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University of Washington

Abstract

Simulating Causes of Conductivity
Degradation in Nanoscale Metal Wires

Baruch Feldman

Chair of the Supervisory Committee:
Professor Scott T. Dunham

Electrical Engineering Department

Nanowires made of metal, particulary copper, are increasingly important for intercon-

necting transistors in modern electronics. Nanowire conductance is known to degrade

with decreasing thickness, but the microscopic causes of this are poorly understood.

This work presents calculations of conductivity degradation in nanowires due to

scattering from surfaces, grain boundaries, and interfaces with liner layers. It studies

the detailed effect of surface roughness profile, or power spectral density (PSD). It also

presents the first fundamental calculations of transport across crystal grain boundaries

and interfaces between copper and tantalum liner layers.

It is found that the components of surface roughness with shortest wavelengths

have the greatest effect on conductivity, even when taking into account typical surface

profile falloffs as a power law of wavelength. Furthermore, it is found that surface

roughness is not an insurmountable barrier to conduction, with diffuse scattering

probability (1 − p) = 4% for typical surface profiles. Grain boundaries are found to

be important scattering sources, and less ordered grain boundaries, such as non-twin

boundaries or those with defects, have greatly increased scattering. Finally, transmis-

sion from Cu to Ta is found to have probability T = 22%, so nanowires surrounded

by at least a few nm of Ta greatly degrade in conductivity. It is concluded that





grain boundaries and the liner layer interface are important sources of conductivity

degradation.
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Chapter 1

INTRODUCTION

The transistor devices that power the logic and computation in computers have,

for decades, obeyed Moore’s Law [54, 3]: the number of transistors in a computer

processor doubles every two years, due mostly to a reduction in size of the transistor.

As transistors have reached the nanoscale regime1, they have begun to encounter a

whole host of physical limitations on their ability to scale. One of these issues is that

the nanoscale wires used to interconnect these transistors degrade in conductivity as

they are made smaller. Several mechanisms have been proposed for the degradation,

including grain boundary, surface, and interface scattering (see Figure 1.1). This

thesis aims to predict these effects for the first time from fundamental physics, using

both simulation and calculation.

1.1 Problems Caused by Conductivity Degradation

The conductivity degradation in nanoscale wires described above is substantial: it has

been observed to be 50% or greater compared to bulk in nanoscale films and wires

[56, 3, 20, 74, 75] (see Figure 1.2). This degradation causes various practical problems

for semiconductor technology. It causes RC delays [60, 3] and power loss [3], problems

which will be described further in the following sub-sections. These problems in turn

limit the speed and battery life performance of the entire digital device.

1Defined loosely as a minimum feature size below 100 nm. At this writing, the generation of
transistors in development has a minimum feature size of 32 nm, or about 100 times the size of a
typical atom.
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Figure 1.1: Imputed causes of conductivity degradation, from International Technol-
ogy Roadmap for Semiconductors [3].

Figure 1.2: Resistivity as a function of thickness, together with fits to the Fuchs-
Sondheimer and Mayadas-Shatzkes (see Chapter 2) semi-classical models of size ef-
fects. Figure is taken from [74].
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Figure 1.3: Layers of interconnect from a microprocessor with the SiO2 substrate
removed. Photo is from [60].

To illustrate the importance of interconnect conductivity, consider that in the late

1990s the semiconductor industry switched from aluminum interconnecting wires to

copper. Although aluminum had previously been used for over 40 years because its

desirable properties made it less expensive to deposit in a circuit [60], copper has 55%

higher conductivity. Nevertheless, about 10 years later, the industry is again facing

limits to performance due to conductivity as wires must be scaled ever smaller.

1.1.1 Back-End Technology

Current microprocessor technology is based on CMOS technology, a method to design

all the elementary logical functions like AND, OR, and NOT out of transistors. In

order to create the correct logical operations, the transistors must be interconnected

appropriately. In modern integrated circuit technology, some 107 - 108 transistors are

laid out on Si wafers. Making these transistors into logic and circuits requires billions

of interconnections, made in 7 or more layers of metal wires known as interconnects

or back-end technology. This is illustrated in Fig. 1.3.
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These layers of interconnect form a complex network where the higher levels,

called global interconnects, function like superhighways branching off into lower levels,

or so-called local interconnects, that reach the individual transistors. See Fig. 1.4.

The thickness of local interconnects must roughly equal the smallest feature size

of the transistors, currently 32 nm, to avoid taking more space than the electronics

themselves. As a result, nanowires are in use in current technology, so the conductivity

degradation observed in them creates issues that we now summarize.

1.1.2 RC Delays

Following Plummer, Deal, and Griffin [60], we give a simple analysis of the inductance

and capacitance of layers of interconnect. Let us first consider that the line resistance

R of a wire is

R = ρ
L

A
, (1.1)

where ρ is resistivity, L is wire length, and A is cross-sectional area. When transistor

density doubles (which happens every two years by Moore’s Law), typical transistor

length scales (i.e. minimum feature size) only decrease by a factor of
√

2. So we

already see that L→ L/
√

2 while the wire cross-section A→ A/2, so R → R
√

2 every

two years. We already have a problem and we have not even discussed conductivity

degradation yet!

Making matters worse is the fact that the wires have inductance and capacitance,

creating RC circuits that introduce resistivity-dependent delays [60]. The typical

RC delay due to global interconnects [60] is 0.89RC ∝ ρ. Both increasing area and

decreasing minimum feature size increase this delay, which competes with gate and

other delays to limit performance (Figure 1.5). According to the 2007 International

Technology Roadmap for Semiconductors (ITRS) [3]:

[I]n the older 1.0 µm Al/SiO2 technology generation the transistor delay

was ∼20 ps and the RC delay of a 1 mm line was ∼1.0 ps, while in a
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Figure 1.4: Schematic and photo of modern integrated circuit cross section. The
highest layers of interconnect are like superhighways, branching down by vias to
the bottom layers, or local interconnects, that must scale with transistor size. Both
illustrations are from [60].
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Figure 1.5: Interconnect delays, with gate delay for reference, for various technology
generations. Figure is from [1].

projected 35 nm Cu/low-κ technology generation the transistor delay will

be ∼1.0 ps, and the RC delay of a 1 mm line will be ∼250 ps.

1.1.3 Power Loss

Power consumption is currently a main focus of the semiconductor industry, as com-

puters have reached a speed level that has proven generally satisfactory for consumers,

and mobile devices like cellular phones and laptops are marketed based on battery

life. Current generations of microprocessors waste a huge amount of power to heat,

and must be cooled to keep this heat from degrading performance over both the short

and long terms.
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In this context, the power loss introduced by interconnects is very important,

and is becoming one of the limiting factors in processor design. If the number of

interconnections among transistors scales like t2, where t is the number of transistors,

then the power loss in the wires

P = I2R

where R is the wire resistance, increases greatly as the total wire length (even if slower

than the total number of interconnections, L ∼ t1.5) increases and the resistivity gets

worse.

According to the 2007 ITRS [3],

[A]t 0.13µm approximately 51% of microprocessor power was consumed by

interconnect, with a projection that without changes in design philosophy,

in the next five years up to 80% of microprocessor power will be consumed

by interconnect.

1.2 Thesis Overview: Causes of Degradation

The remainder of this chapter will introduce the focus of this dissertation, the causes

of conductivity degradation.

The introduction of Cu wires for interconnect technology led to increased com-

plexity and costs associated with depositing the wiring into integrated circuits. Cu

atoms have a strong tendency to migrate into the low-dielectric-constant material that

isolates each transistor, especially during subsequent process steps, which are done

at elevated temperatures. As a result, a “liner layer” of another material is necessary

that typically serves three purposes:

• Serve as a starting point for the deposition of interconnect metals onto dielectric

• Block migration of interconnect material into dielectric

• Adhere the interconnect to the dielectric
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Figure 1.6: Schematic and photo of interconnect wire embedded in liner layer by a
damascene method.

Additionally, modern interconnects are so small that they must be deposited atom-

ically onto the substrate. Typically, interconnects are deposited by a “damascene”

process which embeds liner layer and metal inside a groove in the dielectric, leaving

them surrounded by dielectric on three sides with the fourth surface uncovered. Fig-

ure 1.3 illustrates this. Further metal or dielectric layers may be deposited on top of

the fourth surface.

The figure also shows the three causes of conductivity degradation modeled in this

work. In general, conductivity degradation comes from the scattering of current-

carrying conduction electrons. The crooked lines shown within the Cu region represent

grain boundaries, a scattering source explained in Section 1.2.2. In addition, the

interface with the liner layer, a relatively poor conductor compared to Cu, is another

source of scattering to be discussed below.

As a first step, we model both the interface with the liner layer and the uncovered
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wire surface as interfaces with an insulator. Clearly, the uncovered surface really

is an interface with insulator; for the other three surfaces, this represents a first

approximation. Since the liner layer is a poor conductor, electrons are expected to

transmit into the liner and return quickly into the Cu with randomized velocities.

At an interface with an insulator, on the other hand, all electrons are reflected and

remain in Cu. Our research plan is to start with this simplified model for all four

sides of the Cu wire, and then refine our model by simulating transmission for the

three interfaces with the liner layer.

1.2.1 Surface Scattering

1.2.2 Grain Boundary Scattering

In a crystalline material, a grain boundary is a boundary between crystallites, or

regions of perfect crystal lattice, with different orientations. While the lowest energy

configuration of a crystalline solid may be a perfect lattice structure2, temperature ef-

fects will lead to various defects. Especially for extended defects like grain boundaries

and dislocations, these are separated from the minimum-energy configuration by large

energy barriers and can typically be removed only by annealing at high temperature.

Experimental evidence shows that grain size (or the distance between grain bound-

aries) in metals scales roughly with wire thickness [46, 4, 75], and that grain bound-

aries significantly affect conduction [6, 9, 18, 19, 28, 21, 44, 27, 48, 67, 68, 69, 81, 85].

These observations are incorporated into a simple semiclassical model of grain bound-

ary conduction, the Mayadas-Shatzkes (MS) model [48] (see Chapter 2), which

uses reflectivity R at each grain boundary as a single empirical parameter. However,

previously to this work, no microscopic model of grain boundary conduction has been

available to predict R or explain conduction.

2Actually, a “frozen phonon” may lower the energy for some anisotropic materials, in what is
known as a Peierls distortion [45].
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1.2.3 Interface Scattering

The liner layer is typically made of a material like Ta or TiN with small crystal grains

[60]. This property impedes the migration of Cu atoms [60] but also makes the liner

a poor conductor.

The interface between the Cu wire and the liner layer enveloping it is parallel to

the direction of current flow. As a result, it is tempting to think of the wire-liner

system as a pair of conductors (one with much higher conductivity than the other)

in parallel. At fixed voltage, such a model predicts that the current through each

conductor is independent of the presence of, and the number of opportunities to cross

into, the other conductor.

However, this model is based on elementary circuit analysis, which assumes that

independent (series) resistivity mechanisms add. But, as we will learn in Chapter 4,

this assumption fails for bulk and surface scattering in a nanowire.

The surface scattering model sheds some light on the interface problem. When

electrons move from Cu to liner, they are scattered with a much shorter mean free

path than they would have if they remained in Cu. When they move from liner to

Cu, their velocity is effectively random, since they will on average have had a recent

scattering event. So the Cu/liner interface behaves much like a rough surface that

randomizes electron velocity.

In order to improve over our surface scattering model, we need information on the

reflection at the interface as a function of incident angle. This information can only

come from microscopic considerations, whether theoretical or experimental.

1.2.4 Thesis Overview

Chapters 2 and 3 will continue to provide background, build the necessary theory, and

introduce the concepts relevant to surface, grain boundary, and interface scattering.

Chapters 4 – 6 will present the details and results of our calculations. Chapter 7 will
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return to the overall picture and summarize what our results mean for interconnect

technology.
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Chapter 2

BACKGROUND

In this chapter, we review previous approaches to surface and grain boundary scat-

tering in thin metal films and wires. In particular, we introduce the Fuchs-Sondheimer

(FS) and Mayadas-Shatzkes (MS) semiclassical models of these phenomena. In ad-

dition to their quantitative validity, these models provide important physical insight

into the nature of the problems. This Chapter can be seen as a summary of theory

that will be useful in Chapter 4 and throughout this work. We will return to theory in

Chapter 3, describing the transport formalism we use to address quantum transport

through grain boundaries and interfaces.

2.1 Literature Review

Other approaches to surface roughness [78].

2.2 Fuchs-Sondheimer Model of Surface Scattering

The Fuchs-Sondheimer (FS) model [24, 73] treats transport semiclassically in thin

rough metal films with both surface and bulk scattering. The fundamental assumption

in this model is that a fraction p of electrons incident on the surface reflect specularly,

and therefore continue with the same velocity vz in the transport direction. The

remainder of electrons scatter diffusely into a completely random state. Although

this model fails to account for a dependence of the scattering probability p on the

initial and final states, it can be tuned with p as a parameter to give the correct

behavior. The FS model, with relatively robust assumptions, generally agrees with

experimental observations.
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There are other semiclassical models that introduce an angle-dependent scattering

probability [70, 71], but these generally have complicated solutions. In order to derive

the scattering probability from first principles, one must use a quantum mechanical

treatment of the scattering event, as we do in Chapter 4.

The simplest case of the FS model to consider is p = 0, which was originally

studied by Fuchs [24].

