Physics of Semiconductor Devices in
Equilibrium

Review of Quantum Mechanics

On the atomic scale, deterministic classical mechanics breaks down and quantum mechanics is
required. However, we will be able to use quantum mechanics to derive approximations that can

be used in treating electrons in semiconductors as quasi-classical particles under many conditions.

Begin with the time-dependent Schrédinger Equation, which is the fundamental relation

describing matter on the quantum scale:
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V(Z) : potential field for electron

U(z,t) : state function, solution to §'s equation

Assume we can separate variables:
V(z,t) = $(2)4(2)

Substituting into (1) and gathering time and position terms together:
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Since the left side depends only on position and the right only on time, for them to always be

equal they must both equal a constant. That constant is E, the total energy.

The time dependence is simple to calculate:
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since F = huv.



The problem then becomes solving the time-independent Schrédinger Equation,
B
— 5=V + V¢ = By (5)
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The solutions depend on the form of the potential V and the boundary conditions. In general,
only certain values of I (eigenvalues) allow solutions to the equation. Associated with the allowed

energy levels are wavefunctions ¢ (eigenfunctions). Together they describe the possible states of

the system.

We can also compare to the classical case:

E=xp+v=T vy (6)
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We can make a direct analogy by using operators for the momentum:
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and the energy:
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In contrast to a classical system, the solution to Schrédinger’s equation only gives a probability

density for the electron location.

|¥(Z,t)|” : probability of finding electron at position ¥ at time ¢
We can describe a normalization condition, since the electron exists somewhere:
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¥ and its gradient must also be continuous since it describes a physical system.

Because of the probabilistic nature of 1/, only expected values for parameters such as position

or momentum can be determined. For example,
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Atomic Structure

An example of a potential for which the allowed energy levels and associated wavefunctions
can be determined is for atomic potentials. For the hydrogen atom (which can be done exactly,

see any modern physics text), the allowed electron energies are given by
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The allowed states and associated wavefunctions can be described by 4 quantum numbers:
1. Principle quantum number: n = 1,2,3,...

2. Angular momentum quantum number: I = 0,1,2,
veeyT =1

3. Magnetic quantum number: m = 0,41,42,...,+!

4. Electron spin: s = £1/2

For hydrogen, the energy depends only on the principal quantum number n, but for multi-
electron atoms, where electron-electron interactions appear, the energy levels depend also on {
and m, breaking all but the spin degeneracy.

Quantum mechanics further requires that each electron must have a distinct energy state

(unique solution) defined by a unique set of quantum numbers (Pauli exclusion principle).

Silicon has its two inner shells (1s, 2s and 2p sub-

shells) totally filled. It’s outer shell has 4 electrons, 2 y I
3
Y5

in 3s orbitals and 2 in the 6 3p orbitals.
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Energy bands in solids

Materials may be classified as:

1. Amorphous: no long-range structure (i.e., glass)

2. Polycrystalline: many small ordered regions

3. Crystalline: long-range 3D order, a repeating unit cell

Important semiconductor materials are primarily crystalline. Many of the important properties

of semiconductors are a result of the regular crystal lattice structure. The crystal structure

determines the potential V' seen by electrons in the structure.
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Unit cells of cubic crystals: (a) simple cubic, (b) body-centered cubic, (c) face-centered cubic, (d) diamond,
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(e) two penetrating fcc lattices in two dimensions, (f) zinc blende.
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The fixed position of atoms within the lattice and the bonding between neighbors determines

the material properties. The outermost or valence electrons play an essential role in determining
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Figure 1.19 Examples of Miller indices for various planes and directions in a cubic lattice.

those properties.
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Effect of Lattice.

Lower energy core states remain localized. Outer electron wavefunctions overlap and are
influence by the potential of neighbors. The outer valence electrons become delocalized and by
Pauli exclusion principle, the levels split into N sublevels (N is number of atoms in crystal). For

a large crystal with N large, an essentially continuous band of allowed energies is formed (the

valence band).
i v

The strength with which the outer or valence electrons are bound to the atoms determines
the properties of the material. There are three basic types of materials distinguished by large

differences in electronic conduction.

Conductor: Valence electrons are not bound but are free to move throughout the solid. Excel-

lent conductor: p ~ 107% Q-cm in metals.

