Spring 2012

EE 331 Exam 2

Instructor: Dunham

Version A

Exam Solutions

Mean = 54.1, Median = 56, σ = 19.9

There are 100 points over 3 problems on 3 additional pages.

Be sure to **state** any assumptions made and **check** them when possible.

Useful units and constants

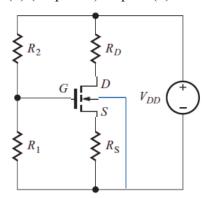
Definition of electron volt: $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$

Electronic charge: $q = 1.6 \times 10^{-19} \,\mathrm{C}$

Boltzmann constant: $k = 8.62 \times 10^{-5} \text{ eV/K} = 1.38 \times 10^{-23} \text{ J/K}$

Thermal voltage at room temperature: kT/q = 0.0259 V

Relative permittivity of silicon: $\varepsilon_r = 11.7$


Relative permittivity of SiO₂: $\varepsilon_r = 3.9$

Permittivity of free space: $\varepsilon_0 = 8.854 \times 10^{-14} \text{ F/cm}$

Silicon intrinsic carrier density at room temperature: $n_i = 10^{10} / \text{cm}^3$

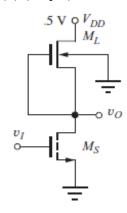
Band gap for silicon: $E_G = 1.12 \text{ eV}$

- 1. (32 points) Design a four-resistor bias network for an NMOS transistor with $R_D = R_S$ to give a Q-point (i_{DS} , v_{DS}) of (0.25 mA, 2 V) with $V_{DD} = 5$ V. Use $K_n' = 50$ μ A/V², $V_{TO} = 0.8$ V, and (W/L) = 2/1. Ignore channel length modulation effect.
- (a) (5 points) What are the values of R_D and R_S ?
- (b) (12 points) What is the ratio R_1/R_2 to give the desired biasing for $\gamma = 0$? What is transistor mode?
- (c) (5 points) What value of R_1 would make the current through R_1 equal to 5% of drain current.
- (d) (10 points) Repeat (b) if body effect parameter is $\gamma = 0.6 \text{ V}^{1/2}$ and $2\varphi_F = 0.7 \text{ V}$.

- (a) $i_{DS} = 0.25 \text{ mA} = (V_{DD} v_{DS})/(R_D + R_S) = (5 2)/(2R_D)$, so $R_D = R_S = (3 \text{ V})/[2(0.25 \text{ mA})] = 6 \text{ k}\Omega$.
- (b) Assume saturation, then $i_{DS} = (K_n'/2)(W/L)(V_{GS} V_{TN})^2 = 0.25$ mA. $\gamma = 0$, so $V_{TN} = V_{TO} = 0.8$ V. $V_{GS} = 0.8$ V + (0.25 mA)/[(25 μ A/V²)(2)]^{1/2} = 3.04 V. $V_{GD} = 3.04 2 = 1.04$ V > $V_{TN} = 0.8$ V, so not saturated. Try triode instead. $i_{DS} = (K_n')(W/L)(V_{GS} V_{TN} V_{DS}/2)V_{DS} = 0.25$ mA. Then $V_{GS} = 0.8$ V + 2/2 V + (0.25 mA)/[(50 μ A/V²)(2)(2 V)] = 3.05 V. $V_{GD} = 3.05 2 = 1.05$ V > $V_{TN} = 0.8$ V, so saturated is correct. $V_{GG} = 3.05 V_{RS} = 3.05 1.5 = 4.45$ V. $R_1/R_2 = 4.55$ / (5 4.55) = 10.1.
- (c) $V_{DD} / (R_1 + R_2) = (0.05) i_{DS} = 12.5 \mu A$. $R_1 + R_2 = 400 k\Omega$, $R_1 = 400 k\Omega$ $(4.55 / 5) = 364 k\Omega$.

