EE 212 FALL 1999-00

CRYSTAL GROWTH, WAFER FABRICATION AND BASIC PROPERTIES OF Si WAFERS- Chapter 3

• Crystals are characterized by a unit cell which repeats in the x, y, z directions.

- Planes and directions are defined using an x, y, z coordinate system.
- [111] direction is defined by a vector having components of 1 unit in x, y and z.
- Planes are defined by Miller indices reciprocals of the intercepts of the plane with the x, y and z axes.

• Silicon has the basic diamond crystal structure - two merged FCC cells offset by a/4 in x, y and z.

• Various types of defects can exist in crystal (or can be created by processing steps. In general these are detrimental to device performance.

Crystal Growth

- The raw Si used for crystal growth is purified from SiO₂ (sand) through refining, fractional distillation and CVD.
- The raw material contains < 1 ppb impurities except for O ($\approx 10^{18}$ cm⁻³) and C ($\approx 10^{16}$ cm⁻³)

- Essentially all Si wafers used for ICs today come from Czochralski grown crystals.
- Polysilicon material is melted, held at close to 1415 °C, and a single crystal seed is used to start the crystal growth.
- Pull rate, melt temperature and rotation rate are all important control parameters.

• An alternative growth process is the float zone process which can be used for either refining or single crystal growth.

- After crystal pulling, the boule is shaped and cut into wafers which are then polished on one side.
- The details of these processes are described in the text.

Modeling Crystal Growth

• We wish to find a relationship between pull rate and crystal diameter.

- Freezing occurs between isotherms X₁ and X₂.
- Heat balance: latent heat of crystallization + heat conducted from melt to crystal = heat conducted away.

$$\mathbf{L}\frac{\mathrm{d}\mathbf{m}}{\mathrm{d}\mathbf{t}} + \mathbf{k}_{\mathrm{L}}\frac{\mathrm{d}\mathbf{T}}{\mathrm{d}\mathbf{x}_{1}}\mathbf{A}_{1} = \mathbf{k}_{\mathrm{S}}\frac{\mathrm{d}\mathbf{T}}{\mathrm{d}\mathbf{x}_{2}}\mathbf{A}_{2} \qquad (1)$$

where:

L = latent heat of fusion $\frac{dm}{dt} = \text{ amount of freezing per unit time}$ $k_L = \text{ thermal conductivity of liquid}$ $\frac{dT}{dx_1} = \text{ thermal gradient at isotherm } x_1$ $k_S = \text{ thermal conductivity of solid}$ $\frac{dT}{dx_2} = \text{ thermal gradient at } x_2$

• The rate of growth of the crystal is

$$\frac{\mathrm{dm}}{\mathrm{dt}} = \mathbf{v}_{\mathbf{P}} \mathbf{A} \mathbf{N} \tag{2}$$

where $v_{\rm P}$ is the pull rate and N is the density.

• Neglecting the middle term in Eqn. (1) and substituting,

$$\mathbf{v}_{\mathrm{PMAX}} = \frac{\mathbf{k}_{\mathrm{S}}}{\mathrm{LN}} \frac{\mathrm{dT}}{\mathrm{dx}_{2}} \tag{3}$$

• In order to replace dT/dx₂, we need to consider the heat transfer processes.

• Heat radiation from the crystal (C) is given by the Stefan-Boltzmann law

$$d\mathbf{Q} = (2\pi r d\mathbf{x}) \left(\sigma \varepsilon \mathbf{T}^4 \right) \tag{4}$$

• Heat conduction up the crystal is given by

$$\mathbf{Q} = \mathbf{k}_{\mathbf{S}} \left(\pi \mathbf{r}^2 \right) \frac{\mathbf{dT}}{\mathbf{dx}} \tag{5}$$

