Spring 2012

 Name:_____
 Student Number:_____

There are 100 points over 3 problems on 3 additional pages.

Be sure to **state** any assumptions made and **check** them when possible.

Useful units and constants

Definition of electron volt: $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$ Electronic charge: $q = 1.6 \times 10^{-19} \text{ C}$ Boltzmann constant: $k = 8.62 \times 10^{-5} \text{ eV/K} = 1.38 \times 10^{-23} \text{ J/K}$ Thermal voltage at room temperature: kT / q = 0.0259 VRelative permittivity of silicon: $\varepsilon_r = 11.7$ Relative permittivity of SiO₂: $\varepsilon_r = 3.9$ Permittivity of free space: $\varepsilon_0 = 8.854 \times 10^{-14} \text{ F/cm}$ Silicon intrinsic carrier density at room temperature: $n_i = 10^{10}/\text{cm}^3$ Band gap for silicon: $E_G = 1.12 \text{ eV}$ 1. (32 points) Design a four-resistor bias network for an NMOS transistor with $R_D = R_S$ to give a Q-point (*i*_{DS}, *v*_{DS}) of (0.25 mA, 2 V) with $V_{DD} = 5$ V. Use $K_n' = 50 \mu A/V^2$, $V_{TO} = 0.8$ V, and (W/L) = 2/1. Ignore channel length modulation effect.

(a) (5 points) What are the values of R_D and R_S ?

(b) (12 points) What is the ratio R_1/R_2 to give the desired biasing for $\gamma = 0$? What is transistor mode?

(c) (5 points) What value of R_1 would make the current through R_1 equal to 5% of drain current.

(d) (10 points) Repeat (b) if body effect parameter is $\gamma = 0.6 \text{ V}^{1/2}$ and $2\varphi_F = 0.7 \text{ V}$.

2. (36 points) An NMOS depletion load inverter design is shown in the figure below. Use $K_n' = 20 \ \mu A/V^2$ for both devices. $V_{TO}^S = 1.0 \ V$ and $V_{TO}^L = -1.0 \ V$. Neglect the body effect.

(a) (12 pts) If (W/L)s = (1/1), find the value of (W/L)_L to give $V_L = 0.7$ V. Neglect channel length modulation effect ($\lambda = 0$).

(b) (6 pts) How should the aspect ratios of the MOSFETs be changed to make the maximum power consumption of the inverter 4 mW, with V_H and V_L kept unchanged.

(c) (8 pts) If channel length modulation was significant, would V_L increase/decrease/stay the same? Explain.

(d) (10 pts) Estimate the noise margins based on the voltage transfer characteristic provided.

EE 331 Exam 2 Instructor: Dunham Spring 2012 Version A 3. (32 points) Use $K_{n,p} = 100 \ \mu \text{A/V}^2$, $\gamma = 0$, and $\lambda = 0$. The on voltages of body pn junctions are 0.7 V. (a) (10 points) $V_S = V_B = 2$ V. $V_D = 3$ V. $V_{T0}=0.5$ V. The current into terminal D is 2 mA. What is V_G ?

(a) (12 points) The current into terminal D is -2 mA. $V_{T0}=0.5$ V. $V_S = V_B = V_G = 0$ V. Find V_D and current into terminal S.

(b) (10 points) This transistor is a depletion mode PMOS devices with $V_{TO} = 0.5$ V. $V_S = V_B = 0$ V, $V_G = -1$ V, and $V_D = -2$ V. What mode is device operating in? What is current **into** terminal D?