Insulator: Valence electrons are tightly bound to the nuclei, not available for conduction: p~

108 Q-cm in SiO,.

Semiconductor: Valence electrons shared in covalent bonds, less tightly bound, some may
become free due to thermal energy: p ~ 10° Q-cm in pure Si at room temperature (much

smaller in doped material).



Example of a Covalent Semiconductor: Silicon

By sharing each of its outer electrons with its 4 nearest neighbors, a group IV semiconductor
such as silicon can complete its outer shell. These electrons are covalently bonded. They are not
tightly bound and (especially at high temperatures) can become free to contribute to electronic
conduction. In order to satisfy the Pauli exclusion principle, before electron sharing is possible,
one of the 3s electron must move up to a 3p level. This costs some energy that is more than
compensated by the reduction due to the electron sharing. The resulting orbitals are described

as sp® hybrid orbitals and each arises from linear combinations of the s and p orbitals.

One way to visualize what happens as atoms are brought together to form a crystal is to

examine theoretical calculations for the allowed energy bands as the silicon lattice distance is

reduced, starting with the essentially isolated atoms.
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Thermal energy breaks bonds liberating electrons and creating a “hole” or vacanct state.
Both the electron and the hole are mobile and contribute to conduction. Note that in a pure
semiconductor n = p. Since electrons are only allowed to exist in distinct energy levels, there
are allowed bands of energy states. Valence electrons exist in the valence band which is totally

full at 0°K since, by sharing, each atom has its outer shell full. The conduction electrons exist

in the conduction band which has higher energies.
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FIGURE 1-8 . )
Two-dimensional schematic representations of crystal structure in silicon: (a) complete covalent bond

and (b) broken covalent bond.

2N states
2N electrons

The probability of an electron getting sufficient thermal energy to get into conduction band

1s:

p ~ 1 for metals
p =~ 0 for insulators
0 < p <1 for semiconductors

Whether a material is an insulator, conductor or semiconductor can be inferred directly from

the band structure.

(a) Metal (b} Insulator {c) Semiconductor

(d) Semimeztal (e} Metal



Example: Free Electron

Let’s look at a simple example, a free electron in 1D. For E > Vo, we can let

E* = (2m/R*)(E - Vo). (10)
¥(z) = Aexp(jkz) + Bexp(—jkz) (11)

When the time dependence is included, this solution is in the form of traveling waves in the
positive and negative direction, with constant amplitude everywhere (the electron is equally

likely to be anywhere). & = 27 /) is the wavenumber (the wavevector in 3D, k = (Bxy Boys k)

hzkz pz
o o (12)

E — Vy = Kinetic Energy =

hk is called the crystal momentum. It will act like momentum in determining the response
to external fields and is conserved in phonon or photon interactions, but it is not the true

momentum which also responds to internal fields from the periodic potential.

For the free electron, there are no internal crystal fields so p = hk:

o ; h o .
/ (Aexp(—jkz)) 708 (Aexpjkz) dz

(p) = =2 . - = hk (13)
/ (Aexp(—jkz)) (Aexpjkz) de
Real particle: wavepacket, infinite sum of waves which interfere
]
destructively everywhere but in a localized region. In the form of bacKst

Fourier integrals:

¥(@) = = [ A(k)exp(ihe) dk
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Figure 6.2. A wave packet:

This is a restatement of Heisenberg’s uncertainty principle, AzAk > o Fl{i,,t’(!{f)x ?

o= ]
.,

AR = —= [ pla)exp(—jke) do

In order to reduce Az, the range in k-values (Ak) must be increased.

1 and follows directly from the wave nature of matter.

Velocity of particle = group velocity of wave packet envelope. Since vy = p/m and KE =

(B — Vo) = p*/2m:
_O(KE) _8(E-Vy) OE 10E

- _ o8 _LEP 14
=" p dp  hOk 14)
o 3D OE. OE_. OF
. 1. 1(8E
U= Vel = gVall=g (akm‘” *ox,? T o% z) (15)

Equations (14) and (15) are valid in general, not just for a constant potential.



Nearly Free Electron Approximation:

For a free electron:

F =

h2k?

