Homework 8 Solutions

1. J&B P7.19

(a) Symmetrical CMOS inverter

$$V_{IL} = \frac{1}{4} \left(\frac{3}{2} V_{DD} + V_T \right) = 1.425 V$$

$$V_{IH} = \frac{1}{4} \left(\frac{5}{2} V_{DD} - V_T \right) = 1.875 V$$

$$V_{IL} + V_{IH} = 3.3 V$$

$$V_{OL} = \frac{1}{4} \left(\frac{1}{2} V_{DD} - V_T \right) = 0.225 V$$

$$V_{OH} = \frac{1}{4} \left(\frac{7}{2} V_{DD} + V_T \right) = 3.075 V$$

$$NM_L = V_{IL} - V_{OL} = 1.20 V$$

$$NM_H = V_{OH} - V_{IH} = 1.20 V$$

(b) CMOS with equal $\frac{W}{I}$ values for the NMOS and PMOS

$$K_{R} = \frac{K_{n}}{K_{p}} = 2.5$$

$$V_{IL} = \frac{2\sqrt{K_{R}}(V_{DD} - V_{TN} + V_{TP})}{(K_{R} - 1)\sqrt{K_{R} + 3}} - \frac{(V_{DD} - K_{R} \cdot V_{TN} + V_{TP})}{K_{R} - 1} = 1.17 V$$

$$V_{IH} = \frac{2K_{R}(V_{DD} - V_{TN} + V_{TP})}{(K_{R} - 1)\sqrt{1 + 3K_{R}}} - \frac{(V_{DD} - K_{R} \cdot V_{TN} + V_{TP})}{K_{R} - 1} = 1.61 V$$

$$V_{OL} = \frac{(K_{R} + 1)V_{IH} - V_{DD} - K_{R}V_{TN} - V_{TP}}{2K_{R}} = 0.17 V$$

$$V_{OH} = \frac{(K_{R} + 1)V_{IL} + V_{DD} - K_{R}V_{TN} - V_{TP}}{2K_{R}} = 3.13 V$$

$$NM_{L} = V_{IL} - V_{OL} = 1.00 V$$

$$NM_{H} = V_{OH} - V_{IH} = 1.52 V$$

2. J&B P7.22

Current flows through M_{P1} and M_{N2} , assume both in triode region,

$$I_{DN} = I_{DP}$$

$$K'_n \left(\frac{W}{L}\right)_N \left(V_{DD} - V_{TN} - \frac{1}{2}V_O\right) V_O$$

$$= K'_p \left(\frac{W}{L}\right)_S \left(-V_{DD} - V_{TPS} - \frac{1}{2}(V_O - V_{DD})\right) (V_O - V_{DD})$$

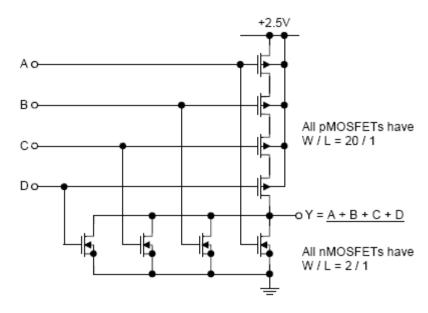
$$V_O = 0.98 V$$

Check: $V_{GSN} = 2.5 \ V > V_{TN} = 0.6 \ V$, $V_{GSN} - V_{TNS} = 1.9 \ V > V_{DSN} = 0.98 \ V$, NMOS is triode. $V_{GSP} = -2.5 \ V < V_{TN} = -0.6 \ V$, $|V_{GSP} - V_{TPS}| = 1.9 \ V > |V_{DSP}| = 1.52 \ V$, PMOS is triode.