The FS model is usually given as

2.3 Mayadas-Shatzkes Model of Grain Boundary Scattering

The Mayadas-Shatzkes (MS) model [48, 49] is a semiclassical model of transport

through a thin metal film punctuated by grain boundaries. Since the model is semi-

classical, it does not differentiate between crystal grains on the two sides of the bound-

ary, and in fact treats all crystalline regions in between boundaries via semiclassical

transport with some mean free path λ0 [48]. Moreover, it contains no microscopic

treatment of grain boundaries and does not allow for scattering, only undeflected

transmission or specular reflection.

The MS model assumes that all grain boundaries have “bamboo structure,” mean-

ing that they extend across the film, perpendicular to the film’s surface (Figure ??).

So the transport direction z is normal to the grain boundaries [48].

The grain boundaries are represented by the potential

V (~r) = Sδ (ẑ · ~r − z0) ,

where z0 is the location of the grain boundary and S is the strength of scattering from

a single boundary. Note that this potential depends only on the z-coordinate, so mo-

mentum is conserved in the x and y dimensions. Combined with energy conservation,

this requires that

~k = (kx, ky, kz) −→ (kx, ky,±kz)

under scattering.
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Figure 2.1: Distribution of grain boundaries and geometry of the Mayadas-Shatzkes
(MS) model. Figure is taken from [48].

The MS model further assumes that grain boundary locations are distributed

randomly by a Gaussian distribution with some mean separation d and standard

deviation s (see Figure 2.1). The mean d is generally taken to be equal to the observed

grain size D, and s is assumed large compared to the Fermi wavelength [49]. This

leads to the most commonly-used form for conductivity in the MS model:

σ

σ0

=
ρ0

ρ
= 3

[

1

3
− 1

2
α+ α2 − α3 ln(1 + 1/α)

]

, (2.1)

where

α ≡ mS2

h̄3dkF

2τ ≡ λ0

D

R

1 −R
, (2.2)

σ0, ρ0, and λ0 are the bulk conductivity, resistivity, and mean free path, and the

boundary reflectivity R has been defined in terms of the delta-function strength S.

R is equivalent to the probability of reflection for an incident electron wavefunction.

Over most of the range of α, Eq. (2.1) can be approximated by [20]:

ρ

ρ0
≈ 1 + 1.39α = 1 + 1.39

λ0

D

R

1 − R
. (2.3)

It is common when applying the MS model to assume that D ∼ L, that is, grain

size is roughly equal to film thickness. This follows from observations in the original



15

MS papers [49, 47] that these two variables scale together. This was primarily based

on observations of films deposited by evaporation, but still is roughly applicable for

other deposition methods. While the damascene method can mitigate this to some

degree by depositing larger-grained metals which are subsequently polished back to

the desired nanoscale thickness, grain size still decreases with wire dimensions, so

grain boundary scattering is potentially important in nanowires.

The Mayadas-Shatzkes model makes many assumptions, which we summarize

here:

• Transport is semiclassical between grain boundaries.

• Grain boundaries are perpendicular to transport.

• Grain boundaries are translation-invariant along the boundary.

• Transmission at grain boundaries can be characterized by a single parameter R.

• All boundaries in a sample are identical (same R).

Some of these assumptions are clearly objectionable, and it seems likely that some

may be wrong in a way that affects the final result. Let us consider the assumption

of translation-invariant boundaries. In the presence of bulk scattering, velocities are

randomized within a few mean free paths of the boundary, so the assumption of spec-

ular reflection or undeflected transmission may not matter, as long as R matches the

average reflection probability. But if grain size is comparable to mean free path, or

several boundaries are particularly close together, then the particular states transmit-

ting through one boundary and incident on a second may affect overall transmission.

We simulate just such a system in Chapter 5, and we will further explore the

validity of the MS model in Section 5.5. While the MS model may make unrealistic

assumptions, it is currently the standard model used to extract boundary transmis-

sion information from experiments on conduction. The MS model remains one of the
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few ways to bridge the gap between microscopic physics and macroscopic conduction

experiments. Doing a first-principles simulation of two or more grain boundaries sep-

arated by a realistic grain size, together with the effects of bulk and surface scattering,

is not currently practical. It is the aim of this thesis to narrow the gap between theory

and observations with the computing power currently available.
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Chapter 3

NON-EQUILIBRIUM ELECTRONIC TRANSPORT IN

METALS

This chapter will discuss the theory of electronic transport through a conduc-

tor with a potential difference. It will review the Boltzmann Transport formalism

and compare and contrast with Landauer Theory, a formulation particularly useful

for mesoscopic systems. Landauer Theory is a special case of the Non-Equilibrium

Green’s Function (NEGF) Method, the calculational technique used in the present

research to model grain boundary and interface scattering.

3.1 Boltzmann Transport

The Boltzmann Transport Equation (BTE) is a classical time evolution equation for

a system of particles through phase space. It is notable because despite the key

assumption of molecular chaos [30], it is very general and powerful.

Within the context of electronic transport, BTE is best suited to scattering-limited

transport, when the phase coherence length of electrons is small, and therefore quan-

tum mechanics makes negligible corrections. In a typical calculation, it is assumed

that there is semi-classical propagation between scattering events; scattering must be

calculated separately in quantum mechanics, and therefore outside of the confines of

the Boltzmann formalism.

The Boltzmann Equation is closely related to the Liouville equation, and both

express the conservation of particles in Hamiltonian flows. However, unlike the Li-

ouville equation which is defined in configuration space, the BTE is defined in phase

space. So it is possible for particle density to flow due to interactions and other forces.
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This is expressed by the non-vanishing right hand side of the Boltzmann equation in

steady state:

dfk

dt
−

(

∂fk

∂t

)

Ext.Field

−
(

∂fk

∂t

)

drift

=

(

∂fk

∂t

)

collis

= I. (3.1)

Here the collision integral I defined by:

I ≡
∑

k′

(fk′ − fk) W (k′, k), (3.2)

where W is a transition probability from k to k′ due to interparticle interactions

(typically collisions). The other partial derivatives are given by

(

∂fk

∂t

)

Ext.Field

=
−e ~E
h̄

· ∂fk

∂~k
,

(

∂fk

∂t

)

drift

= −~vk ·
∂fk

∂~r
.

Typically, such calculations make use of the relaxation time approximation

(RTA) [59, 64], which assumes that departures from equilibrium are small, and that

the nonequilibrium part decays exponentially:

(

∂fk

∂t

)

collis

= I ≈ − (fk − f 0
k )

τ
, (3.3)

where τ is a constant known as the relaxation time. Although our formalism for

surface scattering in Chapter 4 will be based on a rigorous quantum mechanical

formulation in NEGF by Meyerovich et al [52], the results are formally analogous to

BTE, and τ in that chapter can be understood the same way as here. As we do in

Chapter 4, one must typically compute the W and τ quantum mechanically, according

to Fermi’s Golden Rule. We will identify τ with the momentum loss time, which is

computed from the transition rates W as the typical time it takes to lose momentum

~k:

1/τ =
∑

~k′

W (~k, ~k′)
~k · (~k − ~k′)

k2
. (3.4)

Note that a grain boundary or interface between materials, unlike surface scatter-

ing, is not a small perturbation. Boundaries and interfaces have large spatial extents,
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involve many dislocated and disordered atoms, and have different crystals on either

side. In these systems, quantum effects are also important. Therefore, for our calcu-

lations in grain boundaries and interfaces, we will use Landauer Theory and NEGF

to model conduction.

In steady state in the Boltzmann picture, the electron density reaches a uniform

distribution:
∂fk

∂~r
= 0 =

(

∂fk

∂t

)

drift

,

and
dfk

dt
= 0.

So mobility

µ ≡ d~v

d ~E

is given by µ = qτ/m, and current is limited by carrier velocity in response to scat-

tering.

3.2 Landauer Theory

We discuss Landauer Theory before delving into the NEGF formalism because it is

simpler, more physically transparent, and frequently adequate. In fact, Landauer

Theory is equivalent to NEGF when electron-electron, electron-phonon, and similar

dissipative interactions can be neglected [16].

To motivate the Landauer formalism (and as a concise way of understanding it),

one may ask the question: If transport is not limited by scattering, is it limited at all?

Traditionally, physicists have thought of transport as a balance between acceleration

and scattering. If one removes scattering mechanisms (or considers conductors so

short as to compare to a mean free path), one has “an ideal conductor” that responds

to applied fields with “infinite current.” Although the Boltzmann formalism can give

a more realistic answer by tuning the carrier free path such that it is not longer than

the total conductor length [15], the typical Boltzmann treatment, in which electrons
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Figure 3.1: Schematic process illustrating Landauer Theory

are exposed to an electric field uniform throughout space, does not provide an obvious

mechanism to limit conductivity.

Landauer theory, by contrast, makes explicit that current is limited by total poten-

tial difference. The Landauer picture is one of steady state, where electrons traveling

through the conductor remain in equilibrium with their reservoir of origin (Fig. 3.1).

As illustrated in Figure 3.1, net current flows due to an imbalance in the carrier ve-

locities in the two reservoirs. Although the system is not in equilibrium, the carriers

in the conductor reach a mean energy intermediate between that of the two reservoirs

[17].

When the potential difference is sufficiently small, one can calculate the net current

as a linear response to voltage in accordance with Ohm’s Law. Here we do so following

a discussion adapted from [16]. For a ballistic conductor (an ideal conductor limited

only by voltage drop and the number of charge carrying modes), this follows simply

from counting the current from each mode:

I = I+ − I− =
2e

Lz

∑

~k: kz>0

vz(~k) {fL (E(k)) − fR (E(k))} (3.5)

where I is a difference between forward- and reverse-moving currents I+ and I− in

the z−direction, and Lx, Ly, and Lz are the dimensions of the conductor (which can
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be taken → ∞ if desired). Here the current from a single mode is

Iz,k = jzLxLy = ρ vzLxLy =
2evz

Lz

,

with a factor of 2 for spin. We have used the reflection symmetry of the Fermi surface

to write

vz(kx, ky,−kz) = −vz(kx, ky, kz).

Then the only difference between I+ and I− is a relative minus sign and the equilib-

rium electron populations fL and fR in the originating reservoirs. Since the electrons

remain in equilibrium with their electrodes of origin, these are just Fermi distributions

centered at EF and EF + eV .

We assume eV � EF for linear response. It is helpful but not necessary to take

kT � eV so we do not have to consider smearing of Fermi levels. We convert the

discrete summation to integration using d3k = (2π)3/LxLyLz:

I =
2eLxLy

(2π)3

∫

kz>0

d3k vz(~k) {fL (E(k)) − fR (E(k))} ,

and break the integration into a portion d2k|| tangent to the constant energy surface

and a portion dk⊥ ∝ dE in the direction of the group velocity

~v(~k) =
1

h̄
~∇kE =

dE

h̄dk⊥
k̂⊥.

We next note that

vz dk⊥ =
1

h̄

dE

dk⊥
k̂⊥ · ẑ dk⊥ =

dE

h̄
k̂⊥ · ẑ,

so that

I =
2eLxLy

h(2π)2

∫

dE {fL (E) − fR (E)}
∫

d2k||(k̂⊥ · ẑ) ≡ 2e

h

∫ EF +eV

EF

dE M (E) .

Here we have used the low temperature limit of fL and fR and have defined

M(E) ≡ A

(2π)2

∫

d2k|| (k̂⊥ · ẑ) =
A

(2π)2

∫

d2k,
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with A = LxLy. In the last equality, we use Gauss’ Theorem to write M(E) as an

integral over a cross section of the constant-energy surface. So M(E) is equal to

the number of forward-moving modes with cutoff energy EC < E [16]. For linear

response1, we must take

eV � M(E)

dM/dE
,

so that M(E) ≈ M(EF ); in other words, both reservoirs have the same conduction

electron density. Then:

I0 =
2e2

h
M(EF ) V ≡ GV, (3.6)

where we have introduced the symbol I0 to represent ballistic current. We find that

conductance per unit cross section G/A in a ballistic conductor is “quantized” in units

of 2e2/h = 77.5 µS [16, 17]! This is due to the finite number of charge carriers, or

equivalently, the finite number of modes inside the Fermi surface of a conductor of

finite size.

To add elastic scattering to the picture, we insert a transmission probability for

each mode ~k

T (~k) =
∑

~k′ : k′
z>0

P~k→~k′ =
∑

~k′ : k′
z>0

∣

∣

∣

〈

~k |S| ~k′
〉∣

∣

∣

2

, (3.7)

where S is the usual scattering S matrix as in Refs. [66, 50]. This approach is well

suited to static scatterers like impurities and grain boundaries, where carriers either

reflect or continue with the same energy. Note that in a steady state (over length scales

smaller than a mean free path), net current is the same for all forward moving modes

because the density of states at a given (kx, ky) and |vz| are inversely proportional

on an energy surface. We saw this already in the derivation of Eq. (3.6). For this

reason, only T in (3.7), and not vz in the final state, matters for the current. Over

larger length scales, bulk scattering would keep the small-vz states from contributing

as much to current.

