Physics of Semiconductors in N onequilibrium

Thermal equilibrium is characterized by the condition np = nf. When this relation holds,

the equations in the previous handouts can be used to calculate Ey, n, p, etc.
Injection: exira carriers provided (electrically or by light) np > n?.
Extraction: carriers removed (electrically) np < n?.

¢ Many important semiconductor devices depend for their operation on nonequilibrium con-

ditions.
® Excess carriers will, given time, recombine to re-establish thermal equilibrium.

T=carrier lifetime (1ns - 1ms)
=recombination rate (carriers/cm3s)

G'=generation rate (carriers/cm?s)

¢ The manner in which thermal equilibrium is re-established is of fundamental importance

to the operation of semiconductor devices.

At any T > 0°K, some electrons gain enough en-
ergy to jump into the conduction band. This leaves
behind a hole so that
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Suppose we shine light on the semiconductor with
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E = hv > E, so that by absorbing a photon an elec-

tron can be excited into the conduction band.

. n=mn;+An
hv >Eg
ANATH p=n;+Ap

np>n
Ev 5

An=Ap
V"‘ 'Flf‘ez

"
’
.

Injection

Constant




If we do the same thing for an extrinsic semiconductor (ie. n-type, Ny = 1016cm~3),
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Recombination

Mechanisms:

1. Conduction band electrons and valence band holes mutually annihilate each other (band

to band or direct recombination, e~ + At — ).

(a) photons produced (ra.dia.tive recombination)

(b) only phonons produced (non-radiative recombination)

2. Conduction band electrons and valence band holes recombine by sequentially being trapped

in an intermediate deep level (indirect recombination, e~ +Au* — Au”, AuT+ht = Au¥).
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The material responds to the generation of excess carriers by increasing the recombination
rate, attempting to return the material to equilibrium (pn = n;?). In the case of carrier extraction
(#n < n,®), the opposite phenomena takes place. Carriers are thermally generated faster than

they recombine moving the material towards equilibrium (pn = n%).

Direct (Band to Band) Recombination

o U 0& o@w" ¢ R = rate of recombination

E.

R o« n (number of electrons in conduction band)

R o p (number of empty sites (holes) in valence band)

E y R =Kpn (K = constant) (1)

OFIW{M

In thermal equilibrium,
G = Ry = Kpong  (ng,po are equilibrium values) (2)
Suppose we generate excess carriers at a rate Gy (due to incident Iight for example), then
R = Kpn = K(po + Ap)(no + An) (3)
where Ap = p — py and An = n — ng are the excess carrier concentrations and

G=Gy =Gy (4)




In steady-state (not equilibrium) the time derivatives go to zero,
G=GL+Gw=R (5)
U = R — Gy, = net recombination rate = Gy, (6)
Substituting (2) and (3) into (5) gives
G = K(no + An)(po + Ap) — Knopo = K(noAp + Anpy + AnAp). {9
But An = Ap (carriers are created in pairs) so
G = KAp(no + po + Ap). ‘(8)

For low level injection, the excess carrier concentration is much less than the majority carrier

concentration (Ap < ng + pg) so
Gz = KAp(no + po). (9)

The excess carrier lifetime () which is the average time which 2 generated carrier remains free

is defined as

TS == Ko ¥79) for low-level injection (10}
80
Ap=1QL=7U= G in steady-state, 1.1i (11)
P L K(no + po) Y y &bl

Note that T = 7, = 7, in direct recombination since a single phenomena eliminates an electron

and a hole simultaneously.

In summary, if we have a semiconductor undergoing low-level injection with equilibrium

carrier concentrations ng and po, then the steady-state carrier concentrations are:
n=ny+7G (12)

P=p+7Gg (13)

with ngpy = n;? and np > n2.




High Level Injection

Assume direct recombination with An = Ap ~ ng, po

U=Gr=KAp(no + po + Ap)

A 1
T = —P (n -type) € 7y
K(ng+ po + Ap)

The effective lifetime depends on the amount of xn_]ectlon. If the system with high level injection

is not in steady-state (Ap # constant) the effective lifetime will not be constant.

Example: Consider a sample of n-type GaAs with a doping of N; = 10%5¢m~3 . no & Ny and
o = (n:*/ng) = 8 x 10~3cm™3, Light is incident on the sample creating Gy, = 10?® hole-electron

pairs per cm® per second.
The dark conductivity of this sample would be o = g(np,, + Pp) = g(np,) = 0.96 ( Q-cm)‘ .
Assume that the low-level injection lifetime is known:

70 = Ins = 1/(Kny)

K =1/noro = 10 %cm®/s
U =Gt =10%m 3" = K(Ap* + (no + 2o)Ap)
G
Ap2+ngAp— —R:E =0
Can solve this quadratic equation for Ap.

Ap=2.7%x10%cm"3,

n =37 x10%m™3, p=27x 10%cm™3,
o = q(npn + ppp) = 3.7(Q-cm)™?,

Telf = -1— =0. “ns.
K(ﬂbf 1761-6]3)
As expected the lifetime of the excess carriers is reduced under high level injection conditions

since the number of majority carriers is increased resulting in more electrons for the holes to

recombine with.

This is an example of a photoconductor. The conductance of the material depends on the

intensity of the light shining on it.




Transient Recombination Response

Suppose light is shining on a semiconductor and is shut off at time ¢ = 0. What is the time

response of the excess carrier density?

In general,
%—’3 =G,-U
(8) direct recombination
N {(28) indirect recombination

To simplify the math we will assume low level injection. If G, = 0,

P
We know that Ap(0~) = Gy7, just before the light was turned off so

Ap = Ap(0) eXP(— ;)

Ap=Gi7 exp(— -:—) (14)

P

Note that both the electron and hole
concentrations decay at the same rate.
The excess minority carrier density is

usually the important one in devices.

The excess carrier concentration de-

cays to it equilibrium value of 0 (p = po)

FQ l with a time constant given by the life-
time. The indirect recombination case
== is more complex but Equation (14) is

t often a good approximation.




Indirect Recombination (through trapping levels)

In silicon and germanium, this is usually the dominant mechanism since they are “indirect
band semiconductors”. Physically this means that the minima of the conduction band does not

occur at the same point in momentum space (k-space) as the maxima, of the valence band.
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Momentum as well as energy must be conserved in any energy level transition. Therefore,
GaAs can easily make direct (band to band) transitions between the full states at the bottom of
the conduction band (electrons) and the empty states at the top of the valence band (holes), which
makes it useful for LEDs since these direct transitions are usually radiative with E,=hv =E,.
This is not true for Si and Ge since, due to the momentum difference between electrons and
holes, & direct transition must involve both a photon (large energy, small momentum) and a
phonon (small energy, large momentum). Since the probability of three body reactions are

small, recombination in Si and Ge occurs predominately through intermediate trapping levels.

Consider the following example. An impurity (Au,
for example) is introduced which provides 2 “trapping E
level” or a set of allowed states at energy E;. This level c

is assumed to be capable of trapping both holes and

electrons, ie. to have both donor and acceptor char-

acteristics. (In fact the donor and acceptor levels will E
different, but assuming a single trap level simplifies v

the analysis.)




“1” = electron capture Conduction band

a i E,
“2” = electron emission ;l} =l
be{- —-—Gr--

“3” = hole capture —

"
“4” = hole emission |

.
1+ 3 or 3+ 1 = recombination

244 or 4+ 2 = generation

The probability of each of these events occuring depends on the numbers of occupied and
unoccupied states in the different levels and therefore depends on Fermi-Dirac statistics (ie. the
position of the Fermi level). Note however that the Fermi level is only a valid conc.ept under

equilibrium conditions (np = n,?). We will assume to begin then that system is in equilibrium. . -

1
E, -k,
kT
1— fe = prob. that trap level is unoccupied (or occupied by hole)

J: = prob. that e~ occupies trap =
14 exp

N, f; = number of occupied centers
Ni(1 ~ f;) = number of empty centers
We will begin by assuming that the trapping processes are all first-order. For example,

we assume that the rate of electron capture is proportional to the number of electrons in the

conduction band and to the number of empty trapping centers (just as in direct recombination).
Ry = vynonnNe(1 - f;) (15)
where
Venn = thermal velocity of electrons (~ 107cm/s),
o» = capture cross-section for electrons (~ 10~5¢cm?).

The electron emission rate is proportional to the number of occupied trapping centers (the

conduction band is nearly empty).
Ry = e, N, (16)

where e, = emission probability.




For holes we can write similar equations,
B3 = vinpo,p N, fy (17)
Ry = e,N{1 - f,) (18)

Under thermal equilibrium, forward and reverse reaction rates are equal so B} = R; and

R3; = R,.

