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First-Principles Study of Boron Diffusion in Silicon
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In this Letter we investigate boron diffusion as a function of the Fermi-level position in crystalline
silicon using ab initio calculations. Based on our results, a new mechanism for B diffusion mediated
by Si self-interstitials is proposed. Rather than kick out of B into a mobile channel, we find a direct
diffusion mechanism for the boron-interstitial pair for all Fermi-level positions. Our activation energy
of 3.5 3.8 eV, migration barrier of 0.4 0.7 eV, and diffusion-length exponent of 20.6 to 20.2 eV are
in excellent agreement with experiment.

PACS numbers: 66.30.Jt, 31.15.Ar, 71.15.–m, 71.55.Cn
Dopant diffusion in Si is an elementary process in
electronic-device fabrication and has been studied ex-
tensively. Excellent reviews on this topic are given in
Refs. [1] and [2], whereas more recent developments can
be found in, e.g., Ref. [3]. Both experimental observa-
tions and theoretical calculations indicate that diffusion
of common dopants in Si is mediated by self-interstitials
(Sii) or vacancies (Siy). Experiments involving the in-
jection of point defects into a B doped Si substrate have
shown that B diffusion in Si is dominated to a degree of
more than 98% by a Sii mechanism [4], i.e., the mobile
entity is expected to be a B atom paired with a Sii . The
B-Sii pair is currently believed to diffuse via the so-called
“kick-out” mechanism, which has been first suggested for
diffusion of Al in Si by Watkins [5]. The equations for
the kick-out mechanism have later been elaborated in
more detail and applied successfully to the diffusion of
Au in Si (see, e.g., Ref. [1], and references therein).

While experiments are able to find the total diffusion
coefficient, they generally cannot determine the micro-
scopic diffusion mechanism [6]. However, to accurately
model dopant diffusion under conditions influenced by ex-
ternally created defects, dopant pairing, or codiffusion of
different dopants, it is important to know the atomic pa-
rameters governing point defect energetics.

First-principles calculations are able to provide infor-
mation on the energetics for different diffusion pathways
in Si. Currently, a kick-out mechanism is most widely
accepted for B diffusion in Si, where first a Bs-Si

T2n
i pair

is formed [Fig. 1(a), TNn denotes a tetrahedral intersti-
tial in N th neighbor position with respect to Bs] [7].
Subsequently, the Bs becomes interstitial (Bi) by being
kicked out into a �110� channel connecting hexagonal [H,
Fig. 1(b)] and T interstitial sites. This model further sug-
gests that in the network of [110] channels, the Bi diffuses
rapidly by performing a large number of jumps before be-
ing kicked back into a substitutional site releasing a Sii
(which may remain bound to the Bs).

Recent results within the local-density approximation
(LDA) for the kick-out model for uncharged systems
0031-9007�99�83(21)�4345(4)$15.00
found a Bs-Si
T2n
i binding energy of 1.0 eV, a kick-

out barrier of 1.0 eV, a migration barrier in the �110�
channels of 0.3 eV, and a kick-in barrier of 0.6 eV [8].
Considering charged states, neutral pairs were found to
be energetically unfavorable, with the positively charged
Bs-Si

T1n1
i pair having the lowest energy for EF , 0.55 eV

(relative to the valence band edge), and the negatively
charged BH2

i favored otherwise. In p-type material, the
kick-out, migration, and kick-in barriers were calculated
to be 1.1, 0.2, and 0.4 eV, respectively [9].

Previous process modeling work that uses first-
principles input has been primarily based on the neutral

FIG. 1. Atomic configurations involved in interstitial-assisted
B diffusion. Shown is a section of a [110] projection of Si.
The large gray balls represent Si atoms involved in the process,
the smaller black ball is the B atom; all other Si atoms are
represented by a stick-only network. (a) Bs-Si

T2n
i , (b) BH

i ,
(c) Bs-Si

T1n
i , (d) BB

i , (e) BX
i , and (f) BS

i configuration.
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calculations of Ref. [8] (see, e.g., Refs. [10–12]). How-
ever, it has been shown that such models can describe B
diffusion only within a narrow temperature and annealing
time regime [13]. Therefore, we discuss in this Letter
a scheme to perform a first-principles study of dopant
formation and diffusion in semiconductors which includes
more rigorous corrections for finite-size and other errors,
as well as improved methods for finding saddle points.
Using these techniques, we reinvestigate the Sii-assisted
diffusion of single B dopants in crystalline Si. Intermedi-
ate results of this work have been published before [14].