1In this work, we are interested only in the lowest order response to an applied field. But
calculations for finite bias can also be done by keeping the integrals over E.
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By the same reasoning, we can replace T (~k) by its average T̄ /M , where

T̄ ≡
∑

~k

T
(

~k
)

(3.8)

is known as the transmission function [16]. The result for the current is

I =
T̄ (EF )

M (EF )
I0 =

2e2

h
T̄ V. (3.9)

Much of the rest of this thesis will be devoted to calculating T (~k) and T̄ for grain

boundaries and interfaces. These results can be made equivalent to the Boltzmann

Formalism by tuning T̄ [15].

Formally, the Landauer picture is valid when dissipative interactions, like phonon

and electron-electron scattering, that would break the equilibrium between the elec-

trons and their originating electrodes are negligible. Landauer theory can be extended

to treat electron-electron interactions at a mean field level by considering electrons

as quasiparticles; but it does not generally incorporate fluctuations about this mean

or phonon scattering2. The strength of the Landauer formalism is its intuitive trans-

parency in situations to which Boltzmann Transport is poorly suited, such as meso-

scopic systems where length scales of transport are small compared to the phase

coherence length and mean free path.

3.3 Non-Equilibrium Green’s Functions

The NEGF formalism, also known as the Keldysh formalism, is valid when quantum

correlations are important, but when dissipative interactions are also present [16]. It

can be thought of as an extension of Landauer Theory to cases with dynamical scatter-

ing, or of Boltzmann Transport to cases when propagation is quantum mechanical. To

put matters even more simply, Landauer Theory becomes NEGF when one calculates

transmission probabilities T in terms of Green’s functions and self-energies.

2See, however, [31].
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In this thesis, we use NEGF to calculate the transmission probabilities (3.7) across

grain boundaries and interfaces between materials. Clearly, such systems, which have

disorder on atomic length scales, require a quantum treatment. However, far from the

interface or boundary, such systems have regular crystals and scattering is dominated

by phonons, which as usual can be treated as perturbations to semiclassical transport3.

Therefore, we do not need to consider the regions far away from the boundary or

interface. Nor do we simulate phonons in the boundary, although any synergistic

effects between phonons and the boundary are likely accounted for by lattice disorder

[63]. Our treatment is a fully quantum-mechanical calculation from first principles in

Density Functional Theory [38, 37] (DFT; see Section 3.4 for a brief overview), and

is non-perturbative.

3.3.1 Overview

Essentially, NEGF or the Keldysh formalism is diagrammatic perturbation theory

applied to the meta-stable electronic states that can interact with phonons, other

electrons, and other impurities, and hence can decay. A recommended introduction

to NEGF is given in [16].

NEGF can be best understood by considering corrections to the free-electron gas

model, also known as the Sommerfeld Model, of normal metals [8]. The Sommerfeld

Model works surprisingly well, considering the strength of the Coulomb interactions

between electrons [8]. There are many approaches to correcting this model, including

Hartree-Fock Theory and Fermi Liquid Theory. Although these methods approach

interactions differently, most of them treat interactions at a mean-field level by

representing the electronic ground state by single-particle states exposed to a mean

3However, as we will see in Section 5.5, our research indicates flaws in the Mayadas-Shatzkes
model, which assumes that transport between grain boundaries is semi-classical. This could be
because boundaries are close enough to interact, or it could be due to other assumptions in MS,
such as that transmitted electrons are undeflected by the boundary or that R is independent of
incident angle.
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field potential from the other electrons [8]. Although electron-electron interactions can

be strong, the fluctuations about this mean-field level are small. So the Sommerfeld

Model is very nearly valid, provided we remember that the free-gas particles are

actually not electrons, but fluctuations called quasiparticles about the mean field.

Fermi Liquid Theory makes explicit that the “electrons” in the free-gas model are

actually quasiparticles, or perturbations about the ground state of the system. In

a metal, a quasiparticle is simply an interacting electron excited slightly above the

Fermi surface, together with the cloud of electrons that screen the excited electron’s

charge. Clearly, any quasiparticle excited above the Fermi surface can decay into

available states lower in energy. The mechanism that makes this decay possible –

and therefore makes a quasiparticle not an eigenstate of the full Hamiltonian – are

interactions with phonons, lattice impurities, and other electrons through fluctuations

in the mean electron density.

Before we move on to learning NEGF, consider that in principle, the metal as a

whole has a Hamiltonian with a complete set of energy eigenstates. A key concept

is that we do not need to know the eigenstates of the full conductor Hamiltonian

in order to study transport. Even if the conductor were isolated from the rest of

the world, finding such eigenstates would be very difficult, but is unnecessary. The

reason is that interactions4 are small and can be treated perturbatively. If interactions

were extremely strong, one would need to be prepared to treat the whole system of

interacting particles (the lattice as well as the electrons) if one wanted to say anything

about the physics of conduction. Because interactions are perturbative, the simpler

description in terms of quasiparticles is very accurate. The real conductor contains

conducting quasiparticles with long lifetimes.

Throughout this thesis, we can use the terms “quasiparticle” and “electron” inter-

changeably, provided we remember that a quasiparticle is an electron together with

4The term interactions is used generically to refer to fluctuations about the mean electronic field
as well as to interactions with phonons and defects.
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the average cloud of charge density that follows it around due to electron-electron

interactions.

3.3.2 Theory

The fact that quasiparticles are not exact eigenstates, but weakly interacting particles,

leads to two effects:

• A shift in the energy levels of quasiparticles due to the energy of interaction.

• A broadening of the quasiparticle energies due to the fact that the eigenstates

are no longer exact. This is equivalent to a finite lifetime.

Both of these effects can be treated by adding a self-energy

Σ = Re{Σ} + i Γ (3.10)

to the quasiparticle energy [5, 16].

The (retarded) Green’s function of the system is defined as

G(E) ≡ lim
δ→0+

[(E + iδ)1 −H]−1 (3.11)

and is a propagator for the full Hamiltonian [66, 50, 26, 16] containing full information

about the system’s dynamics. When we refer to the Green’s function G it should be

understood to mean the retarded one, and we will use G† to refer to the advanced

Green’s function. We will also not explicitly write iδ, but it should be understood to

be present unless we explicitly specify otherwise.

Let us assume there is some unperturbed (quasiparticle) Hamiltonian H0 subject

to some perturbations (interactions or leads). Then

G(E) = [E −H0 + Σ]−1,

where Σ is the self-energy of the perturbation [16]. This equation means that we

can continue to treat the system from a single-particle point of view and simply
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correct H0 by including the self-energy Σ. The imaginary part Γ of Σ gives rise

to finite quasiparticle lifetime (broadening of levels), and the real part to shifts of

the unperturbed energy levels. Computing the self-energy for interactions [16] is in

general a complex problem, but here we will discuss only self-energies for electrodes

(see Sec. 3.3.4).

3.3.3 Fisher-Lee Relation

The Fisher-Lee relation [23, 16] is a relationship between the scattering S matrix

and the Green’s function of the system. That such a relation exists is completely

reasonable since the S matrix is often defined as the propagation over the limit of

very long times of incoming asymptotic states into outgoing ones, and the Green’s

function is a propagator for the full Hamiltonian [66, 50, 26, 16].

The Fisher-Lee relation applies to problems like ours with a localized scattering

source and well-defined free states far from the scatterer. In scattering theory, a lo-

calized scatterer generally means a small target particle to be treated in spherical

coordinates, but for the conduction problem we work in planar geometry with trans-

port direction z. Following Datta [16], we use a separate coordinate system in each

lead with origin at z → ±∞, so that we do not have to consider the eikz-dependence5

ofG. Then the Fisher-Lee relation follows immediately from writing down the Green’s

function G as a sum over propagating modes times the amplitude (given by the S

matrix) to be in the mode:

G(ρ, 0; ρ′, 0) = −
∑

m∈L, n∈R

i Snm

h̄
√
vmvn

ψm(ρ) χ∗
n(ρ′) (3.12)

using cylindrical coordinates ρ ≡ (x, y) and the two origins z = 0 and z ′ = 0 deep

inside the left and right electrodes, far from the scatterer.

5Equivalently, where one sees G(ρ, 0; ρ′, 0), one can substitute the Green’s function G(ρ, z; ρ′, z′)
divided by its z- and z′-dependence.
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Here ψm and χn are a basis of transverse modes for the left and right electrodes and

vm and vn are their group velocities in the z direction. We assume the eigenfunctions

of the leads are ψm(ρ) eikz or have a similar Bloch-like z-dependence. Then ψ and χ

obey orthogonality relations in the transverse dimensions:

∫

ψ∗
m(ρ) ψn(ρ) d2ρ = δnm.

The Fisher-Lee relation follows immediately:

Snm = ih̄
√
vnvm

∫

χn(ρ′) G (ρ, 0; ρ′, 0) ψ∗
m(ρ) d2ρ d2ρ′ (3.13)

with m ∈ L, n ∈ R.

With the Fisher-Lee relation, we see that we can calculate all our desired trans-

mission probabilities, Eq. (3.7), in terms of the Green’s function G for propagation

across the scattering region. As we discussed above, we can find the Green’s func-

tion for the full system by including the self-energies of the various interactions. We

will not explicitly describe the calculation of interaction self-energies because we do

not treat these in the present work (for an overview, see [16] and references therein).

However, lead self-energies are central to our method.

3.3.4 Couplings to Leads

Phonons and electron-electron interactions cannot be “turned off.” But lead self-

energies provide a nice illustration of NEGF concepts, because the isolated conductor

without leads is a quantum system with exact, quantized energies [17, 16]. Then the

coupling of this conductor to electrodes broadens and shifts the energy levels [17].

NEGF treats this sytem in a way very analogous to a statistical mechanics treat-

ment of an open system. In statistical mechanics, switching from an isolated system

to one in contact with a particle bath requires a switch from the system internal

energy U to the thermodynamic potential, U − µN [64, 30]. When we connect our
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conductor to its leads, we switch from the Hamiltonian Hc for a quasiparticle in the

isolated conductor to a modified Hamiltonian Hc + Σ.

To make this explicit, consider the Hamiltonian

H =





He τ

τ † Hc





of the conductor Hc coupled by τ to a periodic semi-infinite electrode with Hamilto-

nian He. We wish to cut off part of this infinite chain (see Figure 3.2) in a way that

does not cause reflection. Then

G(E) =
1

E −H
=





Ge −geτGc

−gcτ
†Ge Gc



 (3.14)

with

ge ≡ (E −He)
−1, gc ≡ (E −Hc)

−1

the Green’s functions of the isolated electrodes and conductor, and

Ge ≡ (E −He − Σe)
−1, Gc ≡ (E −Hc − Σc)

−1

the Green’s functions for the open interacting electrodes and conductor.

Note that, as promised in Sec. 3.3.2, the conductor Green’s function Gc is modified

from its isolated counterpart gc only by a lead self-energy

Σc ≡ τ †geτ. (3.15)

Likewise, the electrode Green’s function Ge is modified from ge by

Σe ≡ τgcτ
†.

Eq. (3.14) can be verified by direct multiplication.

Physically, the anti-Hermitian part Γ of Σ (Eq. (3.10)) represents particle “annhila-

tion” and “creation” due to inflow and outflow at the contacts between the conductor
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Figure 3.2: Including a finite part of the infinite electrodes in the simulated cell. The
rest of the electrodes can be included by a lead self-energy. This figure is taken from
[10].
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and electrodes. Since we are only interested in the Green’s function for propagation

from the left electrode across the scattering region (generally the self-energy also in-

cludes a contribution from the right electrode, Σ = ΣL + ΣR), we can work only with

Gc. So we can take into account the effect of the lead completely by including it as a

self-energy.

3.3.5 Calculating Conductance

The total current is given by Eq. (3.9), with the transmission T̄ defined by (see

Eqs. (3.7) and (3.8))

T̄ =
∑

m∈L, n∈R

|Sm,n|2, (3.16)

where m and n are the modes in the left and right leads, respectively [16]. It follows

[16, 10] from substituting the Fisher-Lee relation (3.13) into Eq. (3.16) that

T̄ = Tr
[

ΓL G
† ΓR G

]

, (3.17)

with ΓL,R = Im {ΣL,R} the anti-Hermitian part of the lead self energies from Eq. (3.15).

Based on this, we make the definition [10]

t ≡ Γ
1/2
R G Γ

1/2
L (3.18)

of the (left-to-right) transfer matrix, so that

T̄ = Tr t†t. (3.19)

Note that the left and right leads generally can have different bases UL and UR of

(asymptotic) eigenstates [10]. So

t = UR diag{|τn|} U †
L

is the left-to-right portion of the scattering S matrix, and

t† = UL diag{|τn|} U †
R
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is the right-to-left one. The full S matrix [23]

S =





rL t†

t rR





is unitary as usual, giving relationships like r†LrL + t†t = 1. If the system obeys

time-reversal symmetry, then

〈−~k | t | − ~k′〉 = 〈~k
∣

∣ t†
∣

∣ ~k′〉, (3.20)

where ~k and ~k′ are asymptotic states in the right and left electrodes. But even without

this symmetry, the properties of the trace guarantee that

T̄ = Tr {t†t} = Tr {t t†} =
∑

n

|τn|2. (3.21)

In other words, for a system with two leads, the transmission function is equal in

either direction [16].

3.3.6 NEGF Calculations in this Work

In this work, all NEGF calculations (Chapters 5 and 6) have been done using Atom-

istix, a commercial NEGF code. Atomistix is described in Ref. [10] and references

therein.

