Analyze & Design Circuits with Sinusoidal Signals

Dunham/Soma

Learning goals

- Understand physical meanings of sine / cosine signals
- Analyze simple circuits (R,L,C,opamp) with sinusoidal inputs
 - Apply 3 alternatives to solve problems
 - Enhance problem-solving skills
- Design simple circuits with sinusoidal inputs

Dunham/Soma 2

Physical meanings

- Real-life use of sine / cosine signals
 - Power transmission to homes
 - > 110 V, 60 Hz in North America
 - Music / stereo systems
- $V(t) = V_m \cos(\omega t + \phi)$
 - Amplitude V_m : soft / loud sound
 - Frequency ω: musical notes A, B, C, ...
 > Frequency f, period T
 - Phase φ: surround-sound stereo system

Dunham/Soma 3

Analysis vs. Design

Task		Circuit diagram	Component values	Output signal
Analysis	Given	Given	Given	<u>Compute</u>
Design (easy)	Given	Given	Compute	Given
Design	Given	Create	Compute	Given

Dunham/Soma 4

Analysis goal

- Sinusoidal input form
 - $V_{in}(t) = V_{m} \cos(\omega t + \phi)$ (or current $I_{in}(t)$)
- Output form (voltage or current)
 - Linear circuits: R, L, C, ideal opamp
 - $V_{out}(t) = V_x \cos(\omega t + \phi_x)$
 - Frequency ω does NOT change.
 - > Analyze = find output amplitude V_x and phase ϕ_x
- Key tasks: find V_x and φ_x

Analysis procedures

- Two methods using differential equations
- One method using complex math and phasors to avoid differential equations

Dunham/Soma 5

Dunham/Soma 6

DE-based methods

- Use KVL and KCL to write a set of equations (nodes, mesh, mixed nodesmesh)
- Manipulate equations to simplify
 - end up with one or a set of differential equations involving V(t) and / or I(t)
- Solve differential equations
 - two methods

Dunham/Soma

Solving differential equations (1)

- Assume sinusoidal signals
- Method 1: look up Math tables, or run Maple (or symbolic math software)
- Method 2 (a):
 - Assume output form: $V_{out}(t) = V_x \cos(\omega t + \phi_x)$
 - \blacksquare Substitute this form into differential equations to evaluate V_x and ϕ_x
 - END: solution found. Check answer.

Dunham/Soma 8

Solving differential equations (2)

- Method 2(b):
 - Assume output form: V_{out}(t) = A cos (ωt) + B sin (ωt)
 - Substitute this form into differential equations to evaluate A and B
 - END: solution found. Check answer.
- Tedious boring step:
 - Convert $V_{out}(t) = A \cos{(\omega t)} + B \sin{(\omega t)}$ to $V_{out}(t) = V_x \cos{(\omega t + \phi_x)}$ or vice versa

Dunham/Soma 9

Method 3: Complex math

- Key idea: $cos(\omega t + \phi) = Re \left[e^{j(\omega t + \phi)}\right]$
- Method 3:
 - Re-write source signal(s) as Re of e^{j(ωt+φ)}
 - Use KVL and KCL to write a set of equations (nodes, mesh, mixed nodes-mesh)
 - Use complex form of source signals and simplify equations
 - Solve for output functions in complex form (algebraic manipulations only, no DE)
 - Take Re part to get final answer. END.

Dunham/Soma 10

Variation of Method 3: Phasor

- Phasor = short-hand notation to emphasize only magnitude and phase
 - $V_m e^{j(\omega t + \phi)} = V_m / \underline{\phi}$
 - Signal $V(t) = V_m \cos(\omega t + \phi) = V_m / \underline{\phi}$
 - Use full complex form in differentiation, integration, addition, subtraction then convert back to phasor form
 - > polar form <--> rectangular form conversion

Dunham/Soma 11

Method 3(b): Phasor technique

- Write source signal(s) as phasor(s)
- Write KVL and KCL as a set of phasor equations
 - phasor equations for R, L, C
- Manipulate equations to simplify
- Solve equations to get output phasor
 - Algebraic solution, no DE
- Final answer = Re part of phasor. END.

Dunham/Soma 12

Working with large circuits

- Simplify circuit topology by combining elements
 - Impedance & admittance concept
 - Parallel and series combinations
- Simplify circuit topology by combining sources and elements
 - Thevenin equivalent
 - Norton equivalent
- Superposition: one source at a time

Dunham/Soma 13

Impedance & Admittance

- Component behavior in frequency
 - R --> R
 - L --> jωL
 - C --> 1/jωC
- Impedance Z
 - General representation in V = Z I
- Admittance Y
 - General representation in I = Y V

Dunham/Soma 1

Circuit simplifications with Z & Y

- Represent each component with either Z or Y
- Z behaves similarly to resistance R
 - Series combination
 - Parallel combination
- Y behaves similarly to conductance G

Dunham/Soma 15

Simplifications: sources / elements

- Thevenin equivalent V_T, Z_T of a black box
 - Write sources in phasor form and elements as impedance Z and / or admittance Y
 - Use same procedure (as in time-domain) to find V_T, Z_T
- Norton equivalent I_N, Z_N of a black box
 - Write sources in phasor form and elements as impedance Z and / or admittance Y
 - \blacksquare Use same procedure (as in time-domain) to find $I_N,\,Z_N$

Dunham/Soma 16

Simplifications: superposition

- Apply one source at a time
 - Replace the other independent sources by shorts or opens
- Find output corresponding to each source
 - Use any method you know
- Sum all outputs to get final answer
 - Might need some simplification to get answer into a conventional form

Dunham/Soma 17