- 1. An *n*-channel silicon MOS transistor with a polysilicon gate doped to the edge of degeneracy with phosphorus $(E_f=E_c)$ has doping of $N_a=10^{18} {\rm cm}^{-3}$ in the substrate, $x_{ox}=40 \, {\rm \AA}$ and $W=2L=1.0 \, \mu {\rm m}$. Assume oxide charges can be ignored.
 - (a) Find the threshold voltage with $V_{SB} = 0$.
 - (b) Calculate δ , the correction term for change in depletion charge as V_{CB} increases, in the improved square-law drain current equation:

$$I_D = \frac{W}{L} \mu'_n C'_{ox} \left[(V_{GS} - V_T) V_{DS} - \frac{(1+\delta)V_{DS}^2}{2} \right]$$

An appropriate value is $\delta = (1/C_{ox})(dQ_d^{max}/V_{CB}) = C_s^{depl}/C_{ox}$ determined near threshold with $V_{CB} = 0$.

- (c) Plot I_{DS} versus V_{DS} for $V_{GS} = 3V$ and $V_{SB} = 0$ using the three linear-region drain current equations ($\delta = 0$, δ as above, and Eq. (9) in notes). Include V_{DS} values at least up to saturation.
- (d) Using the linearized equation and δ as calculated, determine the operating regime and drain current under the following conditions. In each case, sketch the band diagram at the drain end of the channel.

i.
$$V_S = 0$$
, $V_B = 0V$, $V_G = 3V$, $V_D = 1V$.

ii.
$$V_S = 0$$
, $V_B = 0V$, $V_G = 3V$, $V_D = 3V$.

iii.
$$V_S = 0$$
, $V_B = 0V$, $V_G = 0V$, $V_D = 3V$.

- 2. A p-channel (n-type substrate) MOS transistor has a threshold voltage of -0.4V. The source and substrate are grounded. The gate is biased at -3V and the drain at -2V. The oxide thickness is 100 Å, the substrate doping is $N_d = 10^{17} \, \mathrm{cm}^{-3}$ and W/L = 2.
 - (a) Calculate the flatband voltage.
 - (b) What mode (cutoff, linear, saturated, etc.) is the transistor operating in? Consider the change in depletion charge due to drain bias.
 - (c) How much drain current is flowing (ignore channel length modulation)?
 - (d) How large a positive substrate bias (V_{BS}) would be required to change the operating mode of the device keeping all other biasing the same? What would the new mode be?
 - (e) If this transistor was implanted with a shallow dose of donors with a total dose of 10^{12} cm⁻², what would the new threshold voltage be $(V_{SB} = 0)$. If the biasing remained the same, in what mode would the implanted device operate?
- 3. What is the output resistance of an n-channel silicon MOS transistor due to channel length modulation for $\Delta L \ll L = 0.3 \mu \text{m}$ if $V_{DS} = V_{DSsat} + 0.5 V$, $I_D = 1.0 \,\mu \text{A}$ and $N_a = 2 \times 10^{17} \text{cm}^{-3}$.