Homework #2 - EE 482 due 10/16/02

- 1. Find the equilibrium electron and hole concentrations and the location of the Fermi level for germanium at 27°C if the germanium contains the following concentrations of shallow dopant atoms:
 - (a) $5 \times 10^{16} \,\mathrm{cm}^{-3}$ phosphorus atoms.
 - (b) $10^{18} \, \mathrm{cm}^{-3}$ boron atoms and $5 \times 10^{17} \, \mathrm{cm}^{-3}$ phosphorus atoms.
- 2. (a) Express the Fermi level relative to the intrinsic Fermi level as a function of doping, temperature and intrinsic carrier concentration in a n^- (lightly-doped n-type) semiconductor if n_i cannot be neglected relative to $N_d N_a$.
 - (b) If a silicon wafer is doped with $N_d = 10^{18} \,\mathrm{cm}^{-3}$ of arsenic atoms, calculate the position of the Fermi level E_f and carrier concentrations at 750°C. Note: You can get n_i vs. T from plot in the notes. Alternatively, to use equation, N_c and N_v vary with temperature so use N_c , N_v proportional to $T^{\frac{3}{2}}$ and account for the change in band-gap with temperature.
- 3. The occupation probability of an donor energy level is given by

$$f(E_d) = \left(1 + \frac{1}{2} \exp \frac{E_d - E_f}{kT}\right)^{-1}.$$

(a) Using the Boltzmann approximation for the conduction band occupation, show that the fraction of ionized impurities depends on temperature according to

$$\frac{n}{N_d} = \frac{\left\{-\frac{N_c}{N_d} + \left[\left(\frac{N_c}{N_d}\right)^2 + 8\frac{N_c}{N_d}\exp\frac{E_c - E_d}{kT}\right]^{1/2}\right\}}{\left(4\exp\frac{E_c - E_d}{kT}\right)}.$$

- (b) Sketch n/N_d as a function of $(E_c E_d)/kT$ for $N_c/N_d = 10^2$.
- (c) For $N_d = 10^{16} \text{cm}^{-3}$ of phosphorus in silicon $(E_c E_d = 0.045 \text{ eV})$, what percentage of impurity ions are ionized at 50K and 300K?
- (d) If $N_d = 10^{18} \text{cm}^{-3}$, what percentage of phosphorus ions are ionized at 50K and 300K? Comment on the difference between the answers in (c) and (d).
- 4. Problem 4.58 in text (page 152). Assume that the density of defects is $10^{16} {\rm cm}^{-3}$.