EE 212 FALL 1999-00

BACKEND TECHNOLOGY - Chapter 11

Introduction

• Backend technology: fabrication of interconnects and the dielectrics that electrically and physically separate them.

• Early structures were very simple by today's standards.

- More metal interconnect levels increases circuit functionality and speed.
- Local interconnects (polysilicon, silicides, TiN) versus global interconnects (usually Al).

• Backend processing is becoming more important.

- Larger fraction of total structure and processing.
 - Starting to dominate total speed of circuit.

Year of 1st DRAM Shipment	1997	1999	2003	2006	2009	2012
Minimum Feature Size, F _{min} (nm)	250	180	130	100	70	50
DRAM Bits/Chip	256M	1 G	4 G	16G	64G	256G
DRAM Chip Size (mm ²)	280	400	560	790	1120	1580
MPU Chip Size (mm ²	300	360	430	520	620	750
Wiring Levels - Logic	6	6-7	7	7-8	8-9	9
Min metal CD (nm)	250	180	130	100	70	50
Min contact/via CD nm	280/ 360	200/ 260	140/ 180	110/ 140	80/100	60/70
Metal Aspect Ratio	1.8	1.8	2.1	2.4	2.7	3.0
Contact aspect ratio (DRAM)	5.5	6.3	7.5	9	10.5	12
Via aspect ratio (logic)	2.2	2.2	2.5	2.7	2.9	3.2
Metal resistivity (µcm)	3.3	2.2	2.2	2.2	<1.8	<1.8
Interlevel metal dielectric constant	3.0-4.1	2.5-3.0	1.5-2.0	1.5-2.0	<1.5	<1.5

• The speed limitations of interconnects can be estimated fairly simply.

• The time delay (rise time) due to global interconnects is:

$$\tau_{L} = 0.89 \text{RC} = 0.89 \cdot \text{K}_{I} \text{K}_{ox} \varepsilon_{o} \rho L^{2} \left(\frac{1}{\text{H}x_{ox}} + \frac{1}{\text{W}L_{S}} \right) \quad (1)$$

where K_{ox} is the dielectric constant of the oxide, K_{I} accounts for fringing fields and ρ is the resistivity of the interconnect line.

• Interconnect and gate time delay versus chip area.

3

Historical Development and Basic Concepts

A. Contacts

- Early structures were simple Al/Si contacts.
- Highly doped silicon regions are necessary to insure ohmic, low resistance contacts.

$$\rho_{c} = \rho_{co} \exp\left(\frac{2\phi_{B}\sqrt{m^{*}\varepsilon_{s}}}{h\sqrt{N_{D}}}\right)$$
(2)

- Tunneling current through a Schottky barrier depends on the width of the barrier and hence N_D.
- In practice, N_D , $N_A > 10^{20}$ are required.
- Another practical issue is that Si is soluble in Al (≈ 0.5% at 450°C). This can lead to "spiking" problems.

• Si diffuses into Al, voids form, Al fills voids \Rightarrow shorts!

- 1st solution add 1-2% Si in Al to satisfy solubility. Widely used, but Si can precipitate when cooling down and increase ρ_c .
- Better solution: use barrier layer(s). Ti or TiSi₂ for good contact and adhesion, TiN for barrier.

• See Table 11.3 in text for various barrier options.

B. Interconnects And Vias

- Al has been the dominant material for interconnects.
 - low resistivity
 - adheres well to Si and SiO₂
 - can reduce other oxides
 - can be etched and deposited using reasonable techniques
- Problems: relatively low melting point and soft.
 - need a higher melting point material for gate electrode and local interconnect ⇒ polysilicon.
 - hillocks and voids easily formed in Al.
- Hillocks and voids form because of stress and diffusion in Al films. Heating places Al under compression causing hillocks. Cooling back down can place Al under tension ⇒ voids.

- Adding few % Cu stabilizes grain boundaries and minimizes hillock formation.
- A related problem with Al interconnects is "electromigration." High current density (0.1-0.5 MA/cm²) causes movement of Al atoms in direction of electron flow.
- Can cause hillocks and voids, leading to shorts or opens in the circuit.

