation process for future devices.
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Chapter 7

SUMMARY AND FUTURE WORK

In this thesis, we described new methods for modeling of diffusion and precipitation pro-

cesses and applied them to gettering processes and the formation of ultra shallow junctions.

Results from ab-initio and KLMC calculations were used in the development of continuum

models. This chapter gives brief summaries of the main contributions in this dissertation,

and closes with suggestions for future work and a final conclusion.

7.1 Precipitation Models

In Chapter 3, we first discussed the full kinetic precipitation model (FKPM) [31, 40],

which considers the evolution of a full size distribution. The reduced moment-based model

(RKPM) [19] enhances the computing efficiency of the FKPM by tracking the time evolution

of moments of the size distribution. In this work, we introduced the delta-function approx-

imation (DFA) which both simplifies the implementation of RKPM and also provides pa-

rameters with clearer physical meaning. The resulting RKPM-DFA features improved com-

puting efficiency, while accurately replicating the behavior of FKPM and previous RKPM.

7.2 Main Contributions of Gettering Study

(1) Developed continuum models to describe Cu out-diffusion and precipitation pro-

cesses.

(2) Applied the RKPM-DFA for point defects to investigate Fe gettering technique via

ion implantation.

In Chapter 4, we studied the mechanism of Cu out-diffusion, following our previous work [55].

A possible explanation for the unusual behavior of Cu out-diffusion due to the surface con-
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ditions was proposed and validated by comparison to experimental results. By assuming

Fermi level pinning at the wafer surface, we were able to modify the surface potential change

under different surface treatments and thereby provide a quantitative understanding of Cu

segregation and precipitation at the surface.

Using the RKPM-DFA to describe the evolution of point defects, we also studied Fe get-

tering via ion implantation. The capture of iron atoms by gettering sites was described and

characterized by the experimental data. The results from both experiments and simulation

indicated the high sensitivity of gettering capacity in the Rp/2 damage zone to the Si+ ion

implantation dose and annealing conditions.

7.3 Main Contributions of Study in the Formation of USJ

(1) Applied RKPM-DFA to describe the evolution of point defects (I and V), and {311}

defects, which control transient enhanced diffusion (TED).

(2) Developed continuum models to describe dopant/defect clustering, which limits

dopant activation.

(3) Predicted the effects of stress on TED using the results from ab-initio calculations.

(4) Explained C diffusion and clustering behavior using ab-initio calculations, and im-

plemented the continuum models for dopant diffusion with the incorporation of C.

(5) Predicted the effects of stress on C diffusion and clustering using both ab-initio

calculations and KLMC.

In Chapter 5, we specifically looked at point defect clusters which control the TED (I,

V clusters, 311 defects) and dopant/defect clusters which limit dopant activation (B/I clus-

ters). The evolution of point defect clusters was described by using the RKPM-DFA, which

possesses an excellent computational efficiency and does not require table lookups. This

model was successfully calibrated to give a good agreement with the annealing of {311}



103

defects following the ion implantation. We also applied ab-initio calculations to study stress

effects on the point defect clustering. By including results from first principle calculations

into the kinetic precipitation model, predictions show that the formation of free I was favored

over small IC’s and {311} defects under compressive stress. Furthermore, the formation of

BICs was described by the well calibrated RKPM-DFA for {311} defects. With the models

above, we captured the behavior of boron activation for a wide range of times and temper-

atures. We concluded this chapter with predictive models for diffusion, activation kinetics

and extended defect evolution as a function of stress/strain.

In Chapter 6, using first-principles calculations, we confirmed the migration path for C

diffusion, and studied the effects of stress on C diffusion/clustering. Through KLMC sim-

ulations, we found that tensile stress enhances C diffusion under both uniaxial and biaxial

strain, while compressive stress has the opposite impact. Our analytical results suggest that

C clustering and SiC precipitation are only significant under a high interstitial supersatura-

tion. We have also implemented continuum models for dopant (B and Sb) diffusion in the

presence of C diffusion/clustering. These models correctly predict suppressed B diffusion

with the incorporation of a high C-doped region. In a similar way, the enhancement of Sb

diffusion was predicted in the presence of a high C-doped region.

7.4 Suggestions for Future Work

Low temperature budgets and low metal contamination levels require novel gettering pro-

cesses, which involve new physical phenomena, such as non-equilibrium metal solubility.

These processes are strongly affected by details of the thermal cycle as well as the surface

treatments and bulk defect distributions. We suggest investigation of the observed inconsis-

tencies between the high-temperature models and observations made at low temperatures,

in order to develop predictive models for the Fe/Cu/Ni gettering during low temperature

processing. These models can then be used to develop effective processes to meet future

gettering needs.

We have described and implemented models of Cu outdiffusion depending on the wafer

surface conditions. Further work to study Cu gettering process in a p/p+ substrate is nec-

essary. Due to the high diffusion coefficient of copper, its distribution in a p/p+ wafer is
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determined by both high temperature anneal and gettering of the residual Cu concentration

during cool-down and subsequent storage at a room temperature. We suggest analyzing the

existing experimental data in order to develop physically meaningful models which can ac-

curately capture the observed experimental behavior.

Relaxation gettering techniques involve precipitation of supersaturated metals at inten-

tionally introduced structural defects, which can be either gettering sites in the substrate

(e.g., oxygen precipitates) or proximity gettering sites (e.g., introduced by ion implanta-

tion). The driving force for relaxation gettering is the supersaturation of transition metals,

which can be evaluated by comparing the dissolved metal concentration with the metal sol-

ubility at the gettering temperature. We suggest the study the kinetics of establishing the

equilibrium solubility of iron at intermediate and low temperatures, in order to determine

its effective non-equilibrium solubility during the transition period, and use this data to

theoretically analyze the efficiency of low-temperature gettering. The results can be used

to develop quantitative models of gettering processes and to design optimum gettering pro-

cedures for low metal contamination levels and low temperature budgets.

In CMOS device scaling, ultra-shallow profiles with super-activated high doping levels

are necessary. Preamorphization and high dose of dopant implantation can lead to dislo-

cation generation. These dislocations occur both near the end-of-range region and at more

distant sites where high stresses exist. Depending on where they form, these extended de-

fects can affect the dopant redistribution during annealing and degrade the performance and

reliability of devices. Therefore, a more thorough understanding of dislocation dynamics is

required for further development of continuum models. Ab-initio calculations can be used to

provide the energies and structures of these dislocations, but a heavy load of computations

may be expected. With the results from DFT calculations, KLMC provides a framework for

modeling the formation and evolution of these dislocations in the presence of strain/stress

conditions. These efforts can then provide a direction for fabrication processes to achieve

ultra-shallow and super-activated doping profiles.

