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Modeling of Dopant Diffusion in Silicon

Scott T. Dunham!, Alp H. Gencer!, and Srinivasan Chakravarthi',

SUMMARY  Recent years have seen great advances in our
understanding and modeling of the coupled diffusion of dopants
and defects in silicon during integrated circuit fabrication pro-
cesses, but at the same time the ever-progressing shrinkage of
device dimensions and tolerances leads to new problems and a
need for even better models. In this review, we address some
of the advances in the understanding of defect-mediated diffu-
sion, focusing on the equations and parameters appropriate for
modeling of dopant diffusion in submicron structures.
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1. Introduction

Understanding and modeling the coupled diffusion of
dopants and point defects is critical for the continuing
evolution of VLSI technology. However, the develop-
ment of consistent quantitative models remains a chal-
lenge due to the complexity of the interactions involved,
the large number of parameters, and the difficulty in
making direct measurements of critical properties. In
this work, we review some of the major advances in
our understanding of these processes. We start by dis-
cussing the equations describing dopant/defect diffu-
sion and then consider the values of basic point defect
and dopant diffusion parameters which enter into those
equations. We then go on to consider in more detail
the interactions of diffusion with extended defects as re-
quired to understand transient enhanced diffusion and
dopant activation.

2. Coupled Dopant/Defect Diffusion

It has become accepted that dopants in silicon dif-
fuse via interactions with point defects, interstitials and
vacancies. The current standard model for coupled
dopant/defect diffusion is the pair diffusion model [1]-
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[4], which assumes that dopant diffusion occurs through
the formation of dopant/defect pairs that then diffuse
as a unit. Thus, the effective diffusivity observed repre-
sents the diffusivity of these mobile pairs multiplied by
the fraction of dopants which are paired. It is generally
assumed that ionization reactions are near local equilib-
rium, resulting in the following diffusion/reaction equa-
tions for a system containing a single donor species

(P) [3]:

ag? = —Rp/1—Rp /v +Rp1/v+Rev1+2Rp1/pv,(1)
% =—v-Ji—Rp;1 — Riyv — Rpy/1, (2)
6@% =-v-Jv—Rp,v — Riyyv — Rpy)v, 3)
@ = =V - Jier) + Rpj1 — Rpyv — Rpypv,(4)
606(1;V) = —v-Jipv)+ Rp/v — Rpy 1 — Rpi/py-(5)

Jx represents the flux of species X and Ry /y represents
the net rate per unit volume of the reaction of species
X and Y (e.g., Rpy 1 represents the net forward rate of
reaction PV+1 < P). This model is commonly referred
to as a “five stream model” based on the number of con-
tinuity equations for a single dopant. Fach additional
dopant adds three addition equations equivalent to Eqgs.
(1), (4) and (5), with corresponding flux and reaction
terms added to the point defect equations. Both defects
and pairs can exist in multiple charge states (e.g., V—,
I**+), but the above equations have been summed over
these charge states, so that C1, Cv, Cpry and Cpy)
represent the total concentrations of point defects or
pairs. Thus, for example

Cy = ;Cvi = Z [Kvi (%)iCVO] ; (6)

(2

where the superscript ¢ represents the charge on the de-
fect or complex, Kx is an equilibrium coefficient, and n
and n; are the local and intrinsic carrier concentrations.
The flux and reaction terms also include sums over all
the charge states, so for example:



. n
J(pv) = — Z Dpvi |:VC(PV)’ + lC(PV)iVIH (n—z)]

—= | o () ]

X [VC(PV)+ + C(PV)+VIH (%)] (7)
It is necessary to determine the Fermi level in order
to consider the behavior of charged species. It is pos-
sible to solve Poisson’s equation in conjunction with
continuity equations, but it has generally proven suf-
ficient to simply assume local charge neutrality [6],[7]
so that the electron concentration can be calculated al-
gebraically from the dopant distribution. When other
species such as clusters or extended defects are also
present as discussed in Sections 4 and 5, additional con-
tinuity equations must be added and additional terms
representing the formation/dissolution of these species
must be included on the right hand sides of Eqs. 1-5.
Under most conditions (although not during
the early stages of ion implant annealing), the
dopant/defect pairing reactions (e.g., P + I < PI) are
fast enough to maintain the pair concentration near
local equilibrium with the concentrations of isolated
dopants and defects (e.g., C(PI)i+1 = K;',/VCerCp).
Under these conditions, the five stream model can be
reduced to three continuity equations (often referred to
as the “fully-coupled” model) [5]:

6(Cp+ + C(pI) + C(pv))

= —V'(J(PI) + J(PV))(S)

ot
o(Cr + C,
%:_v.(ﬁ_}_:}(m))_}g (9)
o(Cv + C
—( v B (PV)) =-v- (Jv—I—J(pV)) —R. (10)

The flux terms can be rewritten as:

o= |20 (5)]

x [C‘*’O VCp+ + Cps v (CY°> Cp+vIn (f)] (11)

CVO Vo i

where * indicates equilibrium values and

1 C PV i+1 *
DY’ = Dy (%)

= D(PV)i'*'l K;/VCP+C¢,O (12)

is the equilibrium intrinsic diffusivity of a dopant via
vacancies of charge i. D pyyi+1 is the actual pair dif-
fusivity and K} IV is an equilibrium constant. The net
recombination rate can be written
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R = kyy (CiCv — CYCY), (13)

where in general ky/y is a function of doping and Fermi
level to account for the reaction of pairs with the oppo-
site type defect (e.g., PV +1 < P) as well as opposite
type pairs [5].

2.1 Vacancy-Mediated Diffusion at High Doping Lev-
els

In order to replicate the plateau regions seen in exper-
imental results, the models of both Yoshida and Math-
iot and Pfister included greatly enhanced diffusion at
very high doping levels (above about 102°cm=3). This
effect was attributed to the presence of attractive long-
range dopant/vacancy interaction potentials which re-
sulted in the interaction of vacancies with more than
one dopant atom, thus increasing the number and/or
effective diffusivity of pairs. A long-range interaction
is a requirement for diffusion of dopant/vacancy pairs
since, as noted by Hu [8], a dopant/vacancy pair in
the silicon lattice must dissociate to at least third-
nearest neighbor (3NN) distance to diffuse. Yoshida
assumed that dopant atoms were uniformly distributed
and calculated that overlapping potentials would lead
to a reduction in vacancy (and thus pair) formation
energy proportional to Cp+2, while Mathiot and Pfis-
ter [9],[10] used an analogy to percolation to say that
both the vacancy and pair fluxes increase by a factor
of F = exp(E?NN /kT) (E2NN is the dopant/vacancy
second-nearest neighbor binding energy) within a per-
colation cluster, with the probability of being within
that percolation cluster being given by:

0, cpT < C*
_ T s
P = min ll’K (CL _ 1) ] , CPT > C* (14)

C*
Tsoconcentration experiments by Larsen et al. [11] have
confirmed that greatly enhanced diffusion of As, Sb, Sn
and Ge is observed in the presence of high phosphorus
doping levels.

The models proposed by Yoshida and Mathiot and
Pfister give very different predictions of how diffusivity
increases with doping level. In order to gain a greater
understanding of vacancy-mediated diffusion, Dunham
and Wu [12]-[14] used a series of lattice Monte-Carlo
(LMC) simulations. These simulations consider the bi-
ased random walk of vacancies on a doped silicon lat-
tice, with hopping rates controlled by changes in energy
associated with the dopant/vacancy interaction poten-
tial versus distance.

The result of the LMC simulations is that dopant
diffusivity via dopant/vacancy pairs is enhanced by
a factor [1 4+ (Cp/C*)™] at high doping levels, with
m ~3-4 (Fig. 1). This change leads to a rapid rise
in diffusivity for donor concentrations above about
2 x 10*°cm—* as observed experimentally [11]. Figure 1
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also shows a match of this model to experimental data,
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Fig.1  Results of lattice Monte Carlo simulations of donor dif-

fusivity as function of doping level. Normalized diffusivity ver-
sus doping density using experimental pair binding energy for
arsenic and phosphorus [15] is shown in (a). At high concentra-
tions, the normalized diffusivity is approximately proportional
to Cp™ with 3 < m < 4 as indicated. Also shown for compari-
son is the analytic predictions for diffusivity in moderately doped
material [12]. These results are compared to experimental mea-
surements [11], [18] of arsenic diffusivity at versus doping level in
(b) (T' = 1050°C). The diffusivity for moderate doping levels is
fit assuming diffusion via negatively-charged vacancies and then
extrapolated to higher doping levels using the simulation results
shown in (a).

with the values for the parameters C* and m taken
from the results of LMC simulations [13]. Also shown
for comparison are predictions of the model of Math-
iot and Pfister. Note that the results are very different
than predicted by a percolation model, which shows
an abrupt increase in diffusivity not seen in either the
LMC simulation or the data. The behavior is poly-
nomial as predicted by Yoshida, but considering ran-
dom rather than regularly-spaced dopant atoms leads

to the effect occuring at lower doping levels and/or with
weaker dopant/vacancy interaction potentials. The ex-
cellent agreement shown in Fig. 1 was obtained using
experimental binding energies for arsenic (1.23eV) or
phosphorus (1.04 eV) from Hirata et al. [15], which also
agree well with more recent ab-initio calculations [16],
[17].

