Version A

Name:_____ Student Number:_____

There are 200 points over 6 problems on 6 additional pages.

Be sure to **state** any assumptions made and **check** them when possible.

Useful units and constants

Definition of electron volt: $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$ Electronic charge: $q = 1.6 \times 10^{-19} \text{ C}$ Boltzmann constant: $k = 8.62 \times 10^{-5} \text{ eV/K} = 1.38 \times 10^{-23} \text{ J/K}$ Thermal voltage at room temperature: kT/q = 0.0259 VRelative permittivity of silicon: $\varepsilon_r = 11.7$ Relative permittivity of SiO₂: $\varepsilon_r = 3.9$ Permittivity of free space: $\varepsilon_0 = 8.854 \times 10^{-14} \text{ F/cm}$ Silicon intrinsic carrier density at room temperature: $n_i = 10^{10}/\text{cm}^3$ Band gap for silicon: $E_G = 1.12 \text{ eV}$

Default MOS parameters: $K_n' = 200 \ \mu A/V^2$, $K_p' = 100 \ \mu A/V^2$, $V_{TN0} = 0.5 \ V$, $V_{TP0} = -0.5 \ V$, $V_{TD0} = -2 \ V$, $\gamma = 0.5 \ V^{1/2}$, $|2\varphi_F| = 0.6 \ V$, $\lambda = 0$, (W/L) = 1**Default diode parameters:** $I_s = 10^{-16} \ A$, n = 1, $V_{Zener} = 5 \ V$, $R_{Zener} = 0$.

1. [36 points] A silicon pn junction has uniform doping concentrations of $N_A = 10^{17}/\text{cm}^3$ and $N_D = 5 \times 10^{18}/\text{cm}^3$ on the two sides of the junction, respectively. Both sides are narrow with undepleted region widths of W_p'=200 nm and W_n'=50 nm. The minority carrier lifetimes are $\tau n_p = 2 \mu s$ and $\tau p_n = 0.1 \mu s$. The diode has a cross sectional area of 200 nm × 500 nm.

- a) [10] Calculate the reverse leakage current $I_{S.}$
- b) [8] What is the change in depletion charge as the voltage changes from 0 to 0.7 V?
- c) [8] What is the change in diffusion charge (stored minority charge) as the voltage changes from 0 to 0.7 V?
- d) [10] If the diode was operated with forward currents on the order of 1 μ A, what would be an appropriate Thevenin equivalent linear model?

Spring 2012 EE 331 Final Exam

Instructor: Dunham

Version A

2. [40 points] For the inverter shown to the right, use MOS parameters on cover page.

- (a) [10] Calculate *V*_{*H*}.
- (b) [10] Calculate VL.
- (c) [8] Calculate V_{IL}.

(d) [12] Calculate t_{pLH} for step function input (V_H to V_L at t=0) and total load capacitance of 5 pF. Use method introduced in lecture.

Instructor: Dunham

3. [30 points] In the circuit to the right, $V_{DD} = 3 \text{ V}$, $R_L = 1 \text{ k}\Omega$, $R = 20 \text{ k}\Omega$, and $V_{on} = 0.7 \text{ V}$. Use default MOS parameters (cover page).

(a) [15] Sketch v_O versus v_A for $v_B = 0$ and for $v_B = V_{DD}$ (two lines). What function does this circuit implement?

(b) [15] Calculate V_L and V_H and indicate on the plot in (a).

Instructor: Dunham Version A

4. [34 points] Design a CMOS gate that implements the logic function $Z = \overline{A} + \overline{B} \cdot (C + \overline{D})$. Assume both inverted and noninverted logic signals are available.

(a) [12] Draw the CMOS circuit design.

(b) [12] Design the aspect ratios for all transistors to make worst case VTC and switching speed equivalent to inverter with (W/L) for nMOS of (1/1) and (W/L) for pMOS of (2/1).

(c) [10] For your design, calculate the worst-case initial (just after input switches between V_H and V_L) pull-up current for $V_{DD} = 1.5$ V. Use $\gamma = 0$ (or $\alpha = 0.2$ for 5 points bonus credit).

Spring 2012 EE 331 Final Exam Instructor: Dunham Version A

5. [30 points] For problems below, use parameters on cover page, except assume $\gamma = 0$.

(a) [10] $V_S = 0$ V and $V_D = 2$ V. The current **into** terminal D is 2 mA. Find V_G . What mode is transistor operating in?

(b) [20] $V_{DD} = 10$ V, $R_1 = 50$ k Ω , and $R_2 = 10$ k Ω . (*W/L*) = 1 for both transistors. Determine the mode of each transistor and the voltage across resistor R_2 .

Spring 2012 EE 331 Final Exam

Instructor: Dunham

Version A

6. [30 points] In the SRAM cell to the right, $V_{DD} = 2$ V. Use MOS parameters on cover page, except use assume $\gamma = 0$.

(a) [15] $V_{D1} = 2$ V, $V_{D2} = 0$ V, and both bitlines are precharged to 1 V. What would be the initial current **into** each bit line (*BL* and \overline{BL}) immediately after the wordline voltage is switched from 0 to 2 V?

(b) [15] Initially, $V_{D1} = 2$ V and $V_{D2} = 0$ V. If the bit line voltages are held to $V_{BL} = 0$ V and $V_{\overline{BL}} = 0$ V and the wordline at 2 V, what is the final steady-state value for V_{D1} if V_{D2} remains near 0 V?