Si:C alloys have the potential to replace the material in the S/D regions of a P-MOSFET

to introduce tensile stress into the channel region, which enhances electron mobility. We

have investigated the stress effects of C diffusion/cluster in a Si:C alloy system. Of partic-
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ular interests are the dopant diffusion and activation in a Si:C alloy system. Dopant atoms

(e.g., P, As, Sb) may have local chemical interactions with these alloys. Both strain and

chemical effects can potentially introduce non-uniformity and anisotropy into the diffusion

and clustering of dopants and point defects. Ab-initio calculations can be used to separate

out the strain and chemical effects, as well as to obtain the formation and migration energies

of dopants, point defects, and complexes. The resulting information then becomes the input

to KLMC simulations, which predict the evolution of active dopant distributions in Si:C

alloys. The extracted behavior from the KLMC simulations forms the basis for continuum

models of the dopant diffusion and activation. Future work on these models will provide

insight and tools required to identify optimum alloy compositions to achieve shallow abrupt

junctions, high activation and low contact resistance.

7.5 Final Conclusion

We have demonstrated the capability of TCAD tools to study the diffusion and precipita-

tion mechanisms for semiconductor processes across the modeling hierarchy (ie, ab-initio,

KLMC, and continuum modeling approaches). TCAD tools are essential for identifying

diffusion path/reaction mechanisms and predicting the results under conditions that are

experimentally difficult to access. For the IC industry, these tools substantially reduce

manufacturing costs and provide guidance for designing new technologies.
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Appendix A

FIVE STREAM MODEL FOR DOPANT DIFFUSION

The five stream model [29] describes the coupled diffusion of dopants with point defects

and is also referred as pair diffusion model [29, 35, 108, 109, 163, 164]. In Section 2.2.2,

we listed all reactions for point defects and dopant/defect pairing including multiple charge

states, Eqs. 2.35 to 2.40. We will briefly go through the derivations done by Chakravarthi

et al. [17] regarding the corresponding reaction rates R’s and fluxes J’s in Eq. 2.41

For simplification, we assumed A to be an acceptor (A−). As mentioned in Section 2.1.1,

the concentration of charged point defects can be related to the concentration of neutral

defects. Another assumption is that all ionization reactions are near equilibrium, since the

electronic reactions are much faster then diffusion reactions. The concentrations of point

defects and dopant/defect pairs can then expressed as

CXi = KXiCX0 (ni/n)i , (A.1)

C(AX)i = K(AX)iC(AX)−(ni/n)i+1, (A.2)

where K’s represent equilibrium constants for the electronic exchange, and n and ni are the

local and intrinsic electron concentrations. Note that in equilibrium, C(AX)− , the product

of the pairing between A− and X0, can be written as

C(AX)− = KA−/X0CACX0 , (A.3)

where KA−/X0 is the equilibrium constant for the pairing of a neutral point defect X0 with

a substitutional atom A−.

The total concentration of point defects in all charged states can be written as

CX =
∑

i

CXi =
∑

i

[

KXi

(

ni

n

)i

CX0

]

= χXCX0 , (A.4)

where CX0 is the concentration of neutral point defects, and χX is defined as

χX =
∑

i

[

KXi

(

ni

n

)i
]

. (A.5)
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Since electronic exchange can occur before or after pairing and equilibrium concentration is

independent of path,

KA−/X0K(AX)i−1 = KXiKA−/Xi . (A.6)

Using Eqs. A.1, A.2, A.3, and A.6, the total concentration for dopant/defect pairs in all

charged states can then be expressed as

CAX =
∑

i

C(AX)i = πXCACX0 , (A.7)

where

πX = KA−/X0 + KA−/X+KX+

(

p

ni

)

+ KA−/X−KX−

(

n

ni

)

. (A.8)

Note that interaction with doubly charged defects in these equations can also be included.

Given that A is an acceptor, KA−/X− is expected to be small due to Coulombic repulsion.

A.1 ~JAI and ~JAV

Due to the gradient of the distribution of ionized dopant atoms, mobile species (I, V, AI,

and AV) experience the electric field. Therefore, the flux ~JAC should include both drift and

diffusion components, as well as all the charged states. We will first focus on the flux for

AI, ( ~JAI).

~J(AI)i = ~Jdiff
(AI)i + ~Jdrift

(AI)i (A.9)

Due to the assumption that A is a an acceptor, Eq. A.9 will be expanded in terms of (AI)−,

(A− + I0). Using Eq. A.2 and Fick’s law, the diffusion term can be expressed as

~Jdiff
(AI)i = −d(AI)i∇C(AI)i

= −d(AI)i∇
[

K(AI)iC(AI)− (p/ni)
i+1
]

. (A.10)

Using the Einstein’s relationship, (µ = d/kT ), the drift term becomes

~Jdrift
(AI)i = µ(AI)iiq~EC(AI)i

= d(AI)i(q/kT )i~EC(AI)i , (A.11)
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where µ is the mobility and ~E is the electric field vector. The electric field can be calculated

from the gradient of electrostatic potential, (Eq. C.2), given by a Boltzmann distribution.

~E = ∇ [(kT/q) ln (p/ni)]

= (kT/q) (ni/p)∇ (p/ni) (A.12)

Substituting Eqs. A.2 and A.12 into Eq. A.11,

~Jdrift
(AI)i = id(AI)iK(AI)iC(AI)− (p/ni)

i∇ (p/ni) . (A.13)

Adding both the diffusion (Eq. A.10) and drift terms (Eq. A.13), the following is obtained:

~J(AI)i = −d(AI)iK(AI)i (p/ni)
i+1

[

∇C(AI)− + C(AI)−∇ ln (p/ni)
]

(A.14)

= −d(AI)iK(AI)iKA−/I0 (p/ni)
i+1

[

∇

(

C(AI)

πI

)

+
C(AI)

πI
∇ ln

(

p

ni

)]

.

The macroscopic diffusivity is given by

DA = d(AI)

C(AI)

CA
. (A.15)

Using Eq. A.15, the sum of ~J(AI)i , (Eq. A.14), over all the the charge states can be expressed

as

~J(AI) =
+1
∑

i=−1

~J(AI)i

= −

[

DI0

A + DI+

A

(

p

ni

)

+ DI−

A

(

n

ni

)]

C∗

I0

[

∇

(

C(AI)

πI

)

+
C(AI)

πI
∇ ln

(

p

ni

)]

.(A.16)

Following a similar approach, ~J(AV) can be written as

~J(AV) =
+1
∑

i=−1

~J(AV)i

= −

[

DV0

A + DV+

A

(

p

ni

)

+ DV−

A

(

n

ni

)]

C∗

V0

[

∇

(

C(AV)

πV

)

+
C(AV)

πV
∇ ln

(

p

ni

)]

.(A.17)
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A.2 ~JI and ~JV

The total flux of point defects also consists of both diffusion and drift terms, as well as all

the charge states. It can be written in terms of the gradient in the neutral concentration of

point defects and the free carrier concentrations. For ~J i
I ,

~JIi = −dIi

(

∇CIi −
iqE

kT
CIi

)

= −dIiKIi

(

ni

n

)i

∇CI0 , (A.18)

where dIi represents the diffusivity of interstitials of charge state i. We assume that dIi =

dI0 throughout this work. The total interstitial flux is then written as

~JI =
∑

i

~JIi = −dI0χI∇CI0, (A.19)

where χI is from Eq. A.5 and written as

χI = 1 + KI+

(

p

ni

)

