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Precipitation in Silicon

Copper precipitates on the surface of a silicon wafer.

At sufficiently high concentrations, impurity atoms want to 
“stick” together to lower their energy, forming their own phase.
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Precipitation in Silicon

Cross-sectional images of oxygen precipitates in wafers.

Oxygen is present in CZ-grown silicon, which is widely used in 
the VLSI and PV industries. 



Bart Trzynadlowski
University of Washington

General Exam
August 15, 2011 5

Precipitation in Silicon

Above: {311} defect chains (green). 
Left: Faulted edge dislocation.

Extended defects are precipitates, too.
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Why Do We Care?

 Metals
 Shallow donors (esp. Cu)
 Recombination active
 Fast diffusing, may segregate to active areas of device

 Oxygen
 Improves stiffness

 Wafers less susceptible to slip and warp during high-T 
processing

 Oxygen interstitials form thermal (shallow) donor defects
 BO2 clusters

 Highly recombination-active, big concern in PVs

 Dislocation nucleation

 Extended defects
 Act as sinks for silicon interstitials, impurities, dopants
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The Problem

 Nucleation/growth models require a solution for each 
possible precipitate size.  Dozens or hundreds of 
equations!

 Device geometries (esp. 2D and 3D) can have hundreds 
of sample points. Computationally intractable.

 No stress dependence.
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The Solution

Development of a moment-based (RKPM) model.

Birth/Death 
Equations

FKPM
(Full Model)

RKPM
(Moment Model)

Data Ab Initio
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Modeling Flowchart

Development of a moment-based (RKPM) model.

Birth/Death 
Equations

FKPM
(Full Model)

RKPM
(Moment Model)
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Precipitate Energetics

 Precipitate free energy
 C: Solute concentration (e.g.. interstitial oxygen atoms)
 Css: Solid solubility (want to precipitate when solute 

concentration exceeds this)
 Gexc(n): Excess (surface) energy. 

)(ln nG
C
CkTnG exc

SS
n 
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Growth Kinetics

 Nucleation and growth reactions

 Solute concentration at equilibrium with precipitate of 
size n

2fXX 
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Full Kinetic Precipitation Model

Birth/death equation for each possible precipitate size:

…

 3322221
2 fdfgfdCg
t
f





 44333322
3 fdfgfdfg
t
f





Problem: Too many equations!

Solution: Discretization.
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Modeling Flowchart

Development of a moment-based (RKPM) model.

Birth/Death 
Equations

FKPM
(Full Model)

RKPM
(Moment Model)



Bart Trzynadlowski
University of Washington

General Exam
August 15, 2011 14

Discretization

Sample in size space.  Compute samples w/ interpolation:
 Linear
 Exponential
 Finite element (linear)
 Hybrid (FEM, exponential)
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Discretization

Comparison of different discretization methods.
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Modeling Flowchart

Development of a moment-based (RKPM) model.

Birth/Death 
Equations

FKPM
(Full Model)

RKPM
(Moment Model)
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A More Efficient Approach

We could track every possible 
defect size independently 
(conceptually easy)…

… but why not be more clever 
about it and track only the bare 
minimum of information 
needed to describe a 
distribution?
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Growth Rate

 Growth rate [3]

 DI: Diffusivity of interstitials
 CI: Interstitial concentration
 λn: A kinetic growth factor
 Cn*: Local equilibrium constant associated with size-n defects for 

interstitials

 Change in free energy upon defect formation

 CSS: Solid solubility
 ΔGn

exc: Excess formation energy (perimeter)

 nnnInIn fCfCDI *
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RKPM

 Continuity equations rewritten in terms of moments

 Note: Using the definition of moments, these infinite 
summations can be written in terms of the moments, which 
is what the model actually computes
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A More Efficient Approach

Moments

 m0: Number of precipitates
 m1: Number of atoms inside precipitates
 m2: Breadth of distribution
 mn: Related to shape
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Closure Assumptions

Finite set of moments insufficient to describe a complete 
distribution.  Need a closure assumption to allow γ terms to be 
written in terms of moments.
 Delta Function Approximation

 Assumes all precipitates are of average size (m1/m0)
 Still need to estimate distribution for nucleation of smallest 

precipitate

 Free energy-minimizing distribution
 Results in a non-linear system of equations that must be solved.

 Can be pre-computed and interpolated during the simulation; need m2.

 Other distributions
 Log-normal observed for dislocation loops.

 Can be pre-computed. Need m2 (or model for m2(m1/m0)).



Bart Trzynadlowski
University of Washington

General Exam
August 15, 2011 23

Outline

 Motivation
 The Problem
 Modeling of Precipitation
 Reduced Kinetic Precipitation Model
 RKPM Example: Dislocations

 Big Picture Overview
 Ab Initio Calculations
 Stress Effects
 Loop Energy
 Results

 Oxygen Precipitation
 Proposed Research



Bart Trzynadlowski
University of Washington

General Exam
August 15, 2011 24

Big Picture Overview

Note: Vacancy interactions omitted for clarity.
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Ab Initio Calculation of Stacking Fault

An extrinsic stacking fault. Ef = 0.01525 eV/atom
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Dislocation Dipole

Dislocation dipole system.
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Loop Energy

Total formation energy 
of loop:

Es = Elastic self-energy

Change with applied 
strain:

{111}

  SFPlanar ENAE 
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Results

Density of interstitials bound to {311} defects compared to data 
(Eaglesham et al).
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Results

Density of interstitials bound to dislocation loops compared 
to data (Pan et al).
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Results

Growth in average dislocation size over time compared to 
data (Pan et al).
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Results

Impact of 1.5% biaxial strain on {311} defects.
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Results

Impact of 1.5% biaxial strain on dislocation loops.
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Results

Impact of 1.5% biaxial strain on loop growth rates.
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Oxygen Growth/Dissolution Model

Energy Strain
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Oxygen/Silicon Interface

Interfacial Oxygen, Interstitial Silicon

Result is a transcendental equation.  Can approximate 
numerically.
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Oxygen Data

Abe, Suzuki and Koya, J. Electrochem. Soc. 144, 306 (1997)
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Oxygen Data

H-D. Chiou, Solid State Tech. 30, 77 (1987)

CMOS simulation and 800OC/2h + 
1050OC/16h

Series of 800OC/2h + 1050OC/16h
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Interaction w/ Dislocation Loops
Faulted dislocation loops generated in regions of high 
stress and large Si interstitial concentrations.  Accelerate 
precipitate growth.

{111}

Oxygen

Oxygen Precipitate

Faulted Dislocation Loop

SiI Ejected
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Precipitate Energetics

Per-atom free energy of infinitely large precipitate:

Define solid solubility as concentration at which G∞ = 0:

Interpret CSS as concentration above which precipitates 
form.  For finite precipitates, a surface (excess) energy 
term is needed:

Si
P C

CkTGG ln
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Precipitate Energetics

Formation and growth reactions:

In equilibrium:

Equilibrium concentration of precipitate depends on number 
of lattice sites it can sit on and energy:

2fXX 
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Growth Kinetics

Birth death process of discrete precipitate sizes:

gn: Growth rate, n -> n+1
dn: Dissolution rate, n -> n-1

Flux in size-space from n to n+1 (ie. concentration of 
precipitates growing from size n to n+1):

Leading to equation for precipitates of size n:

nn dg
t
n
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