

Precipitation Models

Bart Trzynadlowski

Advisor: Scott Dunham Dept. of Electrical Engineering University of Washington

General Exam August 15, 2011 Bart Trzynadlowski University of Washington

1

Outline

- Motivation
 - Precipitation in Silicon
 - Why Do We Care?
 - TCAD: Technology Computer-Aided Design
- The Problem
- Modeling of Precipitation
- Reduced Kinetic Precipitation Model
- RKPM Example: Dislocations
- Oxygen Precipitation

Precipitation in Silicon

At sufficiently high concentrations, impurity atoms want to "stick" together to lower their energy, forming their own phase.

Copper precipitates on the surface of a silicon wafer.

General Exam August 15, 2011	Bart Trzynadlowski University of Washington	3

Precipitation in Silicon

Oxygen is present in CZ-grown silicon, which is widely used in the VLSI and PV industries.

Cross-sectional images of oxygen precipitates in wafers.

General Exam August 15, 2011	Bart Trzynadlowski University of Washington	4

Precipitation in Silicon

Extended defects are precipitates, too.

General Exam August 15, 2011

Why Do We Care?

- Metals
 - Shallow donors (esp. Cu)
 - Recombination active
 - Fast diffusing, may segregate to active areas of device
- Oxygen
 - Improves stiffness
 - Wafers less susceptible to slip and warp during high-T processing
 - Oxygen interstitials form thermal (shallow) donor defects
 - BO₂ clusters
 - Highly recombination-active, big concern in PVs
 - Dislocation nucleation
- Extended defects
 - Act as sinks for silicon interstitials, impurities, dopants

Nucleation/growth models require a solution for each possible precipitate size. Dozens or hundreds of equations!

$$\frac{df_1}{dt} = -2I_1 - \sum_{i=2}^{\infty} I_n$$
$$\frac{df_n}{dt} = I_{n-1} - I_n$$

Device geometries (esp. 2D and 3D) can have hundreds of sample points. Computationally intractable.

The Solution

Development of a moment-based (RKPM) model.

General Exam August 15, 2011

Modeling Flowchart

Development of a moment-based (RKPM) model.

General Exam August 15, 2011

Precipitate Energetics

Precipitate free energy

- C: Solute concentration (e.g., interstitial oxygen atoms)
- C_{ss}: Solid solubility (want to precipitate when solute concentration exceeds this)
- G_{exc}(n): Excess (surface) energy.

$$G_n = -n \cdot kT \ln \frac{C}{C_{SS}} + G_{exc}(n)$$

Nucleation and growth reactions

$$\begin{array}{l} X+X \Leftrightarrow f_2 \\ \\ X+f_{n-1} \Leftrightarrow f_n \end{array}$$

Solute concentration at equilibrium with precipitate of size n

$$C_n^* = C_{SS} \exp\left\{\frac{-\left(G_n - G_{n-1}\right)}{kT}\right\}$$

Full Kinetic Precipitation Model

Birth/death equation for each possible precipitate size:

$$\frac{\partial f_2}{\partial t} = g_1 \cdot C - d_2 f_2 - (g_2 f_2 - d_3 f_3)$$

$$\frac{\partial f_3}{\partial t} = g_2 f_2 - d_3 f_3 - (g_3 f_3 - d_4 f_4)$$

Problem: Too many equations!

Solution: Discretization.

. . .

Modeling Flowchart

Development of a moment-based (RKPM) model.

General Exam August 15, 2011

Discretization

Sample in size space. Compute samples w/ interpolation:

- Linear
- Exponential
- Finite element (linear)
- Hybrid (FEM, exponential)

Comparison of different discretization methods.

Outline

- Motivation
- The Problem
- Modeling of Precipitation
- Reduced Kinetic Precipitation Model
 - A More Efficient Approach
 - Closure Assumptions
- RKPM Example: Dislocations
- Oxygen Precipitation
- Proposed Research

Modeling Flowchart

Development of a moment-based (RKPM) model.

General Exam August 15, 2011

A More Efficient Approach

We *could* track every possible defect size independently (conceptually easy)...

... but why not be more clever about it and track only the bare minimum of information needed to describe a distribution?

