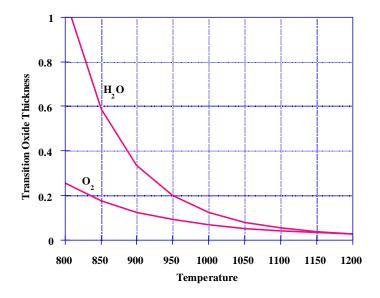
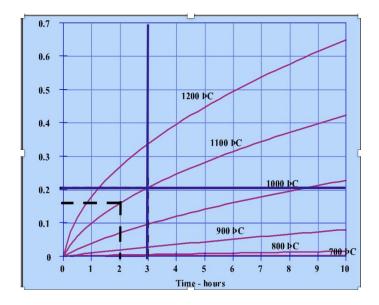
Homework #3 Solutions, EE/MSE 486. Spring 2017

Problem 1


The transition from linear to parabolic growth is a gradual one and therefore there is no specific thickness at which an abrupt transition takes place. We can "define" the transition, as occurring when

$$\frac{k_S x_0}{D} \approx 1$$
 or when $x_0 = \frac{D}{k_S} = \frac{B}{2(B/A)}$

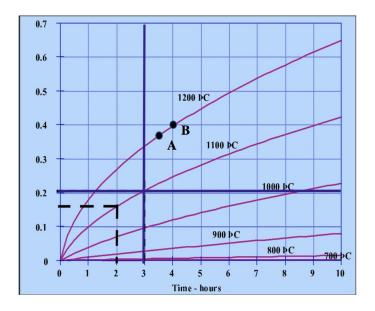
Taking the values for dry O₂ as an example, from notes, we have


$$x_{o} = \frac{B}{2(B/A)} = \frac{7.72 \times 10^{2} \exp\left(-\frac{1.23 eV}{kT}\right)}{(2)6.23 \times 10^{6} \exp\left(-\frac{2 eV}{kT}\right)} = 0.619 \times 10^{-4} \exp\left(\frac{0.77 eV}{kT}\right)$$

This equation is plotted below along with the H_2O result also using values from notes. The values in notes apply to (111) silicon as does the graph below. (100) curves are easily generated by dividing the respective B/A values by 1.68.

Problem 2

We can use these figures to estimate the oxide thickness as follows. First, we use figure in page 10 of the notes for the first dry oxidation cycle



A two hour oxidation at 1100°C produces an oxide thickness of about 0.16 μ m. We next use figure in page 11 for the wet oxidation as shown below. Then oxidation is 2 hrs in H₂O at 900 °C. We start by finding the point on the 900°C curve that corresponds to 0.16 μ m since this is the starting oxide thickness. This is point A. We then move along the 900°C curve by two hours to point B. This corresponds to a thickness of about 0.36 μ m which is the thickness at the end of the wet oxidation.

We now go back to the figure of page 10 of the note for the final dry O_2 cycle. This process is 0.5 hrs at 1200°C. We start by finding the point on the 1200°C curve that corresponds to a starting

oxide thickness of 0.36 μ m. This is point A below. We then increment the time by 0.5 hrs along the 1200°C curve, to arrive at a final oxide thickness of about 0.4 μ m.

Problem 3.

(a) At 1000C, and 1 atm
$$B = 7.72 * 10^2 \frac{\mu m^2}{h} \exp\left(-\frac{1.23eV}{kT}\right) = 1.05 * 10^{-2} \frac{\mu m^2}{h}$$

$$\frac{B}{A} = \frac{6.23}{1.68} * 10^6 \frac{\mu m}{h} \exp\left(-\frac{2.0eV}{kT}\right) = 4.5 * 10^{-2} \frac{\mu m}{h}$$
Note that the factor 1.68 is used in the <100> case.

Since $B \propto P_{02}$ and $\frac{B}{A} \propto P_{02}^{0.75}$, at 0.2 atm we can get

$$B = 2.1 * 10^{-3} \frac{\mu m^2}{h} and \frac{B}{A} = 1.3 * 10^{-2} \frac{\mu m}{h}$$

To get the oxide thickness, we use the following equation:

$$x_o^2 + Ax_o + B(t+\tau) = 0$$

Assume $\tau \sim 0$ *i.e.* $x_i \sim 0$, we can get

$$x_o = \frac{-A + \sqrt{A^2 + 4Bt}}{2} = \begin{cases} 0.0064 \ \mu m \ for \ t = 0.5hr \\ 0.0233 \ \mu m \ for \ t = 2hr \end{cases}$$