2.2 Consistent modeling of differences in diffusion be-
havior

Both Yoshida and Mathiot and Pfister assumed that
phosphorus diffused primarily versus vacancies. This
led to contradictions with other experimental results
which indicated that phosphorus diffused primarily via
interstitials (e.g., enhanced and retarded diffusion dur-
ing oxidation and nitridation [19],[20]) and that en-
hanced diffusion in the tail region was due to an inter-
stitial rather than a vacancy supersaturation (e.g., re-
tarded diffusion of buried antimony layers [21],[22] and
the growth of stacking faults due to P diffusion [23],
[24]). More recent work has shown that it is possi-
ble to consistently model phosphorus diffusion behav-
ior by considering a dual diffusion model, with diffusion
under intrinsic conditions dominated by interstitials as
needed to match OED/NRD results, but with vacancy
diffusion mechanisms becoming more important at high
doping levels due to the increased importance of nega-
tively charged vacancies and the interaction of vacan-
cies with multiple dopants [5], [25], [26]. Figure 2 shows
example comparisons between such a coupled diffusion
model and experimental data [5].

It is interesting to note that once the issues re-
garding the unusual behavior of phosphorus are re-
solved, that the behavior of the other dopants follows
directly [25]. Boron diffusion shows similar (but slightly
smaller) tail enhancements relative to phosphorus, but
no plateau or kink (Fig. 3). These differences follow di-
rectly from the lower solubility compared to phospho-
rus and the assymmetry in the locations relative to the
band-gap of negative versus positive states for vacan-
cies and interstitials [28]. Arsenic and antimony show
very little effect due to coupled diffusion as their slower
diffusivity injects fewer pairs into the bulk [25].

3. Point Defect Properties

The properties of point defects clearly play a central
role in controlling diffusion processes, as well as their
interactions with other processes such as film growth,
ion implantation and extended defect kinetics. Because
the diffusion of metal atoms (as well as dopants) de-
pends quite directly on total point defect fluxes, val-
ues for the D;C} and Dy C5; products have become
broadly accepted [30]-[37]. However, there continue to
exist substantial disagreements over the magnitude of
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Fig. 2  Phosphorus diffusion profiles for 4 h at 900°C and 30
min at 1100°C from Yoshida [1] and Matsumoto et al. [27] and
comparison to simulation results.

the diffusivities and equilibrium concentrations which
go to make up these concentrations.

3.1 Interstitial parameters

The greatest attention has been focused on the diffu-
sivity of interstitials [33],[38], with published values
spanning orders of magnitude at any given tempera-
ture. However, despite the huge discrepancies in cal-
culated parameter values, similar experiments gener-
ally give consistent and repeatable values for the ef-
fective silicon interstitial diffusivity. Specifically, ex-
periments which measure enhanced diffusion or stack-
ing fault growth at the wafer frontside during back-
side oxidation [39]-[43] or the lateral extent of oxi-
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Fig. 3 Boron diffusion from implanted polysilicon from Gar-

ben et al. [29] and comparison to prediction of coupled diffusion
model. Note that for the heaviest doping, tail diffusion is en-
hanced by a factor of about 4.

dation enhanced diffusion (OED) [44]-[48], generally
yield slow effective diffusivity values (= 10~% cm?/sec
at 1100°C). Intermediate effective diffusivity values
(> 1078 cm?/sec at 1100°C) have been calculated from
OED of buried layers [49],[50], while metal diffusion
experiments [34], [35], [51]-[54] give a higher effective
diffusivity (~ 107% cm?/sec at 1100°C). Finally, ab-
initio [55]-[57] and tight-binding [58] calculations give
similar or even higher estimates.

The repeatability of experimental measurements
suggests that the analyses of the experiments rather
than the experiments themselves are the source the dis-
crepancies in calculated interstitial diffusivity values.
Models used in calculating interstitial diffusivity typ-
ically over-simplify the system, using an effective dif-
fusivity (D$) to account for all bulk interactions and
a constant effective regrowth velocity (of) to account
for all interface effects:

0Ch

o =V DTy C, (15)

fi- DYy Cr = o (Cr - CY), (16)

where Cf is the interstitial concentration in silicon and
7 is the interface normal. However, under many condi-
tions, additional bulk and interface interactions can be
expected to play an important role.

