1

EE 212 FALL 1999-00

LITHOGRAPHY- Chapter 5 in the Text

- Lithography is arguably the single most important technology in IC manufacturing.
- The SIA NTRS is driven by the desire to continue scaling device feature sizes.

Year of 1st DRAM Shipment	<u>1997</u>	1999	2003	2006	2009	2012
DRAM Bits/Chip	256M	1G	4 G	16G	64G	256G
Minimum Feature Size nm						
Isolated Lines (MPU)	200	140	100	70	50	35
Dense Lines (DRAM)	250	180	130	100	70	50
Contacts	280	200	140	110	80	60
Gate CD Control 30 (nm)	20	14	10	7	5	4
Alignment (mean + 3σ) (nm)	85	65	45	35	25	20
Depth of Focus (µm)	0.8	0.7	0.6	0.5	0.5	0.5
Defect Density (per layer/m²)	100	80	60	50	40	30
@ Defect Size (nm)	@ 80	@ 60	@ 40	@ 30	@ 20	@ 15
DRAM Chip Size (mm ²)	280	400	560	790	1120	1580
MPU Chip Size (mm ²)	300	360	430	520	620	750
Field Size (mm)	22x22	25x32	25x36	25x40	25x44	25x52
Exposure Technology	248n	248n	248n	193n	193n	???
	m	m	m	m	m	
	DUV	DUV	or	DUV	DUV	
			193n	or	or	
			m	???	???	
			DUV			
Minimum Mask Count	22	22/24	24	24/26	26/28	28

- 0.7X in linear dimension every 3 years.
- Placement accuracy $\approx 1/3$ of feature size.
- ≈ 35% of total wafer manufacturing costs for lithography.
- Note the ???. This represents the single biggest uncertainty about the future of the roadmap.

Historical Development and Basic Concepts

• Patterning process consists of mask design, mask fabrication and wafer printing.

- Aerial image is the pattern of optical radiation striking the top of the resist.
- Latent image is the 3D replica produced by chemical processes in the resist.

A. Light Sources

- Decreasing feature sizes require the use of shorter λ .
- Traditionally Hg vapor lamps have been used which generate many spectral lines from a high intensity plasma inside a glass lamp.
- (Electrons are excited to higher energy levels by collisions in the plasma. Photons are emitted when the energy is released.)
 - g line $\lambda = 436$ nm
- i line $\lambda = 365$ nm (used for 0.5 μ m, 0.35 μ m) • Brightest sources in deep UV are excimer lasers

$$Kr + NF_3 \xrightarrow{\text{energy}} KrF \rightarrow \text{photon emission}$$
 (1)

- KrF $\lambda = 248$ nm (used for 0.25 μ m)
- ArF $\lambda = 193$ nm
- Issues include finding suitable resists and transparent optical components at these wavelengths.

B. Wafer Exposure Systems

• Three types of exposure systems have been used. 1:1 Exposure Systems Usually 4X or 5X Reduction

- Proximity printing cannot easily print features below a few μm (except for x-ray systems).
- Projection printing provides high resolution and low defect densities and ∴ dominates today.
- Typical projection systems use reduction optics (2X 5X), step and repeat or step and scan mechanical systems, print ≈ 50 wafers/hour and cost \$5 10M.

B1. Optics - Basics and Diffraction

- Ray tracing (assuming light travels in straight lines) works well as long as the dimensions are large compared to λ .
- At smaller dimensions, diffraction effects dominate.

• If the aperture is on the order of λ , the light spreads out after passing through the aperture. (The smaller the aperture, the more it spreads out.) 4

- If we want to image the aperture on an image plane (resist), we can collect the light using a lens and focus it on the image plane.
- But the finite diameter of the lens means some information is lost (higher frequency components).

• A simple example is the image formed by a small circular aperture (Airy disk).

- Note that a point image is formed only if $\lambda \to 0$, $f \to 0$ or $d \to \infty$.
- Diffraction is usually described in terms of two limiting cases Fresnel diffraction - near field. Fraunhofer diffraction - far field.

© 1999

B2. Projection Systems (Fraunhofer Diffraction)

- These are the dominant systems in use today.
- Performance is usually described in terms of
 - resolution
 - depth of focus
 - field of view
 - modulation transfer function
 - alignment accuracy
 - throughput

• Consider the basic optical projection system below.