+ KI−

(

n

ni

)

. (A.20)

As for vacancies,

~JV = −dV0χV∇CV0

χV = 1 + KV+

(

p

ni

)

+ KV−

(

n

ni

)

. (A.21)

A.3 R’s

The net rates of pairing and recombination reactions, (Eqs. 2.35 to 2.40), are also summed

over all the charge states. Using the definitions of χI , χV and πI, πV from Eq. A.5 and A.8,

the net reaction rates of the pairing and recombination reactions are expressed as

RA/I = kA/I

[

CACI −
χI

πI
C(AI)

]

,

RA/V = kA/V

[

CACV −
χI

πI
C(AV)

]

, (A.22)

R(AI)/V = k(AI)/V

(

C(AI)CV − C∗

I0C
∗

V0πIχVCA

)

,

R(AV)/I = k(AV)/I

(

C(AV)CI −C∗

I0C
∗

V0πVχICA

)

,

R(AV)/(AI) = k(AV)/(AI)

(

C(AV)C(AI) − C∗

I0C
∗

V0πIπVC2
A

)

.
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Assuming the reactions are diffusion limited, kX/Y can then be written as

kX/Y = 4πa0 (dX + dY) , (A.23)

where a0 is the effective capture radius.
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Appendix B

DERIVATIONS OF KINETIC PRECIPITATION FACTORS FOR
DIFFERENT GEOMETRY OF PRECIPITATES

To calculate the kinetic precipitation factors, steady state diffusion and reaction at the

precipitated surface can be solved using the technique from Dunham et al. [30]. Gencer et

al. [40] calculated and compared the kinetic precipitation factors for spherical, disc-shaped,

and {311} defects. The capture cross sections for a spherical and {311} defect are shown in

Fig. B.1 respectively.

For widely spaced precipitates, a simple expression first approximates a precipitate by a

series of spheres with the same surface area. Then we can superimpose the diffusion fields

due to the linearity of the diffusion equation. For a single sphere in an infinite domain, the

concentration is given by Csb/r, where Cs is the surface concentration, r is the distance

from the center of the sphere, and b is the reaction distance (one lattice spacing). Assuming

the system is in steady state, the diffusion flux of solute toward the precipitate surface is

equal to the reaction flux at the surface. Thus,

diffusion flux = reaction flux

− AnD
∂C

∂r

∣

∣

∣

∣

r=surface
= Ank(Ci −C∗

n), (B.1)

where n is the precipitate size, An is the active attachment area, D is the solute diffusivity,

k is the interface reaction rate, Ci the solute concentration near the precipitate surface,

and C∗

n the the solute concentration at equilibrium with a precipitate of size n. The kinetic

precipitation factor can be derived as

λn =
An

Reff + D
k

, (B.2)

where Reff and An for different defects are listed in Table. B.1. Often the system is

considered diffusion-limited from Ham et al. [58], k−1 ≈ 0. Therefore, Eq. B.2 becomes



125

Eq. B.3.

λn =
An

Reff
(B.3)

Table B.1: The kinetic factors for defects with different geometry [40]. rn and Rn are the
radius of a sphere and a ring. b is the reaction distance. l and w are specified in Fig. B.1[b].

Defects Area (An) Effective radius (Reff)

Spherical 4π(rn + b)2 rn + b

Disc-shaped 4π2Rnb b ln

(

8Rn

b

)

{311} 4πbw + 8πb2

ln

[

1 +

√

1 +
(

2b
w

)2
]

− ln
(

b
l+b

)

+ ln

[

1 +

√

1 +
(

2(b+l)
w

)2
]

[

b

√

1 +
(

2b
w

)2
]

−1

+

[

(b + l)

√

1 +
(

2(b+l)
w

)2
]

−1
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Figure B.1: The capture cross section of disc-shaped and {311} defects.
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Appendix C

POISSON’S EQUATION: FROM ODE TO PDE

Conventionally, the electrostatic potential is defined in terms of the intrinsic Fermi level,

Ψi = −
Ei

q
. (C.1)

The negative sign in Eq. C.1 is due to the fact that Ei is defined as electron energy while

Ψi is defined for a positive charge. The electric field can then be written as

E = −
∂Ψi

∂x
. (C.2)

Poisson’s equation is defined as

∂2Ψi

∂x2
= −

∂E

∂x
= −

ρ

εSi
, (C.3)

where ρ is the charge density per volume and εSi is the permittivity of silicon. The electron

concentration can be expressed in terms of electrostatic potential as

n = ni exp

[

q(Ef −Ei)

kT

]

= ni exp

[

q(Ψi − Ψf )

kT

]

. (C.4)

Eqs. C.3 and C.4 can be combined into

∂2Ψi

∂x2
=

kT

q

∂2

∂x2

[

ln

(

n

ni

)]

=
q
(

p− n + N+
d −N−

a

)

εSi
, (C.5)

where N+
d and N−

a are the concentrations of ionized donors and acceptors. n and p are the

concentrations of electrons and holes. The hole concentration can be substituted by using

mass action, Eq. C.6.

pn = n2
i (C.6)

To form partial differential equation (PDE) for the solver we used

(DOPDEES/PMM [41]), the ordinary differential equation (ODE) in Eq. C.5 is con-
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verted to Eq. C.7.

∂

∂t

[

ln

(

n

ni

)]

=
1

τ























q

(

n2
i

n
− n + N+

d −N−

a

)

εSi
+

kT

q

∂2

∂x2

[

ln

(

n

ni

)]























(C.7)

where τ is chosen large enough to make the expression in {} in Eq.C.5 small, which enforces

Eq.C.5.

Analytically, we can adopt the simple depletion approximation and calculate the deple-

tion width, as well as the electron distribution. In analyzing Cu outdiffusion in Chapter 4,

we pinned the Fermi level near mid-bandgap at the surface. The depletion width can then

be written as

Wd =

√

2εSi

qNa
≈ 0.17µm, (C.8)

where Na = 1.5× 1016cm−3 is used. The resulting electrostatic field is express as

Ψ(x) = Ψs

(

1−
x

Wd

)2

, (C.9)

where Ψs is the electrostatic potential at the surface. The electron distribution is calculated

and written as

n(x) =
n2

i

Na
exp

[

qΨs

kT

(

1−
x

Wd

)2
]

. (C.10)

Fig. C.1 shows an excellent agreement between the electron distributions from both simple

analytical approximation and the outdiffusion model.
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Figure C.1: Comparison of electron distribution between the simple analytical results and

simulation results from outdiffusion model.
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Appendix D

DERIVATIONS OF RATE EQUATIONS FOR BORON INTERSTITIAL
CLUSTERS (BICS)

In the following derivation, the effect of charge states is included for the clustering model.

We will discuss 3 critical forms of BICs, (B2I)
0, (B3I)

0, and (BI2)
+, individually.