Griffin et al. [38] explained these differences by as-
suming that trap species present in Czochralski and
float-zone silicon, but absent from epitaxial silicon, slow
down the propagating diffusion front of interstitials,
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thus resulting in a reduced effective diffusion coeflicient.
The fast diffusion noted in the metal diffusion experi-
ment is explained by assuming that the gettering or
metal indiffusion process causes a much higher super-
saturation of interstitials which rapidly fill the traps
and allow unimpeded diffusion. Recent work has fo-
cused on carbon as the trapping species, backed up by
observations of greatly reduced effective interstitial dif-
fusivity in the presence of elevated carbon doping [59].
However, significant effects occur only when carbon
concentrations exceed about 10*7cm 3 [59], while typ-
ical concentrations in both Czochralski and float-zone
material are less than 10'%cm 3 [60].

The observation that low diffusivity values are cal-
culated only when the interstitial concentration is mon-
itored near an interface (e.g., lateral OED or backside
OED experiments), while experiments which monitor
defect concentrations in the bulk (e.g., buried layer or
metal diffusion experiments) result in much higher dif-
fusivity values, suggests that a more complete model for
interactions with films and interfaces may be needed.

Additional information regarding the effective in-
terface regrowth velocity for interstitials has come from
analysis of reverse short channel effects (RSCE) due to
transient enhanced diffusion (TED). Rafferty et al. [61],
[62] were able to model experimentally-observed thresh-
old voltage and body coefficient changes with chan-
nel length, but required an effective interface recom-
bination velocity orders of magnitude larger than val-
ues which would be consistent with longer time and/or
higher temperature experiments [39],[44]. Crowder et
al. [63] came to a similar conclusion using measure-
ments of asymmetric boron diffusion profiles in SOI
structures. For both of these experiments, very small
thermal budgets compared to those used in backside
or lateral OED experiments were used, suggesting that
the effective interface regrowth velocity starts off large,
but decreases with time.

In order to account for the range of experimental
observations, Dunham and Agarwal [64],[65] proposed
that in addition to relatively slow interface regrowth,
excess silicon (interstitials) segregate strongly to oxide
films from the silicon and diffuse slowly within the film.
This model represents an extension of models for OED
which require that most of the interstitials generated
at the interface must go into the oxide [64], [66], [67].
Verification of the model comes from observations by
Celler and Trimble [68] of complete dissolution of a thin
silicon layer in an SiOy film. The segregation process
acts in many ways like an effective regrowth velocity
which decreases with time. When there is a supersatu-
ration of interstitials in the substrate, interstitials near
the interface segregate to the oxide setting up a diffu-
sion gradient within the SiO5. Initially this results in
a large flux of silicon into the oxide as the concentra-
tion gradient in the oxide is very large. As time goes
on, the region of the oxide near the interface starts to

“fill up” with excess silicon, reducing the concentration
gradient and thus the flux into the oxide. This behav-
ior can be confused with a slow interstitial diffusivity
because of the resulting delay in the rise of interstitial
supersaturation near an Si/SiO. interface.

Using the fast interstitial diffusivity values (and
associated equilibrium concentration) determined by
Bracht et al. [34] from metal diffusion, the model is
able to accurately account for the much slower effective
interstitial diffusion seen in backside OED and 2D OED
experiments [65]. An example is shown in Fig. 4. In ad-
dition, the model also correctly predicts [69] the large
effective regrowth velocity seen for low thermal bud-
gets by Rafferty et al. [61],[62] (TED) and Crowder et
al. [63] (OED).
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Fig. 4  Comparison of simulation and data for time-averaged

interstitial supersaturation at the center of nonoxidizing stripes.
The values are normalized to the time-averaged excess supersatu-
ration under wide oxidizing regions where maximum OED occurs.
The results for the stripe widths indicated are plotted versus ox-
idation time at (a) 900 and (b) 1000°C. Data from Griffin [45].



