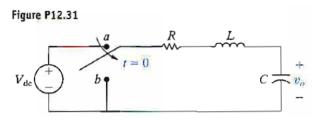
1. Check your answer to Problem 12.37 (5th Problem on HW#3) with SPICE.

2. Problem 12.38.

The circuit parameters in the circuit in Fig. P12.31 are $R = 5000 \Omega$, L = 1 H, and $C = 0.25 \mu\text{F}$. If $V_{\text{dc}} = 15 \text{ V}$, find $v_o(t)$ for $t \ge 0$.



3. Find f(t) for the following functions:

(a)
$$F(s) = \frac{s^3 + 8s^2 + 16s + 12}{s^2 + 5s + 6}$$

(b)
$$F(s) = \frac{2s^2 - 4s + 2}{(s+2)^3}$$

(c)
$$F(s) = \frac{s+3}{s^2+4s+5}$$

(d)
$$F(s) = \frac{3s+2}{(s^2+2s+5)^2}$$

4. Apply the initial and final value theorem to each transform pair in Problem 3, if possible.

From HW 3,

$$i_o(t) = (133.33e^{-2000t} - 33.33e^{-8000t})u(t)$$
 [mA]

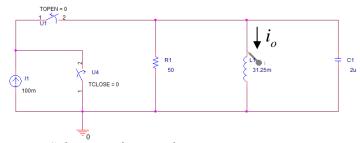
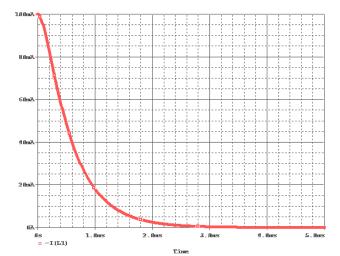


Fig. Schematic for simulation



Time [s]	io [mA]	
	Calculation	Simulation
0.0000	100.000	100.000
0.0005	48.440	48.490
0.0010	18.033	18.053
0.0015	6.638	6.646
0.0020	2.442	2.445
0.0025	0.898	0.900
0.0030	0.330	0.331
0.0035	0.122	0.122
0.0040	0.045	0.045
0.0045	0.016	0.017
0.0050	0.006	0.006

Fig. Simulation result

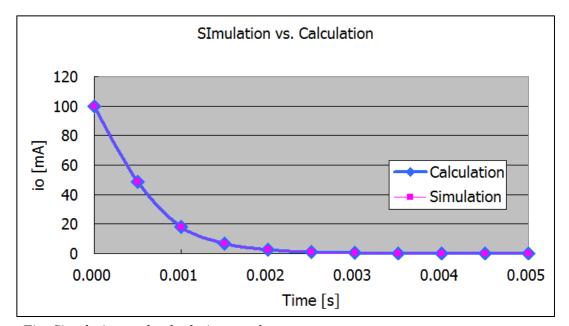


Fig. Simulation and calculation results

$$k_{i} = \frac{15 (400)}{500} = 30V, \quad k_{5} = \frac{15 (400)}{3000} = -5V$$

$$\therefore V_{6}(s) = \frac{20}{55 + (000)} = \frac{5}{5 + 4000}$$

$$\therefore V_{6}(s) = \frac{20}{55 + (000)} = \frac{5}{5 + 4000}$$

$$\frac{3}{5} = \frac{5^{3} + 6^{5} + 16^{5} + 16^{5} + 12}{5^{5} + 5^{5} + 6^{5}} = (5 + 5) - \frac{5 \times 46}{5^{5} + 5^{5} + 6^{5}} + 5 \cdot \frac{2}{5^{5} + 5^{5} + 6^{5}}$$

