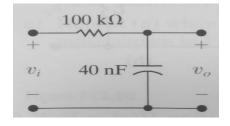
University of Washington

Electrical Engineering

EE 233 HW6

Updated on Nov 14th (band bass filter design problem is added)


Due Date: Nov 16th

Problems from text book (electric circuits, 10th version): 13.70, 13.80, 13.91

Other problems are listed below

1. a) Use the convolution integral to find the output voltage of the circuit in Fig. 1 if the input voltage is the rectangular pulse shown in Fig. 2.

b) Sketch $V_0(t)$ versus t for the time interval $0 \le t \le 10$ ms.

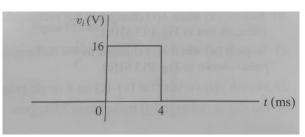
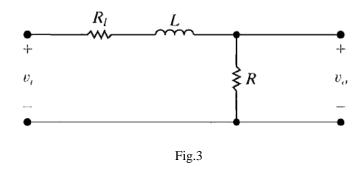



Fig. 2. Rectangular Pulse

- 2. A resistor denoted as R_i is added in series with the inductor in RL circuit. And the new low pass filter circuit is shown in the figure below.
 - (a) Derive the expression for H(s) where $H(s) = \frac{V_o(s)}{V_i(s)}$.
 - (b) At what frequency will the magnitude of $H(j\omega)$ be maximum?
 - (c) What is the maximum value of the magnitude of $H(j\omega)$?
 - (d) At what frequency will the magnitude of $H(j\omega)$ equal its maximum value divided by $\sqrt{2}$?

(e) Assume a resistance of 75 Ω is added in series with the 10mH inductor in the circuit below (R=127 Ω , $R_l = 75 \Omega$ in this case). Find ω_c , H(j0), $H(j\omega_c)$, $H(j0.3\omega_c)$ and $H(j3\omega_c)$.

- 3. Using a 50 nF capacitor in the bandpass circuit shown in the figure below (figure 4), design a filter with a quality factor of 5 and a center frequency of 20 krad/s.
 - a) Specify the numerical values of R and L.
 - b) Calculate the upper and lower cutoff frequencies in kilohertz
 - c) Calculate the bandwidth in hertz.

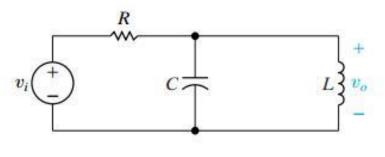


Fig.4