D.1 (B2I)
0

(BI)− + B− ⇔ (B2I)
0 + 2e− (D.1)

(BI)0 + B− ⇔ (B2I)
0 + e− (D.2)

The reaction rates for Eq. D.1 and D.2 are expressed as

R(BI)−/B− = k(BI)−/B−











C(BI)−CB− −
C(B2I)0

(

n

ni

)2

Keq
(BI)−/B−











, (D.3)

R(BI)0/B− = k(BI)0/B−









C(BI)0CB− −
C(B2I)0

(

n

ni

)

Keq
(BI)0/B−









, (D.4)

where

Keq
(BI)−/B−

=
C(B2I)0

(

n

ni

)2

C(BI)−CB−

, (D.5)

Keq
(BI)0/B−

=
C(B2I)0

(

n

ni

)

C(BI)0CB−

. (D.6)

Using Eq. D.5 and. D.6, Eq. D.4 becomes

R(BI)0/B− = k(BI)0/B−

C(BI)0

C(BI)−











C(BI)−CB− −
C(B2I)0

(

n

ni

)2

Keq
(BI)−/B−











. (D.7)
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Including

k(BI)0/B−

k(BI)−/B−

=
d(BI)0

d(BI)−
, (D.8)

the total reaction rate is then the sum of Eq. D.3 and D.4.

R(B2I)0 = k(BI)−/B−

[

1 +
k(BI)0/(B2I)0

k(BI)−/(B2I)0

C(BI)0

C(BI)−

]











C(BI)−CB− −
C(B2I)0

(

n

ni

)2

Keq
(BI)−/B−











= 4πa0dBI









D0
B + D+

B

(

p

ni

)

D0
B









Keq
(BI)−











C(BI)−CB−

Keq
(BI)−

−
C(B2I)0

(

n

ni

)2

Keq
(B2I)0











,

(D.9)

where

K
eq
(B2I)0

= K
eq
(BI)−/B−

K
eq
(BI)− . (D.10)

D.2 (B3I)
0

(BI)− + (B2I)
0 ⇔ (B3I)

0 + I0 + e− (D.11)

(BI)0 + (B2I)
0 ⇔ (B3I)

0 + I0 (D.12)

The reaction rates for Eq. D.11and D.12 are expressed as

R(BI)−/(B2I)0 = k(BI)−/(B2I)0









C(BI)−C(B2I)0 −
C(B3I)0CI0

(

n

ni

)

Keq
(BI)−/(B2I)0









, (D.13)

R(BI)0/(B2I)0 = k(BI)0/(B2I)0

[

C(BI)0C(B2I)0 −
C(B3I)0CI0

Keq
(BI)0/(B2I)0

]

, (D.14)

where

Keq
(BI)−/(B2I)0

=
C(B3I)0CI0

(

n

ni

)

C(BI)−C(B2I)0
, (D.15)

Keq
(BI)0/(B2I)0

=
C(B3I)0CI0

C(BI)0C(B2I)0
. (D.16)
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Using Eq. D.15 and. D.16, Eq. D.14 becomes

R(BI)0/(B2I)0 = k(BI)0/(B2I)0

[

C(BI)0

C(BI)−

]









C(BI)−C(B2I)0 −
C(B3I)0CI0

(

n

ni

)

Keq
(BI)−/(B2I)0









. (D.17)

The total reaction rate is the sum of Eq. D.13 and D.17.

R(B3I)0 = k(BI)−/(B2I)0

[

1 +
k(BI)0/(B2I)0

k(BI)−/(B2I)0

C(BI)0

C(BI)−

]









C(BI)−C(B2I)0 −
C(B3I)0CI0

(

n

ni

)

K
eq
(BI)−/(B2I)0









(D.18)

Including

k(BI)0/(B2I)0

k(BI)−/(B2I)0
=

d(BI)0

d(BI)−
, (D.19)

and

D0
B = Keq

(BI)−C∗

I0d(BI)−, (D.20)

Eq. D.18 can be expressed as

R(B3I)0 = γ4πa0d(BI)−









1 +
D+

B

(

p

ni

)

D0
B

















C(BI)−C(B2I)0 −
C(B3I)0CI0

(

n

ni

)

Keq
(BI)−/(B2I)0









=
γ4πa0

C∗

I0

[

D0
B + D+

B

(

p

ni

)]









C(BI)−C(B2I)0

Keq
(BI)−

−
C(B3I)0CI0

(

n

ni

)

Keq
(BI)−

Keq
(BI)−/(B2I)0









=
γ4πa0

C∗

I0

[

D0
B + D+

B

(

p

ni

)]









C(BI)−C(B2I)0

Keq
(BI)−

−
Keq

(B2I)0
C(B3I)0CI0

Keq
(B3I)0

(

p

ni

)









, (D.21)

where γ represents a probability factor from Eq. 5.34, and

Keq
(B3I)0

= Keq
(BI)−/(B2I)0

Keq
(BI)−Keq

(B2I)0
. (D.22)
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D.3 (BI2)
+

(BI)0 + I+ ⇔ (BI2)
+ (D.23)

(BI)0 + I0 ⇔ (BI2)
+ + e− (D.24)

(BI)− + I+ ⇔ (BI2)
+ + e− (D.25)

(BI)− + I0 ⇔ (BI2)
+ + 2e− (D.26)

The reaction rates for Eq. D.23, D.24, D.25and D.25 are expressed as

R(BI)0/I+ = k(BI)0/I+

[

C(BI)0CI+ −
C(BI2)+

Keq
(BI)0/I+

]

, (D.27)

R(BI)0/I0 = k(BI)0/I0









C(BI)0CI0 −
C(BI2)+

(

n

ni

)

Keq
(BI)0/I0









, (D.28)

R(BI)−/I+ = k(BI)−/I+









C(BI)−CI+ −
C(BI2)+

(

n

ni

)

Keq
(BI)−/I+









, (D.29)

R(BI)−/I0 = k(BI)−/I0











C(BI)−CI0 −
C(BI2)+

(

n

ni

)2

Keq
(BI)−/I0











, (D.30)

where

Keq
(BI)0/I+

=
C(BI2)+

C(BI)0CI+
, (D.31)

Keq
(BI)0/I0

=
C(BI2)+

(

n

ni

)

C(BI)0CI0
, (D.32)

Keq
(BI)−/I+ =

C(BI2)+

(

n

ni

)

C(BI)−CI+
, (D.33)

Keq
(BI)−/I0 =

C(BI2)+

(

n

ni

)2

C(BI)−CI0
. (D.34)
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If we assume that k(BI)−/I0= k(BI)0/I0= k(BI)−/I+= k(BI)0/I+, the total reaction rate is then

expressed as

R(BI2)+ = k(BI)−/I0

(

1 +
C(BI)0

C(BI)−

)

(

1 +
CI+

CI0

)











C(BI)−CI0 −
C(BI2)+

(

n

ni

)2

Keq
(BI)−/I0











= 4πa0

(

d(BI)− + dI0

)