$$c^{3} + 5^{5} + 46^{5} + 16^{5} + 12$$

$$c^{3} + 5^{5} + 46^{5} + 16^{5} + 12$$

$$c^{3} + 5^{5} + 46^{5} + 16^{5} + 12$$

$$c^{3} + 5^{5} + 46^{5} + 16^{5} + 12$$

$$c^{5} + 5^{5} + 6^{5} + 16^{5} + 12$$

$$c^{5} + 5^{5} + 6^{5} + 16^{5} + 12$$

$$c^{5} + 5^{5} + 6^{5} + 16^{5} + 12$$

$$c^{5} + 5^{5} + 6^{5} + 16^{5} + 12$$

$$c^{5} + 15^{5} + 16^{5} + 12^{5} + 12^{5}$$

$$c^{5} + 15^{5} + 16^{5} + 12^{5} + 12^{5}$$

$$c^{5} + 15^{5} + 16^{5} + 12^{5} + 12^{5}$$

$$c^{5} + 15^{5} + 16^{5} + 12^{5} + 12^{5}$$

$$c^{5} + 15^{5} + 16^{5} + 12^{5} + 12^{5}$$

$$c^{5} + 15^{5} + 16^{5} + 12^{5} + 12^{5}$$

$$c^{5} + 15^{5} + 16^{5} + 12^{5} + 12^{5}$$

$$c^{5} + 15^{5} + 16^{5} + 12^{5} + 12^{5}$$

$$c^{5} + 15^{5} + 16^{5} + 12^{5} + 12^{5}$$

$$c^{5} + 15^{5} + 16^{5} + 12^{5} + 12^{5}$$

$$c^{5} + 15^{5} + 16^{5} + 12^{5}$$

$$c^{5} + 15^{5} + 16^{5}$$

$$c^{5} + 15^{5} + 16$$

3.4)
$$\pi(s) = \frac{3s+2}{(s^2+2s+5)^2} = \frac{3s+2}{(s+l-j+2)^2} (s+l+j+2)^2$$

$$= \frac{ks}{(s+l-j+2)^2} (s+l+j+2)^2 + \frac{ks}{(s+l+j+2)^2} (s+l+j+2)^2$$

$$= \frac{ks}{(s+l-j+2)^2} (s+l+j+2)^2 + \frac{ks}{(s+l+j+2)^2} = \frac{-3+36+2}{(s+l+j+2)^2} = \frac$$

4. Initial & Final Value theorem $\lim_{t\to 0^+} f(t) = \lim_{s\to \infty} s \overline{f}(s)$ if fle) contains no impulse function. $\lim_{t\to\infty} f(t) = \lim_{s\to 0} s F(s)$; if the poles of Fics), except for a first-order pole at the origin lie in the left half of the s plane. (a) IVT; can not be applied : f(t) contains S(t) FVT: S=-2,-3; poles. $\lim_{t\to\infty} f(t) = \lim_{s\to0} s \left(\frac{s^3 + 8s^2 + 16s + 12}{s^2 + 5s + 6} \right) = 0$ (check) lin f(t) = 0 + 3.0 + 4.0 - 9.0 = 0 $\lim_{t \to 0} f(t) = \lim_{s \to \infty} s \overline{A(s)} = \lim_{s \to \infty} \frac{s(2s^2 - 4s + 2)}{(s+2)^2} = 2$ IVT; (b) (check) $\lim_{t\to 0} f(t) = 18.0 - 12.0 + 2.1 = 2$ S=-2,-2,-2 FUT; $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s) = \lim_{s\to 0} \frac{s(2s^2 + 4s + 2)}{(s+2)^3} = 0$ (check) $\lim_{t\to\infty} f(t) = |f.0-12.0+2.0=0$. IVT; lim ft) = lim s Fics) = lim \$ (5+3) = 1 (c) (check) lim f(t) = 2 x 0.707/ x / x cos (-450) = 2 × 0.7071 × 1 × 1/2 = 1. $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s) = \lim_{s\to 0} \frac{s(s+s)}{s^*+4s+5} = 0.$ FVT; (check) lin f(t) = 2 x 0.7071 x 0 x cos (00-45°) = 0. 1: -1 \(\cos(00-450 \)

IVT; $lim f(t) = lim SF(S) = lim - \frac{S(3S+2)}{S+20} = 0$ (d) (check) lin f(t) = 0.7604.0 +0.0626.0 = 0. FUT; S=-1+j2,-1+j2, -1-j2,-1-j2 $\lim_{t\to\infty} f(t) = \lim_{s\to\infty} sf(s) = \lim_{s\to\infty} \frac{s(3s+2)}{(s^2+2s+5)^2} = 0$ (check) lim f(t) = 0.7604. D. cos (00 +80.534°) -0.0626 (0. sin (00) =0.