3.2 Vacancy parameters

Recently, attention has also been paid to the behav-
ior of vacancies, for which the accepted view within
the TCAD commmunity had been that they are rela-
tively slow diffusers compared to interstitials, but are
present in much larger numbers. This conclusion has
been largely based on analysis of metal diffusion experi-
ments [34],[35],[70]. In contrast, ab-initio [56],[57] and
tight-binding MD calculations [58] find that formation
energies for vacancies are on the same order or larger
than that of interstitials and that the migration energy
for vacancies is smaller than that of interstitials. Upon
reexamining the analyses of metal diffusion experiments
which gave large equilibrium concentrations and low
diffusivities for vacancies, it can be observed that in or-
der to simplify the analysis, the original work generally
neglected bulk recombination and made a number of
assumptions about the dominant mechanisms control-
ling behavior at different temperatures and time scales.
Reanalyzing the most extensive data set, that of Bracht
et al. for zinc in-diffusion [34], using a complete set of
equations for coupled diffusion of metal with both in-
terstitials and vacancies gave Cy, ~ Cf (Fig. 5) [71],
four orders of magnitude smaller than originally calcu-
lated and much closer to the results of atomistic calcu-
lations. Further analysis leads to the conclusion that
the D;CY product is well characterized by the data and
that it is possible to establish solid upper limits for
Dy C5; and CY, but that C3 is not accurately deter-
mined by these experiments and only a relatively loose
upper bound could be obtained. Platinum diffusion ex-
periments, which previously claimed to provide direct
measurement of high values of C5, [36], were also fit
using the same parameters by considering the aggre-
gation of carbon with interstitials into small clusters
[59], with carbon concentrations consistent with densi-
ties found in device-quality Czochralski and floatzone
material (101°-1016cm=3).

4. Transient Enhanced Diffusion

As thermal budgets have shrunk with device dimen-
sions, the enhanced diffusion occuring during implant
annealing has come to be the dominant diffusion pro-
cess. This transient enhanced diffusion (TED) can be
attributed to the excess point defects generated by the
implanted ions and associated cascade. The density of
generated point defects is generally several orders of
magnitude larger than that of the implanted ions, but
the numbers of interstitials and vacancies are nearly
equal. Thus, under typical implant conditions, the
Frenkel pairs quickly recombine leaving a much smaller
net defect distribution with a total net interstitial dose
approximately equal to the implanted dose (the num-
ber of extra atoms provided by the implant). Due to
momentum transfer the interstitials are located slightly
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analyses based on both metal diffusion [34],[37] and atomistic
calculations [58].

deeper than the vacancies leaving a surface region with
a net vacancy excess and a deeper interstitial-rich re-
gion. Since the total net dose and approximate depth
are close to that of the implanted ions, the initial dam-
age is often effectively approximated by a “+1” inter-
stitial profile corresponding to the implant [72]. This
approximation is particularly effective for lighter ions
such as boron for which the displacement of secondary
defects is smallest.

While the “+1” model is effective at moderate
doses, there are significant deviations at both higher
and lower doses. For high doses, the damage is suf-
ficient to form a continuous amorphous layer. Amor-
phization has been observed to occur when the density
of point defects exceeds about 10% of the lattice den-
sity, upon which a transformation to the amorphous
phase occurs [74]. After annealing at moderate tem-
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Fig. 6  Monte Carlo simulation [73] showing intial distribu-

tions of boron, interstitials and vacancies following a 40 keV,
2x10'4 ¢cm~2 B implant.

peratures (~500°C or higher), the amorphous region
regrows leaving what appears to be a nearly defect-free
region. Thus, the remaining damage is limited to what
is below the amorphous-crystalline interface. Higher
implant doses lead to deeper amorphization and the
net excess interstitial concentration following regrowth
levels off or drops rather than continuing to increase.
At low doses, the assumption that Frenkel pair re-
combination is very fast compared to other processes
breaks down as the faster diffusing defect species has
a significant chance of reaching the surface before en-
countering the opposite type defect. Since, as discussed
in Section 3, current evidence suggests that vacancies
diffuse more rapidly than interstitials, this leads to an
interstitial dose remaining in the silicon after nearly all
vacancies have been annihilated that can be much larger
than that predicted by the “41” model. It is possible
to estimate the remaining interstitial dose by model-
ing diffusion and recombination in the early stages of
implant annealing. The results of such simulations are
shown in Fig. 7 in terms of the integrated interstitial
dose remaining divided by the implant dose to give an
effective “+N” factor by which to scale the initial dam-
age. When both amorphization and fast vacancy diffu-
sion are taken into account, it is possible to accurately
model the dose dependence of TED as shown in Fig. 8.
A critical observation regarding TED is that while
the final junction motion depends strongly on dose and
energy, the initial diffusivity enhancement is nearly in-
dependent of these factors [75],[76] (Fig. 9). These ob-
servations lead to the conclusion that excess interstitials
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Fig.7 Normalized net interstitial dose remaining after the ini-

tial recombination process is complete. The simulations started
with the total initial defect distributions for a 40 keV B implant
from a Monte-Carlo ion implant simulation (TRIM [73]).
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Fig. 8 Dose dependence of TED measured for boron marker

layers following 200 keV Si implants from Packan [75] compared
to model simulations which use a +1 or 4V initial net interstitial
distribution, with the value of N calculated as in Fig. 7.