Growth Rate

Growth rate [3]

$$I_{n-1} = D_{I} \lambda_{n-1} \left(C_{I} f_{n-1} - C_{n}^{*} f_{n} \right)$$

- *D_I*: Diffusivity of interstitials
- C₁: Interstitial concentration
- λ_n : A kinetic growth factor
- C_n^{*}: Local equilibrium constant associated with size-n defects for interstitials

$$C_n^* = C_{SS} \exp\left\{-\frac{\left(\Delta G_n^{exc} - \Delta G_{n-1}^{exc}\right)}{k_B T}\right\}$$

◆ Change in free energy upon defect formation

$$\Delta G_n = -n \cdot k_B T \ln \frac{C_I}{C_{SS}} + \Delta G_n^{exc}$$

- *C_{SS}*: Solid solubility
- ΔG_n^{exc} : Excess formation energy (perimeter)

RKPM

◆ Continuity equations rewritten in terms of moments

$$\frac{dm_{i}}{dt} = k^{i}I_{k-1} + \sum_{n=k}^{\infty} \left[(n+1)^{i} - n^{i} \right] I_{n} = k^{i}I_{k-1} + D_{I}m_{0} \left(C_{I}\gamma_{i}^{+} - C_{SS}\gamma_{i}^{-} \right)$$

$$\gamma_{i}^{+} = \sum_{n=k}^{\infty} \left[(n+1)^{i} - n^{i} \right] \cdot \lambda_{n} \hat{f}_{n}$$

$$\gamma_{i}^{-} = \sum_{n=k}^{\infty} \left[n^{i} - (n+1)^{i} \right] \cdot \lambda_{n} \frac{C_{n+1}^{*}}{C_{SS}} \hat{f}_{n+1}$$

 Note: Using the definition of moments, these infinite summations can be written in terms of the moments, which is what the model actually computes

$$\hat{f}_n = \frac{f_n}{m_0}$$

A More Efficient Approach

Moments

- m₀: Number of precipitates
- m₁: Number of atoms inside precipitates
- m₂: Breadth of distribution
- m_n: Related to shape

$$\frac{\partial C}{\partial t} = \nabla \bullet (D\nabla C) - 2I_1 - Dm_0 (C\gamma_1^+ - \gamma_1^-)$$
$$m_i = \sum_{n=k=2} n^i \cdot f(n) \qquad \frac{\partial m_0}{\partial t} = I_1$$
$$\frac{\partial m_1}{\partial t} = 2I_1 + Dm_0 (C\gamma_1^+ - \gamma_1^-)$$
$$\frac{\partial m_2}{\partial t} = 4I_1 + Dm_0 (C\gamma_2^+ - \gamma_2^-)$$

Finite set of moments insufficient to describe a complete distribution. Need a closure assumption to allow γ terms to be written in terms of moments.

Delta Function Approximation

- Assumes all precipitates are of average size (m₁/m₀)
- Still need to estimate distribution for nucleation of smallest precipitate
- Free energy-minimizing distribution
 - Results in a non-linear system of equations that must be solved.
 - Can be pre-computed and interpolated during the simulation; need m₂.
- Other distributions
 - Log-normal observed for dislocation loops.
 - Can be pre-computed. Need m_2 (or model for $m_2(m_1/m_0)$).

Outline

- Motivation
- The Problem
- Modeling of Precipitation
- Reduced Kinetic Precipitation Model
- RKPM Example: Dislocations
 - Big Picture Overview
 - Ab Initio Calculations
 - Stress Effects
 - Loop Energy
 - Results
- Oxygen Precipitation
- Proposed Research

Big Picture Overview

Note: Vacancy interactions omitted for clarity.

General Exam	Bart Trzynadlowski	
August 15, 2011	University of Washington	

24

Ab Initio Calculation of Stacking Fault

An extrinsic stacking fault. $E_f = 0.01525 \text{ eV/atom}$

General Exam	
August 15, 2011	

Dislocation Dipole

Dislocation dipole system.

Loop Energy

Total formation energy of loop:

$$E_f = E_{Perimeter} + E_{Planar} + E_S$$

 E_s = Elastic self-energy

Change with applied strain:

$$\Delta E_f = -\frac{V}{2} \sum_{i=1}^3 \sum_{j=1}^3 \Delta \varepsilon_{ij} \sigma_{ij}$$

General Exam August 15, 2011 Bart Trzynadlowski University of Washington 27

Results 10 ¹⁴ Density of Interstitials in 311 Defects (cm⁻²) 10 ¹³ 10 ¹² Data 815°C RKPM 815°C Data 670 ° C RKPM 670°C 10 11 10² 10⁰ 10 ¹ 10³ 10⁴ 10 ⁵ 10-1 Time (sec)

Density of interstitials bound to $\{311\}$ defects compared to data (Eaglesham *et al*).

General Exam August 15, 2011	Bart Trzynadlowski University of Washington	28

Density of interstitials bound to dislocation loops compared to data (Pan *et al*).

General Exam August 15, 2011	Bart Trzynadlowski University of Washington	29

data (Pan et al).

General Exam August 15, 2011	Bart Trzynadlowski University of Washington	30

Impact of 1.5% biaxial strain on {311} defects.

Impact of 1.5% biaxial strain on dislocation loops.

Impact of 1.5% biaxial strain on loop growth rates.