• Differentiating (5), we have

$$\frac{dQ}{dx} = k_{\rm S} \left(\pi r^2\right) \frac{d^2 T}{dx^2} + \left(\pi r^2\right) \frac{dT}{dx} \frac{dk_{\rm S}}{dx} \cong k_{\rm S} \left(\pi r^2\right) \frac{d^2 T}{dx^2} \quad (6)$$

EE 212 1999-00

• Substituting (6) into (4), we have

$$\frac{\mathrm{d}^2 \mathrm{T}}{\mathrm{dx}^2} - \frac{2\mathrm{\sigma}\varepsilon}{\mathrm{k}_{\mathrm{S}}\mathrm{r}} \mathrm{T}^4 = 0 \tag{7}$$

• k_s varies roughly as 1/T, so if k_M is the thermal conductivity at the melting point,

$$k_{S} = k_{M} \frac{T_{M}}{T}$$
(8)
$$\therefore \frac{d^{2}T}{dx^{2}} - \frac{2\sigma\epsilon}{k_{M}rT_{M}}T^{5} = 0$$
(9)

• Solving this differential equation, evaluating it at x = 0 and substituting the result into (3), we obtain: (see text)

$$\mathbf{v}_{\mathbf{PMAX}} = \frac{1}{\mathbf{LN}} \sqrt{\frac{2\sigma \epsilon \mathbf{k}_{\mathbf{M}} \mathbf{T}_{\mathbf{M}}^{5}}{3r}} \tag{10}$$

This gives a max pull rate of ≈ 35 cm hr⁻¹ for a 6" crystal. Actual values are ≈ 2X less than this.

Modeling Dopant Behavior During Crystal Growth

- Dopants are added to the melt to provide a controlled N or P doping level in the wafers.
- However, the dopant incorporation process is complicated by dopant segregation.

$k_0 = \frac{C}{C}$	<u>S</u> (11)
As	
Bi	7×10^{-4}
С	0.07
Li	10-2
0	0.5
Р	0.35
Sb	0.023
Al	2.8 x 10⁻³
Ga	8 x 10 ⁻³
В	0.8
Au	2.5 x 10 ⁻⁵

- Most k₀ values are <1 which means the impurity prefers to stay in the liquid.
- Thus as the crystal is pulled, N_s will increase.

• If during growth, an additional volume dV freezes, the impurities incorporated into dV are given by

$$d\mathbf{I} = -\mathbf{k}_{\mathbf{O}} \mathbf{C}_{\mathbf{L}} d\mathbf{V} = -\mathbf{k}_{\mathbf{O}} \frac{\mathbf{I}_{\mathbf{L}}}{\mathbf{V}_{\mathbf{O}} - \mathbf{V}_{\mathbf{S}}} d\mathbf{V} \qquad (12)$$

JDP, MDD, PBG

$$\int_{I_O} \frac{1}{I_L} = -k_O \int_{0} \frac{1}{V_O - V_S}$$
(13)

$$\therefore \mathbf{I_L} = \mathbf{I_O} \left(1 - \frac{\mathbf{V_S}}{\mathbf{V_O}} \right)^{\mathbf{K_O}}$$
(14)

• We are really interested in the impurity level in the crystal (C_s), so that

$$C_{S} = \frac{dI_{L}}{dV_{S}}$$
(15)

$$\therefore \mathbf{C}_{\mathbf{S}} = \mathbf{C}_{\mathbf{O}} \mathbf{k}_{\mathbf{O}} (\mathbf{1} - \mathbf{f})^{\mathbf{k}_{\mathbf{O}} - \mathbf{1}}$$
(16)

where f is the fraction of the melt frozen.

- In the float zone process, dopants and other impurities tend to stay in the liquid and therefore refining can be accomplished, especially with multiple passes.
- See the text for models of this process.