As described there, Atomistix simulations proceed by calculating the Green’s func-

tions ge for the isolated semi-infinite leads (regions “B” in Fig. 3.2; represented by

an atomic structure with periodic boundary conditions), then including these as a

self-energy in the main calculation of Gc. The central or interacting region Gc is

represented, as in Fig. 3.2, as an atomic structure in a cell with periodic boundary

conditions transverse to the transport direction.

Atomistix then calculates the transmission amplitude matrix t, as in Eq. (3.18),

from the Green’s function Gc(E) for propagation from one lead to the other.

The entire Gc(E) calculation is done on a region called the supercell (shown in

the box labeled “H correct” in Fig. 3.2), which consists of the central region and one
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periodic cell each of the left and right electrodes. In Atomistix, the central region must

terminate in layers that match the structure of the electrodes, so that the electrodes

and central region can be joined unambiguously. The entire supercell has periodic

boundary conditions transverse to the transport direction.

Atomistix uses Density Functional Theory (DFT; described in the next section) to

find self-consistent effective electronic potentials in response to the atomic structure

and the lead self-energies. Atomistix is based on TranSIESTA [10], an extension of the

static DFT code SIESTA [72] to handle transport calculations using lead self-energies.

3.4 Density Functional Theory

Within the context of NEGF, our calculations use Density Functional Theory

(DFT) to treat the many-body problem of conducting electrons. We give only a very

brief overview here, as DFT is a well-known topic and many good reviews exist. Some

recommended starting points are Refs. [38, 37].

Density Functional Theory is a formally exact approach to calculating the ground

state of a many-electron system. It is similar in spirit to Thomas-Fermi Theory

and Hartree-Fock Theory, except that it includes both exchange effects and electron-

electron Coulomb interactions exactly [38]. Unlike other exact approaches, it focuses

on the electron probability density n as the fundamental variable of the ground state.

The Kohn-Sham [38] formulation of DFT states that the ground state energy E

and density n of a quantum system of N interacting particles are given by

E =
N

∑

j

εj + EXC [n] −
∫

VXC(r) n(r)d3r − 1

2

∫

n(r) n(r′)

|r − r′| d3r d3r′ (3.22)

and

n(r) =
N

∑

j

|φj(r)|2 (3.23)

where the φj are like independent particle states. That is, these states obey a single
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particle Schrodinger equation called the Kohn-Sham (KS) equation:

(

− h̄
2∇2

2m
+ Veff

)

φj = εj φj . (3.24)

But note that the definitions of VXC , EXC , and Veff are recursive:

Veff(r) ≡ V (r) +

∫

n(r′)

|r − r′|d
3r + VXC(r),

VXC(r) ≡ δ

δn(r)
EXC ,

EXC [n(r)] ≡ F [n(r)] − Ts[n(r)] − 1

2

∫

n(r′)n(r)

|r − r′| d
3r,

where F [n(r)] is the minimum value of kinetic plus interaction energy, T +U , for any

electronic wavefunction ψ, subject to the constraint that ψ gives rise to density n.

Ts[n(r)] is the kinetic energy of a set of noninteracting electrons with density n [38].

We give these recursive definitions here primarily to point out that solving the KS

equation must generally be done self-consistently, by iteration.

One should also note that DFT emphasizes that knowledge of the ground-state

density n, in addition to the fact that the ground state always obeys the the Rayleigh-

Ritz Minimum Principle

Egs = min
Ψ

〈H〉 = min
Ψ

〈Ψ |H|Ψ〉
〈Ψ|Ψ〉 ,

is sufficient to calculate the external potential V and therefore the full Hamiltonian

and all expectation values of the system [12]. Hence, DFT makes n the central variable

of (ground-state) quantum mechanics, a directly observable quantity that in principle

contains complete information about the system.

However, in practice, solving the KS equations for n (or using n to compute other

observables) is impossible without making some approximations [38, 37]. In addition

to choosing a form for EXC [n], which is a huge topic in itself [38, 37], one must also

truncate the self-consistent search for n. In particular, our calculations use DFT only

at the mean field level [10]. In other words, while DFT in principle can account for
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the electron-electron interactions exactly, in practice we treat the KS eigenstates as

noninteracting quasiparticle states when calculating quantities like electronic current.

Thus DFT becomes a mean-field theory like Hartree-Fock theory, where electronic

states are single-particle KS states solved in a self-consistent mean Coulomb field

(with exchange effects) of the other electrons.
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Chapter 4

SURFACE SCATTERING

In this chapter, we investigate the detailed dependence of conductivity on surface

roughness profile and analyze the resulting technological impact.

4.1 Theoretical background

The first quantitative treatments of surface and size effects in thin films or wires

were the semiclassical methods of Fuchs [24] and Sondheimer [73]. These approaches

assume a ratio p of carrier collisions with the surface reflect specularly, while 1 − p

scatter diffusely. Such theories can be fit to experiment with p as a free parameter,

but do not provide insight into how to improve conductivity.

More recently, surface roughness scattering has raised the attention of researchers

in industry [13, 33, 34], and quantum mechanical approaches to surface scattering

calculations have been proposed. The two primary approaches include the Kubo

linear response theory of Tes̆anović et al. [77] and Trivedi and Ashcroft [80], and the

diagrammatic Keldysh formalism of Meyerovich and collaborators [52, 53, 51]. Here

we follow the approach of Meyerovich et al., which is readily applied to arbitrary

surface roughness profiles. We calculate the contribution of each spatial frequency of

surface roughness and convolve with roughness data extracted from experiments to

gain insight into the nature of surface roughness scattering.

In our conductivity calculations, we consider a thin film because it reproduces the

major qualitative results of a wire (and matches quantitatively when Eq. (4.11) below

holds), while avoiding strong localization and other effects that make 1D systems

problematic to deal with theoretically [51, 42]. For the technologically important 10-
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100 nm scale, wire conductivity can be accurately estimated by combining effects of

scattering from sidewalls to that from top and bottom surfaces.

In a thin film of thickness L, boundary conditions at the surfaces lead to a density

of states quantized in the transverse direction. As a result, the conduction band,

described as the set of states at the Fermi energy, is broken into subbands with

continuous parallel and quantized transverse components of the Bloch wavevector

(Figure 4.1). Conduction states are then described by a subband index j and a 2D

wavevector ~kj, subject to the constraint that the total energy is equal to the Fermi

energy:

E =
h̄2

2m∗

[

(

πj

L

)2

+ k2
j

]

= EF (4.1)

(We treat the Fermi surface as effectively spherical, which is particularly appropriate

for the best conducting metals, Ag, Cu, and Au). Even in a perfectly smooth film,

this quantization leads to thickness-dependent conductivity, and to the quantum size

effect (QSE), caused by the quantized dependence of the density of states on thickness

[80] which is significant for very thin films (<5nm).

Theoretical approaches to rough surfaces [77, 52] employ a (non-unitary) trans-

formation to map the film with position-dependent thickness

L+ h1(x, y) + h2(x, y),

where h1 and h2 are the deviations in the top and bottom surfaces from their average

level, into a flat film with bulk (non-Hermitian) perturbations. Here we assume that

both random functions h1 and h2 have the same correlation function,

ζ(~x) ≡
∫

h(~x′) h(~x′ + ~x) d2x′. (4.2)

The scattering then depends on the power spectral density (PSD) of the roughness,

defined as the Fourier transformed surface height correlation function

ζ(~k) =

∫

ei~k·~x ζ(~x) d2x (4.3)



38

Figure 4.1: Quantization of electronic states into subbands in a thin film. Depicted
schematically is a constant-energy surface in k-space (an actual wave function would
be a standing wave, not propagating, in the vertical dimension) and a top view of
this surface. Only discrete values of kz = πj

L
are allowed in the vertical dimension,

which represents the dimension in which the film is thin. Note that higher-j subbands
have smaller in-plane kj, and that the spacing between these is larger than for the
lower-j subbands. This fact will be important in understanding the importance of
quantization for low-spatial-frequency roughness.
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We assume that the correlation function and PSD are isotropic, ζ(~k) = ζ(|~k|).
In [52, 51], a general isotropic 2D roughness power spectrum ζ(|~k|) is treated

with diagrammatic perturbation theory. By Fermi’s Golden Rule, the presence of

roughness at spatial frequency k allows a transition from initial state ~ki to final state

~kf if

k = |~ki − ~kf | =
√

k2
i + k2

f − 2kikf cosχ,

where χ is the angle between initial and final carrier momentum. So the PSD de-

termines both the intra- and interband transition rates, and hence a momentum loss

rate matrix [51]:

Wjj′(χ) =
2h̄

(m∗L)2

(

πj

L

)2 (

πj ′

L

)2

ζ (kj, kj′, χ) , (4.4)

(τs)
−1
jj′ =

m∗

2

∑

j′′

[

δjj′W
(0)
jj′′ − δj′j′′W

(1)
jj′

]

. (4.5)

Here h̄kj is the in-plane momentum satisfying (4.1) for subband j, j and j ′ are the

initial and final subbands, ζ (kj, kj′, χ) = ζ(
√

k2
j + k2

j′ − 2kjkj′ cosχ), and superscripts

denote (2D) angular harmonics:

W
(n)
jj′ ≡ 1

π

∫ 2π

0

dχWjj′(χ) cos(nχ). (4.6)

The difference of angular harmonics in Eq. (4.5) can be thought of as analogous to

the projection of momentum loss in the transmission direction in Eq. (3.4).

In the surface roughness-limited case (negligible bulk scattering), conductivity is

given by

σs = 1/ρs =
τs ne

2

m∗
=

e2

2π m∗L

∑

jj′

kj τjj′ kj′, (4.7)

where ρs is resistivity, the scalar τs is the overall surface-limited relaxation or mean free

time, n = k3
F/3π

2 is carrier density, and 1/τs ∝ ρs is the overall surface momentum

loss rate. Note that our definition differs from [51] by an extra factor of 3/2πL because

we use the usual 3D conductivity, as in [80].
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To combine bulk and surface scattering, we extend the method in [80], adding

momentum loss rates within subbands, to the case with interband transitions by

adding matrices: τ−1 = τ−1
b + τ−1

s . Since the primary bulk scattering mechanism at

room temperature, acoustic phonons, is nearly isotropic [79], we use

(τb)
−1
jj′ =

vF

λb

δjj′,

with vF = 1.6× 108 cm/s the Fermi velocity and λb = 39 nm the bulk mean free path

for copper.

4.2 Results

Adding matrices produces very different results from adding the scalars 1/τ ∝ ρ.

Matthiessen’s rule, which states that ρT = ρ1 + ρ2 for independent (series) resistivity

mechanisms, breaks down in thin films when combining bulk and surface scatter-

ing [76, 53, 80, 56] (Fig. 4.2 below). This breakdown can be understood because,

absent bulk scattering, conductivity is dominated by carriers with momentum nearly

parallel to the surface (low j) which rarely scatter from the surface. To consider

surface scattering together with bulk scattering, we define

ρeff
s ≡ ρ− ρb, (4.8)

the effective surface roughness contribution to resistivity, which is independent of ρb

to first order (see Sec. 4.4).

To study the effect of individual spatial frequencies of roughness on resistivity, we

perform a first order functional expansion on ρeff
s . We define the first variation in ρeff

s

with respect to the PSD component at wavevector with magnitude k0 as the response

to a special PSD:

ρeff
(ζk0

) =
l2

k0

δρeff
s

δζ(k0)
. (4.9)

Here ρeff
(ζk0

) is the response to a 2D PSD of the form

ζk0
(k) ≡ l2δ(|k| − k0)

k0
, (4.10)
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with 2πl2 the mean squared roughness of this PSD. The factor (l2/k0) in (4.9) is

necessary for consistent units.

Consistent with the validity of (4.4) – (4.7) to first order in roughness, we perform

a first order functional expansion of ρeff
s in ζ:

ρeff
(ζ) =

∫ ∞

0

k0

ρeff
(ζk0

)

l2
ζ(k0) dk0 + O

(

ζ2
)

(4.11)

Here the LHS is the resistivity from an arbitrary 2D isotropic PSD ζ, and ρeff
(ζk0

) in

the RHS is given by Eq. (4.9).

The angular harmonics for (4.10) are given by

ζ
(0)
k0

(q, q′) =
2l2

πqq′ | sinχ| θ (k0 − |q − q′|) θ(q + q′ − k0),

ζ
(1)
k0

(q, q′) = ζ
(0)
k0

(q, q′) cosχ,

where θ is the Heaviside step function, and the delta function sets the angle χ between

the initial and final wavevectors

cosχ =
q2 + q′2 − k2

0

2qq′
. (4.12)

Our results for the functional derivative (4.9) for surface-only scattering 1/τs ∝ ρs

and effective rate with bulk scattering 1/τ eff
s ∝ ρeff

s are plotted in Figure 4.2.

We tested the relation (4.11) for several PSDs, including our fit to experimental

surface roughness data (see below). For the experimental fit, we find (4.11) holds to

2% for a 25 nm film and 1% for 100 nm. We conclude that, for films thick enough

that ρeff
s � ρ, Eq. (4.11) provides an effective calculation of resistivities.

We find that most of the range of k0 fits

1

τ eff
F it

=

(

1.2 · 1014

L
nm/s

) (

k

kF

)2.27 (

2 − k

kF

)2.31

. (4.13)

Although this fit fails for the very low-wavenumber tail of our results, this k0 regime

represents a very small part of the total k0 range and also has the least impact on

resistivity. So a good approximation for resistivity from arbitrary PSD ζ comes from

substituting Eq. (4.13) in Eq. (4.11).
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Figure 4.2: The momentum loss rate 1/τs ∝ ρs and 1/τ eff
s ∝ ρeff

s in response to a
single-frequency PSD (4.9), (4.10) in copper with l = 10 pm as a function of k0.
Note drastic breakdown of Matthiessen’s rule, with 1/τ eff

s � 1/τs.
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4.3 Discussion

4.3.1 Quantization

For larger k0 values, which dominate surface scattering, the thickness dependence of

the surface only resistivity is ρs ∝ L−2, as in [51, 80]. But for large L, we expect ρ to

approach the semiclassical result of Fuchs [24] and Sondheimer [73]:

ρ

ρb

=
ρb + ρeff

s

ρb

= 1 +
3

8

λb

L
(1 − p) . (4.14)

Fig. 4.2 indeed shows ρeff
s ∝ k2

0/L for most of the k0 range.

For very small k0 values, ρeff
s ∝ k0/L

2, while the surface-only rate actually increases

with L, ρs ∝ L. This can be explained by quantization. The subbands are spaced

closest together for lowest j (see Figure 4.1). So for k0 <
√

3π/(kFL), there is no

scattering between higher order subbands. As k0 becomes smaller, the cutoff subband

below which interband transitions due to surface roughness is forbidden gets lower and

lower. For extremely small k0 (k0 < 10−5kF for this plot), only intraband scattering

at angles ∼ k0/kF is allowed, and Eq. (4.10) behaves much like a smooth surface.

This limit can be derived analytically (see Section 4.4). The left side of Fig. 4.2 is

the regime where interband transitions are being introduced.

For ρs, an increase in L decreases the spacing between kj values, introducing

interband transitions between low j states where the spacing is smallest. Physically,

this couples states traveling nearly parallel to the film surface with other states that

interact much more strongly with the surface, providing a mechanism to increase ρs

with L.

For ρeff
s , in contrast, electrons in low j states are already frequently scattered by

bulk scattering. For small k0, only intraband scattering is possible, so there are always

two final states and ρeff
s ∝ k0/L

2. At higher k0, the number of available final subbands

becomes proportional to L, so ρeff
s ∝ k2

0/L.
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4.3.2 Surface Scattering for PSDs Measured in Real Films

As can be seen from Fig. 4.2, spatial frequencies near kF (shortest wavelengths) have

the strongest momentum loss, but the impact on conductivity depends on the actual

roughness PSD of metal films and wires. Any attempts to improve conductivity

will benefit from a knowledge of which components of surface roughness give the

most improvement for the resources spent. Theoretical calculations often assume

a Gaussian roughness spectrum, but experiments show that many PSD forms are

present depending on the wire deposition conditions [51], and that real PSDs can

fall of more slowly than Gaussian [22]. Unfortunately, the experimental literature on

surface roughness spectra for metals is limited and focuses on relatively large length

scales. Thus, we look to other materials. Feenstra et al. [22] observed that 1D STM

scans of InAs/GaSb superlattice interfaces showed Lorentzian distributions,

ζ(k) =
2Λ∆2

(1 + k2Λ2)
.

For isotropic roughness, this corresponds to a 2D PSD of the form

ζ(k) =
2πΛ2∆2

(1 + k2Λ2)3/2
, (4.15)

where Λ is the correlation length of surface roughness and 2π∆2 is the mean squared

roughness (statistical variance in surface height). Eq. (4.15) also fits the AFM results

of Moseler et al. [55] for Cu films with Λ = 18 nm, ∆ = 1.8 Å, as shown in Fig. 4.3.

Other experiments on copper films confirm a correlation length of ∼20 nm [35]. We

also fit [55]’s data to a Gaussian PSD, as shown in the figure. Because measurements

at high spatial frequencies (which have a particularly strong effect on scattering) are

lacking, our goal is to extrapolate from these fits1.

We can use extrapolations from the Moseler data to calculate the resistivity, or

1Ref. [22]’s STM of InAs/GaSb, which extends to wavevectors of 10 nm−1 compared to [55]’s
AFM up to 0.1 nm−1, supports the fit in Eq. (4.15). Note that the flattening near the highest
frequency is due to the finite sampling interval used in [55].
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Figure 4.3: Normalized roughness spectra for Cu films [55] compared to fits to
Eq. (4.15) with correlation length Λ = 18 nm and Gaussian with Λ = 1/σ = 25
nm. Both forms fit the available data, but give very different predictions of fall-off in
roughness at higher spatial frequencies.

equivalently the specular fraction p. Substituting (4.11) in (6.1):

p = 1 − 8

3

L

λb

∫ 2kF

0

k0 ζ (k0)
τb

l2 τ eff
s (k0)

dk0, (4.16)

which (for L >100 nm) is independent of L. We find p values of essentially 1 for the

Gaussian PSD and p = 0.96 (1 − p = 0.04) for Eq. (4.15). We get the same results

when we use the full PSDs directly as in Eqs. (4.4) – (4.7)

The fact that our analysis predicts highly specular (p ∼ 1) surface scattering for

technologically-achievable surface roughness suggests that surface roughness scatter-

ing is a surmountable barrier to high conductivity. We can extract the most important

components of roughness, taking into account both the relative strength of scattering

and the observed roughness spectra. The effective diffuse scattering rate as a function

of spatial frequency is shown in Fig. 4.4. More accurate measurements of the high

frequency portion of the PSD are clearly needed, as the frequencies above 0.1 nm−1

are most critical to conductivity degradation.
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Figure 4.4: Integrand of Eq. (4.16) with PSDs from Fig. 4.3. Diffuse fraction (1−p) ∝
ρeff

s is the area under the (1D) curve as shown. The tail of the PSD is seen to have a
major effect. The most important roughness components are 0.1 nm−1 < k0 < kF =
13.6 nm−1 for Eq. (4.15) and k0 ≈ 0.05 nm−1 for Gaussian.

Another way to understand these results is to note that for (4.15) with Λ = 18

nm, p = 90% corresponds to an RMS roughness of 7 Å, compared to experimental

measurements in the range 2 – 11 Å; see [14, 61, 84] and refs. therein.

4.3.3 Technological Impact

The experimental literature is somewhat mixed on the relative importance of surface

scattering. Many results suggest that the observed resistivity increase is dominated

by grain boundary rather than surface scattering [20, 74, 49, 46, 47, 83, 29], while

some extract values of p near 0 (diffuse rather than specular scattering) [61, 84]. As

we have seen, p depends strongly (O(l2)) on RMS roughness, which in turn depends

on anneal times, deposition conditions, and other process variables. Another inter-

esting explanation for this discrepancy may come from the experiment of Rossnagel

et al. [65], which we will discuss further in Chapter 6. They found that conductivity
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decreased strongly upon the deposition of an ultrathin Ta layer on top of a Cu film,

but that the conductivity recovered when the Ta film was exposed to air, thereby ox-

idizing to become insulating. These observations suggest that thin barrier/adhesion

layers rather than surface/interface roughness may be causing the apparent diffuse

surface scattering.

To summarize, we have found that bulk scattering can be included in quantum

models of surface scattering by adding τ−1 matrices. This leads to violation of Math-

iessen’s rule, but an effective surface resistivity ρeff
s independent of bulk scattering

can be extracted. The resistivity from individual wavelengths of roughness can be

convolved with roughness PSD to get ρeff
s for arbitrary surface. Our analysis sug-

gests that roughness with wavelength within 1-2 orders of magnitude of the Fermi

wavelength is the most critical for conductivity degradation.

The remainder of this chapter presents analytical approximations useful for un-

derstanding our results and performing simplified calculations.

4.4 Analytical Approximations

4.4.1 Expansion for ρs � ρb

We show by expanding in

τbτ
−1
s =

vF

λb
τ−1
s

that

1

τ eff
s

=
〈k, τ−1

s k〉
k2

+ O

(

vF τ
−1
s

λb

)2

. (4.17)

Here we borrow the notation of inner product,

〈k, τ−1
s k〉 ≡

∑

ij

ki (τs)
−1
ij kj,

and k2 ≡
∑

i k
2
i . Note that Eq. (4.17) is independent of bulk scattering to first order.

Moreover, it makes it unnecessary to invert τ−1 = τ−1
b + τ−1

s to find conductivity by
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Eq. (4.7) and then take the reciprocal to find resistivity. It also provides additional

justification for Eq. (4.11).

First we do the matrix inversion to first order. One can verify by substitution that

τ =
(

τ−1
)−1

= τb
[

1 + τbτ
−1
s

]−1
= τb

[

1 − τbτ
−1
s +O

(

τbτ
−1
s

)2
]

.

Then, from Eq. (4.7),

τ =
1

2πnL
〈k, τ k〉,

and

1/τ eff
s =

1

τ
− 1

τb
∼ 1

τb

{

2πnL

〈k, [1 − τbτ−1
s ] k〉 − 1

}

∼ 1

τb

{

2πnL

k2
(1 +

〈k, τbτ−1
s k〉

k2
) − 1

}

.

The derivation is completed by noting from Eq. (4.1) that

kj = kF

√

1 − j2/κ2,

where κ ≡ kFL/π, so

k2 = k2
F nc

(

1 − (nc + 1)(2nc + 1)

6κ2

)

kF L � 1−→ 2 k3
FL

3π

where nc = Int{κ} is the total number of subbands, and in the free-electron model,

n = k3
F/3π

2.

Eq. (4.17) holds very well for our 25 nm calculation, for which nc ∼ 100. Note

that Eq. (4.17) is by no means the same as the surface-only momentum loss rate,

1/τs ∝ k2/〈k, τsk〉, which would be the surface scattering rate in the absence of bulk

scattering. Eq. (4.17) is a first-order expansion in the presence of very large bulk

scattering.

4.4.2 Analytical Derivation of Low-k0 Limit of ρeff
s

Here we derive the ρeff
s behavior when k0 is small enough that τ−1

s is completely

diagonal or increasing L introduces interband transitions. When the wavelength of
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surface roughness is long enough that τ−1
s is completely diagonal, the surface is too

smooth to allow interband transitions. This happens for

k0 < k1 − k2 = kF

(

√

1 − 1/κ2 −
√

1 − 4/κ2
)

≈ 3kF

2κ2
∼ 10−5 kF .

In this regime, only small-angle scattering within the subband is allowed. From

Eq. (4.12), we find

cosχjj = 1 − k2
0

2 k2
j

,

giving

χjj = k0/kj ∼ 10−5. (4.18)

Then we can derive

Wij =
1

mL2

(

iπ

L

)2 (

jπ

L

)2

ζ(ki, kj),

and

ζ ∼ 2l2

ki kj sinχij
.

Even when a few off-diagonal elements are present, these will still be dominated by

the diagonal ones because of the small χ.

According to Eq. (4.5), τ−1
s is a difference of harmonics of W , so

1/τ s
ii ∼

χ2

2

h̄

m
W 0

ii, (4.19)

since 1 − cosχ ≈ χ2/2. Substituting in our expressions for W , ζ, and χ, we find

1/τ s
ii ∼

h̄

m
χ k4

F

(

i

κ

)4
l2

k2
i L

2
∼ .

Then

〈k, 1/τ s k〉 ∼
∑

i

k2
i 1/τii ∼

h̄

m

k3
F l

2 k0

L2
κ

∫

x4dx√
1 − x2

,

where in the last step we approximate summation with integration over x ≡ i/κ.

Using Eq. (4.17), we find

1/τ eff
s ∼ 9π h̄

32m

l2kF k0

L2
∝ k0

L2
. (4.20)



50

Chapter 5

GRAIN BOUNDARY SCATTERING

This chapter presents simulation work on grain boundary scattering that I did at

Intel Corporation in collaboration with Seongjun Park, Michael Haverty, and Sadasi-

van Shankar.

The goal of this chapter is to present the first microscopic predictions of grain

boundary reflectivity in metals and to compare these results with experimental data.

We also analyze the structure of grain boundaries and determine what aspect of their

structure has the greatest effect on scattering. Specifically, we investigate the relative

importance of atomic displacements at the boundary and the change in orientation

from one grain to the other.

5.1 Method

We use the Non-Equilibrium Green’s Function (NEGF) method with the Landauer

formalism in this work [16] (see Chapter 3). As described in Section 3.3.6, we use the

commercial code Atomistix to perform our transmission simulations.

In this chapter, we investigate reflection probability R for various structures. In

our notation, the transmission T̄ = Gh/2e2 = (1−R)M(EF ), where G is conductance

and M(EF ) is the number of forward-moving modes with E = EF (see Section 3.2).

We present computer simulations using Density Functional Theory [38, 37] (Section

3.4) to compute in NEGF (Section 3.3) the transmission T̄ in various grain boundary

systems at 0 K in both Cu and Ag.

We perform the relaxation with the Vienna Ab-Initio Simulation Package [39]

within LDA, using augmented wave pseudopotentials [40] and periodic boundary con-
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Figure 5.1: Structure used for transmission simulation of twin (210)/(120) boundary
in Cu (relaxed). In all figures, transmission is rightward as shown.

Figure 5.2: Twin (320)/(230) boundary in Cu (relaxed).

ditions. Due to the periodic boundary condition, we use at least 10 atomic layers for

both sides of grain to avoid the effect of repeating images on the configurations of

grain boundaries. We do not relax the structures for simulations intended to study

controlled atomic defects, such as vacancies and disorder as described below.

