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At sufficiently high concentrations, impurity atoms want to
“stick” together to lower their energy, forming their own phase.

Copper precipitates on the surface of a silicon wafer.
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Precipitation in Silicon

Oxygen is present in CZ-grown silicon, which is widely used in
the VLSI and PV industries.

surface
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Cross-sectional images of oxygen precipitates in wafers.
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Precipitation in Silicon

Extended defects are precipitates, too.

Above: {311} defect chains (green).
Left: Faulted edge dislocation.
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Why Do We Care?

€ Metals
m Shallow donors (esp. Cu)
m Recombination active
m Fast diffusing, may segregate to active areas of device

€ Oxygen

m Improves stiffness

+ Wafers less susceptible to slip and warp during high-T
processing

m Oxygen interstitials form thermal (shallow) donor defects

m BO, clusters
+ Highly recombination-active, big concern in PVs

m Dislocation nucleation

€ Extended defects
m Act as sinks for silicon interstitials, impurities, dopants
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The Problem

€ Nucleation/growth models require a solution for each
possible precipitate size. Dozens or hundreds of
equations!

df, 2
L2, -1
dt 1 ; n

df,
dt

In—l_ In

€ Device geometries (esp. 2D and 3D) can have hundreds
of sample points. Computationally intractable.

€ No stress dependence.
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The Solution
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Precipitate Energetics

€ Precipitate free energy
m C: Solute concentration (e.qg.. interstitial oxygen atoms)

m C_.: Solid solubility (want to precipitate when solute
concentration exceeds this)

m G,.(n): Excess (surface) energy.

G, =-n-KT InC£+Gexc(n)

SS
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Growth Kinetics

€ Nucleation and growth reactions
X+X e,
X+f <o f

€ Solute concentration at equilibrium with precipitate of
size n

C: _ CSS exp{_ (Gn _Gnl)}

KT
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Full Kinetic Precipitation Model

Birth/death equation for each possible precipitate size:

of
Ezzgl-C—dzfz—(ngz—dsfs)

of
Egzngz_dsf3_(gsf3_d4f4)

Problem: Too many equations!

Solution: Discretization.
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Discretization

Sample in size space. Compute samples w/ interpolation:
m Linear
m Exponential
m Finite element (linear)
m Hybrid (FEM, exponential)
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Discretization
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Comparison of different discretization methods.
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We could track every possible ... but why not be more clever
defect size independently about it and track only the bare
(conceptually easy)... minimum of information

needed to describe a
distribution?
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Growth Rate

¢ Growth rate [3]
In—1 — Dlﬂ’n—l(Cl fn—l — C*fn)

n

D,: Diffusivity of interstitials
C,: Interstitial concentration
A.: A kinetic growth factor

C,": Local equilibrium constant associated with size-n defects for
interstitials

. AGE‘XC _AGGXC
C, =Cgexp _( : n_l)
K, T
€ Change in free energy upon defect formation

C
AG, =-n-k;TIn—-+AG>
sS
m Ccc: Solid solubility
m AG, ®x¢: Excess formation energy (perimeter)
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RKPM

¢ Continuity equations rewritten in terms of moments

%: kilk—l"'i([(n"'l)i _ni]ln = kilk—1+ Dlmo(Cl7/i+ _CSS%_)

7/i+ :Z_(n_l_l)i _ni_'/?‘n fn

n=k
- | i i | C:+1 £

Vi _Z_n (n+1)_'/1n Fo

n=k CSS
m Note: Using the definition of moments, these infinite

summations can be written in terms of the moments, which
is what the model actually computes

A f

f =—
r.nO
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A More Efficient Approach

m,: Number of precipitates

m,: Number of atoms inside precipitates
m,: Breadth of distribution

m,: Related to shape

% =Ve(DVC)-2I, - Dmo(Cn+ —71‘)

m; = Zni.f(n) ot =1,

n=k=2
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Closure Assumptions

Finite set of moments insufficient to describe a complete
distribution. Need a closure assumption to allow y terms to be
written in terms of moments.

€ Delta Function Approximation

m Assumes all precipitates are of average size (m;/m,)

m Still need to estimate distribution for nucleation of smallest
precipitate

€ Free energy-minimizing distribution

m Results in a non-linear system of equations that must be solved.
+ Can be pre-computed and interpolated during the simulation; need m.,.

&€ Other distributions

m Log-normal observed for dislocation loops.
+ Can be pre-computed. Need m, (or model for m,(m,;/my)).
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Dislocation Dipole
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Dislocation dipole system.
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Loop Energy

Total formation energy
of loop:

Planar A(N) ESF Ef - E +E + ES

Perimeter Planar

E. = Elastic self-energy

Change with applied
strain:

=P(N)-E. V&S

AE :_EZZA‘%%

i=1 j=1

E

Perimeter
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Results

Density of interstitials bound to {311} defects compared to data
(Eaglesham et al).
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Results
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Density of interstitials bound to dislocation loops compared
to data (Pan et al).
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Results
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Results
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Results
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Impact of 1.5% biaxial strain on loop growth rates.
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Oxygen Growth/Dissolution Model

(%+ 7 jSi +0 < %Sio2 + 7, | +stress

Energy

G, = —nkgT In(CE j
@)

G, = Anr’a

G, :%m,s 61588

C
G, =y,nk,T In(cij

G, =—-y,/nkT In(
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Oxygen/Silicon Interface

Interfacial Oxygen, Interstitial Silicon

c,-C; . .\ D,/ C'-C
D (0] 0] — k le —C — I [ I
(0] r r( @) O) 7| r
Result is a transcendental equation. Can approximate
numerically.
108 COl S|02
) 100 | CV
10j 3 Approximated vs. Solved —+— | CI <-r->
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Oxygen Data
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Series of 800°C/2h + 1050°C/16h
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CMOS simulation and 800°C/2h +
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H-D. Chiou, Solid State Tech. 30, 77 (1987)
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Interaction w/ Dislocation Loops

2
— Faulted dislocation loops generated in regions of high
stress and large Si interstitial concentrations. Accelerate

precipitate growth. ‘

t ‘ Si; Ejected

{111}

Faulted Dislocation Loop

' Oxygen
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Precipitate Energetics

Per-atom free energy of infinitely large precipitate:

G, =G, —kTInL

Si

Define solid solubility as concentration at which G_, = 0:

G
Co =C. expd—+
ss Si p{kT}

Interpret Csc as concentration above which precipitates
form. For finite precipitates, a surface (excess) energy
term is needed:

G, =-n-KT In£+GeXC(n)

SS
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Precipitate Energetics

Formation and growth reactions:
X+ X< f, In equilibrium:

X+f <o f f =K, -C-f

Equilibrium concentration of precipitate depends on number
of lattice sites it can sit on and energy:

* _G
f =C. ex L
n Si p{ kT }
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Growth Kinetics

Birth death process of discrete precipitate sizes:

on g,: Growth rate, n -> n+1

ot 9~y d,: Dissolution rate, n -> n-1

Flux in size-space from n to n+1 (ie. concentration of
precipitates growing from size n to n+1):

R =g f —d ,f

n n+l " n+1

Leading to equation for precipitates of size n:
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