$$I_{DN} = I_{DP} = 2.7 \ mA$$

3. J&B P7.47

(a)


$$100 \ \mu A \cdot V^{-2} \frac{15}{1} (V_{in} - 0.6 \ V)^2 = 40 \ \mu A \cdot V^{-2} \cdot \frac{15}{1} (3.3 \ V - V_{in} - 0.6 \ V)^2$$

$$V_{in} = 1.414 \ V$$

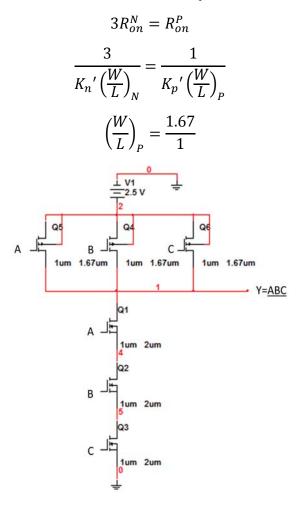
$$I_{DMAX} = 496.5 \ \mu A$$

(b)

$$100 \ \mu A \cdot V^{-2} \frac{15}{1} (V_{in} - 0.6 \ V)^2 = 40 \ \mu A \cdot V^{-2} \cdot \frac{15}{1} (2.5 \ V - V_{in} - 0.6 \ V)^2$$

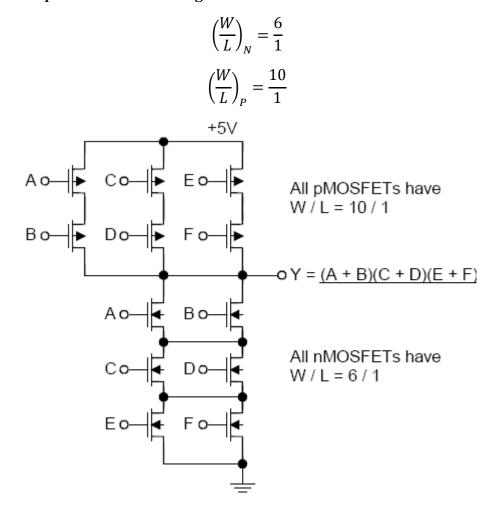
$$V_{in} = 1.104 \ V$$

$$I_{DMAX} = 190.3 \ \mu A$$


4. J&B P7.62

- (a) Since the NMOS devices will be in parallel, their $\frac{W}{L}$ ratios will be same as that in the reference inverter of the figure 7.12 as shown below, or $\left(\frac{W}{L}\right)_N = \frac{2}{1}$. The PMOS devices will be series, however, so their $\frac{W}{L}$ ratios will be multiplied by 4 from the reference inverter of the figure 7.12, or $\left(\frac{W}{L}\right)_P = 4 \times \frac{5}{1} = \frac{20}{1}$.
- (b) To drive three times the load capacitance with the same propagation delay, the $\frac{W}{L}$ ratios for each device must be increased by a factor of three: $\left(\frac{W}{L}\right)_N = \frac{6}{1}$ and $\left(\frac{W}{L}\right)_P = \frac{60}{1}$. Circuit for the 4-input CMOS NOR gate is as shown below

5. J&B P7.64


A current path involves 3 NMOS and 1 PMOS. Symmetrical delay requires

6. J&B P7.73

(a)
$$Y = \overline{(A+B)(C+D)(E+F)}$$

(b) The complete circuit, including the PMOS network is shown below

(c)

$$\left(\frac{W}{L}\right)_{N_eq} = \frac{1}{\left(\frac{1}{6} \div 2\right) \times 3} = \frac{4}{1}$$

(d)

$$\left(\frac{W}{L}\right)_{P_{-}eq} = \frac{1}{\left(\frac{1}{10} \times 2\right) \div 3} = \frac{15}{1}$$

7. J&B P7.95

The worst case involves 3 NMOS in series, with $\frac{W}{L} = \frac{2}{1}$, which is equivalent to the $R_{on} = \frac{2}{3}$, as compared to the reference inverter in which $\frac{W}{L} = \frac{2}{1}$. Thus the high to low propagation delay for this gate is three times that of the symmetrical reference inverter $\tau_{pHL} = 3\tau_{pHLI} = 3\times\frac{0.63C}{K_n} = 4.73~ns$.

Use numerical method introduced in lecture, we treat the whole network as a the reference inverter which includes only one NMOS and PMOS, the equivalent NMOS is with $\frac{W}{L} = \frac{2}{3}$, and the equivalent PMOS is with $\frac{W}{L} = \frac{5}{2}$.