[

1 + KI+

(

p

ni

)]









1 +
D+

B

(

p

ni

)

D0
B









·

Keq
(BI)−











C(BI)−CI0

Keq
(BI)−

−
C(BI2)+

(

n

ni

)2

Keq
(BI2)+











,

(D.35)

where

Keq
(BI2)+

= Keq
(BI)−/I−Keq

(BI)− . (D.36)
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Appendix E

MODIFICATION OF THE DIFFUSIVITY FOR POINT DEFECTS
UNDER STRESS

DXC∗

X = θXCS exp

(

−
EX

f

kT

)

D0 exp

(

−
EX

m

kT

)

= θXCSD0 exp

(

−
ET

f

kT

)

(E.1)

ET
f (~σ) = ET

f (0) + ∆ET
f (~σ) (E.2)

(DXC∗

X)(~σ)

(DXC∗

X)(0)
=

(θXD0)(~σ)

(θXD0)(0)
exp

(

−
∆ET

f (~σ)

kT

)

≈ exp

(

−
∆ET

f (~σ)

kT

)

(E.3)

DX(~σ)

DX(0)
=

(DXC∗

X)(~σ)

(DXC∗

X)(0)
·
C∗

X(~σ)

C∗

X(0)
= exp

(

−
∆ET

f (~σ)−∆EX
f (~σ)

kT

)

(E.4)

Table E.1: Induced strains for I and V transition state from Diebel [28].

Itrans Vtrans

∆ε (eV) [0.5421, 0.0257, 0.1089] -0.4199
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Appendix F

TWO-STEP TRANSITION VECTORS FOR CI

Table F.1 shows the transition vectors between different states. Under stress-free con-

dition, there are four possible transition paths with an equal probability for a given initial

state (both position and orientation) as shown in Fig. 6.3. However, these four possible

transition paths have different probabilities under stress. A modification of these transition

barriers needs to be considered using Eqs. 5.19 and 6.5. Tables F.2-F.7 list all the detailed

information required for KLMC simulation along with the random walk process under a

biaxial stress condition (x and y direction). Note that the displacement after each hop is

~t · a/4, where a is the silicon lattice constant (∼5.4566A).

Table F.1: Transition vectors for KLMC: first transition (~t1) and second transition (~t2).

~t1 ~t2

(1, 1, 1 ) (-1, -1 , -1)

(-1, -1, 1 ) (1, 1 , -1)

(1, -1, -1 ) (-1, 1 , 1)

(-1, 1, -1 ) (1, -1 , 1)
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Table F.2: The initial state is CI with a “[100]” orientation at position (0, 0, 0). First
(fourth) column is the first (second) transition vector ~t1 (~t2); Second (fifth) column shows

both position and orientation after first (second) hopping step; third (sixth) column is
the induced strain at the transition state during the first (second) hop; the last column

summarizes the total displacement after two hopping steps.

~t1 Pos./Orient. ∆~ε ~t2 Pos./Orient. ∆~ε ∆~xij

[1,1,1] ( 5
4 , 54 ,54 )[01̄0] [ε,ε,ε̄] [1̄,1̄,1̄] (1,1,1 )[100] [ε,ε,ε̄] (0, 0 , 0 )

[1,1,1] ( 5
4 , 54 ,54 )[01̄0] [ε,ε,ε̄] [1̄,1̄,1̄] (1,1,1 )[001] [ε̄,ε,ε] (0, 0 , 0 )

[1,1,1] ( 5
4 , 54 ,54 )[01̄0] [ε,ε,ε̄] [1,1̄,1] (6

4 ,1, 64 )[1̄00] [ε,ε,ε̄] (2
4 , 0 , 2

4 )

[1,1,1] ( 5
4 , 54 ,54 )[01̄0] [ε,ε,ε̄] [1,1̄,1] (6

4 ,1, 64 )[001̄] [ε̄,ε,ε] (2
4 , 0 , 2

4 )

[1,1,1] ( 5
4 , 54 ,54 )[001̄] [ε,ε̄,ε] [1̄,1̄,1̄] (1,1,1 )[100] [ε,ε̄,ε] (0, 0 , 0 )

[1,1,1] ( 5
4 , 54 ,54 )[001̄] [ε,ε̄,ε] [1̄,1̄,1̄] (1,1,1 )[010] [ε̄,ε,ε] (0, 0 , 0 )

[1,1,1] ( 5
4 , 54 ,54 )[001̄] [ε,ε̄,ε] [1,1,1̄] (6

4 , 64 ,1 )[1̄00] [ε,ε̄,ε] (2
4 , 2

4 , 0 )

[1,1,1] ( 5
4 , 54 ,54 )[001̄] [ε,ε̄,ε] [1,1,1̄] (6

4 , 64 ,1 )[01̄0] [ε̄,ε,ε] (2
4 , 2

4 , 0 )

[1,1̄,1̄] ( 5
4 , 34 ,34 )[010] [ε,ε,ε̄] [1̄,1,1] (1,1,1 )[100] [ε,ε,ε̄] (0, 0 , 0 )

[1,1̄,1̄] ( 5
4 , 34 ,34 )[010] [ε,ε,ε̄] [1̄,1,1] (1,1,1 )[001̄] [ε̄,ε,ε] (0, 0 , 0 )

[1,1̄,1̄] ( 5
4 , 34 ,34 )[010] [ε,ε,ε̄] [1,1,1̄] (6

4 ,1, 24 )[1̄00] [ε,ε,ε̄] (2
4 , 0 ,-2

4)

[1,1̄,1̄] ( 5
4 , 34 ,34 )[010] [ε,ε,ε̄] [1,1,1̄] (6

4 ,1, 24 )[001] [ε̄,ε,ε] (2
4 , 0 ,-2

4)

[1,1̄,1̄] ( 5
4 , 34 ,34 )[001] [ε,ε̄,ε] [1̄,1,1] (1,1,1 )[100] [ε,ε̄,ε] (0, 0 , 0 )

[1,1̄,1̄] ( 5
4 , 34 ,34 )[001] [ε,ε̄,ε] [1̄,1,1] (1,1,1 )[01̄0] [ε̄,ε,ε] (0, 0 , 0 )

[1,1̄,1̄] ( 5
4 , 34 ,34 )[001] [ε,ε̄,ε] [1,1̄,1] (6

4 , 24 ,1 )[1̄00] [ε,ε̄,ε] (2
4 ,-2

4 , 0 )

[1,1̄,1̄] ( 5
4 , 34 ,34 )[001] [ε,ε̄,ε] [1,1̄,1] (6

4 , 24 ,1 )[010] [ε̄,ε,ε] (2
4 ,-2

4 , 0 )
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Table F.3: The initial state is CI with a “[1̄00]” orientation at position (0, 0, 0). First
(fourth) column is the first (second) transition vector ~t1 (~t2); Second (fifth) column shows

both position and orientation after first (second) hopping step; third (sixth) column is
the induced strain at the transition state during the first (second) hop; the last column

summarizes the total displacement after two hopping steps.