2m

Bragg reflection: when nA = 2a,n = +1,42.. "

waves are reflected off the crystal lattice planes. Such

that for
k

the only time-independe

2T nw

A a '

nt states are standing waves

rather than travelling waves as in the constant poten-

tial case:

(a)

Y(+) = A/2[exp(jnrz/a) + exp(—jnrz/a)] = Acos(nrz/a)

P(—) = A/2[exp(jnrz/a) — exp(—jnrz/a)] = Aj sin(nrz/a)

While travelling waves have constant probability

"'_ dhki

(16)
(17)

densities, the two standing waves pile up

charge preferentially either near (+) or away from (—) the atom cores. Since the electron potential

is less near the positively charged ion cores, the energy of the two states are perturbed in opposite

directions from the value they would have in a constant averaged potential. The result is bands

of allowed energies divided by energy gaps where no allowed states exist.
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Kronig-Penney model (for more details, see Appendix C of Navon)

We will look next at a very simple one-dimensional potential. Many of the essential features

of energy bands in real three-dimensional crystals appear in the analysis of this simple model.

Lattice ions Vix)
/\ Vo
e = v X
| 1 I [ ] 1] 11 I 1 1
11 Il Il
=) 0 a a+b X
U3 (X}":da +b:‘-—u, (x)
(a) ' {b)

V="VW; for —b<z<0, a<z<a+b, etc.

V=0; for0<z<a,at+b<z<2a+b, etc.
Bloch proved that solutions to Schrédinger’s equation in a periodic potential are of the form:
Y(8) = u(&)e™= (18)

where u(z) is a function with the periodicity of the lattice.

Assuming a solution of this type in 1D, it is straightforward to find solutions for u(z) in the
two types of regions (I and II). Substituting into S’s equation using the potential in each of the

regions:

2
%ul + 25 %ul (k% ~ az)ul =0 (In region I) (19)
&
I8
(:; + 27 k% — (k* = B*)uz =0 (In region II) (20)
where
2 2m(E — V;
a? = ;;E and f%= —__m( =2 )
The solutions in the two regions are:
uy(z) = Ae¥(@k)= 4 Be=ilatkle (T region I (21)
&
uy(z) = CefB-Kl= 4 pe-ilBthl= (In region II) (22)
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Each of these solutions has two unknown parameters. These parameters can be determined
using the boundary conditions. Since 1(z) and its derivative must be continuous, the same may
be said for u(z). Applying these conditions at the two interfaces between the regions (i.e., at 0
and a) gives four linear equations. The normalization condition must also be satisfied. Solutions
exist only if the four boundary condition equations are linearly dependent. Using linear algebra,

it can be shown that a solution exists only if
- [(a2 + ﬁ2) /20:/5’] sin aasin Bb + cos aa cos Bb = cos [k(a + b)]. (23)
a and B are known functions of E, so this represents a transcendental relationship between E

and k which could be solved (graphically or numerically).

It turns that out since the right hand side is always between +1, only certain values of E
allow solutions. We can see this more clearly if we do a further simplification. Assume that

Vo — oo while b — 0, keeping the product Vyb constant. In that case (23) reduces to

pirtag + cos aa = cos ka (24)
aa

where P = mVyba/h?.

Once again, the right side is limited to values in the range +1, so only certain values of « and

thus E allow solutions. This gives alternating bands of allowed and disallowed energy values.
simita

4

P + cos ¥fa

F'F
Allowed
band
, -
F | < Forbidden gap =
: 4r 57 gvz D'n
& Allowed
== band
Forbidden gap cc
g’
. . A'a
An energy versus wavevector (E vs k) relationship 8lk)
as shown to the right can also be calculated.
Free-glectron
3 3 theory
As the potentials get stronger (P increases) the L.

bands get narrower, approaching discrete levels like
in an isolated atom. As the potential variation gets

weaker, the bands broaden until eventually all energies

are allowed as in the case of the free electron.
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Extended and reduced zone scheme

As stated previously, in a periodic potential, the solutions to Schrddinger’s equation are Bloch

functions:
$(2) = u(&)e’™? (25)
where u(z) is a function with the periodicity of the lattice.

