EE233 HW1

Oct. 3rd

Due Date: Oct. 10th

Problems from the textbook: P.9.49, P.9.59, and P.9.60

- 1. At t = -2ms, a sinusoidal voltage is known to be zero and going positive. The voltage is next zero is t = 8ms. It is also known that the voltage is 80.9V at t = 0ms.
 - a) What is the frequency of voltage v in hertz?
 - b) What is the expression for v?
- 2. A 10 Ω resistor and 5 μF capacitor are connected in parallel. This parallel combination is also in parallel with the series combination of 8Ω resistor and a 300 μH inductor. These three parallel branches are driven by a sinusoidal current source whose current is $922\cos(20000t + 30^{\circ})A$.
 - a) Draw frequency-domain equivalent circuit.
 - b) Reference the voltage across the current source as a rise in the direction of the current, and find the phasor voltage.
 - c) Find the steady-state expression for v(t).
- 3. Find the impedance Z_{ab} in the circuit seen in below. Express Z_{ab} in both polar and rectangular form.

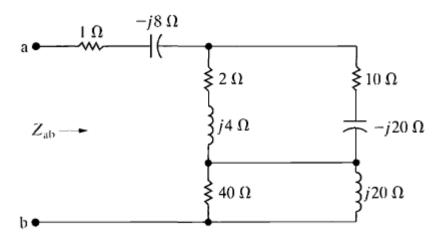


Figure Problem 3

4. Solve:

- a) The frequency of the source voltage in the circuit below is adjusted until i_g is in phase with v_g . What is value of ω in radian per second?
- b) If $v_g = 20\cos(wt)[V]$ where ω is the frequency found in part a, what is the steady-state expression for v_o ?

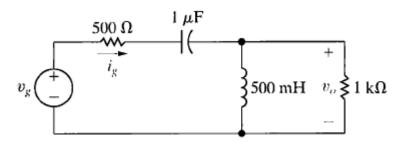


Figure Problem 4