~t1 Pos./Orient. ∆~ε ~t2 Pos./Orient. ∆~ε ∆~xij

[1̄,1̄,1] ( 3
4 , 34 ,54 )[010] [ε,ε,ε̄] [1,1,1̄] (1,1,1 )[1̄00] [ε,ε,ε̄] ( 0 , 0 , 0 )

[1̄,1̄,1] ( 3
4 , 34 ,54 )[010] [ε,ε,ε̄] [1,1,1̄] (1,1,1 )[001] [ε̄,ε,ε] ( 0 , 0 , 0 )

[1̄,1̄,1] ( 3
4 , 34 ,54 )[010] [ε,ε,ε̄] [1̄,1,1] (2

4 ,1, 64 )[100] [ε,ε,ε̄] (-2
4 , 0 , 2

4 )

[1̄,1̄,1] ( 3
4 , 34 ,54 )[010] [ε,ε,ε̄] [1̄,1,1] (2

4 ,1, 64 )[001̄] [ε̄,ε,ε] (-2
4 , 0 , 2

4 )

[1̄,1̄,1] ( 3
4 , 34 ,54 )[001̄] [ε,ε̄,ε] [1,1,1̄] (1,1,1 )[1̄00] [ε,ε̄,ε] ( 0 , 0 , 0 )

[1̄,1̄,1] ( 3
4 , 34 ,54 )[001̄] [ε,ε̄,ε] [1,1,1̄] (1,1,1 )[01̄0] [ε̄,ε,ε] ( 0 , 0 , 0 )

[1̄,1̄,1] ( 3
4 , 34 ,54 )[001̄] [ε,ε̄,ε] [1̄,1̄,1̄] (2

4 , 24 ,1 )[100] [ε,ε̄,ε] (-2
4 ,-2

4 , 0 )

[1̄,1̄,1] ( 3
4 , 34 ,54 )[001̄] [ε,ε̄,ε] [1̄,1̄,1̄] (2

4 , 24 ,1 )[010] [ε̄,ε,ε] (-2
4 ,-2

4 , 0 )

[1̄,1,1̄] ( 3
4 , 54 ,34 )[01̄0] [ε,ε,ε̄] [1,1̄,1] (1,1,1 )[1̄00] [ε,ε,ε̄] ( 0 , 0 , 0 )

[1̄,1,1̄] ( 3
4 , 54 ,34 )[01̄0] [ε,ε,ε̄] [1,1̄,1] (1,1,1 )[001̄] [ε̄,ε,ε] ( 0 , 0 , 0 )

[1̄,1,1̄] ( 3
4 , 54 ,34 )[01̄0] [ε,ε,ε̄] [1̄,1̄,1̄] (2

4 ,1, 24 )[100] [ε,ε,ε̄] (-2
4 , 0 ,-2

4)

[1̄,1,1̄] ( 3
4 , 54 ,34 )[01̄0] [ε,ε,ε̄] [1̄,1̄,1̄] (2

4 ,1, 24 )[001] [ε̄,ε,ε] (-2
4 , 0 ,-2

4)

[1̄,1,1̄] ( 3
4 , 54 ,34 )[001] [ε,ε̄,ε] [1,1̄,1] (1,1,1 )[1̄00] [ε,ε̄,ε] ( 0 , 0 , 0 )

[1̄,1,1̄] ( 3
4 , 54 ,34 )[001] [ε,ε̄,ε] [1,1̄,1] (1,1,1 )[010] [ε̄,ε,ε] ( 0 , 0 , 0 )

[1̄,1,1̄] ( 3
4 , 54 ,34 )[001] [ε,ε̄,ε] [1̄,1,1] (2

4 , 64 ,1 )[100] [ε,ε̄,ε] (-2
4 , 2

4 , 0 )

[1̄,1,1̄] ( 3
4 , 54 ,34 )[001] [ε,ε̄,ε] [1̄,1,1] (2

4 , 64 ,1 )[01̄0] [ε̄,ε,ε] (-2
4 , 2

4 , 0 )
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Table F.4: The initial state is CI with a “[010]” orientation at position (0, 0, 0). First
(fourth) column is the first (second) transition vector ~t1 (~t2); Second (fifth) column shows

both position and orientation after first (second) hopping step; third (sixth) column is
the induced strain at the transition state during the first (second) hop; the last column

summarizes the total displacement after two hopping steps.

~t1 Pos./Orient. ∆~ε ~t2 Pos./Orient. ∆~ε ∆~xij

[1,1,1] ( 5
4 , 54 ,54 )[1̄00] [ε,ε,ε̄] [1̄,1̄,1̄] (1,1,1 )[010] [ε,ε,ε̄] ( 0 ,0, 0 )

[1,1,1] ( 5
4 , 54 ,54 )[1̄00] [ε,ε,ε̄] [1̄,1̄,1̄] (1,1,1 )[001] [ε,ε̄,ε] ( 0 ,0, 0 )

[1,1,1] ( 5
4 , 54 ,54 )[1̄00] [ε,ε,ε̄] [1̄,1,1] (1, 64 , 64 )[01̄0] [ε,ε,ε̄] ( 0 , 24 , 2

4 )

[1,1,1] ( 5
4 , 54 ,54 )[1̄00] [ε,ε,ε̄] [1̄,1,1] (1, 64 , 64 )[001̄] [ε,ε̄,ε] ( 0 , 24 , 2

4 )

[1,1,1] ( 5
4 , 54 ,54 )[001̄] [ε̄,ε,ε] [1̄,1̄,1̄] (1,1,1 )[100] [ε,ε̄,ε] ( 0 ,0, 0 )

[1,1,1] ( 5
4 , 54 ,54 )[001̄] [ε̄,ε,ε] [1̄,1̄,1̄] (1,1,1 )[010] [ε̄,ε,ε] ( 0 ,0, 0 )

[1,1,1] ( 5
4 , 54 ,54 )[001̄] [ε̄,ε,ε] [1,1,1̄] (6

4 , 64 ,1 )[1̄00] [ε,ε̄,ε] ( 2
4 , 24 , 0 )

[1,1,1] ( 5
4 , 54 ,54 )[001̄] [ε̄,ε,ε] [1,1,1̄] (6

4 , 64 ,1 )[01̄0] [ε̄,ε,ε] ( 2
4 , 24 , 0 )

[1̄,1,1̄] ( 3
4 , 54 ,34 )[100] [ε,ε,ε̄] [1,1̄,1] (1,1,1 )[010] [ε,ε,ε̄] ( 0 ,0, 0 )

[1̄,1,1̄] ( 3
4 , 54 ,34 )[100] [ε,ε,ε̄] [1,1̄,1] (1,1,1 )[001̄] [ε,ε̄,ε] ( 0 ,0, 0 )

[1̄,1,1̄] ( 3
4 , 54 ,34 )[100] [ε,ε,ε̄] [1,1,1̄] (1, 64 , 24 )[01̄0] [ε,ε,ε̄] ( 0 , 24 ,-2