(b) The Sentaurus input file is listed below:

line x location=0 spacing= 0.001 tag=SiDevTop line x location=1 spacing=0.01 line x location=5 spacing=0.1 tag=SiDevBot region silicon xlo=SiDevTop xhi=SiDevBot init concentration=5e16<cm-3> field=Phosphorus wafer.orient=100 diffuse pO2=0.2 temperature=1000<C> time=0.5<hr> grid remesh

```
struct tdr=d4
```

layers

The output of "layers" command is shown in the following figure:

• • • • • • • • • • • • • • • • • • •				
 1a	 yers			layers
 { {	Top -8.262326869715e-03 5	.313395755145e-03 1.0 000000000000e+01 9.15	0915690060e+09 Sil	ide } icon }
pr	 int.1d			- print.1d
{	 Distance		Material }	
{ {	-8.262326869715e-03 -8.035118828435e-03	7.725423000000e+11 7.725423000000e+11	Oxide } Oxide }	
{			Oxide }	
[-6.766415855524e-03	7.725423000000e+11	Oxide }	
{	-5.074811891643e-03	7.725423000000e+11	Oxide }	
{	-3.383207927762e-03	7.725423000000e+11	Oxide }	
{	-1.691603963881e-03	7.725423000000e+11	Oxide }	
{	0.00000000000e+00	7.725423000000e+11	Oxide }	
{	1.001699000000e-03	7.725423000000e+11	Oxide }	
{	2.012520000000e-03	7.725423000000e+11	Oxide }	
ť	3.032546000000e-03	7.725423000000e+11	Oxide }	
١	4.061861000000e-03	7.725423000000e+11	Oxide }	

The oxide layer thickness after 0.5-hour oxidation is 8.3nm+5.3nm=13.6nm.

Similarly, we can get the oxide layer thickness for 2-hour oxidation from Sprocess, which is 31.6nm.

The simulated thickness is larger than the hand calculation due to:

- 1) Initial thickness about 2 nm is assumed;
- 2) Thin oxides grow faster than the linear-parabolic model initially as observed experimentally.

Problem 4

We will perform the calculation for <111> silicon wafers. For <100> wafers, the linear rate constant should be divided by 1.68.

At 1000°C, in H₂O

$$B = 3.86 \times 10^2 \exp\left(-\frac{0.78}{kT}\right) = 0.316 \,\mu m^2 / hr$$

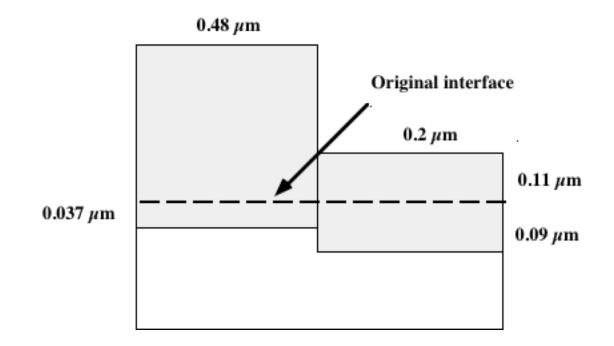
$$\frac{B}{A} = 1.63 \times 10^8 \exp\left(-\frac{2.05}{kT}\right) = 1.255 \,\mu\text{m/hr}$$

The time to grow $0.2 \ \mu m$ is then

$$\tau = \frac{x_i^2 + Ax_i}{B} = \frac{(0.2)^2 + (0.252)(0.2)}{0.316} = 0.286 \text{ hr}$$

The time to grow the initial 0.4 µm was

$$\tau = \frac{x_i^2 + Ax_i}{B} = \frac{(0.4)^2 + (0.252)(0.4)}{0.316} = 0.825 \text{ hr}$$


The extra time to grow $0.2 \,\mu m$ in the bare areas will grow some extra oxide where the initial $0.4 \,\mu m$ oxide existed

$$x_{O} = \frac{A}{2} \left\{ \sqrt{1 + \frac{t + \tau}{A^{2} / 4B}} - 1 \right\} = \frac{0.252}{2} \left\{ \sqrt{1 + \frac{0.286 + 0.825}{(0.252)^{2} / 4(0.316)}} - 1 \right\} = 0.480 \,\mu\text{m}$$

The growth of the extra 0.080 μ m will consume 0.46 × 0.080 – 0.037 μ m of silicon under the thick oxide.

The growth of 0.2 μ m of oxide will consume 0.46 \times 0.2 = 0.092 μ m of silicon.

Thus, a sketch of the old and new oxide-silicon interface is shown below:

