EE/MSE 486/528: Integrated Circuit Fabrication

Syllabus, Spring 2017 (Dunham)

http://dunham.ee.washington.edu/ee486

- Review of Semiconductors and Devices (1 lecture; Chapter 1)
- IC Fabrication Processes (1 lecture; Chapter 2)
 - Basic Process Steps
 - CMOS fabrication
 - Self-aligned processes
- Diffusion (3 lectures; Chapters 3 and 7)
 - Fick's Law
 - Point defects interstitials and vacancies
 - * Structure and charge states
 - * Self-diffusion
 - Coupled diffusion of dopants with point defects
 - * Effects of Fermi level
 - * Non-equilibrium effects
- Ion Implantation (3 lectures; Chapter 8)
 - Implantation Modeling
 - * Electronic and nuclear stopping
 - * Channeling
 - Damage Annealing
 - * Transient enhanced diffusion (TED)
- Oxidation (2 lectures; Chapter 6)
 - Oxidation kinetics (thin oxides, stress effects)
 - Oxidation enhanced (and retarded) diffusion (OED)
 - Other film growth processes: (oxy)nitridation, silicidation
- Photolithography (2 lectures; Chapter 5)
 - Exposure and Development
 - Enhancement techniques and advanced methods (proximity correction, phase shift masks, surface imaging, immersion, extreme UV, e-beam projection, X-ray)
- Deposition (2 lectures; Chapter 9)
 - PVD (evaporation, sputtering)
 - Chemical vapor deposition (CVD)
- Etching/Backend (2 lectures; Chapters 10 and 11)
 - Reactive ion etching (RIE)
 - Chemical-mechanical polishing (CMP)