When input suddenly is from low to high, capacitance is discharging, M_N is in on $(V_{GSN} = 2.5 \ V)$, and M_P is off $(V_{GSP} = 0 \ V)$, when $V_O = V_{DSN} > V_{GSN} - V_{TN} = V_H - V_{TN} = V_{DD} - V_{TN} = 1.9 \ V$, NOMS is in saturation,

$$I_C = I_{DSN} = \frac{K'_n}{2} \left(\frac{W}{L}\right)_N (V_H - V_{TNS})^2$$

when $V_0 = 1.9 V$, it then is in linear,

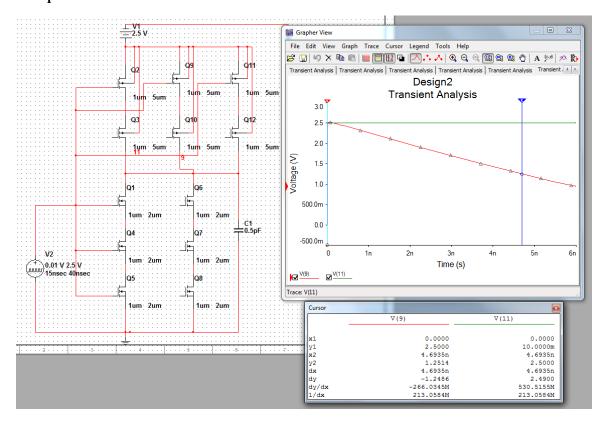
$$I_C = I_{DN} = K'_n \left(\frac{W}{L}\right)_N \left(V_{DD} - V_{TN} - \frac{1}{2}V_O\right)V_O$$

Because the current switches operation in two regions, we consider two subsections which includes three points, calculate V_O from V_H to 1.9~V and 1.9~V to $V_{DD}-\frac{V_H-V_L}{2}=1.25~V$, then $V_{DSN_initialHL1}=2.5~V$, $V_{DSN_finalHL1}=1.9~V$, $V_{DSN_initialHL2}=1.9~V$, $V_{DSN_initialHL2}=1.25~V$

$$I_{ninitHL1} = \frac{K'_n}{2} \left(\frac{W}{L}\right)_N (V_H - V_{TNS})^2 = 0.12 \, mA$$

$$I_{ninitHL2} = I_{finalHL1} = K'_n \left(\frac{W}{L}\right)_N \left(V_{DD} - V_{TN} - \frac{1}{2}V_O\right) V_O = 0.12 \, mA$$

$$I_{finalHL2} = K'_n \left(\frac{W}{L}\right)_N \left(V_{DD} - V_{TN} - \frac{1}{2}V_O\right) V_O = 0.106 \, mA$$


$$\tau_{pHL} = \sum_n \Delta t_{nHL} = C \sum_n \frac{\Delta V_{nHL}}{I_{navgHL}} = C \sum_n \frac{\Delta V_{nHL}}{\left(I_{ninitHL} + I_{nfinalHL}\right)/2}$$

$$= 0.5 \times 10^{-12} F \times \left(\frac{0.6 \, V}{0.12 \, mA} + \frac{0.65 \, V}{0.113 \, mA}\right) = 5.38 \, \text{ns}$$

Consider three subsections which includes 4 points, calculate V_O from V_H to 1.9~V, 1.9~V to 1.4~V and 1.4~V to 1.25~V then $V_{DSN_initialHL1} = 2.5~V$, $V_{DSN_finalHL1} = 1.9~V$, $V_{DSN_initialHL2} = 1.9~V$, $V_{DSN_finalHL2} = 1.4~V$, $V_{DSN_finalHL2} = 1.4~V$, then

$$\begin{split} I_{ninitHL1} &= 0.12 \ mA \\ I_{ninitHL2} &= I_{finalHL1} = 0.12 \ mA \\ I_{ninitHL3} &= I_{finalHL2} = 0.112 \ mA \\ I_{finalHL3} &= 0.106 \ mA \\ \\ \tau_{pHL} &= 0.5 \times 10^{-12} F \times \left(\frac{0.6 \ V}{0.12 \ mA} + \frac{0.5 \ V}{0.116 \ mA} + \frac{0.15 \ V}{0.109 \ mA} \right) = 5.34 \ \mathrm{ns} \end{split}$$