VernOat Ne(1 — f,) = e, N, f (19)
Vurp02Ne fo = e, Ni(1 - £2) (20)
Recall that
E; - E;
n= nl exP kT ?
E;— E;
P = n;exp W
Therefore,
UthnTnNi €XP kT Nt(l fi) = en N, f: (21)
— E;
VihpOpNi EXP kT Nift = ep‘wt(j' - f‘) (22)
Also,

1"'ft E.— E;
f TR

The emission rates can then be expressed as:

€n = UthnOnli; EXP i carriers/s (23)

-
kT

> carriers/s (24)

€p = VenpTypni €XP ‘kT
¢ As E, — E,, e, increases and e, decreases as we would have predicted.

e As E; — E,, e, increases and e,, decreases.

The relationship between the capture and emission rates as expressed in Egs. (23) and (24)
do not depend on the Fermi level and are valid in nonequilibrium although they were derived
using equilibrium assumptions. However, equations which include the probability of occupation

depend on E; and are only valid in equilibrium.




Now consider the situation in which we shine light on the semiconductor to generate excess
electrons and holes.
In steady-state (not equilibrium),

Conduction band

—T I - E, Gr = R, — R,,
Ry Ry
S o W ---@--—-é;, Gr=R; — R,.

— ————— W I
G .
R— " & The numbers of electrons and holes in the conduction
] []
L. and valence bands are constant.
Valence band
R, — Ry = R; — R,. (25)

Using our previous expressions for the capture and emission rates (Egs. (15-18)),
vghﬂﬂnﬂM(l -—_ fg) -_ C,;Ngfg = v,hpapprg _— epNg(l - fg) (26)
Using Eqgs. (23) and (24) for the emission probabilities,

— E; E;— E, 1
T h] = v of, — memp BB g,

L, [n(l = fi) — nyexp

For reasons which will become apparent, define

_ 1
™= ‘Uﬂmd'nNt,
= 1
P vgpo N,
Then,
1 E-E, 1 ]

This equation can be solved for f,, the occupation probability of the trap level.
E; - E,

anp[n'*'niexp_'k—f“"
fe= E, —E; [N Ei - B’ (27)
f’["+”‘°xp T ]J”"‘[”*""e"p T
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Using this result and U/ = R; — R; = net recombination rate,

— .2
U= =% (28)

E; — E; i — B
T [n-!—n,-exp tk }+'rn [p+n;exp_E_E_lﬂ]

I we assume that 7 = 7, = 7, = (v;40'N;)~! then the net recombination rate can be simplified

to:

2

U= — (29)
T [n + p + 2n; cosh —ic—T—-—‘]
This is an extremely important result, based on the work of Shockley, Read and Hall, and is
known as SRH recombination. 4
® The numerator is proportional to the restoring force. The net . Co.s['. (x

recombination rate is always of the proper sign to move the

1

- ==

o The net recombination rate U is maximum when the denominator is minimized. That

system towards equilibrium (pn = n;?).

occurs when E; = E;. In other words, the trapping levels near midgap are the most

efficient recombination centers. '
- E; — E. makes electron capture more probable, but hole capture less probable. Elec-
tron emission also increases as E; — E, reducing net recombination rate.
— E; —+ E, makes hole capture more probable, but electron capture less probable. Hole

emission also increases as E; — E, reducing net recombination rate.

For trap levels at midgap (E; = E;),

— -2
U= s (30)

T nn 4Tt (7n + p)ns

11




Examples: Low-level injection in doped semiconductors.

In n-type semiconductor, with trap level at midgap, n > P 7.
2

="M
Tpn

But 7;? = npgopng (equilibrium values) and n 2 n,, (assume low-level injection) so

—p, - A
U= Pino — Profno — P~ Pno — _P_’ (31)

just as for direct recombination with the lifetime equal o that for holes (the minority carrier).
In n-type material, there are lots of electrons available for capture, so the rate-limiting step in
recombination is hole (minority) carrier capture and the lifetime for excess carriers (both holes

and electrons) is the minority carrier lifetime 7,,.
In p-type material, using the same analysis with P> n,n; and p & p,,
An _ Ap

Tn Tn

U= (32)

Again the limiting factor is the minority carrier lifetime.

t

s N-type : E
— E4 near E, \ Er,
_______ E,
— FE; filled with electrons ’
— hole capture limits process E;
@
— 7p dominates '
SIE) = 1
s P-type material ()
n-Type semiconductor
— E; near E, £
f
— E, empty of electrons ———oF,
— electron capture limits process
_______ £
— Tn dominates
Er
_—_""£|
JIE)
3
|
| JIE) =0
#~Type semiconductor
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Surface Recombination

So far, we have considered only bulk recombination. Recombination at surfaces is often

enhanced relative to the bulk.