We perform our calculations both within the LDA [15]
and a generalized gradient approximation (GGA) [16],
since it is currently not understood which of these two
flavors of density-functional theory give more accurate
results for dopant defects in Si. The difference between
the results gives us an estimate of the error introduced by
the exchange-correlation functional. We use the efficient
plane-wave ultrasoft pseudopotential code VASP [17]. We
use optimized Si lattice constants of 5.46 Å (GGA) and
5.40 Å (LDA) as well as a kinetic-energy cutoff of
208 eV, 64-atom supercells, and a 43 Monkhorst-Pack
k-point sampling, resulting in a combined convergence
and finite-size error of �0.1 eV [14].

The formation energy (Ef ) for a system with charge Q
as a function of the Fermi level (EF) can be calculated from
the total energy of the charged system [Etot�Q�], a neutral
reference energy [Eref � Etot�Si63B� 1 Etot�Si64��64 for
interstitial B in a 64-atom supercell], and a valence band
reference energy for the missing/excess electron(s) (Ey),
giving Ef �Q, EF� � Etot�Q� 2 Eref 1 Q�Ey 1 EF�. We
apply a monopole correction e2Q2a��a0´� (a is the
Madelung constant, a0 the lattice constant of the cubic
supercell, and ´ the dielectric constant of Si) to charged
systems which increases the total energy by 0.16 (0.64) eV
for single (double) charged systems [18]. Furthermore,
we add corrections for the too-small GGA (LDA) band
gap of 10.54 (10.59) eV, shifts due to the formation
of bound states [19], and finite-size effects on conduc-
tion bands and associated shallow levels. The latter is
demonstrated for a SiT1

i interstitial, where the conduction
band is occupied by one electron. In an infinite system,
this electron would be at the conduction band minimum
along the G-X direction of the Brillouin zone (BZ). In a
64-atom cell with 2 3 2 3 2 k-point sampling, however,
the conduction band value is taken at p��8a� �111� in the
BZ, which has an energy 0.25 (0.30) eV higher than the
conduction band minimum which we correct for. The ap-
plication of this finite-size correction makes the difference
in the total energy between 2 3 2 3 2 and 4 3 4 3 4
k-point sampling nearly disappear. Despite these cor-
rections, one has to expect a considerable uncertainty in
the results because of the uncertainty in the position of
“deep” levels in density-functional calculations [20]. For
the lowest-energy B-Sii configurations for neutral and
negative pairs, these levels are known from deep-level
4346
transient spectroscopy and could be corrected for (a
shift to higher total energies between 0.1 and 0.4 eV)
[21]. However, since such data do not exist for saddle
points, we do not attempt such corrections to maintain a
consistent treatment of all configurations.

Without a systematic method, diffusion saddle point
configurations have to be simply guessed or estimated by
dragging an atom from minimum to minimum across the
saddle [7,8]. However, such methods cannot be expected
to be reliable, especially if the diffusion involves the con-
certed motion of a number of atoms [22]. Therefore, we
use the nudged elastic band method (NEBM) [22] imple-
mented into VASP to determine minimum barrier energy
diffusion paths between known initial and final geome-
tries, typically local minima. The NEBM starts from a
chain of geometries interpolating between the initial and
final geometries. Then, the atomic configurations in the
different geometries are iteratively optimized using only
the ionic-force components perpendicular to the hypertan-
gent. We determine the energy along the path by spline
interpolation based on the total energy of the individual
geometries and the tangential projection of the 3N force
components on each geometry. This spline construction
allows us to get the energy of the saddle point to within
0.01 eV using only four to eight geometries in most cases.
The use of the NEBM might be the reason why we found
a new Sii-assisted B diffusion mechanism that had been
previously overlooked using traditional search methods.
Instead of a quantitative method such as the NEBM, MD
simulations can be used to gain a qualitative understand-
ing of diffusion processes, which has been done for B in
Si in Ref. [23].