(d)
$$V_{TN} = V_{TQ} + \gamma \left(\sqrt{V_{SB} + 2\varphi_F} - \sqrt{2\varphi_F} \right) = 0.8 + 0.6 \left(\sqrt{1.5 + 0.7} - \sqrt{0.7} \right) = 1.19 \ V.$$

Assume triode. $i_{DS} = (K_n')(W/L)(V_{GS} - V_{TN} - V_{DS}/2)V_{DS} = 0.25$ mA. Then $V_{GS} = 1.18 \text{ V} + 2/2 \text{ V} + (0.25 \text{ mA})/[(50 \text{ }\mu\text{A/V}^2)(2)(2 \text{ V})] = 3.44 \text{ V}$. $V_{GD} = 3.44 - 2 = 1.44 \text{ V} > V_{TN} = 1.19 \text{ V}$, so saturated is correct. $V_{GG} = 3.44 - V_{RS} = 3.44 - 1.5 = 4.94 \text{ V}$. $R_1/R_2 = 4.94/(5 - 4.94) = 82.3$.


2. (36 points) An NMOS depletion load inverter design is shown in the figure below. Use K_n ' = 20 μ A/V² for both devices. $V_{TO}^S = 1.0 \text{ V}$ and $V_{TO}^L = -1.0 \text{ V}$. Neglect the body effect.

(a) (12 pts) If $(W/L)_S = (1/1)$, find the value of $(W/L)_L$ to give $V_L = 0.7$ V. Neglect channel length modulation effect ($\lambda = 0$).

(b) (6 pts) How should the aspect ratios of the MOSFETs be changed to make the maximum power consumption of the inverter 4 mW, with V_H and V_L kept unchanged.

(c) (8 pts) If channel length modulation was significant, would V_L increase/decrease/stay the same (term should be included for both triode and saturation)? Explain.

(d) (10 pts) Estimate the noise margins based on the voltage transfer characteristic provided.

(a) When $V_I = V_H = V_{DD} = 5$ V, $V_O = V_L = 0.7$ V. For M_S, $V_{DS} = 0.7$ V, $V_{DS} < V_{GS} - V_{T0}^s$. Thus, it operates in the triode region, and I_D is expressed as:

$$I_D = K_n \left(\frac{W}{L}\right)_s \left(V_{GS} - V_{TO}^s - \frac{V_{DS}}{2}\right) V_{DS}$$

$$I_D = 20 \times 1 \times \left(5 - 1 - \frac{0.7}{2}\right) 0.7 = 51.1 \text{ } \mu\text{A}$$

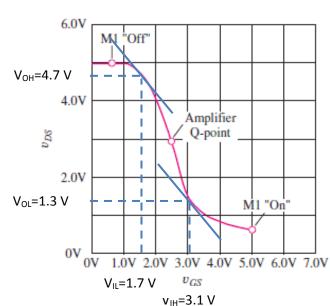
For load NMOS, V_{DS} = 5 - 0.7 = 4.3 V, V_{GS} = 0V. Neglecting the body effect, $V_{GS} - V_{T0}^L < V_{DS}$, so it operates in the saturation region.

$$I_D = \frac{K'_n}{2} \left(\frac{W}{L}\right)_L (V_{GS} - V_{TO}^L)^2$$

$$\left(\frac{W}{L}\right)_{L} = \frac{51.1}{(20/2)\times(0+1)^2} = 5.11$$

(b) Power consumption $P_{max} = I_D V_{DD}$, $I_D = 4$ mW/5 V = 0.8 mA. Use the I_D expressions for switch and load transistor in (a),

M_s:
$$0.8 \times 10^3 = 20 \left(\frac{W}{L}\right)_s \left(5 - 1 - \frac{0.7}{2}\right) 0.7 \Rightarrow \left(\frac{W}{L}\right)_s = 15.66$$


M_L:
$$0.8 \times 10^3 = \frac{20}{2} \left(\frac{W}{L} \right)_L (0+1)^2 \implies \left(\frac{W}{L} \right)_L = 80$$

(c) If channel length modulation was significant, For M_L in the saturation region, $V_{DS}=V_{DD}-V_L$:, $V_{DSat}=0-V_T^L$

$$I_{D_{-}M_{L}} = \frac{K_{n}'}{2} \left(\frac{W}{L}\right)_{L} (0 - V_{TO}^{L})^{2} \left[1 + \lambda (V_{DD} - V_{L} + V_{T}^{L})\right]$$

For M_L in the triode region, no change.