4)

[1̄,1,1̄] ( 3
4 , 54 ,34 )[100] [ε,ε,ε̄] [1,1,1̄] (1, 64 , 24 )[001] [ε,ε̄,ε] ( 0 , 24 ,-2

4)

[1̄,1,1̄] ( 3
4 , 54 ,34 )[001] [ε̄,ε,ε] [1,1̄,1] (1,1,1 )[1̄00] [ε,ε̄,ε] ( 0 ,0, 0 )

[1̄,1,1̄] ( 3
4 , 54 ,34 )[001] [ε̄,ε,ε] [1,1̄,1] (1,1,1 )[010] [ε̄,ε,ε] ( 0 ,0, 0 )

[1̄,1,1̄] ( 3
4 , 54 ,34 )[001] [ε̄,ε,ε] [1̄,1,1] (2

4 , 64 ,1 )[100] [ε,ε̄,ε] (-2
4 , 24 , 0 )

[1̄,1,1̄] ( 3
4 , 54 ,34 )[001] [ε̄,ε,ε] [1̄,1,1] (2

4 , 64 ,1 )[01̄0] [ε̄,ε,ε] (-2
4 , 24 , 0 )
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Table F.5: The initial state is CI with a “[01̄0]” orientation at position (0, 0, 0). First
(fourth) column is the first (second) transition vector ~t1 (~t2); Second (fifth) column shows

both position and orientation after first (second) hopping step; third (sixth) column is
the induced strain at the transition state during the first (second) hop; the last column

summarizes the total displacement after two hopping steps.

~t1 Pos./Orient. ∆~ε ~t2 Pos./Orient. ∆~ε ∆~xij

[1̄,1̄,1] ( 3
4 , 34 ,54 )[100] [ε,ε,ε̄] [1,1,1̄] (1,1,1 )[01̄0] [ε,ε,ε̄] ( 0 , 0 , 0 )

[1̄,1̄,1] ( 3
4 , 34 ,54 )[100] [ε,ε,ε̄] [1,1,1̄] (1,1,1 )[001] [ε,ε̄,ε] ( 0 , 0 , 0 )

[1̄,1̄,1] ( 3
4 , 34 ,54 )[100] [ε,ε,ε̄] [1,1̄,1] (1, 24 , 64 )[010] [ε,ε,ε̄] ( 0 ,-2

4 , 2
4 )

[1̄,1̄,1] ( 3
4 , 34 ,54 )[100] [ε,ε,ε̄] [1,1̄,1] (1, 24 , 64 )[001̄] [ε,ε̄,ε] ( 0 ,-2

4 , 2
4 )

[1̄,1̄,1] ( 3
4 , 34 ,54 )[001̄] [ε̄,ε,ε] [1,1,1̄] (1,1,1 )[1̄00] [ε,ε̄,ε] ( 0 , 0 , 0 )

[1̄,1̄,1] ( 3
4 , 34 ,54 )[001̄] [ε̄,ε,ε] [1,1,1̄] (1,1,1 )[01̄0] [ε̄,ε,ε] ( 0 , 0 , 0 )

[1̄,1̄,1] ( 3
4 , 34 ,54 )[001̄] [ε̄,ε,ε] [1̄,1̄,1̄] (2

4 , 24 ,1 )[100] [ε,ε̄,ε] (-2
4 ,-2

4 , 0 )

[1̄,1̄,1] ( 3
4 , 34 ,54 )[001̄] [ε̄,ε,ε] [1̄,1̄,1̄] (2

4 , 24 ,1 )[010] [ε̄,ε,ε] (-2
4 ,-2

4 , 0 )

[1,1̄,1̄] ( 5
4 , 34 ,34 )[1̄00] [ε,ε,ε̄] [1̄,1,1] (1,1,1 )[01̄0] [ε,ε,ε̄] ( 0 , 0 , 0 )

[1,1̄,1̄] ( 5
4 , 34 ,34 )[1̄00] [ε,ε,ε̄] [1̄,1,1] (1,1,1 )[001̄] [ε,ε̄,ε] ( 0 , 0 , 0 )

[1,1̄,1̄] ( 5
4 , 34 ,34 )[1̄00] [ε,ε,ε̄] [1̄,1̄,1̄] (1, 24 , 24 )[010] [ε,ε,ε̄] ( 0 ,-2

4 ,-2
4)

[1,1̄,1̄] ( 5
4 , 34 ,34 )[1̄00] [ε,ε,ε̄] [1̄,1̄,1̄] (1, 24 , 24 )[001] [ε,ε̄,ε] ( 0 ,-2

4 ,-2
4)

[1,1̄,1̄] ( 5
4 , 34 ,34 )[001] [ε̄,ε,ε] [1̄,1,1] (1,1,1 )[100] [ε,ε̄,ε] ( 0 , 0 , 0 )

[1,1̄,1̄] ( 5
4 , 34 ,34 )[001] [ε̄,ε,ε] [1̄,1,1] (1,1,1 )[01̄0] [ε̄,ε,ε] ( 0 , 0 , 0 )

[1,1̄,1̄] ( 5
4 , 34 ,34 )[001] [ε̄,ε,ε] [1,1̄,1] (6

4 , 24 ,1 )[1̄00] [ε,ε̄,ε] ( 2
4 ,-2

4 , 0 )

[1,1̄,1̄] ( 5
4 , 34 ,34 )[001] [ε̄,ε,ε] [1,1̄,1] (6

4 , 24 ,1 )[010] [ε̄,ε,ε] ( 2
4 ,-2

4 , 0 )
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Table F.6: The initial state is CI with a “[001]” orientation at position (0, 0, 0). First
(fourth) column is the first (second) transition vector ~t1 (~t2); Second (fifth) column shows

both position and orientation after first (second) hopping step; third (sixth) column is
the induced strain at the transition state during the first (second) hop; the last column

summarizes the total displacement after two hopping steps.

~t1 Pos./Orient. ∆~ε ~t2 Pos./Orient. ∆~ε ∆~xij

[1,1,1] ( 5
4 , 54 ,54 )[1̄00] [ε,ε̄,ε] [1̄,1̄,1̄] (1,1,1 )[010] [ε,ε,ε̄] ( 0 , 0 ,0)

[1,1,1] ( 5
4 , 54 ,54 )[1̄00] [ε,ε̄,ε] [1̄,1̄,1̄] (1,1,1 )[001] [ε,ε̄,ε] ( 0 , 0 ,0)

[1,1,1] ( 5
4 , 54 ,54 )[1̄00] [ε,ε̄,ε] [1̄,1,1] (1, 64 , 64 )[01̄0] [ε,ε,ε̄] ( 0 , 2

4 , 24)

[1,1,1] ( 5
4 , 54 ,54 )[1̄00] [ε,ε̄,ε] [1̄,1,1] (1, 64 , 64 )[001̄] [ε,ε̄,ε] ( 0 , 2

4 , 24)