General Exam	
August 15, 2011	

Outline

- Motivation
- The Problem
- Modeling of Precipitation
- Reduced Kinetic Precipitation Model
- RKPM Example: Dislocations
- Oxygen Precipitation
 - Oxygen Growth/Dissolution Model
 - Oxygen/Silicon Interface
 - Oxygen Data
 - Interaction w/ Dislocation Loops
- Proposed Research

Oxygen Growth/Dissolution Model

$$\left(\frac{1}{2} + \gamma_I\right)$$
Si + O $\Leftrightarrow \frac{1}{2}$ SiO₂ + γ_I I + stress

Energy	
$G_0 = -nk_B T \ln\left(\frac{C_o}{C_o^*}\right)$	

Strain
$$e_T = e_C \left(1 + \frac{4\mu_{Si}}{3K_{SiO2}} \right)$$

$$G_{if} = 4\pi r^2 \alpha$$
$$G_s = \frac{4}{3}\pi r^3 6\mu_{Si} e_C e_T$$

$$e_{C} = \frac{k_{B}T}{4\mu_{Si}V_{Si}} \ln\left(\frac{C_{I}}{C_{I}^{*}}\right) + \frac{\alpha}{4\mu_{Si}r_{p}}\left(1 - \frac{3K_{SiO2}}{3K_{SiO2} + 4\mu_{Si}}\right)$$

$$G_i = \gamma_I n k_B T \ln \left(\frac{C_I}{C_I^*}\right)$$

$$\gamma_{I} = \frac{1}{2} \left[\frac{V_{SiO2}}{V_{Si}} (1 + e_{T})^{-3} - 1 \right]$$

$$G_{v} = -\gamma_{v} n k_{B} T \ln \left(\frac{C_{v}}{C_{v}^{*}}\right)$$

General Exam August 15, 2011

Oxygen/Silicon Interface

Interfacial Oxygen, Interstitial Silicon

$$D_{O} \frac{C_{O} - C_{O}^{if}}{r} = k_{r} \left(C_{O}^{if} - C_{O}^{*} \right) = \frac{D_{I}}{\gamma_{I}} \frac{C_{I}^{if} - C_{I}}{r}$$

Result is a transcendental equation. Can approximate numerically.

General Exam August 15, 2011

Oxygen Data

Abe, Suzuki and Koya, J. Electrochem. Soc. 144, 306 (1997)

General Exam August 15, 2011	Bart Trzynadlowski University of Washington	37

Oxygen Data

Series of $800^{\circ}C/2h + 1050^{\circ}C/16h$

CMOS simulation and 800°C/2h + 1050°C/16h

H-D. Chiou, Solid State Tech. 30, 77 (1987)

General Exam August 15, 2011	Bart Trzynadlowski University of Washington	38

August 15, 2011

Bart Trzynadlowski University of Washington 39

Precipitate Energetics

Per-atom free energy of infinitely large precipitate:

$$G_{\infty} = G_P - kT \ln \frac{C}{C_{Si}}$$

Define *solid solubility* as concentration at which $G_{\infty} = 0$:

$$C_{SS} = C_{Si} \exp\left\{\frac{G_P}{kT}\right\}$$

Interpret C_{SS} as concentration above which precipitates form. For finite precipitates, a surface (excess) energy term is needed:

$$G_n = -n \cdot kT \ln \frac{C}{C_{SS}} + G_{exc}(n)$$

Precipitate Energetics

Formation and growth reactions:

 $\begin{array}{ll} X+X \Leftrightarrow f_2 & \qquad \text{In equilibrium:} \\ X+f_{n-1} \Leftrightarrow f_n & \qquad f_n^* = K_n \cdot C \cdot f_{n-1}^* \end{array}$

Equilibrium concentration of precipitate depends on number of lattice sites it can sit on and energy:

$$f_{n}^{*} = C_{Si} \exp\left\{\frac{-G_{n}}{kT}\right\}$$
$$K_{n} = \frac{f_{n}^{*}}{C \cdot f_{n-1}^{*}} = \frac{1}{C} \exp\left\{\frac{-(G_{n} - G_{n-1})}{kT}\right\}$$

General Exam August 15, 2011

Birth death process of discrete precipitate sizes:

$$\frac{\partial n}{\partial t} = g_{n-1} - d_n$$

$$g_n: \text{ Growth rate, } n \rightarrow n+1$$

$$d_n: \text{ Dissolution rate, } n \rightarrow n-1$$

Flux in size-space from n to n+1 (ie. concentration of precipitates growing from size n to n+1):

$$R_{n} = g_{n} f_{n} - d_{n+1} f_{n+1}$$

Leading to equation for precipitates of size n:

$$\frac{\partial f_n}{\partial t} = R_{n-1} - R_n$$

General Exam August 15, 2011