aggregate into extended defects, reducing the initial su-
persaturation, but prolonging the TED period as the
interstitials are subsequently released. This conclusion
gathers strong support from the identification of these
aggregates as planar {311} defects elongated in {011}
directions. The number of interstitials contained within
these {311} defects after short annealing matches the



implant dose, and the time period for their dissolution
coincides with that of enhanced diffusion [77], [82].
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10'%cm~—2 29Si at 200 keV with annealing at 850°C. Data from
Packan [75] and comparison to model prediction.

As seen in Fig 10, TED depends strongly on the
depth of the implant as controlled by the implant en-
ergy. As with changes in dose, the original enhance-
ments are nearly unchanged, but the time period over
which TED lasts is modified. The scaling of TED
with energy implies that the surface is the primary
sink for interstitials. This has been confirmed through
etch-back experiments which conclude that the effec-
tive surface recombination length (Dr/o1) is less than
100 nm [78]. Based on the experimental observations
discussed above, it is possible to come up with a simple
model for the estimation of TED effects. If the for-
mation of {311} defects is associated with an effective
interstitial solubility C$1! which is maintained through
the growth/dissolution of these defects, then the flux of
interstitials to the surface can be approximated by:

JIP = DiCPY Ry, (17)

where R, is the average depth of net interstitial distri-
bution (approximately the implant range). The period
over which TED lasts then is just:

QI QIRp
TTED = JITW = DIC]311, (18)
where the net excess implant dose Q1 = NQimplant

based on an “4+N” model.

During TED, the interstitial supersaturation is
C31/Ct, so the amount of excess diffusion expected
during TED is given by:

Ci'! _ DifiQiR,
Cr DiC;

(Dt)teD = Di7TED fi (19)

where D} is the dopant diffusivity under equilibrium
conditions. Note that the activation energy of dopant

IEICE TRANS. , VOL. E00-A, NO. 1 JANUARY 1998

diffusion is less than that of self-diffusion via intersti-
tials (DiCY), so that diffusion due to TED is actu-
ally increased as the annealing temperature is reduced
(as long as sufficient time is allowed for completion of
TED). It is also notable that TED depends primarily on
the D1C{ product rather than the terms independently
as discussed in Section 3.

120
110t
100 1+
90 -
80 I-
01
60 1-
50 1
40t m  Data 1
0t — Mode -
0rm N
10} Temp = 800°C, Dose = 10% cm2,, Time = 60min ]

(DHV2 (nm)

0
0 20 40 60 80 100 120 140 160 180 200 220
Energy (keV)

Fig. 10  Energy dependence of TED. Total broadening of a
deep B marker profile due to implantation of 10*cm—2 29Si with
annealing at 800°C for 60 min. Data from Packan [75] and com-
parison to model prediction.

Although this simple model (which we will refer to
as a one-moment model as it keeps track only of the
total number of clustered interstitials) provides good
estimates for the final amount of TED, it does not accu-
rately capture the time evolution of the enhanced diffu-
sion or the dissolution of {311} defects. If {311} defects
establish a constant effective solubility as the simple
model implies, then their dissolution would be approx-
imately linear (modified by any shift of the effective
depth over time). In contrast, as shown in Fig. 11 [82],
the dissolution is approximately an exponential decay.
Similarly, TED is not actually uniform during the TED
period. Instead it drops significantly over the course of
the TED period (Fig 12).