Sii-assisted B diffusion starts from a bound pair of B
and Sii . The pair with the lowest formation energy that
we find in the neutral case is Bs-Si

T1n0
i [Fig. 1(c)] with a

formation energy of 2.8 �2.5� eV 1 EF with respect to the
lowest-energy B charge state, B2 [here and in the follow-
ing, numbers without (with) brackets denote GGA (LDA)
results]. This results in a binding energy of 0.9 (0.6) eV
relative to neutral SiX0

i and B0
s and 0.8 (0.5) eV with re-

spect to the more stable dissociation products SiT1
i and B2

s .
This binding energy is very similar to the sheer Coulom-
bic attraction of a positive and a negative point charge
(�0.6 eV) [2]. For the 11 charged system, Bs-Si

T1n1
i has

the lowest formation energy in agreement with Ref. [9].
Our binding energy with respect to the dissociation prod-
ucts B2

s and SiT11
i is 1.0 (0.8) eV. For the 21 charged

system, we find two dumbbell-like interstitials to have the
lowest formation energies (we name them BX2

i [Fig. 1(e)]
and BS2

i [Fig. 1(f)], since they are lattice sites shared be-
tween a B and a Si atom with approximately [110] and
[100] orientations, respectively). BX2

i has the lowest to-
tal energy, which is no surprise, since a negatively charged
system with a B atom is very similar to a neutral Sii system.
We find a binding energy for BX2

i of 0.5 (0.3) eV with re-
spect to B2

s and SiX0
i . Our formation energies as functions
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of the Fermi-level for the lowest-energy B-Sii pairs with
respect to the Bs ground state B2

s are shown in Fig. 2.
In contrast to the previously proposed B diffusion

mechanism [8], we find that BS
i (and not BT

i ) plays the
central role in diffusion (even though it is not stable in
the neutral charge state). In the neutral case, we start
from Bs-Si

T1n0
i [Fig. 1(c)], which has the lowest formation

energy. We find the Bs atom to migrate via the BS0
i

[Fig. 1(f)] to an BH0
i [Fig. 1(b)] interstitial by a buckling

of the Si-B-Sii triple dumbbell with a migration barrier
of 0.2 (0.4) eV. The saddle point configuration is found
to have a C2 symmetry. We find the diffusion path
between two neighboring H sites also to contain the S
interstitial, from where another Bs-Si

T1n
i configuration can

be accessed without barrier, or another H site can be
reached over a barrier of 0.1 (0.1) eV [Figs. 3(a) and
3(b)]. This suggests an immediately following BH0

i !

Bs-Si
T1n0
i step to be the most probable event after the

Bs-Si
T1n0
i ! BH0

i portion of the diffusion step.
For systems with positive charge, we find a one-step

process Bs-Si
T1n1
i ! Bs-Si

T1n1
i with no intermediate

metastable interstitial position, a bond-centered interstitial
BB1

i [symmetry D3d , Fig. 1(e)] as saddle point, and a
migration barrier of 0.8 (1.2) eV [Figs. 3(c) and 3(d)].
However, there is a second, competing process, especially
for the LDA calculations, which has BH1

i (symmetry
D3d) as the saddle point, with a migration barrier of 1.0
(1.3) eV [Figs. 3(e) and 3(f)]. Even if the barrier for
this process is slightly higher than for the previous one,
it can be assumed to be equally important, at least in the

FIG. 2. (a) GGA and (b) LDA formation energies as a
function of the Fermi level for the B-Sii complexes with the
lowest formation energy with respect to B2

s . The different
lines show the following: dashed-dotted, Bs-Si

T1n1
i ; dashed,

BX2
i ; solid, diffusion saddle (or activation energy). (c) shows

the migration energy for B-Sii complexes: solid, GGA;
dashed, LDA.
LDA case, since it has an “entropic advantage”: For the
one-step process, there is one possible diffusion path,
which will move the B atom one bond length, d. For
the latter process, however, the B atom can be pushed
over six symmetry-equivalent BH1

i saddles to 20 different
lattice sites, where one is the initial site itself, and four are
d, nine 1.6d, and six 1.9d away. This moves the B atom
in an average hop 1.5d away from its original site. For
negatively charged systems, we find a BX2

i ! BS2
i !