Compared with Multisim result

 $\tau_{pHL} = 4.7 \ ns$

8. J&B P7.116

From the Fig. 7.36 of the text book, the maximum occurs when NMOS transistor is cutoff,

$$R_{onn} = \infty$$

PMOS is in triode ($V_{DSP} \approx 0$), and the combined resistance becomes R_{onp} which is decreasing in value thereafter,

$$R_{EQ} = R_{onp}$$

The resistance of PMOS

$$R_{onp} = \frac{V_{DSP}}{I_{DSP}} = \frac{V_{DSP}}{K_{p}' \left(\frac{W}{L}\right)_{p} \left(V_{GSP} - V_{TP} - \frac{1}{2}V_{DSP}\right) V_{DSP}} \approx \frac{V_{DSP}}{K_{p}' \left(\frac{W}{L}\right)_{p} \left(V_{GSP} - V_{TP}\right) V_{DSP}} = \frac{1}{K_{p}' \left(\frac{W}{L}\right)_{p} \left(V_{GSP} - V_{TP}\right)} \le 250 \,\Omega$$

When $\left(\frac{W}{L}\right)_{P}$ are minimum, the R_{EQ} is maximum, then

$$\frac{1}{K_p'\left(\frac{W}{L}\right)_{P\ min}(V_{GSP}-V_{TP})} = 250\ \Omega \quad \blacksquare$$

$$V_{TP} = V_{TOP} - \gamma_P \left(\sqrt{V_{SBP} + 2\varphi_{FP}} - \sqrt{2\varphi_{FP}} \right)$$

In order to obtain the source voltage when NMOS is cutoff, we let

$$V_{GSN} = V_{TN}$$

or

$$2.5 V - V_S = V_{TON} + \gamma_N (\sqrt{V_S + 2\varphi_{FN}} - \sqrt{2\varphi_{FN}})$$

Use iterative algorithm or mathematic software to solve for above equation, we get

$$V_{\rm S} = 1.426 \, V$$

Plug this back to equation \blacksquare with appropriate V_{TP} , we get

$$\left(\frac{W}{L}\right)_{Pmin} = \frac{240}{1}$$

Similar approach can be used to solve the $\left(\frac{W}{L}\right)_{Nmin}$ if the maximum happens when PMOS is cutoff and NMOS is in triode. When PMOS transistor is cutoff,

$$R_{onp} = \infty$$

NMOS is in triode ($V_{DSN} \approx 0$), and the combined resistance becomes R_{onn} which is decreasing in value thereafter,

$$R_{EO} = R_{onn}$$

The resistance of NMOS

$$R_{onn} = \frac{V_{DSN}}{I_{DSN}} = \approx \frac{1}{K_n' \left(\frac{W}{L}\right)_N \left(V_{GSN} - V_{TN}\right)} \le 250 \,\Omega$$

Then

$$\frac{1}{K_{n'}\left(\frac{W}{L}\right)_{N_{min}}\left(V_{GSN}-V_{TN}\right)}=250\,\Omega\quad\blacksquare\,\blacksquare$$

$$V_{TN} = V_{TON} + \gamma_N \left(\sqrt{V_S + 2\varphi_{FN}} - \sqrt{2\varphi_{FN}} \right)$$

In order to obtain the source voltage when PMOS is cutoff, we let

$$V_{GSP} = V_{TP}$$

$$-V_S = V_{TOP} - \gamma_P \left(\sqrt{V_{SBP} + 2\varphi_{FP}} - \sqrt{2\varphi_{FP}} \right)$$

Use iterative algorithm or mathematic software to solve above equation, we get

$$V_S = 1.07433 V$$

Plug this back to equation \blacksquare with appropriate V_{TN} , we get

$$\left(\frac{W}{L}\right)_{Nmin} = \frac{96.2}{1}$$