Both {311} and TED evolution can be modeled
by considering a range of {311} defect sizes associated
with ripening of the population during annealing, lead-
ing in turn to a reduction in the effective solubility. The
aggregation process is driven by the change in system
free energy. The defect energy depends strongly on size
and can be written as the sum of a volume term which
represents the change in energy upon adding a solute
atom to an arbitrarily large defect, plus the excess en-
ergy associated with finite size, including contributions
from interface and strain energies:

C
AG, = —nkTIn (ﬁ) + AGE, (20)

where n is the number of solute atoms, and C{!! is
the solid solubility. The form of AGE*¢ depends on the



Density of Interstitialsin Defects (cm-2)

<D>/D*

DUNHAM et al: MODELING OF DOPANT DIFFUSION IN SILICON

1014 E 1 I I I I 1 I | | 1 E
L m Daa .
By ——  3-moment model
- Ch -.—  2-moment model

1018 L S 1-moment model _|

102 L i
B \ ]
= ‘| -

1011 | | ! ! L | | | |

0 20 40 60 80 100 120 140 160 180 200

Time(s)

Fig. 11 Comparison of 1, 2 and 3-moment models for evo-
lution of {311} defects. Both 2 and 3-moment models capture
the exponential decay of interstitials in {311} defects. However,
since the 1-moment model doesn’t take the ripening process into
account, it predicts an almost linear decay in mj. Data from
Eaglesham et al.[82]
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! ] [ | 1 [
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Fig. 12 Comparison of 1 and 2-moment models for short

time diffusivity enhancements. Data from Chao[84] for a
5 x 1013 cm™2 50keV implant with anneals at 750°C.

defect structure and is chosen to match experimental
results under the constraint that it varies sublinearly
with size, so that C$11 remains the asymptotic solubil-
ity [79].

It is possible to consider the full {311} size distri-
bution (f,(z,t), the density per unit volume of defects
of size n at a given location and time), which evolves
through the addition or emission of interstitials:

&
dt

where I, is the net rate (per unit volume) at which in-
terstitials are added to size n defects to form size n + 1
defects. Since each growth step from n to n + 1 in-
volves a solute atom, a term must be subtracted from
the interstitial continuity equation of the form:

=TIy — I, (21)

o
RM =20+ I, (22)
2

where the factor of 2 for the I; is due to the fact that
two solute atoms are required to make a cluster of size
2. The net rate at which precipitates in the population
grow from size n to n + 1 is [79]-[81]

DAn(CIfn - C:,fn+1)
R, + A

I, = (23)
where A, is the surface area of a precipitate with n
solute atoms, R, is its radius, A = D/k,, and k, is
the interface reaction rate. C); is the concentration of
solute atoms for which there is no change in the system
energy for a precipitate growing from size n to n + 1

(gn = dny1):

Cr =Cexp (—AGnH _ AG")

kT

ﬂ) (24)

A( YexcC
_ 311 n+1
= CI exp ( LT

Modeling the full extended defect distribution is
effective, but having to solve a large set of extra differ-
ential equations for each defect size at each spatial node
adds a huge computational burden. A much more effi-
cient approach is to consider the evolution of some sub-
set of the moments of the size distribution. Evolution
equations can be derived by assuming a form for the
size distribution given the moments (m; = Y 5" n'fy).
The most general approach is to consider the distri-
bution that minimizes the free energy given the mo-
ments [79]. Alternatively, it has been observed that
{311} defects have an approximately log-normal size
distribution (f, = zoexp [—In(n/z1)?/22]) with a fixed
value of zo = 0.8 [85]. Figure 11 includes a comparison
to both a simple linear decay as well as the moment-
based approach using either three moments (mq, m;
and mg2) and an energy minimizing closure assumption
or two moments (mg and m4) and a log-normal distri-
bution. These models are also used to compare to data
for the time evolution of TED (Fig. 12). Both of the
moment-based models do a good job of matching {311}
defect kinetics and more importantly accurately predict
TED kinetics.

At high doses, in addition to {311} defects, dis-
location loops also form. In contrast to {311} defects,
dislocation loops are very stable and can withstand rela-
tively long thermal cycles. Thus, the interstitials which
aggregate to form loops generally do not contribute to
diffusion for thermal cycles typical of submicron de-
vices. The nucleation and growth of dislocation loops
can also be modeled using moment-based techniques.
Experimental observations indicate that loops nucleate
via the unfaulting of {311} defects [86]. Assuming that
for smaller sizes it is energetically more favorable to
stay as a {311} defect, but above a certain size (around
n = 2000) it is more favorable to transform into a dislo-
cation loop. The transfer rate from {311} defects into
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dislocation loops as a function of defect size can be ex-
pressed as:

AGE™ — AGleop

D
Ry = -5 [fﬁﬁﬂ} — [*"Pexp (—

where b is a “capture distance.” A value of about 20 ym
for b matches experimental results, indicating that the
transfer from {311} defects into dislocation loops is a
rather slow process.