/7—?7{;4‘? cites

g‘ . S.' . S T S! ’ Incompletely bonded silicon atoms
- - ¢ C

‘( ' [ [ at the surface can provide efficient traps
SL —S¢ =S~ S¢ for recombination.

(bl

By analogy with bulk recombination we can write the net recombination rate as
U = vao Ny, [p(0) — po] (33)
where
N, = surface density of recombination centers per area

2{0) — po = excess carrier density at surface

We can define
8 = vg0N,, (34)

to be the surface recombination velocity (cm/sec).

Thus,
U = s[p(0) — po) (35)

r
. - e 77 <— P
I the interface has these excess recombination sites, -

Fa

then the excess carrier concentration will be lower at

the surface than in the bulk.

Pof-=~——-" v

In that case, there is a net flow of carriers towards the surface (both kt and e~ for charge

neutrality and no net current).

13




The resulting differential equation is

dp d*p P—Po
-d—t - P m + GL - Tp (36)
g e . eneration Nt

Oins-s diffusion & recombination

Two boundary conditions apply:

Deep in the bulk the carrier concentration becomes independent of the surface.

P(o0) = po + 7,G1

At the surface, the diffusion flux into the surface

must equal the surface recombination rate.

dp
Dy e P(0)—m] . (37)
The solution to this differential equation is
— — e — (JTP)/ LP -z/L
Ap(z) = p(z) — po = 7,GL (1 T+ (s%,) L,,e > (38)

where L, = ,/D,1, is the minority carrier diffusion length.

Pt Tp Gu

FD.._....___.__-..._..—--—---_

} o
surfree  Lp budk. x
o The distance over which the surface disturbs the bulk carrier concentration depends on L,
(or D, and 7).

* How strongly the surface affects the excess carrier concentration depends on s, D, and 7,.

In the limit of s — oo (infinite recombination velocity at the surface), p(0) — po and

8p(z) = p(e) ~ o = 7,61 (1 = /)

14




Quasi Fermi Levels

Under thermal equilibrium, we know that

E; - E;
n=n;exp( o7 )
E; ~ Ey
s (B

If we have injection (np > n?) or extraction (np < n?) then we are not in equilibrium and

therfore cannot use these relationships because E; is meaningless.

To replace Ey, we will define two new quantities called quasi Fermi levels so that relationships

similar to the above equations hold.

e (B575) - g (B 2

where Ey, is defined as the quasi Fermi level for electrons.

E,’, - E E n Ev
p=mew (Sr%) = Moo (- 2577 )

where Ey, is defined as the quasi Fermi level for holes.

The quasi Fermi levels are mathematical tools and their values are chosen so that we can

extend our familiar equilibrium equations to nonequilibrium situations.

Out of equilibrium, E¢, # Egp. |Ef, — Eyp] is a measure how far removed the semiconductor

is from equilibrium.
E;,— E
— 2 In i
Pr=mhed ( kT )

We will find the concept of quasi Fermi levels useful when we consider PN junctions.

15




Non-Uniform Doping
Up tfo this point we have assumed that doping levels are constant with position. This is
usually not the case.

Example: Bipolar Transistor

N + ‘E The impurity profile at left represents the positions
B C of the fixed ionized dopant atoms.

The carriers (electrons and holes) are mobile and
will tend to diffuse from areas of high concentration

to low concentration.

We will consider first the case of just one dopant type (donors in this case) so there are no

Jjunctions but Ny varies with position.

# The diffusion flux is Fy, = —D,(dn/dz).
\ L
o As the electrons move away from the areas of heavy
y ‘ doping, they leave behind positively charged ionized
o T N 61 (X) donors which attract the electrons back.
e
o -
—p
X

In equilibrium, a balance is established and the drift and diffusion fluxes cancel. n{z) is not

exactly the same as Ng(z) so an electric field remains.

16




The total electron flux is given by

Fo=— Dn—dn —4xn€ =0 in equilibrium
dz S’
e drift
diffusion

Since n = n; exp [(Ef — E;)/kT),

Therefore,

The electric field is defined as the negative gradient of the electrical potential V.