We simulate twin (Coincidence Site Lattice, or CSL) and non-twin grain bound-

aries in two FCC (Face Centered Cubic) crystal structure metals, Cu and Ag. We

prepare twin boundaries for the two angles with smallest supercells, corresponding

to (210)/(120) and (320)/(230), as shown in figures 5.1 and 5.2. We also prepare

non-twin boundaries for (111)/(110), (110)/(100), and (111)/(100) as demonstrated

in Figure 5.3.

5.2 Results

The reflectivity simulation results are summarized in Table 5.1.
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Table 5.1: Summary of simulation results. All systems are periodic in plane normal
to transmission direction.

System Relaxed? RCu (%) RAg (%)

Twin (210)/(120) Y 17 12

Twin (320)/(230) Y 13 14

Non-Twin (111)/(110) Y - 36

Non-Twin (110)/(100) Y - 46

Non-Twin (111)/(100) Y 19 16

Vacancy (39.2 Å2)−1 N 8.3 -

Vacancy (19.6 Å2)−1 N 11 -

Disorder 2 layers N 6.9 -

Disorder 4 layers N 22 -

Disorder 6 layers N 24 -

Disorder 8 layers N 27 -

Figure 5.3: Non-twin (100)/(110) boundary in Ag (relaxed).
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5.3 Comparison to experiment

In the literature, the Mayadas-Shatzkes model (Chapter 2) is the most widely used

analytical model to extract grain boundary reflectivity from experimental data. The

MS model describes metal conductivity as a function of boundary reflectivity R and

grain size D. The MS model agrees with an even simpler model we constructed based

on the Landauer formula [16] (section 3.2) and the assumption of an average grain

boundary reflection probability R. For resistivity of a conductor with bulk scattering

of mean free path λb and grain boundary scattering, both theories give

ρ

ρb
≈ 1 + κ

λb

D

R

1 −R
(5.1)

to lowest order in R/(1 − R). Here κ = hA/(2M(EF )λb ρb e
2) ≈ 4/3 in our theory

and 1.39 in MS [20]. Thus, at room temperature and D = 45 nm, a grain boundary

reflectivity of 20% increases resistivity by ∼31% over the bulk value. Our results

from a direct simulation of multiple grain boundaries call into question the MS model

assumption of a single parameter R averaged over all types of boundaries in the

sample, as we will describe later. However, we compare our results to experimental R

values extracted using MS, as it is currently the standard model of ρ as a function of

microscopic properties. We compare to experimental results at 5 K where the effect

of bulk scattering is minimal and to compare more directly to our 0 K results.

Although Cu is more important for integrated circuits, better experimental data

is available on Ag. The low temperature experiments indicated R ≈ 25% for Ag [20]

in comparison to our values R ≈ 12% for twin boundaries and R from 16% to 46% for

non-twin boundaries (Table 5.1). A survey of experimental results indicates R for Cu

and Ag in the range from 24% to 46% [6, 9, 18, 19, 28, 21, 44, 27, 48, 67, 68, 69, 81, 85].

A review of the literature identified two experimental references that measured

grain boundary resistance directly in a metal. Schneider et al [68, 69] measured

reflectivity for single grain boundaries in Au (a material similar to Cu and Ag), and

found reflectivity in the range 0.7 to 0.9, depending on orientation. Nakamichi [57]
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measured specific interface resistivity ρgb = RgbA (where Rgb is resistance) in Al for

various types of grain boundaries. To compute reflectivity, we estimate the ballistic

conductance per unit area G/A for Al by Eq. (5.3) below assuming a spherical Fermi

surface. We then compute reflectivity for Nakamichi’s results with

R = 1 − A/G

(ρgb + A/G)
. (5.2)

Aggregating Nakamichi’s results and analyzing according to this expression, we find

most of the measured twin boundary results in the range R = 0% to 27% and non-

twin results in the range R = 36% to 51%. The range of reflectivity variations agrees

with our findings, although it is unclear how well one should expect R to agree across

metals.

5.4 Determinants of reflectivity

Real grain boundaries in metals are not necessarily 2-dimensional plane defects as

in our constructed twin and non-twin models. Their structure will likely be three-

dimensional in nature due to pile-up of dislocations, vacancies, and/or impurities at

the boundary. Also the boundaries often will not be orthogonal to the transmission

direction. To understand better the causes of reflectivity and the impact of bound-

aries’ three-dimensional structure, we present simulations isolating particular features

of grain boundaries. Since a grain boundary is the interface between two crystallites,

there are two broad categories of scattering that could occur: 1) scattering caused

by the misaligned crystal orientation of the two grains, a category we refer to as

orientation effects; and 2) the atomic structure in the interface itself, which we call

atomic position effects. We present simulations and analytical arguments to quantify

the relative contribution of these two effects.
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5.4.1 Orientation effects

We wish to understand the contribution to scattering from the change in orientation

across grains, Rs. A perfect (unrelaxed) twin boundary has mirror symmetry across

the boundary plane, and therefore identical bases of Bloch states on either side.

Moreover, an ideal CSL has a boundary of zero thickness, so the only possible cause of

scattering is the sudden change in orientation. We therefore estimate the orientation

effect by the results of our transmission simulations for unrelaxed CSLs (not presented

above), R ∼ 15%.

In a non-twin boundary, the interface is not as sharp and the forward moving

states in the two grains should be different. One might expect increased reflection

due to the difference in transmission across the two grains. We therefore simulate

transmission in several different grain orientations, with results presented in Table 5.2.

We estimate the orientation effect by the relative difference |∆T |/T in transmission

across the boundary. (This is by analogy to a simple 1D quantum potential step,

R = (∆k/(k + k′)2), where k and k′ are the momenta on either side of the step.) We

find that transmission in the (100) and (111) direction is similar, while transmission

in the (110) direction is 22% higher. We find an intermediate value of transmission for

two intermediate orientations (210) and (320) between (100) and (110). This shows

a large dependence of T on orientation for a perfect crystal, although we expect that

bulk scattering would diminish the orientation effect.

To confirm this large dependence of T on orientation we compare the simulation

results with an analytical estimate of T as a function of orientation in Cu. In the

Landauer formulation [16], the resistivity in perfect metal crystals at absolute zero

(ballistic conductors) is contact resistance. This is caused by the finite number of

transverse modes per unit area with cutoff less than the Fermi energy (see Section

3.2). The number of modes is equivalent to the cross sectional area of the Fermi
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Table 5.2: Cu ballistic transmission vs. orientation. T/A values for Ag are generally
scaled down from the ones presented in this talbe by (aAg/aCu)

2 = 1.28.

Orientation T/A (Å−2) Normalized to T (100)/A (%)

(100) 0.1388 100

(111) 0.1362 98

(110) 0.1701 122

(210) 0.1462 105

(320) 0.1470 106

surface in a plane normal to the transmission direction:

Tc

A
=
M(EF )

A
=

1

(2π)2

∫

n̂⊥ · ẑ d2k|| (5.3)

where Tc is contact transmission, n̂⊥ is a unit vector normal to the Fermi surface, ẑ is

the transmission direction, and the domain is the set of points on the Fermi surface

with n̂⊥ · ẑ ≥ 0. Evaluating this expression with a spherical Fermi surface gives

M(EF )/A = 0.1472 Å−2 for copper, which is within the range of simulated values in

Table 5.2.

This integral may be evaluated numerically for different directions z. The de-

viations from a spherical Fermi surface then give the effect of grain orientation on

ballistic transmission. For a non-ballistic conductor, the orientation effect would be

muted. This calculation has been carried out in [82], giving T (110)/T (100) = 1.07

and T (111) ≈ T (100). This is in qualitative agreement but in poor quantitative

agreement with our results, which show a much stronger orientation dependence.

5.4.2 Atomic position effects

We isolate the atomic position in the interface by simulating various idealized models

to get an idea of the magnitude of the effect, Ra. Our underlying assumption is that
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Figure 5.4: System with plane of vacancies at density (39 Å2)−1.

total reflectivity from atomic position in the boundary can be decomposed as a sum

of individual defect reflectivities:

Ra =
∑

i

Ra,i. (5.4)

We model vacancies in grain boundaries by simulating structures with a single

interface containing vacancies (see Fig. 5.4). We examine two different vacancy den-

sities, one or two vacancies per 39 Å2. Results are 8% and 16%, scaling linearly for

the densities of 1/(39Å
2
) and 2/(39Å

2
). Analytically, one expects scattering cross

section of the order of magnitude of the area of the missing atoms. The result with

one missing atom per 39 Å2 gives an analytical estimate R = 1/12 = 8.3%. This is

good agreement for an order of magnitude estimate. It also supports our assumption

that the total reflectivity is the sum of individual defect reflectivities.

To investigate the effect of atomic position on reflectivity, we simulate layers of

disordered Cu atoms as shown in Fig. 5.5 to isolate the effect of crystalline order

on conduction. The disordered atoms are displaced by normally distributed random

vectors with RMS magnitude 0.24 Å or 0.70 Å. We change the number n of such

layers and expect from theory that R ≈ n/(n + n0) with a constant n0, since in

a metal, localization length is long compared to phase coherence length (and our

system size) [16]. We summarize the results in Figure 5.6. This plot has roughly the
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Figure 5.5: System with 6 disordered layers (layers 3–8 of those shown). Alternate
atoms are in inequivalent planes.

expected behavior with n0 ≈ 50 for the 0.24 Å roughness and n0 ≈ 8.8 for the 0.7

Å roughness. These disordered region simulations give insight into the effect of non-

linear boundaries on reflectivity, and show that the impact of non-lattice site atomic

positions is significant.

These structures are not the only possible departures from crystalline order, but

provide an estimate of the magnitude of the atomic position effect:

Ra ∼ (8%) dd (39 Å
2
),

with dd the defect area density in the boundary, and 5% < Ra < 30%, depending

on the magnitude of disorder in the boundary. The objective of these estimates is to

approximately predict Ra, rather than to provide a complete theory. Both estimates

reflect a strong dependence of grain boundary reflectivity on atomic position (e.g.

gaps, relaxation).

5.5 Validity of Mayadas-Shatzkes model

We also attempted to check the validity of the Mayadas-Shatzkes model assumptions

using atomic model systems of multiple grain boundaries. Our simulations include

two (210)/(120) twin boundaries separated by from 2.7 nm to 4.6 nm. We verified
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Figure 5.6: Total reflection probability R vs. number n of disordered layers. Systems
with smaller n have a subset of the disordered region present in systems with larger
n. There is significant variability evident due to magnitude of displacement.

that the results change little for increasing boundary separation (grain size) in order

to ensure that the boundaries do not interact.

Although this differs markedly from the infinite system with grain sizes ∼45 nm

assumed above, we can compare the results to the Landauer transport model for

just two boundaries. This theory gives the total reflectivity as RT = 2R/(1 + R),

where R is the reflectivity of a single boundary [16]. Using the results from Table

5.1, we anticipate RT = 29% for Cu and RT = 21% for Ag. We find our results

differ from the smallest to largest grain size as shown in Table 5.3. We attribute this

change in reflectivity to interactions between boundaries. We further find that the

simulation-predicted R is lower than that predicted by the Landauer theory for two

boundaries. This may be explained by the fact that reflectivity depends strongly on

initial momentum. The first boundary may act as a filter that lets only those states

with highest transmission through to the second boundary. However, this needs
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Table 5.3: Total grain reflectivity of two twin grain boundaries with various grain
sizes (in units of lattice constant a) for Cu and Ag. The Landauer prediction would
be RT = 29% for Cu and RT = 21% for Ag for all grain sizes large enough to avoid
interaction between boundaries.

Grain size / a RT for Cu (%) RT for Ag (%)

6.71 23.6 19.3

8.94 25.8 14.7

11.16 24.5 17.4

further studies for a better understanding. Also, it is unclear how bulk scattering

and boundary type variety would affect this explanation. The MS model also fails to

consider scattering of electrons upon reflection or transmission.

5.6 Effect on Resistivity

The damascene process is capable of depositing Cu interconnects with grain size

larger than the line thickness. For example, Geiss and Read [25] report an average

grain diameter of 315 nm for 100 nm damascene Cu lines. Similarly, Paik et al. [58]

measured grain sizes in the range 125 – 275 nm for ∼170 nm line thickness. Both

Carreau et al. [4] and Steinhögl et al. [75] measured somewhat smaller grains for

thinner damascene-deposited interconnects (see Figure 5.7), and observed that grain

size does indeed scale with thickness for the thinnest wires.

Using Eq. (5.1), the results of Geiss and Read give a resistivity augmentation of

17% for average R = 50%, and 4% if the average of R is only 20%. On the other hand,

for a grain size of ∼40 nm as observed by [4] for line widths of ∼70 nm, Eq. (5.1)

gives an augmentation 8 times as high, or 35% for R = 20%. Clearly, the importance

of grain boundary scattering depends strongly on grain size. Global interconnects,

which are most important in RC delay times (see Chapter 1), can be significantly

thicker than local ones, and therefore may have larger average grain sizes. On the
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other hand, local interconnects have a total length that scales more strongly with the

number of transistors, and therefore have an important effect on power loss. Since

local interconnects must scale in thickness with minimum feature size, the smaller

grain sizes for very thin wires observed by Carreau et al. may be more relevant for

power loss.

