Analyze & Design Circuits to Maximize Power Delivery

Dunham/Soma 1

Learning goals

- Physical meaning of power
- Compute power delivered to a component
 - Given circuit diagram and component values
 - Compute power (analysis step)
- Design circuits to maximize power delivery to a component
 - Given circuit diagram
 - Determine component values

Dunham/Soma 2

Physical meaning

- · Home electricity bill
 - Bring a bill to class
- Power to run desktop vs. laptop computers
 - Which consumes more?
 - Find how much power a Pentium CPU needs
- Maximizing power: why?
 - Reduce power waste
 - Get better radio reception (more power received)
 - Make speakers sound louder
 - > Find speaker input impedance as an exercise

Procedure to compute power

- Compute using general definitions
 - Valid in ALL cases
 - Instantaneous power p(t)
 - > Function of time
 - > p(t) = v(t) i(t)
 - Average power P_{av}
 - > Average value of p(t) over a time interval T (e.g. average power use at home in one month)
 - > NOT a function of time

$$P_{ave} = \frac{1}{T} \int_{0}^{T} p(t)dt$$
Durham

In-class exercises

- Compute average power in components with sinusoidal signals
 - Given $V(t) = V_m \cos(\omega t + \phi)$
 - Average power consumed by R
 - Average power consumed by L
 - Average power consumed by C
- Observations
 - Why P_{av}=0 for L and C?
 - Faster way to compute average power for specific case of sinusoidal signals?

P_{av} consumed by R

- DC case
 - $P = V I = V^2/R = RI^2$
- Sinusoidal case from previous calculation
 - $P_{av} = V_m I_m / 2 = V_m^2 / (2R) = R(I_m^2 / 2)$
- One 'general formula' for both cases?
 - Use a Root-Mean-Square value for v(t) and i(t)
 - RMS definition for any signal v(t)

$$V_{RMS} = \sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) dt}$$

Dunham/Soma 6

In-class exercises

- \bullet Compute V_{RMS} for
 - $V(t) = V_m \cos(\omega t + \phi)$
- \bullet Sinusoidal case with amplitude V_{m} and I_{m}

$$V_{RMS} = V_m / \sqrt{2}$$

$$I_{RMS} = I_m / \sqrt{2}$$

Dunham/Soma 7

Revisit Pav by R

- DC case
 - $P = V I = V^2/R = RI^2$
- Sinusoidal case from previous calculation
 - $P_{av} = V_m I_m / 2 = V_m^2 / (2R) = R(I_m^2 / 2)$
- Use RMS value
 - $P_{av} = V_m I_m / 2 = V_m^2 / (2R) = (V_{RMS}^2) / R = R I_{RMS}^2$
- Same 'general form' using DC value and RMS value

Dunham/Soma 8

Superposition note

- Apply 2 or more sources to a component
 - For each source, calculate v(t) and i(t) for the component
 - Sum all v(t) to get total V(t) across the component
 - Sum all i(t) to get total I(t) into the component
 - P(t) = V(t) I(t). Calculate P_{av} from P(t).
- Do NOT calculate p(t) for each source and sum to get P(t)!!!

Dunham/Soma 9

Maximum power transfer

- Circuit with sinusoidal signals
 - Thevenin equivalent: V_t , $Z_t = R_t + jX_t$
 - Load: $Z_L = R_L + jX_L$
- Design the load Z_L to maximize power delivered to the load
 - $Z_L = Z_t^* \text{ or } [R_L = R_t, X_L = -X_t]$
 - Calculate maximum power for this case

Dunham/Soma 1

Design problem

• $R = 800 \Omega$, L = 1.6H

Dunham/Soma 1