Below is an example of how the periodic function and the plane wave combine to give the

wavefunction solutions: . .
(c) uy

(d) “f‘ r

(h) ¥

One of the properties of Bloch function solutions is their periodicity in k. In 1D, let &' =
kt2nw/a and Pp(z) = up(z) exp jE'z

Y (z) = up(z) exp jk'z = [up(z) exp (~j2nrz/a)| exp jkz = ur(z) exp jkz = Pi(z) (26)

Thus, the wavefunction for &' and k are identical if &' and %k differ by nm/a (a reciprocal lattice
vector in 3D). We can therefore only consider the energy bands for k near the origin. This is

called the reduced zone scheme. All larger values can be mapped into that region of k-space

which is called the first Brillouin zone. | |
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So far we have dealt primarily with one dimension. For a real crystal, the periodicity of the

lattice and thus the Bragg reflections change as a function of direction. Therefore, the shape of

the energy bands will also change depending on the direction of k.

CONDUGTION

Ui

BRILLOUIN W
ZONE

A 3D band structure is often represented in 1D by looking only at the directions of highest

symmetry where the maxima and minima generally lie. Those maxima and minima do not in

general occur at the same value of .
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Response of electrons to external forces.

We saw before that,

Vg = ——— OF Uy = %ﬁkE in 3D (27)

For a constant force, F = g€ and dE/dt = Fuv, (work done by a force).
_dE  J9Edk dk

Vg = EE‘ = ﬁg{ = h'&;’vg (28)
L dk d(hk)  dp
F—h-ﬂ—__dt == (29)

Compare to classical:

_ _ _dv_ d(mv) _dp
F—ma_m;ft--. R (30)

Lk is crystal momentum and includes only the effects of external fields not internal (crystal

lattice) forces. The effect of the lattice potential is reflected in the E vs. k diagram (8E/dk).

a_dvg_aug@_gavg_ F 8°E iy
T dt ~ 8k dt h 0k K Ok? (31)

Again compare to Newton’s Law F = ma:

m — m:_—_hz( (32)

*E\"
)
mg 1s the effective mass of the electron and is a function of the radius of curvature of the E
vs. k curve at the given value of k. Large curvature results in small effective mass. Using the
effective mass an electron can be treated as a free particle with a reduced mass that accounts for

the effects of the lattice potential.

E

For conduction band: \ j

8? =

8—£>0——+m;>0 £ E’"O (33)

Ev : m:<0

For valence band /- -T\

3B * <0l : .

-(_9_1-;2_<0 — m, < 0! K, (34)

Due to Bragg reflection the particle accelerates in direction opposite to force. Can be considered

equivalent to a particle with a positive mass and positive charge (opposite of electron).

14



The E vs. k curve is even (E(k) = E(—k)) so the electron velocity (derivative) is odd.
Therefore for a full band, for every electron with a given velocity there is another electron with

the opposite velocity. The conduction band is nearly empty so the current density (current per

unit area) is given by

1
Jop = VZ(_Q)W (35)
‘ CB
The valence band is nearly full
Jup = %:Z(—q)vi = %: (—q)v: - ;[17 > (—q)u (36)
VB Filled band Empty states

and no current can flow in a full band so

va:()_

<|=

Y du=y X (w (37)

Empty states Empty states

The behavior of the conduction band can be expressed by treating the vacant states as if they

were particles called “holes”.

m(k) = —mi(k), g = —q. (38)

(c) (d)
Figure 1.7 Fluid analogy for a semiconductor. {a) and (b) No flow can occur in
either the completely filled or completely empty tube. (¢) and (d) Fluid can move in

both tubes if some of it is transferred from the filled tube to the empty one, leaving
unfilled volume in the lower tube.
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The hole concept is very useful for valence band. It is easier to describe the behavior of a few
empty states than of many full states. In general m* is not a constant but we will approximate
the bands by parabolas (constant curvature) since the full states in the conduction band are all

near the bottom while the empty states in the valence band are near the top.

Wik — k|2

2m;

_ hzlk B kle

-
2mh

Ex~ Ey (40)

In a real semiconductor the band structures are more complex.

o direct and indirect band gaps (phonon interactions)
e multiple valence bands with different curvature (heavy and light holes)
e multiple conduction band minimima

o elliptical rather than spherical minima (1/m} & 1/3(1/m, +1/m, + 1/m,), inverse effective

mass actually a tensor, k*/m; — kM 1k, m7! = 92E/0k;0k;)

E £ E
/\Eq P
E =067V E| "o
TR A

+ +

(5[111}“1%—-{100}{5 15[111]-—-1(—-[100](5 ?[‘1‘11]-'—!(—"[100](E

Ge Si GaAs

(a) {b) (c)