5.7 Summary

We have presented the first simulations of reflectivity for relaxed twin and non-twin

grain boundaries in Cu and Ag. Our results agree with the experimental reported

range of reflectivity [6, 9, 18, 19, 28, 21, 44, 27, 48, 67, 68, 69, 81, 85] and with

the individual boundary measurements of Nakamichi [57]. To gain insight into the

mechanisms of grain boundary reflectivity and the impact of the non-planarity of

real grain boundaries, we also investigated the effect of vacancies, orientation, and

disorder. We find that all three contribute significantly to reflectivity. Our predicted

dependence of reflectivity on grain boundary type and isolated vacancy, orientation,

and disorder effects explains why the experimentally reported range of reflectivity

varies widely. In probing the utility and extendibility of the Mayadas-Shatkes model

we find that the assumption of a one-parameter reflectivity averaged over all grain

boundaries and initial states fails to accurately estimate reflectivity from multiple

grain boundaries that are closely spaced, but may be reasonable for grain boundaries

with spacing greater than the mean free path. Improvements in the analytical models

to account for the discrepancy in additivity of the reflectivity of grain boundaries and

the impact of grain boundary type and non-planarity are needed.
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Figure 5.7: Grain sizes in damascene-deposited Cu measured by Carreau et al. [4] for
two different annealing conditions (first figure) and by Steinhögl et al. [75] for 230
nm line height (second figure). Both figures show a linear relationship at the smallest
line widths.
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Chapter 6

INTERFACE SCATTERING

In this chapter, we present some of the first calculations of scattering and trans-

mission at the interface between Cu nanowires and their liner layers.

6.1 Method

We model the liner layer by the most common form of Ta deposited epitaxially on

Cu, β−Ta [62, 41], which has a bulk resistivity of (200 ± 20) µΩ· cm [62, 32] or even

250 µΩ· cm [65], compared to 1.7 µΩ· cm for Cu.

The structure of β−Ta [41] is a tetragonal lattice with constants a = 10.2 Å and

c = 5.3 Å. In the z−direction (corresponding to the c lattice parameter), it contains

four equally spaced layers alternating between four regularly spaced Ta atoms and

11 atoms arranged in a pseudo-hexagonal pattern (see Figure 6.1). The β−Ta unit

cell contains a total of 30 atoms. The β−Ta can be grown epitaxially on Cu (111)

surfaces with a relative strain in each a direction of approximately 7% [41, 36, 43],

causing the pseudo-hexagons in Ta to match those in Cu.

We have set up such an epitaxial system for relaxation with the Vienna Ab-initio

Simulation Package [39]. Our system contains a total of 56 Ta and 64 Cu atoms.

The Ta terminates with an 11-atom Ta layer, interfacing with a partial Cu layer

with 4 atoms, followed by full Cu (111) layers. We have fully relaxed this system

keeping the bottom Ta layer fixed but leaving the top Cu layer free to adjust in the

z dimension. This allowed the total interface size and z−spacing among layers to

relax. The variation in z−position among Cu atoms within the topmost layer after

relaxation was small compared to the layer spacing.
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Figure 6.1: Structure of β-Ta. Figure taken from Ref. [41].

Figure 6.2: The relaxed interface. Top five layers are Cu, bottom (ring-like) layers
are Ta.
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To simulate transmission across a Cu/Ta interface, we replaced z−coordinates of

the topmost Cu layer by their average, leaving ideal Cu and strained β−Ta layers at

the two ends of the interface. The resulting system is shown in Figure 6.2. We then

set up a transmission simulation using the relaxed interface as a scattering region

and matching the perfect Cu and Ta layers to electrodes made of ideal lattices of the

respective materials. We have used the Non-Equilibrium Green’s Function Method

(Section 3.3) to simulate dynamical transmission across interfaces with Atomistix

(Sec. 3.3.6), as in our work on grain boundaries.

6.2 Results

The resulting simulation showed that overall transmission probability at the Fermi

energy T (EF ) = 0.22 for electrons originating in Cu and 0.39 for those originating in

Ta1.

6.2.1 Effect on Conduction

We can estimate the effect on conduction in Cu using a simple model based on the

surface scattering models of Fuchs [24] and Sondheimer [73]. Although the liner layer

represents a parallel conductance to the Cu wire, the high resistivity of β−Ta makes

this almost negligible [65]. Instead, we consider the effect of electrons entering Ta

and rapidly losing their net momentum. When wire thickness t is not too much less

than mean free path λ so that multiple scattering can be neglected, the proportion

of carriers affected by interactions with the surface is

CPλ

A
,

1Here transmission probability is T ≡ T̄ /M . Note that conduction electron density, and therefore
the number of modes M , is different in the two materials. As usual, T̄ is reciprocal (Eq. (3.21))
and the net current is zero across the unbiased interface after the vacuum levels have adjusted to
equilibrate the Fermi levels. A space charge region forms at the interface, analogous to that at a
PN-junction, to bring about this equilibrium.
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where C is a dimensionless constant, and P and A are the perimeter and area, respec-

tively, of the wire cross-section [73]. Comparison with more detailed semi-classical

calculations gives C = 3/16 [73]. Then the resistivity augmentation over bulk is given

by

ρ

ρb
= 1 +

3λP

16A
(1 − p), (6.1)

where 1 − p is the proportion of electrons that lose their momentum on interaction

with the surface [73].

Although Fuchs and Sondheimer originally considered these models in the context

of surface roughness, we generalize to a steady state where electrons diffuse into Ta,

rapidly lose their net momentum, and diffuse back with zero drift in the conduction

direction. This steady-state picture is valid when the Ta thickness is large compared

with the bulk mean free path λTa in β−Ta, which we estimate as follows. The product

of Sharvin (ballistic) conductance and bulk resistivity gives a length scale of order the

bulk mean free path [16], a relation that holds to within 40% for Cu2. For β−Ta, our

simulations of transmission in perfect β−Ta crystals combined with bulk resistivity

measurements suggest λTa ≈ 5 – 11 Å (compared to λ = 39 nm in Cu)3. In this

picture, every electron that transmits into Ta is on average replaced with one from Ta

with ∼zero net conduction momentum, so it is identical to a diffuse scattering event.

Then (1− p) would be given approximately by the diffuse probability 1− p = 0.04 we

calculated for a rough Cu surface (Chapter 4) plus 3/4 the transmission probability,

1 − pliner = 0.04 +
3

4
T = 0.205 (6.2)

where the factor of 3/4 is due to the liner layer being on only 3 sides of the wire. Here

2Semiclassically, one can think of an electron traveling ballistically in between bulk scattering
events.

3In this picture, the introduction of transmission into Ta is a “bad deal” for Cu, because electrons
entering Ta immediately lose their momentum, whereas those entering Cu from Ta have little net
momentum. Still, reciprocity is maintained, as the introduction of the interface is a “good deal”
from the point of view of Ta.
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we use 1 − p for Cu as a crude approximation of the diffuse scattering for electrons

reflected instead of transmitting at the interface.

We can also easily extend this analysis to consider thinner liner layers of thickness

tTa. Recall from Chapter 3 that the relaxation time approximation is
(

∂fk

∂t

)

collis

= I ≈ − (fk − f 0
k )

τ
,

so the cumulative scattering probability is Poisson:

P (s) = 1 − e−s/vF τ ,

where we have converted from time to distance traveled s. Using the mean free path,

we find

1 − pliner(t) = 0.04 +
(

1 − e−2tTa/λTa

) 3

4
T, (6.3)

which interpolates smoothly between our insulator result and Eq. (6.2).

With tTa > λTa, Eq. 6.1 gives a resistivity augmentation of about 13% for a 45 nm

Cu square wire surrounded by Ta of at least ∼2 nm on three sides, or 4% for 45 nm Cu

film with Ta on one surface. The thickness-dependence of this simple picture agrees

well with the results of Rossnagel and Kuan [65], who measured sheet resistance of a

45 nm Cu film with 0 – 6 nm of Ta deposited on it (note they use a film and deposit

Ta on one surface). They find resistivity augmentation rapidly increasing to 10% for

∼2 nm of Ta, and leveling off for thicker layers (see Figure 6.3, which fits fairly well

to an exponential falloff of form (6.3) with λTa ≈ 2.2 nm). Moreover, they find that

resistivity decreases back to roughly the Cu-only value upon oxidation of the interface

[65]. The elimination of the Ta conducting path actually improves conduction.

6.2.2 Discussion

However, as noted, our simple analysis gives only 4% resistivity augmentation com-

pared with 10% observed by Rossnagel and Kuan [65]. We note first that the

sheet resistance of 0.60 Ω/square reported in [65] is higher than the sheet resistance
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Figure 6.3: Increasing Cu sheet resistance as a function of Ta overlayer thickness.
Note the leveling of the curve for Ta thicker than about 3 nm, or several Ta mean
free paths. Figure taken from Ref. [65].

1.7µΩ · cm/45 nm = 0.38 Ω/square for bulk Cu, so there may be grain boundary

scattering present also in the experiment. A possible reason for the quantitative dis-

agreement on the magnitude of resistivity augmentation may be an underestimate in

this work of the transmission probability across the interface. Resistivity augmenta-

tion of 10% for a single Ta overlayer would require an effective 1 − p ≈ 0.6, meaning

that transmission probability should be closer to 60%. But it is also possible that the

Cu/Ta epitaxy in real samples introduces greater interface disorder (roughness) than

in our simulation system. Finally, it is possible that our assumption that reflection

at the interface is 4% diffuse (based on our surface scattering work) underestimates

the actual momentum loss at the Cu/Ta interface, and indeed this explanation is

suggested by Rossnagel and Kuan [65]. A more detailed study of angular information

on the reflected electrons at the interface would clarify this possibility, and we discuss

our attempts to do so below.

Our result of 1 − pliner = 0.20 from Eq. (6.2) compares prominently against our
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result of 1 − p ≈ 0.04 in Chapter 4. This is one of the primary conclusions of this

work:

• Interfaces with the liner layer are an important source of conductivity

degradation.

In the following sections, our goal is to improve this picture with more specific results

on angle-dependent transmission and reflection at the interface.

6.3 Angle-Resolved Analysis

The remaining results of this chapter are preliminary, and we hope to refine them in

a forthcoming publication4.

Our simulation supercell in Cu contains 15 atoms in each of three layers, by

contrast with the usual Cu (111) unit cell that contains just one atom in each of three

layers. The ratio of supercell to unit cell volumes matches the ratio 15 of numbers of

atoms. The need for this large supercell is due partly to the larger atomic volume of

β−Ta compared to Cu, but mostly to the irregular crystal structure of β−Ta.

As a result, the Cu supercell Brillouin Zone is actually a reduced Brillouin Zone

that has been folded over 15 times. The periodicity in our supercell (periodic bound-

ary conditions transverse to the transmission direction) is roughly physical because

real interfaces would contain a rough periodicity due to the heteroepitaxial match

[41, 36, 43]. This periodicity enforces conservation of momentum in the transverse

direction up to a reciprocal lattice vector.

Interpreting our simulation results is complicated by the fact that the transmis-

sion coefficients T (kx, ky) can only be resolved up to equivalent (kx, ky) within the

reduced Brillouin Zone. In order to extract the maximum information, we unfold

4In addition, I hope to finish a project with my committee member Prof. John Rehr, UW
Physics, and his group to provide an alternative calculation of transmission by computing the
Green’s function in multiple scattering theory with FEFF [7].
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the Brillouin Zone by Fourier transforming the transmission eigenstates over the Cu

electrode supercell5. This task is also complicated by the unusual geometry of our Cu

supercell. Given a state at the Fermi energy with kx and ky in the full Brillouin Zone,

we can use the well-known Cu Fermi surface to compute kz and hence the angle of

incidence to the interface.

Our simulation is actually of transmission from Ta to Cu. But the coefficients

UL,i
t→ UR,i [11] become UR,i

t†→ UL,i under time-reversal symmetry, so we can use

our simulation for Cu to Ta transmission. In addition, even without time-reversal

symmetry, total transmission T̄ = Tr(t†t) is reciprocal because of the cyclical property

of the trace [23] (see Eq. (3.21) and related discussion).

Then for each incoming state corresponding to a known mixture of k-points equiv-

alent in the reduced Brillouin Zone, we know the transmission probability and some-

thing about the reflected and transmitted angles. Using this, we can extend our

semiclassical analysis from above.

6.3.1 Analyzing Transmission States in the Reduced Brillouin Zone

In this section, we give details on “unfolding” the reduced Brillouin Zone.

Let us consider the problem in one dimension. Let us assume we have a supercell

with dimension L = ma, where a is the lattice constant and m is an integer. The

system is truly periodic over the distance a, but the simulation only knows about

the periodicity (enforced by boundary conditions) over L. In general, the simulation

allows us to set k in the reduced Brillouin Zone, so that

ψ(x+ L) = eikxψ(x) (6.4)

5First we remove the ei~k·~x dependence, where k = (kx, ky) is a known vector in the reduced
Brillouin Zone. This leaves us with a function periodic in the supercell. In general, the knowledge
of the wavefunction values over a supercell n times larger than the unit cell will be enough infor-
mation to find the coefficients of the n k-points equivalent to each other in the reduced Brillouin
Zone. See Section 6.3.1.
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with k in the reduced Brillouin Zone

(

−π
L
,
π

L

]

.