[1,1,1] ( 5
4 , 54 ,54 )[01̄0] [ε̄,ε,ε] [1̄,1̄,1̄] (1,1,1 )[100] [ε,ε,ε̄] ( 0 , 0 ,0)

[1,1,1] ( 5
4 , 54 ,54 )[01̄0] [ε̄,ε,ε] [1̄,1̄,1̄] (1,1,1 )[001] [ε̄,ε,ε] ( 0 , 0 ,0)

[1,1,1] ( 5
4 , 54 ,54 )[01̄0] [ε̄,ε,ε] [1,1̄,1] (6

4 ,1, 64 )[1̄00] [ε,ε,ε̄] ( 2
4 , 0 , 24)

[1,1,1] ( 5
4 , 54 ,54 )[01̄0] [ε̄,ε,ε] [1,1̄,1] (6

4 ,1, 64 )[001̄] [ε̄,ε,ε] ( 2
4 , 0 , 24)

[1̄,1̄,1] ( 3
4 , 34 ,54 )[100] [ε,ε̄,ε] [1,1,1̄] (1,1,1 )[01̄0] [ε,ε,ε̄] ( 0 , 0 ,0)

[1̄,1̄,1] ( 3
4 , 34 ,54 )[100] [ε,ε̄,ε] [1,1,1̄] (1,1,1 )[001] [ε,ε̄,ε] ( 0 , 0 ,0)

[1̄,1̄,1] ( 3
4 , 34 ,54 )[100] [ε,ε̄,ε] [1,1̄,1] (1, 24 , 64 )[010] [ε,ε,ε̄] ( 0 ,-2

4 , 24)

[1̄,1̄,1] ( 3
4 , 34 ,54 )[100] [ε,ε̄,ε] [1,1̄,1] (1, 24 , 64 )[001̄] [ε,ε̄,ε] ( 0 ,-2

4 , 24)

[1̄,1̄,1] ( 3
4 , 34 ,54 )[010] [ε̄,ε,ε] [1,1,1̄] (1,1,1 )[1̄00] [ε,ε,ε̄] ( 0 , 0 ,0)

[1̄,1̄,1] ( 3
4 , 34 ,54 )[010] [ε̄,ε,ε] [1,1,1̄] (1,1,1 )[001] [ε̄,ε,ε] ( 0 , 0 ,0)

[1̄,1̄,1] ( 3
4 , 34 ,54 )[010] [ε̄,ε,ε] [1̄,1,1] (2

4 ,1, 64 )[100] [ε,ε,ε̄] (-2
4 , 0 , 24)

[1̄,1̄,1] ( 3
4 , 34 ,54 )[010] [ε̄,ε,ε] [1̄,1,1] (2

4 ,1, 64 )[001̄] [ε̄,ε,ε] (-2
4 , 0 , 24)
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Table F.7: The initial state is CI with a “[001̄]” orientation at position (0, 0, 0). First
(fourth) column is the first (second) transition vector ~t1 (~t2); Second (fifth) column shows

both position and orientation after first (second) hopping step; third (sixth) column is
the induced strain at the transition state during the first (second) hop; the last column

summarizes the total displacement after two hopping steps.

~t1 Pos./Orient. ∆~ε ~t2 Pos./Orient. ∆~ε ∆~xij

[1,1̄,1̄] ( 5
4 , 34 ,34 )[1̄00] [ε,ε̄,ε] [1̄,1,1] (1,1,1 )[01̄0] [ε,ε,ε̄] ( 0 , 0 , 0 )

[1,1̄,1̄] ( 5
4 , 34 ,34 )[1̄00] [ε,ε̄,ε] [1̄,1,1] (1,1,1 )[001̄] [ε,ε̄,ε] ( 0 , 0 , 0 )

[1,1̄,1̄] ( 5
4 , 34 ,34 )[1̄00] [ε,ε̄,ε] [1̄,1̄,1̄] (1, 24 , 24 )[010] [ε,ε,ε̄] ( 0 ,-2

4 ,-2
4)

[1,1̄,1̄] ( 5
4 , 34 ,34 )[1̄00] [ε,ε̄,ε] [1̄,1̄,1̄] (1, 24 , 24 )[001] [ε,ε̄,ε] ( 0 ,-2

4 ,-2
4)

[1,1̄,1̄] ( 5
4 , 34 ,34 )[010] [ε̄,ε,ε] [1̄,1,1] (1,1,1 )[100] [ε,ε,ε̄] ( 0 , 0 , 0 )

[1,1̄,1̄] ( 5
4 , 34 ,34 )[010] [ε̄,ε,ε] [1̄,1,1] (1,1,1 )[001̄] [ε̄,ε,ε] ( 0 , 0 , 0 )

[1,1̄,1̄] ( 5
4 , 34 ,34 )[010] [ε̄,ε,ε] [1,1,1̄] (6

4 ,1, 24 )[1̄00] [ε,ε,ε̄] ( 2
4 , 0 ,-2

4)

[1,1̄,1̄] ( 5
4 , 34 ,34 )[010] [ε̄,ε,ε] [1,1,1̄] (6

4 ,1, 24 )[001] [ε̄,ε,ε] ( 2
4 , 0 ,-2

4)

[1̄,1,1̄] ( 3
4 , 54 ,34 )[100] [ε,ε̄,ε] [1,1̄,1] (1,1,1 )[010] [ε,ε,ε̄] ( 0 , 0 , 0 )

[1̄,1,1̄] ( 3
4 , 54 ,34 )[100] [ε,ε̄,ε] [1,1̄,1] (1,1,1 )[001̄] [ε,ε̄,ε] ( 0 , 0 , 0 )

[1̄,1,1̄] ( 3
4 , 54 ,34 )[100] [ε,ε̄,ε] [1,1,1̄] (1, 64 , 24 )[01̄0] [ε,ε,ε̄] ( 0 , 2

4 ,-2
4)

[1̄,1,1̄] ( 3
4 , 54 ,34 )[100] [ε,ε̄,ε] [1,1,1̄] (1, 64 , 24 )[001] [ε,ε̄,ε] ( 0 , 2

4 ,-2
4)

[1̄,1,1̄] ( 3
4 , 54 ,34 )[01̄0] [ε̄,ε,ε] [1,1̄,1] (1,1,1 )[1̄00] [ε,ε,ε̄] ( 0 , 0 , 0 )

[1̄,1,1̄] ( 3
4 , 54 ,34 )[01̄0] [ε̄,ε,ε] [1,1̄,1] (1,1,1 )[001̄] [ε̄,ε,ε] ( 0 , 0 , 0 )

[1̄,1,1̄] ( 3
4 , 54 ,34 )[01̄0] [ε̄,ε,ε] [1̄,1̄,1̄] (2

4 ,1, 24 )[100] [ε,ε,ε̄] (-2
4 , 0 ,-2

4)

[1̄,1,1̄] ( 3
4 , 54 ,34 )[01̄0] [ε̄,ε,ε] [1̄,1̄,1̄] (2

4 ,1, 24 )[001] [ε̄,ε,ε] (-2
4 , 0 ,-2

4)
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