2. In the circuit below, use the constant voltage model for all diodes with a turn-on voltage of 0.6 V and reverse breakdown voltage of -5 V ($V_Z = 5$ V). (30)

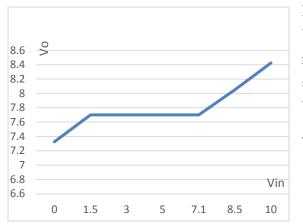
a) What is the minimum value of V_{IN} at which D1 turns on? What is the associated V_O ?

When D₁ first turns on, $V_{D1} = V_{on} = 0.6$ V and $I_{D1} = 0$. Using KCL at V_1 assuming D₂ and D₃ are ON:

$$\frac{10 V - 2 * 0.6 V - V_1}{200 \Omega} = \frac{V_1 - (-5 V)}{1000 \Omega}$$

Solving, $V_1 = 6.5$ V, so $V_{IN} = V_1 + 0.6$ V = 7.1 V and $V_O = V_1 + 2 * 0.6$ V = 7.7 V.

Checking, V_0 is less than +10V, so current through D_2 and D_3 is positive, confirming that they are ON.

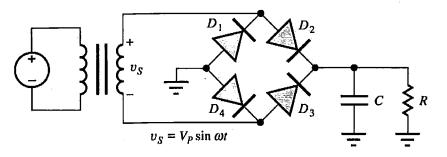

b) If $V_{IN} = 10$ V, what is the value of V₀? Specify what mode each of the diodes is in and check any assumptions made.

Assume that D_1 , D_2 and D_3 are all on. KCL at V_1 gives:


$$\frac{10 V - 0.6 V - V_1}{500 \Omega} + \frac{10 V - 2 * 0.6 V - V_1}{200 \Omega} = \frac{V_1 - (-5 V)}{1000 \Omega}$$

Solving, $V_1 = 7.225$ V, so $V_0 = V_1 + 2 * 0.6$ V = 8.425 V. Checking, V_0 is less than +10V, so current through D₂ and D₃ is positive, confirming that they are ON. $V_1 + 0.6$ V is less than V_{IN} , D₁ is also ON.

c) Sketch plot of the output voltage V₀ versus input voltage for $0 V < V_{IN} < 10 V$. Specify voltages at inflection points.


For a given mode for all the diodes, the circuit is linear. For $V_{IN} < 7.1 \text{ V}$, D_1 turns off, so V_0 stay the same (7.7 V). D_1 remains off as V_{IN} is reduced until it breaks down when $V_{DI} = -5\text{V}$, which occurs for $V_{IN} = V_1 - 5 \text{ V} = 1.5 \text{ V}$. For $V_{IN} = 0$ V, can solve KCL at V_1 again using same equation as (b), getting $V_1 = 6.125 \text{ V}$ and $V_0 = 7.325 \text{ V}$.

EE 331 Exam 1

Version A

3. For the power supply circuit shown below, the peak value of v_S is 14 V, the operating frequency is 50 Hz, and the on-voltages of the diodes are 0.60 V. State your assumptions clearly and check them if possible. (35)

Solution :

(a) What is the dc output voltage across *R* if the ripple voltage is small?(8)

$$V_{dc} = V_P - 2V_{on} = 12.8 V$$

(b) What is the required minimum reverse breakdown voltage for the diodes?(5) $PIV = V_P = 14 V$

(c) If $R = 2 \text{ k}\Omega$, what is the minimum value of capacitance C to ensure that the output voltage remains above 12 V?(12)

$$C_{min} = \frac{V_P - 2V_{on}}{V_r} \frac{T}{2R} = \frac{V_P - 2V_{on}}{fV_r} \frac{1}{2R} = 80 \ \mu F$$

 $V_r = 12.8 - 12 = 0.8 V$

(d) What fraction of a period is each diode conducting?(10)

$$\Delta T = \frac{1}{\omega} \sqrt{\frac{2V_r}{V_p}} = \frac{0.338}{100\pi} = 1.07 \, ms$$
$$T = \frac{1}{50} = 20 \, ms$$

Fraction of conducting period $= \frac{\Delta T}{T} = 0.053$