We have verified that Eq. (6.4) holds in our simulation output for the expected (two-

dimensional) k value.

Let us define

ψP (x) ≡ e−ikxψ(x),

so that ψP is fully periodic over a supercell,

ψp(x+ L) = ψp(x).

Then ψp may still be a linear combination of m possible Bloch functions (in a given

band):

ψp(x) = α0u0(x)+α1u1(x) exp

(

i
2πx

ma

)

+ . . . + αm−1um−1(x) exp

(

i
2πx (m− 1)

ma

)

.

Here the ui(x) are periodic,

ui(x + a) = ui(x).

Knowing the wave function ψp over L = ma gives us exactly enough information

to solve for the m coefficients, α0, . . . , αm−1. Defining

ω ≡ ei 2π

m ,

we can write m equations for the m unknowns αi, in the form:

ψp(na) = α0 u0(0) ω0·n + . . . + αm−1 um−1(0) ω(m−1) n,

for n = 0, . . . , m− 1. We will also need a little further information to find the ui(0),

if we want to keep our Bloch functions normalized, and the αi comparable. Note that

we are not interested in na < x < (n + 1)a because we know that this can only give

us information about the periodic ui.
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In practice, we do not attempt to solve this set of equations because we have

a three-dimensional electrode, and there are small random errors in our simulation

output that would introduce y− and z− dependence in our solutions for x−periodicity.

Solving this set of equations by Gaussian elimination or other maximum-likelihood

methods might be a good way to deal with these errors.

Instead, we Fourier transform to find the coefficients αj. Intuitively, we expect

that the probability |αj|2 of being in the jth Bloch state is just the sum of probabilities

of having the right phase shift over the distance a:

|αj|2 =

∞
∑

n=0

∣

∣

∣

∣

〈ψP | exp(i
2π(n+ j/m)

a
x)〉

∣

∣

∣

∣

2

. (6.5)

If all the ui were constant, then of course the bracket above would just equal αj for

n = 0, and zero otherwise. But for general ui, the higher Fourier coefficients of uj

can also contribute. In the following, we will fill in these details in our intuition and

show that it is correct.

Continuing our discussion in one dimension, the Fourier transform of ψP will

contain harmonics of the fundamental spatial frequency

k0 =
2π

L
=

2π

ma
,

and up to a maximal spatial frequency set by the mesh spacing δ of our real-space

grid6:

kmax =
2π(N − 1)

L
=

2π(N − 1)

Nδ
= (N − 1)k0,

where L ≡ Nδ. The Fourier tranform gives

ψP (x) =

N−1
∑

j=0

ψP, j e
i j k0 x. (6.6)

6Note that all the spatial frequencies 0, k0, . . . , (N − 1) k0 contain relevant information for a
(complex) Fourier transform. Since ψP is periodic, we could do a Fourier series instead up to
N−1

2
k0, but then we would still have both sine and cosine coefficients for each frequency.



73

We can also Fourier transform the ui(x) over the smaller interval a, with a higher

fundamental frequency,

2π

a
=

2π

L/m
= m k0, (6.7)

and the same maximal frequency,

kmax =
N − 1

m
(m k0).

The transform gives:

un(x) =

N−1

m
∑

j=0

un, j e
i jmk0 x. (6.8)

Then

ψP (x) =
N−1
∑

j=0

ψP, j e
i j k0 x =

m−1
∑

n=0

N−1

m
∑

j′=0

αn exp

(

i
2πnx

ma

)

un, j′ e
i j′mk0 x.

Noting that 2πn
ma

= n k0, we see that

ψP,j =

m−1
∑

n=0

N−1

m
∑

j′=0

αn un,j′ δj,j′m+n. (6.9)

Given j, there is a unique way to write j = j ′m+ n with n from 0 to m− 1. Thus,

ψP,j = αn un,j′, j = j ′m+ n (6.10)

with j ≤ N−1−n
m

.

Substituting into Eq. (6.5), we get:

∞
∑

j′=0

∣

∣

∣

∣

〈ψP | exp(i
2π(j ′ + n/m)

a
x)〉

∣

∣

∣

∣

2

=
∞

∑

j′=0

|ψP,mj′+n|2 = |αn|2
∞

∑

j′=0

|un,j′|2 = |αn|2.

Of course
∑∞

j′=0 |un,j′|2 = 1, since the Bloch wave function must be normalized. We

won’t worry about the difference between summation up to N and ∞, since the

validity of all our results depends on the mesh size δ being small.
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Figure 6.4: Epitaxial geometry between Ta (supercell shown as dark line) and Cu
(111). Figure is taken from [41].

6.3.2 Two-dimensional considerations

In reality, we have a supercell with periodicity only in the plane perpendicular to

the transmission direction, z (see Figure 6.4). There are 15 unit cells of Cu in the

supercell (one unit cell for each atom in a (111) plane).

In two dimensions, we can use the same intuitive argument: the probability of

finding the electron in a (2-dimensional) Bloch state is the sum of squared amplitudes

to be in (plane wave) states that shift by the right phase under translation in the

lattice. Each such amplitude is just the Fourier coefficient of ψP at a ~k connected to

the ~k in the first Brillouin Zone by any reciprocal lattice vector.

We do a Fourier transform in only the two periodic dimensions x and y because

the z dimension has the same periodicity as the Cu unit cell. Moreover, periodicity

is only approximate (eventually we reach the interface) in the z dimension, so kz is

not conserved. This choice is a valid way to describe a wavefunction because kx, ky,

and z commute, so one can define simultaneous eigenstates of them, |kx ky; z〉. Then
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the probability

|〈ψ|kx ky; z〉|2 (6.11)

to be in a given such state, like the probability to be in any well-defined quantum

state, is a Hermitian observable7. This probability would be uniform in bulk, but

in our case can show us how the system makes allowed transitions between (kx, ky)

states through z.

Note, though, that this choice does change our 2-D reciprocal lattice vectors from

their 3-D values. Let ~X and ~Y be the supercell lattice vectors (dark lines in Fig. 6.4).

Then we can define the primitive lattice vectors ~x and ~y in Cu by

~X = 3~x + ~y, ~Y = 4~y − 3~x,

as can be verified straightforwardly in the Figure. As the figure shows, ~X + ~Y ∝
[11̄0] ∝ ~y, so one can also verify that ~x = a

2
[01̄1], ~y = a

2
[11̄0]. Since |~x|2 = |~y|2 = 2~x ·~y,

it follows that | ~X| = |~Y |, even though the epitaxy requires ~X · ~Y = −| ~X||~Y |/26.

The third Cu primitive cell vector is not perpendicular to the plane shown, since

the (111) planes are inequivalent. So normally the two reciprocal lattice vectors

corresponding to ~x and ~y would have a component out of the plane. But here we have

a supercell with only 2-D periodicity, and consider only a 2-D Fourier transform, so

we use a 2-D reciprocal lattice:

~b1 =
4

3

2π

a2
(2~x− ~y), (6.12)

~b2 =
4

3

2π

a2
(2~y − ~x). (6.13)

In 2-D, the analysis is slightly complicated by the fact that the reciprocal lattice

vectors for the supercell (reduced Brillouin Zone) are not proportional to the reciprocal

lattice vectors for the Cu unit cell, which we now address.

7There is no violation of the Uncertainty Principle by implicitly measuring kz through knowledge
of k2, since |kx ky; z〉 is not an energy eigenstate. But one can still take its overlap Eq. (6.11) with
an energy state |ψ〉. We don’t localize the electron while in energy eigenstate |ψ〉. We simply find
the amplitude within this state for z to be entangled with (kx, ky).
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Defining the supercell reciprocal lattice vectors ~bX and ~bY , we can write the Fourier

transform of ψP ,

ψP (~r) =

N−1
∑

m, n=0

ψP, m n e
i (m( ~bX · ~r)+n( ~bY · ~r)) (6.14)

with Nδ ≈ | ~X|. Before we can re-write Eq. (6.5) in 2-D, we need a relationship for a

general Fourier component in this sum,

~k = m ~bX + n ~bY ≡ β1
~b1 + β2

~b2,

between periodicity in the supercell and in the Cu unit cell:

~k · ~X = 2πm = (β1
~b1 + β2

~b2) · (3~x+ ~y) = (3β1 + β2)2π ⇒ 3β1 + β2 = m,

~k · ~Y = 2πn = (β1
~b1 + β2

~b2) · (4~y − 3~x) = (4β2 − 3β1)2π ⇒ 4β2 − 3β1 = n. (6.15)

These equations give us a pair of simultaneous equations for the β:

15β1 = 4m− n ≡ m′, 5β2 = n+m ≡ n′. (6.16)

Finally, we have the equivalent of Eq. (6.5). With our Fourier transform Eq. (6.14),

we can sum over all reciprocal lattice vectors of the supercell, to within our spatial

resolution Nδ ≈ | ~X|,

0 ≤ m < N, 0 ≤ n < N, (6.17)

and can put the squared Fourier coefficients |ψP, m n|2 in the probability |αj, j′|2 for

the appropriate Bloch state based on

j = m′ mod 15, j ′ = n′ mod 5.

The result is

|αj, j′|2 =
∑

{m,n}: j=(4m−n) mod 15, j′=(m+n) mod 5

|ψP, m n|2 (6.18)
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Figure 6.5: (Preliminary results). Example of transmission state analysis. Shown
is probability to be in each Bloch state. The angle θ given is the polar angle of
transmission, calculated by cos θ ≡

√

k2
x + k2

y/kF . Recall that (kx, ky) relevant to θ
should include the reduced-Brillouin Zone k-dependence in ψ in addition to the full
Brillouin Zone dependence we found in ψP .

6.4 Angle-Resolved Results

An example of the transmission state analysis we developed in Sections 6.3.1 and

6.3.2 is shown in Figure 6.5. We have output from the Cu/Ta interface simulation for

a whole set of eigenchannels (at (kx, ky) points covering the entire Brillouin Zone).

We hope to analyze these soon to give transmission as a function of incident angles

(θ, φ) relative to the interface.
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Chapter 7

CONCLUSIONS

We have found that nanowire surfaces can be made sufficiently smooth with ex-

isting technology to reduce surface roughness scattering to manageable levels. Any

process improvements on surface roughness should be focused on reducing the high-

wavenumber tail of the PSD.

Grain boundary scattering is a significant source of resistivity for sufficiently small

grain size. However, the damascene process can deposit interconnects with average

grain size larger than the wire thickness, so grain boundary scattering can also be

reduced but not eliminated. For thicker global interconnects, grain size may be as

large as 300 nm or greater [25], so grain boundary scattering is unlikely to be a major

contribution to global interconnect resistivity, and therefore to RC time delays. But

for thinner local interconnects, grain size may be less than 50 nm [4], and therefore

grain boundary scattering may be very relevant to power loss.

At an interface with a Ta liner layer, we find that electrons from Cu have a 22%

probability of transmitting into Ta. Combining this with a Fuchs-Sondheimer-like

model and an assumption about diffuse reflection at the interface, this yields an

effective diffuse scattering parameter 1− p = 0.2 for sufficiently thick Ta liner layers.

This is in semi-quantitative agreement with the experimental results of Rossnagel

and Kuan [65] on Ta overlayers and nanofilms that interface only with insulators.

Thus we conclude that scattering from liner layers is a major cause of conductivity

degradation in Cu nanowires.
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7.1 Quantitative importance of scattering mechanisms

Quantitatively, our calculations predict a resistivity augmentation of ∼ 5% over bulk

for global interconnects due to grain boundary scattering, 35% or more (assuming a

conservative R = 20%) for local interconnects due to grain boundary scattering, and

13% due to liner layer scattering. Observations of resistivity augmentation over 50%

[20, 74] are typically for thin films deposited without the use of damascene process

to control grain size, or have samples with small grain size despite using damascene

[75]. These studies are therefore likely dominated by grain boundary scattering, and in

most cases conclude so [20, 74]. In some cases, studies reporting very strong resistivity

augmentation used Cu deposited on Ta [2], which could cause even more momentum

loss at the interface.

We have concluded that scattering at rough interfaces with a dielectric is virtually

negligible for RMS surface roughness in the range of 2 – 11 Å measured experimentally

[14, 61, 84], unless film thickness is less than 10 – 20 nm. A few references [2] have

measured samples with surface roughness as high as 4 nm, and therefore much higher

than what we considered and what is probably present in interconnects. When these

groups used samples with RMS roughness of 0.6 nm (closer to the range we considered

in Chapter 4), they found p ≈ 1, in agreement with our findings [2].

7.2 Recommendations

We recommend that processes such as the damascene process that keep grain size

larger than wire thickness remain an important part of any attempts to scale inter-

connects. Any refinements in deposition processes should focus on increasing the grain

size in local interconnects in order to limit the effect of grain boundary scattering on

power loss.

For the liner layer, process improvements that limit transmission of electrons across

the interface can improve conductivity. For example, a simple approach might be to
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oxidize the liner layers after deposition of Cu. This would allow Ta to continue to

function as a barrier to migration of Cu and seed layer for Cu deposition, but would

limit momentum loss from scattering, as observed experimentally by Rossnagel and

Kuan [65].

Surface roughness scattering is less important than the other mechanisms of con-

ductivity degradation, but any process improvements should be focused on the high

wavenumber tail (atomic scale roughness) of the Power Spectral Density.
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