- Adding Cu (0.5-4 weight %) can also inhibit electromigration.
- Thus Al is commonly deposited with 1-2 wt % Si and 0.5-4 wt % Cu.

• Next development was use of other materials with lower resistivity as local interconnects, like TiN and silicides.

- Silicides used to 1. strap polysilicon, 2. strap junctions, 3. as a local interconnect.
- Self-aligned silicide ("salicide") process:

• Also, recall TiN, TiSi₂ simultaneous formation in CMOS process in Chapter 2.

• Multilevel metal interconnects posed new challenges.

- Early two-level metal structure (1970 1980). Nonplanar topography leads to lithography, deposition, filling issues.
- These issues get worse with additional levels of interconnect and required a change in structure.

• One early approach to planarization incorporated W plugs and a simple etchback process. (Damascene process.)

- SPEEDIE simulation shows how planarization can be accomplished by overfilling the via.
- Finally, interconnects have also become multilayer structures.

• Shunting the Al helps mitigate electromigration and can provide mechanical strength, better adhesion and barriers in multi-level structures. TiN on top also acts as antireflection coating for lithography.

• Typical modern interconnect structure incorporating all these new features.

<u>C. Dielectrics</u>

- Dielectrics electrically and physically separate interconnects from each other and from active regions.
- Two types:
 - First level dielectric
 - Intermetal dielectric (IMD)

•<u>First level dielectric</u> is usually SiO₂ "doped" with P or B or both (2-8 wt. %) to enhance reflow properties.

- PSG: phosphosilicate glass, reflows at 950-1100°C
- BPSG: borophosphosilicate glass, reflows at 800°C.

- SEM image of BPSG oxide layer after 800°C reflow step, showing smooth topography over step.
- •Undoped SiO_2 often used above and below PSG or BPSG to prevent corrosion of Al .
- <u>Intermetal dielectrics</u> also made primarily of SiO₂ today, but cannot do reflow or densification anneals because of T limitations.

• Two common problems occur, cusping and voids, which can be minimized using appropriate deposition techniques (Chapter 9).

• SPEEDIE simulations of silicon dioxide depositions over a step for silane deposition ($S_c = 0.4$) and TEOS deposition ($S_c = 0.1$) showing less cusping in the latter case.

• However planarization is also usually required today.

12

- One simple process involves planarizing with photoresist and then etching back with no selectivity.
- Spin-on-glass (SOG) is another option:
 - Fills like liquid photoresist, but becomes SiO₂ after bake and cure.
 - Done with or without etchback (with etchback to prevent poisoned via no SOG contact with metal).
 - Can also use low-K SOD's. (spin-on-dielectrics)
 - SOG oxides not as good quality as thermal or CVD oxides
 - Use sandwich layers.

- A final deposition option is HDPCVD (see chapter 9) which provides angle dependent sputtering during deposition which helps to planarize.
- The most common solution today is CMP which works very well.

• CMP is generally much better at global planarization than the etchback techniques.

• Shown below is a schematic diagram of a backend structure showing one possible dielectric multistructure scheme. Other variations include HDP oxide or the use of CMP.

• Shown above are two current backend structures from VLSI Technology, Inc. Left: three metal levels and encapsulated BPSG for the first level dielectric; SOG (encapsulated top and bottom with PECVD oxide) and CMP in the intermetal dielectrics. The multilayer metal layers and W plugs are also clearly seen. Right: five metal levels, HDP oxide (with PECVD oxide on top) and CMP in the intermetal dielectrics.

Models and Simulation

- Backend process simulation obviously relies heavily on the deposition and etching simulation tools discussed in Chapters 9 and 10.
- We will briefly consider here one additional simulation tool which is useful reflow.
- See Chapter 11 for a discussion of other models silicide formation, CMP, grain growth, electromigration etc.
- Reflow occurs to minimize the total energy of the system. In this case, the surface energy of the structure is reduced by minimizing the curvature.
- Surface diffusion is one reflow mechanism (metals at high T).
- Atoms will move to regions of lower chemical potential, μ , which is a function of the curvature.

Force =
$$-\frac{\partial \mu}{\partial s} = -\gamma_s \Omega \frac{\partial \mathbf{K}}{\partial s}$$
 (4)

where force is on the atom, γ_s is the per-area surface energy, Ω is the atomic volume of the atom, K is the curvature, and s is the length along the surface.

