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Precipitation in Silicon

Copper precipitates on the surface of a silicon wafer.

At sufficiently high concentrations, impurity atoms want to 
“stick” together to lower their energy, forming their own phase.
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Precipitation in Silicon

Cross-sectional images of oxygen precipitates in wafers.

Oxygen is present in CZ-grown silicon, which is widely used in 
the VLSI and PV industries. 
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Precipitation in Silicon

Above: {311} defect chains (green). 
Left: Faulted edge dislocation.

Extended defects are precipitates, too.
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Why Do We Care?

 Metals
 Shallow donors (esp. Cu)
 Recombination active
 Fast diffusing, may segregate to active areas of device

 Oxygen
 Improves stiffness

 Wafers less susceptible to slip and warp during high-T 
processing

 Oxygen interstitials form thermal (shallow) donor defects
 BO2 clusters

 Highly recombination-active, big concern in PVs

 Dislocation nucleation

 Extended defects
 Act as sinks for silicon interstitials, impurities, dopants
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The Problem

 Nucleation/growth models require a solution for each 
possible precipitate size.  Dozens or hundreds of 
equations!

 Device geometries (esp. 2D and 3D) can have hundreds 
of sample points. Computationally intractable.

 No stress dependence.
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The Solution

Development of a moment-based (RKPM) model.

Birth/Death 
Equations

FKPM
(Full Model)

RKPM
(Moment Model)

Data Ab Initio
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Modeling Flowchart

Development of a moment-based (RKPM) model.

Birth/Death 
Equations

FKPM
(Full Model)

RKPM
(Moment Model)



Bart Trzynadlowski
University of Washington

General Exam
August 15, 2011 10

Precipitate Energetics

 Precipitate free energy
 C: Solute concentration (e.g.. interstitial oxygen atoms)
 Css: Solid solubility (want to precipitate when solute 

concentration exceeds this)
 Gexc(n): Excess (surface) energy. 
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Growth Kinetics

 Nucleation and growth reactions

 Solute concentration at equilibrium with precipitate of 
size n
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Full Kinetic Precipitation Model

Birth/death equation for each possible precipitate size:

…
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Problem: Too many equations!

Solution: Discretization.
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Modeling Flowchart

Development of a moment-based (RKPM) model.

Birth/Death 
Equations

FKPM
(Full Model)

RKPM
(Moment Model)
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Discretization

Sample in size space.  Compute samples w/ interpolation:
 Linear
 Exponential
 Finite element (linear)
 Hybrid (FEM, exponential)
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Discretization

Comparison of different discretization methods.
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Modeling Flowchart

Development of a moment-based (RKPM) model.

Birth/Death 
Equations

FKPM
(Full Model)

RKPM
(Moment Model)
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A More Efficient Approach

We could track every possible 
defect size independently 
(conceptually easy)…

… but why not be more clever 
about it and track only the bare 
minimum of information 
needed to describe a 
distribution?
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Growth Rate

 Growth rate [3]

 DI: Diffusivity of interstitials
 CI: Interstitial concentration
 λn: A kinetic growth factor
 Cn*: Local equilibrium constant associated with size-n defects for 

interstitials

 Change in free energy upon defect formation

 CSS: Solid solubility
 ΔGn

exc: Excess formation energy (perimeter)
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RKPM

 Continuity equations rewritten in terms of moments

 Note: Using the definition of moments, these infinite 
summations can be written in terms of the moments, which 
is what the model actually computes
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A More Efficient Approach

Moments

 m0: Number of precipitates
 m1: Number of atoms inside precipitates
 m2: Breadth of distribution
 mn: Related to shape
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Closure Assumptions

Finite set of moments insufficient to describe a complete 
distribution.  Need a closure assumption to allow γ terms to be 
written in terms of moments.
 Delta Function Approximation

 Assumes all precipitates are of average size (m1/m0)
 Still need to estimate distribution for nucleation of smallest 

precipitate

 Free energy-minimizing distribution
 Results in a non-linear system of equations that must be solved.

 Can be pre-computed and interpolated during the simulation; need m2.

 Other distributions
 Log-normal observed for dislocation loops.

 Can be pre-computed. Need m2 (or model for m2(m1/m0)).
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Big Picture Overview

Note: Vacancy interactions omitted for clarity.
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Ab Initio Calculation of Stacking Fault

An extrinsic stacking fault. Ef = 0.01525 eV/atom
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Dislocation Dipole

Dislocation dipole system.
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Loop Energy

Total formation energy 
of loop:

Es = Elastic self-energy

Change with applied 
strain:

{111}
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Results

Density of interstitials bound to {311} defects compared to data 
(Eaglesham et al).
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Results

Density of interstitials bound to dislocation loops compared 
to data (Pan et al).
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Results

Growth in average dislocation size over time compared to 
data (Pan et al).
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Results

Impact of 1.5% biaxial strain on {311} defects.
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Results

Impact of 1.5% biaxial strain on dislocation loops.
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Results

Impact of 1.5% biaxial strain on loop growth rates.
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Oxygen Growth/Dissolution Model

Energy Strain
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Oxygen/Silicon Interface

Interfacial Oxygen, Interstitial Silicon

Result is a transcendental equation.  Can approximate 
numerically.
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Oxygen Data

Abe, Suzuki and Koya, J. Electrochem. Soc. 144, 306 (1997)
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Oxygen Data

H-D. Chiou, Solid State Tech. 30, 77 (1987)

CMOS simulation and 800OC/2h + 
1050OC/16h

Series of 800OC/2h + 1050OC/16h
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Interaction w/ Dislocation Loops
Faulted dislocation loops generated in regions of high 
stress and large Si interstitial concentrations.  Accelerate 
precipitate growth.

{111}

Oxygen

Oxygen Precipitate

Faulted Dislocation Loop

SiI Ejected
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Precipitate Energetics

Per-atom free energy of infinitely large precipitate:

Define solid solubility as concentration at which G∞ = 0:

Interpret CSS as concentration above which precipitates 
form.  For finite precipitates, a surface (excess) energy 
term is needed:

Si
P C

CkTGG ln









kT
GCC P

SiSS exp

)(ln nG
C
CkTnG exc

SS
n 



Bart Trzynadlowski
University of Washington

General Exam
August 15, 2011 41

Precipitate Energetics

Formation and growth reactions:

In equilibrium:

Equilibrium concentration of precipitate depends on number 
of lattice sites it can sit on and energy:
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Growth Kinetics

Birth death process of discrete precipitate sizes:

gn: Growth rate, n -> n+1
dn: Dissolution rate, n -> n-1

Flux in size-space from n to n+1 (ie. concentration of 
precipitates growing from size n to n+1):

Leading to equation for precipitates of size n:
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