Figure 6.10. The energy bands in momentum space for the
important semiconductors, at 300°K: (a) Ge; (b) Si; (c) GaAs.
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Intrinsic Carrier Concentration

Carrier Concentration = Density of States x Occupation Probability

Density of States: Assume parabolic approximation. Rectangular crystal of dimensions

L.,Ly, L, and atomic dimensions I, l,,1.. Then there are

L, I, L,

nm-:z, ny=-g, nz=-i;—
different values of k., ky, k. per band (states). From reduced zone model, each band has a size
equal to a Brillouin zone (2m/le, 27 /1,27 /1,). Therefore the spacing of states in k-space is given
by
: _2n/l, 2«

Ak = == = ==, etc. (41)

We could also see this since, for a finite crystal, the solutions must have the periodicity of the

whole crystal so k, = 2nw/L,, etc.

Volume per state (1/2 included to account for spin) is given by

1 : 1 (2x)3
Z Ak Ak AR, = L 27) 2
g Bk 2L L5, (42)

The number of allowed states in a spherical shell of radius |&|

and thickness dk is the ratio of shell volume to volume per state.

) 4rk?dk 1\ *
dN' = Gri AL, = (;) L,L,L,dk (43)

The density of states per unit crystal volume then is

Ky

AN = (L)z dk (44)

Using the assumed parabolic relation between energy and wavevector, the density states per

change in energy is
4 .
dN = Tﬁ(zme)m(ﬂ — Ec)'*dE = Ng(E)dE (45)
N¢ is the density of states in the conduction band (No(Ec) =0, N¢(E) > 0 for E > E¢).

A similar expression can be derived for the valence band.

dN(valence) = 7 (3m3)?/%(Ey — B)’dE = Ny(E)dE (46)
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Probability of Occupation
o Each level is a cell into which one or more particles can be placed.

e Calculate number of ways in which n particles can be arranged in those cells using the

applicable rules and with total energy fixed.

® Proper distribution maximizes the number W of such arrangements. § = klnW. G =

FE-T8S.
There are three main distributions

1. Classical: any number of distinguishable particles per cell/state. Maxwell-Boltzmann dis-

tribution:

fuB(E) = exp (—%) (47)

2. Quantum: indistinguishable particles with symmetric wave functions (bosons, ie. photons,

phonons), unlimited number of particles per state. Bose-Einstein distribution:

1
exp (ﬁ) -1

3. Pauli exclusion principle: indistinguishable particles with antisymmetric wavefunctions

fee(E) =

(48)

(fermions, ie. electrons), up to two particles per state (opposite spins). Fermi-Dirac distri-

bution:
1
E) = 49
fro(E) E-E; (49)
exp +1
k :
| E; = Fermi level = maximum energy of occupied state at 0°K. fro(E;) =1/2
rffE)
feofE)
‘ TaTa i 1 T=0°K
1
0.5 0
0 [
]
E; E (a)
(@ (b) flE)
Figure 6.14. The probability of occupation dependence on encrgy:
(a) the Maxwell-Boltzmann distribution; (b) the Fermi-Dirac i E—
distribution for three temperatures T3> To> T1=0°K. }
S S,
2
|
L |
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Two limiting cases (Boltzmann approximation)

E—E;>4kT : frp — fus((E - E;)) = exp (%E;TEf) <1 (50)
E—E; <—4kT: frp —1— fup((E; — E))=1-exp (E;TEf) zz I (51)

To calculate the carrier concentration, the product of the density of available states must be

multiplied by the probability of occupation and integrated over the band.
oo [>=]
. [E fro(E)No(E)dE ~ fE fus(E — B;)No(E)dE (52)
c c

since for intrinsic material the Fermi level is near the center of the band gap, well below the

conduction band minima. Similarly,
EV Ey
= [ [1 = fFD(E)]Nv(E)dE ~ [ fMB(E_f — E)Nv(E)dE (53)

As long as the Boltzmann approximation is valid these integrals can be rewritten as

Eq—E 2rm2kT\*/?

n = Ng exp (—-Lki-’_l) y Ng=2 (W—%E) (54)
By~ B 2rmpkT\ >/

P = Ny exp (—-—fkT—V) ! Ny =2 (—W—T;-;h——) (55)

where N¢ and Ny are the effective density of states for the conduction and valence band respec-
tively. They represent the equivalent density of states at the minima, of the conduction band or
the maxima of the valence band that would give the same electron and hole concentrations as
the actual distribution of states in the bands. Equations (54) and (55) are only valid when the

Boltzmann approximation is valid.

In silicon Ng = 2.8 x 10%m=2 and Ny = 1 x 10%m-3 at 25°C,

NEVNEY
Area= n;
Area = n;
{1 =iV NIEY

(c)




Conduction Effective Mass vs Density of States Effective Mass

Conduction effective mass is proper effective mass and is used to determine the effect on a

carrier of applied forces (e.g., electric field).

For a material with elliptically-symmetric conduction band minima (e.g., silicon, germanium,

GaAs):
1 1/1 1 1\ 171 2
SEYE NS UE S W 4 i
m: 3 \m; my m, 3\m;y my

e

* For a material with two spherically-symmetric valence band maxima: (e.g., silicon, germa-

nium, GaAs):
N * N * * 3/2 * * 3/2 *
ahMpp + Ninmg, — mp ™ “mpy, + mp ™ “my,

Nip + Nip, T w3 1t A

IR

m; (57)

- The density of states effective mass is a quantity calculated so that the density of states
equation derived for materials with only a single spherically-symmetric conduction band minima

or valence band maxima can be used for other materials as well.

2rm2kT ik
Hp=i (_h—)

For example, in silicon where the conduction band has six equivalent minima,
m;{dos)3/2 = G(mmmymz)lfz = G(mt2ml)1/2 (58)
m:(dos) = 62/3mt2/3mz1/3 (59)
and the valence band has two different maxima,

7"1;;((105)3/2 = mpp®? + my3/? (60)

2/3

(61)

m;(dos) = (mkh3/ 2+ my¥ 2)

- Values for silicon, germanium and GaAs are given in text.
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Summary — Energy Bands

e Shape of energy bands depends on periodic potential.

o The energy bands determine the electronic properties of the material.

e Bandgap determines conductivity:

— No gap (overlapping or partially
filled bands) ~ metal

— Small gap — semiconductor

— Large gap - insulator

¢ Shape of minima/maxima determines
electron/hole mobility and density of

states

e Direct/indirect bandgap determines

light interactions

Number of intrinsic carriers (n;) as
f(T) for 3 common semiconductors. n;
increases as temperature increases and

energy gap decreases.
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Doping in Semiconductors

Multiplying together our expressions for n and p,

E.—E
kT

K = constant, E; =1.12¢V in Si at 27°C

o np = f(f(E), N(E)) only.

np = NN, exp —

? %KTe’exp—f—;

e np independent of impurities.
e np independent of E;.
Py :
o np = 251 x 102%m~* for Si at 27°C.

In a pure semiconductor, p = n = n,.

(62)

E, O 10, -3 0
N_N, exp—sz = 1.3 x 10%cm ™2 for Si at 27°C. (63)
Also since n = p,
E.— E; B
N, Xp ——m— = N, exp — T (64)
Therefore,
Es(n=p)=E —1—(E+E+kT1N)
Flil=p )= 2 HFC
1 3 my
=3 (E.+E,)+ Zlen p— (65)
=1 +E)
— 2 c v
The intrinsic Fermi level is just below midgap.
For both doped and undoped semiconductors:
n = n; exp Ef% (66)
P = n;exp 2 ]:TEJ! (67)

To increase the conductivity of a pure (intrinsic)

semiconductor, it is possible to add impurity atoms to

the lattice that will donate (valence 5, ie, P, As, Sb) @P

- or accept (valence 3, ie, B) electrons resulting in the

(DE
@

creation of additional conduction electrons or holes,

respectively.
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Dopant atoms occupy substitutional lattice sites and the extra electron or hole is very loosely

bound. In other words they can easily move to the conduction and valence bands, respectively,

with only small thermal excitations.

Imagine a Bohr-type atom (like hydrogen atom). Balancing cen-
tripetal force and electric attraction:

¢ _ mp

drer? 7

For the lowest energy level, the DeBroglie wavelength is given by:

h
2rr = A = E =
P mgu
e h
- 27rmgr'
Substituting,
he €\ [mg
= = — 68
" g*m:w r (eo) (m; : (68)

where 7 is the radius of the electron orbit in a hydrogen atom and ¢ is the permittivity of free
space. Therefore, the radius of the electron orbit is about 50 times that of a hydrogen atom and
the extra electron ranges over a large portion of the lattice, which has a atomic spacing of less

than 5 times the atomic radius of hydrogen.

The energy of that electron is given by the sum of the kinetic and potential energy.

,02 q2

2 4mer
= alll (3) *(me (69)
Bregrg \e. ™y

~5a(2)'(22)

where Eg is —13.6eV. Therefore, for silicon the ionization energy for an impurity is approx-

imately 0.025eV, while the average electron thermal energy at room temperature is about

0.026eV. As we will see later, at room temperature virtually all shallow donors and acceptors

are ionized.
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For every free electron or hole which results from the ionization of a substitutional impurity,

an oppositely charged impurity ion also results. The result is the charge neutrality condition.

n+ N7 Zp+ Nf (70)
S— ———
= +

Assuming that all impurities are ionized,
p—nZN,— N, (71)

Combining this expression with the law of mass action (np = n;?), the hole and electron concen-
tration can be calculated as a function of the net doping, Ny — N,. For material heavily doped
enough to be extrinsic (|Ng — N,| > n;) with only a single dopant type, the minority carrier

concentration can be neglected relative to the majority carrier concentration:

n—type

" % No—Noi po=n/(Na— N,) (72)
Pp ENe—Ng; n,= n,-z/(N,, - Nd), . (73)
p—type

But for very lightly-doped material or at high temperatures, the mass-action and charge-neutrality
equations must be solved simultaneously to find the carrier concentrations. The Fermi level can

be found based on knowledge of the carrier concentration using Equations (38) and (39)

E; =Ec—len&=Ev+len% (74)
n

As temperature increases, n; increases and so n and p tend to become more nearly equal. In

addition, the energy gap also narrows slowly with temperature.

I I ! 1

0.6 Conduction band edge E, £

0.6 Valence band edge E,
] 1 1 1
0 100 200 300 400 500

Temperature, K

24



Summary — Shallow Dopants at Equilibrium

Assumptions:

1. Complete impurity ionization (Nf = Ny, N; =N,)

2. Thermal equilibrium

Equations:
Charge neutrality: n—p+ N7 —Nf=0
Mass Action (Equilibrium): np = n?
© e T L
Fermi-Dirac Distribution: f(E)

" T+ exp[(E - By)/kT]

Maxwell-Boltzmann Approximation: f(E) = exp (—— i ’:TEf) (valid for E — E; > 3kT)

FE) 21— exp (E — £ ) (valid for B — E; < —3kT)

kT
Ey — E; .—E
Carrier concentrations: T = n; exp fkT = N exp H_ET!_
E;-E E; - E,
P = n;exp T - N”eXPHLkT—
n?
Extrinsic Semiconductors: 2 Nf — NT np (TV___*-N__'__)
a ~ 1%
2
ne
e ~ (N7 — Nf
P N; _ Na_ Po ( a d)
N, N,
—E >~ _ s = B e
Ef Ec len N;__Nu_ Ef E k nN;—N;‘
n-type p-type

Examples
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Low Temperature

2x10"— Electron concentration as f(T) for
= " ‘ EXTEINSIC -’ Si doped with N, = 1 x 10'®/em3. Nor-
£ B . mal operation of semiconductor device

is in the extrinsic conductivity range

= Ny where purposely introduced impurities
= /7 . ;
. /’ - control the electrical properties.
| | ’ =
0 | ] B | |
0 100 200 300 400 500 600 700

T('K)

At low temperatures. freezeout of the impurities occurs (insufficient thermal energy to

excite electrons the = 0.05¢1" from E, to E.) and

Ny
1+ (12)exp(Es — E;)/kT

" 2 spins of electron in donor level

- — A’ﬂ
S +lpexp(Eq — E;)/kT

4

" 2 spins x 2 valence bands in Sj. Ge, GaAs
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Degeneracy

E
N4

Ey

£

P
o %)

>
N(E)

1. E; must move up so f(E) will increase in the conduction band as to increase the proba-

bility of ¢~ being there.

2. When E; increases, 1 — f(E) decreases in the valence band. Therefore, p decreases.

(4]

- J{E) at E; must be low if these states are to all be jonized (ie.Ef < By,
This implies that E; = E, or in CB = degenerate state.