The curvature, K, is equal to the inverse of the radius of curvature, R, at that point:

$$\mathbf{K} = \frac{1}{\mathbf{R}} \tag{5}$$

- The force acting upon an atom is in the direction away from a point of higher curvature to a point of lower curvature. A smoothing of the topography results.
- The surface flux of atoms, F_S then equals:

$$\mathbf{F}_{\mathbf{s}} = -\frac{\mathbf{D}_{\mathbf{s}}}{\mathbf{k}\mathbf{T}} \gamma_{\mathbf{s}} \Omega \upsilon \frac{\partial \mathbf{K}}{\partial \mathbf{s}}$$
(5)

where υ is the number of atoms per unit area, and D_S is the surface diffusivity of the atoms.

- Simulations of R. Brain, for reflow of Cu at 800K for different trench sizes: a. 1 x 1 μ m; b. 0.5 x 1 μ m; c. 0.33 x 1 μ m; and d. three 0.5 x 1 μ m trenches spaced 0.5 μ m apart. (parameters given in Table 11.8 in text.)
- Note filling of trenches and smoothing of topgraphy.

THE FUTURE OF BACKEND TECHNOLOGY

• Remember:

$$\tau_{L} = 0.89 \text{RC} = 0.89 \cdot \text{K}_{I} \text{K}_{ox} \varepsilon_{o} \rho L^{2} \left(\frac{1}{\text{H}x_{ox}} + \frac{1}{\text{W}L_{S}} \right) \quad (1)$$

• Need to reduce circuit delay due to interconnects.

Year of 1st DRAM Shipment	1997	1999	2003	2006	2009	2012
Minimum Feature Size, F _{min} (nm)	250	180	130	100	70	50
DRAM Bits/Chip	256M	1 G	4 G	16G	64G	256G
DRAM Chip Size (mm ²)	280	400	560	790	1120	1580
MPU Chip Size (mm ²	300	360	430	520	620	750
Wiring Levels - Logic	6	6-7	7	7-8	8-9	9
Min metal CD (nm)	250	180	130	100	70	50
Min contact/via CD	280/	200/	140/	110/	80/100	60/70
nm	360	260	180	140		
Metal Aspect Ratio	1.8	1.8	2.1	2.4	2.7	3.0
Contact aspect ratio (DRAM)	5.5	6.3	7.5	9	10.5	12
Via aspect ratio (logic)	2.2	2.2	2.5	2.7	2.9	3.2
Metal resistivity (µcm)	3.3	2.2	2.2	2.2	<1.8	<1.8
Interlevel metal dielectric constant	3.0-4.1	2.5-3.0	1.5-2.0	1.5-2.0	<1.5	<1.5

- Reduce metal resistivity use Cu instead of Al.
- Aspect ratio advanced deposition, etching and planarization methods.
- Reduce dielectric constant use low-K materials.

Material class	Material	Dielectric constant	Deposition technique
Inorganic	SiO ₂ (including PSG and BPSG)	3.9-5.0	CVD Thermal oxidation Bias-sputtering High density plasma
	Spin-on-glass (SiO ₂) (including PSG and BPSG)	3.9-5.0	SOD
	Modified SiO ₂ (e.g. fluorinated SiO ₂ or hydrogen silsesquioxane - HSQ)	2.8-3.8	CVD/SOD
	BN (Si)	>2.9	CVD
	Si ₃ N ₄ (only used in multilayer structure)	5.8-6.1	CVD
Organic	Polyimides	2.9-3.9	SOD/CVD
	Fluorinated polyimides	2.3-2.8	SOD/CVD
	Fluoro-polymers	1.8-2.2	SOD/CVD
l	F-doped amorphous C	2.0-2.5	CVD
Inorganic/Organic Hybrids	Si-O-C hybrid polymers based on organo- silsesquioxanes (e.g. MSQ)	2.0-3.8	SOD
Aerogels (Microporous)	Porous SiO ₂ (with tiny free space regions)	1.2-1.8	SOD
Air bridge		1.0-1.2	

• All of these approaches are beginning to appear in advanced process flows today.