_dav
T dz
£
R beoui |
C., Foientiai crergy € \X
of electrons .
- T T —— £ "-.,__..‘. ke
C- :? ;::ll::l enerey -.--‘:.-'ﬁ..--hﬁ&.
o 1“:;;-::.; e x_.:b\
Ly
Therefore,
E ldE‘ — 1 dEc 1 dE,,
T gdz gdz gqdz
and
F o= _Dn (dE; dE;\  pundE;
" kT dz d$ q dz

But we may recall the Einstein relationship,

Fn _ Do
qg kT
Thus, D. dE
nD, dE;
F,=- —_
» kT dz

(41)

(42)

(43)

(44)

(45)

(46)

(47)

In equilibrium F, = 0, therefore, Es = constant. Thisis 2 very important result. As we have

said earlier, Ey can be considered to be the equilibrium electrochemical potential for electrons.

For & system in equi]ibrium_, this potential must be constant throughout the system.

17




We can use this result to analyze the example of varying donor concentration. In equilibrium

we can draw the Fermi level immediately since Ey = constant.

E —. : . C—_— — .

The Fermi level can also be expressed as

E; =E;+len£

We can use this expression to draw the rest of the band diagram.

We must also assume “quasi neutrality”. This says that n = Nf. This is a reasonable
assumption since for normal doping concentrations, small deviations from neutrality cause a

large enough electric field to keep the carriers near the dopant jons.

Thus, assuming complete ionization,

E; - E; = len-—IY? (48)

We can now draw the band diagram for doping

varying with position.

1. E; = constant. / -

2. When N; is large, E; is close to E.. o

3. When N; is small (on the order of n;), Ej is near E;. ot
x*0

4. E; and E, track E, since the bandgap is constant.

18




Also recall that in equilibrium

Fo=-D,2 _yne =0
dz
Therefore,
g, —_Dndn
Eandz

which, using the Einstein relationship, can be written as

kT 1dn
g ndr

(49)

We may conclude, therefore, that an impurity gradient results in a built-in electric

field in the semiconductor.

We may also write a similar expression for holes.

The concept of built-in field will be an important concept to use in analyzing devices.

(50)

For example, in a bipolar transisior the doping in the base is graded such that minority

carriers injected into the base will be accelerated by the built-in electric field across the base,

speeding up the response time.
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Fundamental Semiconductor Equations
So far, we have considered
1. Carrier transport
(a) drift
(b) diffusion
2. Generation of carriers

3. Recombination of carriers
All of these phenomena can be considered together in terms of current continuity.

Considering one-dimensional hole current into and out of a small region.

I, = hole current

T, (%) / / // To(x+8x) U = net recombination rate
QL | |

p————>

4—Ax-—>

Since charge can neither be created nor destroyed,

(rate of change of number of holes in region) = —(net recombination) — (net flow out of region)

From our discussion of recombination and generation, the net recombination rate (including

v-g 2l _g, (1.L2)

P
Therefore, in one dimension, the net rate of hole recombination is given by

light generation) is

(U-—GL)Az = (P;Pﬂ -—'GL) Az

P

20




The net rate at which holes flow out of the region is

1 1 141,
~I(z+ Az)— ~L(z --———’Aa:

using the definition of the derivative. The rate of loss of holes from the region is given by

-%Az
Therefore,
_j_fA = &l-‘iI’A + 2 :"’Az — GiAz
8O
%=—§%—p—:~q+c¢n (51)

Similarly, for electrons,

FA T (52)

These equations are called the continuity equations and are essential to understanding semi-

conductor device operation.

Tke transport equations which we already derived are also fundamental.

dp

I =g (F'ppg D, iz ) (53)
dn

I, —q(.unn8+Dd) (54)

The continuity equations can also be written in terms of the carrier concentrations rather

than the currents.

dp . d&p dp d€ _ PP
E_Dpdzz_ (82_"' L T +Gr
dn _ dn dn dE\ =n-—-mng
—=D — —} - G
a D"dz2+”"(£d +n d) ™ T OF
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The final basic equation is some form of Poisson’s equation.

@ r
dz —KEQ

where
€ = electric field

p = space charge density (C/cm?)
K = dielectric constant {also €, or €,/€)

€p = permittivity of free space = 8.86 x 10°MF/cm

Alternatively,

Kfoz

Thus if we know the space charge density, we determine the electric field. We know that the

net charge density in a semiconductor is given by

p=q(p+Nf—n-N;)

and |
£=-2 (55)

Therefore,
=l + v - ) (50

Equations (51) through (56) constitute a system of six equations in six unknowns (n, p, I,
Ip, € and V) and, given appropriate boundary conditions, can be used to analyze the carrier
concentrations, currents and fields in an arbitrary device structure. We will often be able to

considerably simplify these equations by appropriate use of approximations.
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