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Wave functions and the Schrodinger equation

A stationary state has a definite energy, and can be written as

* = ||2 = “Probability distribution function”

||2 dV =

For  a stationary state, 
• * is independent of time
• * = |(x,y,z)|2

probability of finding a particle near a 
given point x,y,z at a time t

Particles behave like waves, so they can be 
described with a wave function (x,y,z,t)
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The Schrodinger EquationThe Schrodinger Equation

Solving this equation will give us 
• the possible energy levels of a system (such as an 

atom)
• The probability of finding a particle in a particular 

region of space

It’s hard to solve this equation. Therefore, our approach 
will be to learn about a few of the simpler situations and 
their solutions. 



The Schrodinger equation:The Schrodinger equation:

Kinetic 
energy

Potential 
energy

+ = Total 
energy

For a given U(x), 
• what are the possible (x)?
• What are the corresponding E?



For a free particle, U(x) = 0, so

(x)  Aeikx


E 

2k 2

2m
Where k = 2

= anything real = any value from 
0 to infinity

The free particle can be found anywhere, with 
equal probability

Momentum: p=ħk



Particle in a box

Rigid walls
Newton’s view

Potential energy 
function U(x)



The particle in a box is not free, 
it is “bound” by U(x)

Examples: An electron in a long molecule or in a straight wire

“Boundary conditions”:
(x) = 0 at x=0, L and all values of x 
outside this box, where U(x) = infinite

To be a solution of the 
SE, (x) has to be 
continuous everywhere, 
except where U(x) has an 
infinite discontinuity 



Solutions to the S.E. for the 
particle in a box

d/dx also has to be 
continuous everywhere, 
(except where U(x) has 
an infinite discontinuity) 
because you need to 
find d2/dx2

Normal modes of a vibrating string!



From 0 < x < L, U(x) = 0, so in this 
region, (x) must satisfy:



2

2m
d2
dx 2  E(x)

Same as a free particle?!?!?!?!?



You may be tempted to conclude that 

(x)  Aeikx
, the solution for a free particle, is 
a possible solution for the bound 
one too.

WRONG!!!!
Why not?
The above (x) does NOT satisfy the boundary 
conditions that (x) = 0 at x=0 and x=L.



So what is the solution then?

(x)  A1e
ikx  A2e

 ikx

Try the next simplest solution, a superposition of 
two waves

The energy again is

E 

2k 2

2m



Rewrite (x) with sin and cos

(x) = 2iA sin(kx) = C sin(kx)

Choose values of k and  that satisfy the 
boundary conditions:

(x) = 0 when x=0 and x=L

k = n / L  = 2 / k  = 2L / n

Where n = 1, 2, 3, …



L =n n / 2

Each end is a node, 
and there can be n-
1 additional nodes in 
between



Wave functions for the particle in a box
(x) = 0 



The energy of a particle in a box 
cannot be zero!

You could try to put n = 0 into this 
equation, but then (x) = 0, which would 
mean there is no particle!



Wave function Probability distribution function

The function (x) = C sin(kx) is a solution to the 
Schrodinger Eq. for the particle in a box



Q1

A. least for n = 1.

B. least for n = 2 and n = 4.

C. least for n = 5.

D. the same (and nonzero) for n
= 1, 2, 3, 4, and 5.

E. zero for n = 1, 2, 3, 4, and 5.

The first five wave 
functions for a particle in a 
box are shown. The 
probability of finding the 
particle near x = L/2 is



A1

A. least for n = 1.

B. least for n = 2 and n = 4.

C. least for n = 5.

D. the same (and nonzero) for n
= 1, 2, 3, 4, and 5.

E. zero for n = 1, 2, 3, 4, and 5.

The first five wave 
functions for a particle in a 
box are shown. The 
probability of finding the 
particle near x = L/2 is



Q2

A. least for n = 1.

B. least for n = 5.

C. the same (and nonzero) 
for n = 1 and n = 5.

D. zero for both n = 1 and n
= 5.

Compare n=1 and n=5 states. The 
average value of the x-component 
of momentum is



A2

Compare n=1 and n=5 states. The 
average value of the x-component 
of momentum is

A. least for n = 1.

B. least for n = 5.

C. the same (and nonzero) 
for n = 1 and n = 5.

D. zero for both n = 1 and n
= 5.

The wave functions for the particle in a box are superpositions of waves 
propagating in opposite directions. One wave has px in one direction, the 
other has px in the other direction, averaging to zero. 