BX2
i path with an intermediate metastable BS2

i configu-
ration, a saddle point geometry with Cs symmetry, and a
migration barrier of 0.6 (0.5) eV [Figs. 3(g) and 3(h)].

In Figs. 2(a) and 2(b), we show the overall activation
energy for B diffusion which ranges from 2.8 to 3.8 (2.9
to 3.5) eV, depending on the Fermi-level position. B dif-
fusion parameters measured experimentally are generally
reported based on a Fermi-level-dependent diffusivity of
the form DB � D0

B 1 D1
B �p�ni� 1 D11

B �p�ni�2, where
D0

B, D1
B , and D11

B are the diffusivities in intrinsic mate-
rial due to diffusion via neutral (relative to the B ground
state B2

s , therefore negatively charged pairs), positive and
double positive defects. Taking values from midgap, we
predict activation energies of 3.75 (3.47) eV for D0

B, and of
3.61 (3.45) eV for D1

B , in excellent agreement with the ex-
perimental findings of 3.25 3.87 eV [2,24]. The calcula-
tions also find that although the dominant pair is positively
charged in p-type material, B diffusion is dominated by
neutral pairs, consistent with the approximately linear de-
pendence of B diffusivity on carrier concentration ( p�ni)
seen experimentally [25,26]. Our migration barriers for
pairs as a function of the Fermi-level position are shown
in Fig. 2(c). Between a Fermi level of 0.3 and 0.6 eV, the
migration energy is found to be between 0.7 and 0.4 eV for

FIG. 3. Nudged-elastic band total energy (eV) for different
charge states, relative to the energy of the initial system of
B-Sii complexes as a function of the hyperdistance of the
system from the initial configuration (arbitrary units). Charge
states: (a), (b) neutral; (b), (c) and (d), (e) positive; and (f), (g)
negative. Left column GGA, right column LDA results. The
letters in the figures denote interstitial configurations.
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both LDA and GGA calculations, in excellent agreement
with experimental values around 0.6 eV [27].

We find that the dissociation of Bs and Sii is self-
interstitial limited (i.e., we do not find a barrier for Bs-Sii
dissociation above the diffusion barrier for Sii). There-
fore, the energy dependence El of the migration length
[28] is governed by half the difference between the acti-
vation energies of the Bs-Sii pair diffusion and dissocia-
tion (which is the activation energy for Sii diffusion). A
low boundary for the activation energy for Sii diffusion is
given by the results of uncorrected first-principles calcula-
tions, i.e., Ea � Ef 1 Em � 3.79 1 0.31 � 4.10 eV at
midgap (GGA [29]). The experimental numbers show
some scattering with an upper limit of about 5 eV for
the Sii activation energy (e.g., 4.95 eV from Ref. [30]).
Taking the midgap first-principles result and high-value
experiment as low and high boundaries for Sii diffu-
sion, respectively, we calculate a range for El of 20.3
to 20.7 eV, in excellent agreement with an experimental
value of 20.4 6 0.2 eV [28].

Summarizing our work, our ab initio calculations
suggest a new mechanism for B diffusion mediated by
Si self-interstitials. We find no kickout, but rather a
direct diffusion mechanism for boron-interstitial pairs
for all Fermi-level positions. Our activation energy of
3.2 3.6 eV, interstitial migration energy of 0.3 0.7 eV,
and diffusion-length exponent of 20.7 to 20.3 eV are
in excellent agreement with the experimental values of
3.25 3.87 eV [2,24], 0.6 eV [27], and 20.4 6 0.2 eV
[28], respectively.

We thank Art Voter for very helpful discussions.
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