Due to the channel length modulation, drain current of M_L increases. To satisfy KCL, the drain current of M_S must also increase which requires V_{DS} of M_S to increase, $V_L > 0.7V$.

(d) Note that slope of -1 is diagonal of rectangles on grid of plot.

$$NM_L = V_{IL} - V_{OL} = 1.7 - 1.3 = 0.4 V$$

$$NM_H = V_{OH} - V_{IH} = 4.7 - 3.1 = 1.6 \text{ V}$$

3. (32 points) Use $K_{n,p}=100 \,\mu\text{A/V}^2$, $\gamma=0$, and $\lambda=0$. The on voltages of body pn junctions are 0.7 V.

(a) (10 points) $V_S = V_B = 2 \text{ V}$. $V_D = 3 \text{ V}$. $V_{T0} = 0.5 \text{V}$. The current **into** terminal D is 2 mA. What is V_G ?

$$G \\ \bigcirc D \\ \bigcirc B \\ \bigcirc S$$

$$\gamma = 0$$
, so no body effect. $V_{TN} = V_{T0} = 0.5$ V. Guess in triode,
$$I_D = K_N \left(V_{CS} - V_{TN} - \frac{1}{2} V_{DS} \right) V_{DS}$$

$$2 \text{ mA} = \left(100 \frac{\mu \text{A}}{\text{V}^2}\right) \left(V_{\text{ob}} - 0.5 \text{ V} - \frac{1}{2} 1 \text{ V}\right) 1 \text{ V}$$

Solving, $V_{QS} = 21 \text{ V}$, $V_G = V_{GS} + V_S = 23 \text{ V}$. $V_{QS} - V_{TN} = 20.5 \text{ V} > V_{DS}$, so triode is correct.

(b) (12 points) The current **into** terminal D is -2 mA. V_{T0} =0.5V. $V_S = V_B = V_G = 0$ V. Find V_D and current into terminal S.

 I_D is negative, so electrons in channel are flowing from terminal D to S. Thus terminal D is actually the source, call it S'. $V_{TN} = V_{TQ} + \gamma \left(\sqrt{V_{SNB} + 2\varphi_F} - \sqrt{2\varphi_F}\right)$, but $\gamma = 0$, so $V_{TN} = V_{TQ} = 0.5 \text{ V}$. $V_{DNSN} = V_{GSN} > V_{GSN} - V_{TN}$, so NMOS is in saturation. We first assume $I_{DN} = -I_D = \frac{R_D}{2} \left(V_{GSN} - V_{TN}\right)^2 = \frac{R_D}{2} \left(-V_{SN} - V_{TN}\right)^2$, $V_D = V_{SN} = -4.97 \text{ V}$, check $V_{GSI} > V_{TN}$ and $V_{DISI} > V_{GSI} - V_{TN}$. However, $V_{BD} = V_{BSI} = 4.97 \text{ V} > V_{on} = 0.7 \text{ V}$, $V_{on} = 0.7 \text{ V}$ is for the body to source (D) diode. Thus, this diode is on and $V_D = -0.7 \text{ V}$, $V_{GSt} = 0.7 \text{ V}, l_{Dt} = \frac{R_{D}}{2} (V_{GSt} - V_{TN})^2 = 2 \text{ } \mu\text{A}.$

(c) (10 points) This transistor is a depletion mode PMOS devices with $V_{TO} = 0.5 \text{ V}$. $V_S = V_B = 0 \text{ V}$, $V_G = -1$ V, and $V_D = -2$ V. What mode is device operating in? What is current **into** terminal D?

 $V_{TB} = V_{TO} = 0.5 \text{ V}. V_{DS} = -1 \text{ V} < V_{TB}$, so on. $V_{DS} = -2 \text{ V} < V_{GS} - V_{TB} = -1.5 \text{ V},$ so PMOS is in saturation. $I_D - \frac{R_D}{2} (V_{GS} - V_{TB})^2$. Solving, $I_D = 0.1125 \text{ mA}$, but current into terminal D is -0.1125 mA.