Q3

The first five wave 
functions for a particle in a 
box are shown. Compared 
to the n = 1 wave function, 
the n = 5 wave function has

A. the same kinetic energy 
(KE).

B. 5 times more KE.

C. 25 times more KE.

D. 125 times more KE.

E. none of the above



A3

The first five wave 
functions for a particle in a 
box are shown. Compared 
to the n = 1 wave function, 
the n = 5 wave function has

A. the same kinetic energy 
(KE).

B. 5 times more KE.

C. 25 times more KE.

D. 125 times more KE.

E. none of the above



Normalization

Not every function has this property:

If a function (x) has this property, it is “normalized”.

You can find C so that the function (x) = C sin(nx/L) is 
normalized.

C 
2
L



Particle in a square well

Example: electron in a metallic sheet of thickness L, 
moving perpendicular to the surface of the sheet

U0 is related to the work 
function.

Newton: particle is trapped 
unless E > U0

QM: For E < U0 , the 
particle is  “bound”




(x)  Acos 2mE


x  Bsin 2mE


x

Inside the well (0<x<L), the solution to the SE is 
similar to the particle in the box (sinusoidal)

Outside, the wave 
function decays 
exponentially:
(x)  Cex  Dex

Only for certain values of 
E will these functions join 
smoothly at the 
boundaries!



Non-zero probability of 
it being outside the 
well! 
Forbidden by 
Newtonian mechanics. 

This leads to some very odd 
behavior… quantum tunneling!



Q4

The first three wave 
functions for a finite square 
well are shown. The 
probability of finding the 
particle at x > L is

A. least for n = 1.

B. least for n = 2.

C. least for n = 3.

D. the same (and nonzero) for 
n = 1, 2, and 3.

E. zero for n = 1, 2, and 3.



A4

The first three wave 
functions for a finite square 
well are shown. The 
probability of finding the 
particle at x > L is

A. least for n = 1.

B. least for n = 2.

C. least for n = 3.

D. the same (and nonzero) for 
n = 1, 2, and 3.

E. zero for n = 1, 2, and 3.



•Non-zero probability that a particle can “tunnel”
through a barrier!
•No concept of this from classical physics. 

Potential barriers and quantum tunneling



Potential barriers and quantum tunneling

• Tunnel diode in a semiconductor: Current is 
switched on/off ~ps by varying the height of the 
barrier

• Josephson junction: e- pairs in superconductors 
can tunnel through a barrier layer: precise voltage 
measurements; measure very small B fields.

• Scanning tunneling microscope (STM): view 
surfaces at the atomic level!

• Nuclear fusion

• Radioactive decay

Importance:



Scanning 
tunneling 
microscope
(~atomic force 
microscope)



Au(100) surface : STM resolves individual atoms!



A wave function for a particle tunneling through a barrier

(x) and d/dx must be continuous at 0 and L. 







Scanning tunneling microscope (STM)

Iron atoms can be arranged to 
make an “electron corral” (IBM’s 
Almaden Research Center)







Iron on copper(111)



Q5

A potential-energy function 
is shown. If a quantum-
mechanical particle has 
energy E < U0, the particle 
has zero probability of 
being in the region

A. x < 0.

B. 0 < x < L.

C. x > L.

D. the particle can be found at any x



A5

A. x < 0.

B. 0 < x < L.

C. x > L.

D. the particle can be found at any x

A potential-energy function 
is shown. If a quantum-
mechanical particle has 
energy E < U0, the particle 
has zero probability of 
being in the region



An alpha particle in a nucleus.
If E > 0, it can tunnel through the barrier and escape from 
the nucleus. 



T  Ge2LApprox. probability of 
tunneling (T<<1):

G 16 E
U0

1 E
U0









where


 

2m(U0  E)




The quantum harmonic oscillator

 
kspring

m

U(x)  1
2

kspring x 2



(x)  Ce mkspring x 2 /2



2

2m
d2
dx 2 

1
2

kspring x 2  E

The Schrodinger equation for the harmonic oscillator

The solution to the SE is

Solving for E gives the energy





Q6

The figure shows the first six 
energy levels of a quantum-
mechanical harmonic 
oscillator. The corresponding 
wave functions

A. are nonzero outside the region 
allowed by Newtonian mechanics.

B. do not have a definite wavelength.

C. are all equal to zero at x = 0.

D. Both A. and B. are true.

E. All of A., B., and C. are true.



A6

The figure shows the first six 
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wave functions

A. are nonzero outside the region 
allowed by Newtonian mechanics.
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C. are all equal to zero at x = 0.
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