Modeling Point Defects in Silicon

- Point defects (V and I) will turn out to play fundamental roles in many process technologies.
- The total free energy of the crystal is minimized when finite concentrations of these defects exist.

$$C_{I^0}^*$$
, $C_{V^0}^* = N_S \exp\left(\frac{S^f}{k}\right) \exp\left(\frac{-H^f}{kT}\right)$ (17)

- In general $C_{I^0}^* \neq C_{V^0}^*$ and both are strong functions of temperature.
- Kinetics may determine the concentration in a wafer rather than thermodynamics.
- In equilibrium, values for these concentrations are given by:

$$C_{I^0}^* \cong 1 \times 10^{27} \exp\left(\frac{-3.8 eV}{kT}\right)$$
 (18)

$$C_{V^0}^* \cong 9x10^{23} \exp\left(\frac{-2.6eV}{kT}\right)$$
(19)

• These equations give $C_{I^0}^* \& C_{V^0}^* \approx 0$ at room T and $10^{12} - 10^{14}$ cm⁻³ at 1000 °C - too small to measure.

- V and I also exist in charged states with discrete energies in the Si bandgap.
- In N type Si, V⁼ and V⁻ will dominate; in P type, V⁺ and V⁺⁺ will dominate.
- Shockley and Last (1957) first described these charged defect concentrations (see text):

$$C_{V^{+}}^{*} = C_{V^{0}}^{*} \exp\left(\frac{E_{V^{+}} - E_{F}}{kT}\right)$$
 (20)

$$C_{V^{-}}^{*} = C_{V^{0}}^{*} \exp\left(\frac{E_{F} - E_{V^{-}}}{kT}\right)$$
 (21)

© 1999

- Note that:
 - The defect concentrations are always << n_i.
 - (:: doping $\rightarrow E_F \rightarrow$ point defect concentrations)
 - As doping changes, the neutral point defect concentrations are constant.
 - However, the charged defect concentrations change with doping. ∴ the <u>total point defect</u> <u>concentrations change with doping</u>.

Example: (See text for details)

• At 1000 °C, the P region will be intrinsic, the N region is extrinsic.

	P Region	N Region
Doping	1 x 10 ¹⁵ cm ⁻³	5 x 10 ¹⁹ cm ⁻³
n _i	7.14 x 10 ¹⁸ cm ⁻³	7.14 x 10 ¹⁸ cm ⁻³
\mathbf{V}^{0}	4.6 x 10 ¹³ cm ⁻³	4.6 x 10 ¹³ cm ⁻³
V -	2.37 x 10 ¹⁴ cm ⁻³	1.61 x 10 ¹⁵ cm ⁻³
V =	1.85 x 10 ¹³ cm ⁻³	8.50 x 10 ¹⁴ cm ⁻³
\mathbf{V}^+	$2.08 \text{ x } 10^{12} \text{ cm}^{-3}$	3.06 x 10 ¹¹ cm ⁻³
\mathbf{V}^{++}	1.94 x 10 ¹¹ cm ⁻³	4.23 x 10 ⁹ cm ⁻³
I ₀	9.13 x 10 ¹¹ cm ⁻³	9.13 x 10 ¹¹ cm ⁻³
I-	4.02 x 10 ¹¹ cm ⁻³	2.73 x 10 ¹² cm ⁻³
I ⁺	8.32 x 10 ¹⁰ cm ⁻³	$1.48 \ge 10^{11} \text{ cm}^{-3}$

13

© 1999

Note:

- n_i relative to doping in the two regions.
- \mathbf{V}^0 is the same in the two regions.
- Different charge states dominate in the different regions.
- The concentrations of these point defects will be important later in the quarter (diffusion, ion implantation, oxidation models).

Oxygen and Carbon in CZ Silicon

- The CZ growth process inherently introduces O and C.
- Typically, $C_0 \approx 10^{18} \text{ cm}^{-3}$ and $C_C \approx 10^{16} \text{ cm}^{-3}$.
- The O in CZ silicon often forms small SiO₂ precipitates in the Si crystal under normal processing conditions.

- O and these precipitates can actually be very useful.
 - Provide mechanical strength.
 - Internal gettering (Chapter 4 later).
- See the text (Chapter 3) for more detailed information.