In conjunction with model and parameters for
{311} defects described above, this approach is able to
correctly model the transformation of {311} defects into
dislocation loops, as well as the correct Ostwald ripen-
ing behavior (Fig. 13). Similar matches were obtained
for data by Lui et al., [88] that included longer anneals
which led to substantial loop dissolution. The relatively
slow dissolution rate of dislocation loops stems from
the facts that they can grow very large and Cg for
loops is approximately C}. This results in C for loops
being close to Cf, so that they sustain only a small
super-saturation of interstitials. Since these loops are
deep in the substrate and sustain only a minimal super-
saturation, the flux to the surface is small and thus they
dissolve slowly.

kKT

5. Dopant Activation

Another critical process controlling dopant redistribu-
tion is the formation of dopant clusters or precipitates
which both immobilize the dopants as well as reduce or
eliminate their electrical activity. Due to volume dif-
ferences, it is common for these clusters to incorporate
point defects along with dopants (e.g., B/I and As/V).
The most general approach considers arbitrary cluster
compositions which evolve in a multi-dimensional size
space (e.g., fn,m(z,t) to represent the concentration of
B, clusters). For such a system, direct solution of
the full set of discrete rate equations becomes even more
computationally expensive. However, it is possible to
extend the moment-based approach to this system. The
free energy for a B,I,, cluster becomes a function of
both boron and interstitial concentrations, as well as
size [79]:

CB C’I
AGpm = —nkT1 —mkT'1
Gn, nk n(0%8> mk n(C}ss)

+AGexc + AGstress
n,m

n,m

(26)

The stress energy can be estimated from elasticity the-
ory to be of the form [79):
Q

AGH = Hy + 2 (m = yn)?, (27)
If there were no point defect supersaturation, the op-
timum number of incorporated interstitials would be
m* = yn. However, when C > Cf, the optimum num-
ber of point defects incorporated can be found by min-
imizing the free energy to be:

)

Interstitials bound to Defects (cm-2)

Average Size
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Fig. 13  Evolution of density of (a) interstitials in extended

defects (m1) and (b) average defect size (m1/mg) with compar-
ison to model. Data from Pan et al[87] for 1 x 106 cm=2 Si
implant at 50 keV with anneals at 1000°C and 850°C.
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Fig. 14 Simulations results for a 2 x 10%cm~2, 40 keV B

implant annealed at 800°C with KPM model. Also shown for
comparison are SIMS data from Intel [91].

m = (74 5 0g(G1/C) ) (28)

which leads to an effective solid solubility of:

o = (&) e [-1E towtci/cp) 29

It is evident from the above equation that the effective
solubility decreases with increase in interstitial super-
saturation as observed experimentally. We find using
this approach we can successfully fit medium dose TED
data [91] as shown in Fig. 14.

Alternatively, it is possible to model the deacti-
vation process by cluster-based models where we solve
rate equations for a limited set of cluster sizes. Us-
ing a large set of cluster size ranges, both atomistic
and contiuvum models have been successful in simulat-
ing clustering of boron [89], [92]. Based on ab-initio cal-
culations, which indicate that B3l is the predominant
cluster species, it is possible to derive a simple single
cluster model that duplicates the results of these multi-
cluster models [90]. The continuum model thus derived
uses only a single reaction, that for B3I, with the rate
of formation given by [93]

Rpg1 = kf,1(Kp,1CECr — Ciy) (30)

Figs. 15(a) and (b) show examples of comparison of the

single cluster model to the full models, as well as to
data from Intel [91] for TED at 800°C.

6. Conclusions

In summary, coupled pair diffusion models provide the
basis for understanding dopant diffusion in silicon and
can explain a broad range of experimental observations.
However, important gaps in our knowledge still remain,
particularly due to the large number of model parame-
ters and the challenges associated with performing ac-
curate experimental measurements, which make it very

B Concentration (cm3)

B Concentration (cm3)
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1020 ¢ . | | T e
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s 3 SIMSData 3
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Fig. 15 Comparison of full model with the simplified model

for (a) 40keV and (b) 80keV, 2 x 10'4cm~—2 B implants annealed
at 800° C for various times. Also shown for comparison are SIMS
data from Intel [91]. Note that the full model and simple model
show indistinguishable final profiles. The B3I concentrations for
the two models (shown after a 1 h anneal) are also nearly identi-
cal.
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difficult to fully characterize the system. A critical issue
discussed in this review is interactions of point defect
and dopant diffusion processes with extended defects,
which dominates the diffusion behavior during ion im-
plant annealing.
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