Relating time-domain to frequency-domain circuit characteristics

Learning goals
- Physical meaning of frequency-domain transfer function
- Analyze sinusoidal circuits using frequency domain methods
 - Predict circuit behavior based on $H(s)$
 - Bode diagram as a tool
 - Compute sinusoidal signal output using $H(s)$
- Design simple RLC circuits using $H(s)$

Physical meaning
- Analyze circuits with sinusoidal signals
 - Frequency unchanged ω
 - Compute output amplitude $|V_o|$
 - Compute output phase ϕ_o
- Relate to $H(s)$
 - Gain = $|V_o|/|V_i| = |H(s)|$ at $s=\omega$
 - Phase shift = $\phi_o - \phi_i = \angle H(s)$ at $s=\omega$

Analysis procedure
- Find $H(s)$ of the circuit
- Write directly the expression for $V_{out}(t)$

Predict circuit behavior from $H(s)$
- Simple forms of $H(s)$: Bode plots
 - $1/(s+a)$: one pole at frequency a
 - $1/s$: one pole at zero frequency
 - $s+b$: one zero at frequency b
 - s: one zero at frequency zero
- More complex $H(s)$
 - MATLAB as a plotting tool

PSPICE AC analysis
- AC or AC analysis type
 - Specify input as AC with a magnitude and phase
- Sweep frequency over several decades
- Outputs:
 - Magnitude vs. frequency
 - Phase vs. frequency
Bandwidth concept

- 3-dB frequency, or “3-dB frequency”
 - Gain in dB decreases by 3 dB
 - “Half-power” bandwidth
- Bandwidth
 - Defined with respect to 3-dB frequency
 - Low-pass and band-pass cases

Applications

- RLC resonant circuits
 - Total reactance = 0 at resonance frequency ω_0
 - Bandwidth BW
 - Q (quality factor)
 - $\text{BW} \cdot Q = \omega_0$
- Opamp frequency response
 - Opamp model: gain $A(\omega)$ from specs
 - Analyze circuit as usual with KVL, KCL, etc.

Design example: radio tuner

- Specifications for passive tuner:
 $$v_i(t) = \sin(2\pi \times 10^6 t + 135^\circ) + \sin(2\pi \times 10^5 t) + \sin(2\pi \times 1.4 \times 10^6 t + 300^\circ)$$
 $$v_o(t) = A \sin(2\pi \times 10^6 t + \theta)$$
- Translate to specifications for $|H|$
 - $|H| = 1$ @ $f = 10^6$ Hz
 - $|H| = 0$ @ 700 KHz and 1400 KHz
- Tuned circuit with $f = 10^6$ Hz
 - Pick $C = 0.001 \mu F$, compute $L = 25.33 \mu H$

Performance

- Pick Q
 - The higher the better, usual range 5-30
 - $Q = 15 \rightarrow R = 2.4 \text{ K}\Omega$
- “Noise” at 700 KHz and 1400 KHz
 - $|H| = 0.091$ (not 0) at 700 KHz
 - $|H| = 0.096$ (not 0) at 1400 KHz
- Need better more complex circuit to reduce $|H|$ at these frequencies