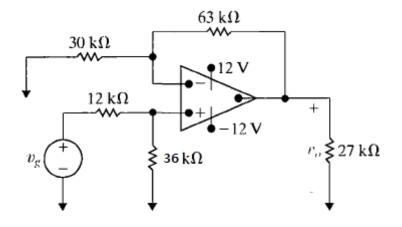
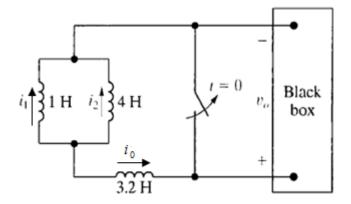

EE233 HW0

Sept. 28th


Due Date: Oct. 3rd

1. Find the Norton equivalent with respect to the terminals a, b for the circuit in the following figure.


Figure Problem 1

- 2. The op-amp in the circuit below is ideal.
 - a) Calculate v_o when v_g equals 4V.
 - b) Specify the range of values of v_g so that the op-amp operates in linear mode.
 - c) Assume that v_g equals 2V and that the 63 Ω resistor is replaced with variable resistor. What value of the variable resistor will cause the op-amp to saturate?

Figure Problem 2

- 3. The three inductors in the circuit below are connected across the terminals of a black box at t = 0. The resulting voltage for t > 0 is known to be $v_o = 2000e^{-100t}V$.
 - If $i_1(0) = -6A$ and $i_2(0) = 1A$, find
 - a) $i_0(0)$
 - b) $i_0(t), t \ge 0$
 - c) $i_1(t), t \ge 0$
 - d) $i_2(t), t \ge 0$
 - e) the initial energy stored in the three inductors
 - f) the total energy delivered to the black box
 - g) the energy trapped in the ideal inductors

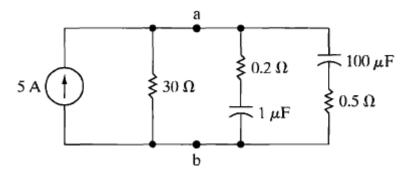
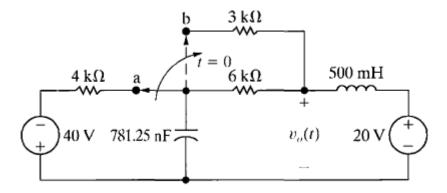


Figure Problem 3

4. After the circuit below has been in operation for a long time, a screwdriver is


inadvertently connected across the terminals a, b. Assume the resistance of the screwdriver is negligible.

- a) Find the current in the screwdriver at $t = 0^+$ and $t = \infty$.
- b) Derive the expression for the current in the screwdriver for $t \ge 0^+$.

Figure Problem 4

- 5. The switch in the circuit below has been in position a for a long time. At t = 0, the switch moves instantaneously to position b. Find
 - a) $v_o(0^+)$
 - b) $dv_o(0^+)/dt$
 - c) $v_o(t)$ for $t \ge 0^+$

Figure Problem 5

6. Calculate the following complex number: $(1-3j) + \frac{2+2j}{1-2j}$

Give answer in both Cartesian (rectangular) and angular (polar, magnitude and phase) form.