This happens at doping levels comparable to effective densities of states N and Now N

or N, ~ 10'% ‘cm?.
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Deep Donors or Acceptors

Suppose we add an impurity whose Ec.
donor level is not very close to the con-

duction band (E. — E; > 4kT). What P b e et s e et s |

are n, p, E;?

Cannot assume n = Ny in this case.

Thermal energy may not be enough to

ionize all impurities.

Pr{e~ occupies donor state} (not ionized) is given by:

E; <Eg—3kT: f(E)=exp (_%&)
E;>E;4+3kT: 1—f(E)exp (_&;11_&!_)
Therefore, the number of ionized donors is:
E;<E4—3kT: Nif=N, [1_exp (_EdT—TEi)]

e

Pr{e~ is not there}

E;y>FEy;+3kT: Nf= Ngexp (——E—‘f—k;ﬂ)

(Exact expressions in class notes page 26.)

Neutrality: n_=p+ NF « ionized donors
- +
How do we calculate E;7 Substitute expressions in neutrality condition.

E; - E, _ Eqy— Ef)
N exp ( o ) = Nyexp (T (assume p < n)
But,
B4 — Ey = (Eq — E.) —(Ef - E.)
| —
known

Therefore, the only unknown is (Ey — E.) which can be solved for. Once Ej is known, then

(assuming N7 > n;):
n,-z

n= N and p

28



Some specific examples

Example 1.

Suppose we have a silicon bar with both donor and acceptor impurities (shallow) present.
For example,
10" /em® Arsenic
5 X 10'®/cm® Boron

both shallow = complete ionization

Thus,
pE N Ny = 4.0 x 10% fem?
3 2
n= > 46103 em?
.‘,\a == J\d
N,
B 2 By 5 B ptonn O
! S
= 0.133eV above valence band.
- - - = — =X

Therefore, p dopant dominates and

E; is near the valence band.

—— —
— 7 w—— 0 - 4 g— .
o g—

—
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Example 2.

Suppose we now add to the above silicon an impurity which adds deep level states within
the band gap.

If the Au concentration is 1 » 10", cm® . What are n, p, E; ?

Since {Au) <« {B — 'As], assume E; approximately the same.
Therefore,

1. Au donor states will be ionized since E; < E; and, therefore, f(E) = 0 and e~ will not

occupy donor states.

Au acceptor states will not be ionized since E; < E, and, therefore, 1 — T(E) = 1 and
e~ will not occupy acceptor states.

Therefore.

P=ENgy —Nay, — Ny, =48 x10%/cm®

n = i =47 x10% cm?
p
N
E:=E, =kTln

‘T\QB - Adu =\ dau

= 0.134 €V above valence band

Thus, the net carrier concentrations and E; have been only slightly changed. The Au has
slightly decreased p. Therefore. p increases very slightly.
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Example 3.
Suppose we had only the deep lving impurity Au in otherwise intrinsic Si.

It is reasonable to expect that some

E | Au atoms will act as acceptors and some
c
T as donors. Since levels are deep, n and
E - 2,75 eV P .wiIl be small (but likely the dominant
a T- # will be greater than n;).
0.56 QV st sl s N Ed Also, probably the silicon will be-
$ come p type because E, is closer to E,
—EV than E, is to E. (e.g.. easier to ionize
h* than e™).
Let N = number of Au atoms 'em?3.
The number of ionized donors is given by
1
N =(N-N)|1-
= “){ 1+exp(Ed—Ef/kT)]

Pr{e”is not there}

The number of ionized acceptors is given by

1
o (Y — N
N A d)[l-l-exp(Ea—Ef/kT)]
Pr{eis there}

(These expressions use F-D statistics. Once the Fermi level is approximately located, simpler

M-B expressions could be used.)

We also note that
N+ AT+ ANH=N

where V* —neutral Au atoms.

. E. - Er

Also. n = Ncexp-hkT
N EpesE
= Ny el

7 v €Xp T

N = p-—i—-]\';'

This gives us 6 equations with 6 unknowns (n,p,Ef,]\'a‘,N;,Nx). Therefore, there is a
unique solution although it is not trivial to obtain' In many instances the problem can be
greatly simplified by making the appropriate assumptions about the location of the Fermi

level.
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