3.7	
Name	IIW ID#·
	\circ \cdots

Section: ____ Version A

Final Exam — EE 233 Fall 2006

The test is closed book, with two sheets of 8.5 by 11 inch notes and standard (non-graphing) calculators allowed. Show all work. Be sure to state all assumptions made and **check** them when possible. The number of points per problem are indicated in parentheses. Total of 150 points in 6 problems on 6 pages. A table of Laplace transform pairs are attached as page 7.

1. In the circuit to the right, $v_C = 3 \text{ V}$ and $i_L = 0.1 \text{ A}$ at $t = 0^-$.

Draw the s-domain circuit valid for t > 0 and determine $V_C(s)$. Check your result with the Initial Value Theorem. (25)

A filter is constructed using the circuit at the right.
Find the transfer function H(s) in terms of R₁, R₂, C₁, C₂, and C₃. What kind of filter is it? (25)

3. Design the s-domain transfer function for a low-pass filter with a corner frequency of 10^4 rad/s, a pass-band gain of 50, a gain at the corner frequency of 37 dB, and a gain less than 0.5 at 8×10^4 rad/s. (25)

4. Find the time-domain behavior of the following s-domain functions:

(a)
$$V_1(s) = \frac{2s+1}{s+3}$$
 (10)

(b)
$$V_2(s) = \frac{10s+5}{s^2+9s+13}$$
. (15)

5. Determine the s-domain transfer function associated with Bode magnitude plot below. Show your work on the plot and in workspace. (25)

(a) Calculate the two-port parameters g_{12} and g_{22} in the frequency domain (as function of ω). (15)

(b) For $v_1(t) = 2 \exp(-10^6 t)$ V, calculate the complex power delivered to a load connected across v_2 consisting of a $10 \text{k}\Omega$ resistor in series with a 100 pF capacitor. (10)