- Rayleigh suggested that a reasonable criterion for resolution was that the central maximum of each point source lie at the first minimum of the Airy pattern.
- With this definition,

$$\mathbf{R} = \frac{\mathbf{0.61} \ \lambda}{\mathbf{n} \ \sin \alpha} \tag{2}$$

© 1999

Class Handout #9

• The numerical aperture of the lens is by definition,

$$\mathbf{N}\mathbf{A} \equiv \mathbf{n} \, \sin \alpha \tag{3}$$

• NA represents the ability of the lens to collect diffracted light.

$$\therefore \mathbf{R} = \frac{\mathbf{0.61} \ \lambda}{\mathbf{NA}} = \mathbf{k_1} \frac{\lambda}{\mathbf{NA}} \tag{4}$$

- k₁ is an experimental parameter which depends on the lithography system and resist properties and is ≈ 0.6 0.8.
- Obviously resolution can be increased by

• decreasing
$$\lambda$$

- increasing NA (bigger lenses)
- However, higher NA lenses also decrease the depth of focus. (See text for derivation.)

$$\mathbf{DOF} = \pm \frac{\lambda}{2(\mathbf{NA})^2} = \pm \mathbf{k}_2 \frac{\lambda}{(\mathbf{NA})^2}$$
(5)

- k₂ is usually experimentally determined.
- Thus a 248nm (KrF) exposure system with a NA = 0.6 would have a resolution of $\approx 0.3 \ \mu m \ (k_1 = 0.75)$ and a DOF of $\approx \pm 0.35 \ \mu m \ (k_2 = 0.5)$.
- Another useful concept is the modulation transfer function or MTF, defined as shown below.

7

$$\mathbf{MTF} = \frac{\mathbf{I}_{\mathbf{MAX}} - \mathbf{I}_{\mathbf{MIN}}}{\mathbf{I}_{\mathbf{MAX}} + \mathbf{I}_{\mathbf{MIN}}} \tag{6}$$

- Note that MTF will be a function of feature size (see text).
- Finally, another basic concept is the spatial coherence of the light source.

9

- Practical light sources are not point sources.
- \therefore the light striking the mask will not be plane waves.
- The spatial coherence of the system is defined as

$$S = \frac{\text{light source diameter}}{\text{condenser lens diameter}} = \frac{s}{d} \qquad (7)$$

or often as

$$\mathbf{S} = \frac{\mathbf{NA}_{\text{condenser}}}{\mathbf{NA}_{\text{projection optics}}}$$
(8)

• Typically, $S \approx 0.5$ to 0.7 in modern systems.

B3. Contact and Proximity Systems (Fresnel Diffraction)

- Contact printing systems operate in the near field or Fresnel diffraction regime.
- There is always some gap g between the mask and resist.

- The aerial image can be constructed by imagining point sources within the aperture, each radiating spherical waves (Huygens wavelets).
- Interference effects and diffraction result in "ringing" and spreading outside the aperture.
- Fresnel diffraction applies when

$$\lambda < \mathbf{g} < \frac{\mathbf{W}^2}{\lambda} \tag{9}$$

• Within this range, the minimum resolvable feature size is

$$\mathbf{W}_{\min} \approx \sqrt{\lambda \mathbf{g}} \tag{10}$$

- Thus if g = 10 μm and an i-line light source is used, $W_{min}\approx 2~\mu m.$
- Summary of wafer printing systems:

<u>C. Photoresists</u>

• Resists are organic polymers that are spun onto wafers and prebaked to produce a film ≈ 0.5 - 1 μm thick.

g-Line and i-Line Resists

- Generally consist of 3 components:
 - Inactive resin
 - Photoactive compound (PAC)
 - Solvent used to adjust viscosity
- After spinning and baking resists are ≈ 1:1 PAC and resin.
- Diazonaphthoquinone or DNQ resists are commonly used today for g-line and i-line resists.

- The base resin is novolac a long chain polymer consisting of hydrocarbon rings with 2 methyl groups and 1 OH group attached.
- The PACs in DNQ resists are often diazoquinones. The photoactive portion is above the SO₂.
- Diazoquinones are insoluble in typical developers and reduce the dissolution rate of unexposed resists to ≈ 10 - 20 Å sec⁻¹.

• After exposure to light, the PAC component in DNQ resists undergoes a transformation into carboxylic acid which is soluble in the developer (basic solution).

- g-line and i-line resists have maximum quantum efficiencies < 1 and are typically ≈ 0.3.
- Chemical amplification can improve this substantially.
- DUV resists all use this principle. A catalyst is used.
- Photo-acid generator (PAG) is converted to an acid by photon exposure. Later, in a post exposure bake, the acid molecule reacts with a "blocking" molecule on a polymer chain, making it soluble in developer AND REGENERATING THE ACID MOLECULE.
- .:. catalytic action and sensitivity is enhanced.

14

Basic Properties of Resists

• Two basic parameters are used to describe resist properties, contrast and the critical modulation transfer function or CMTF.

• Contrast is defined as

$$\gamma = \frac{1}{\log_{10} \frac{D_f}{D_0}}$$
(11)

• Typical g-line and i-line resists achieve γ values of 2 - 3 and D_f values of about 100 mJ cm⁻². DUV resists have much higher γ values (5 - 10) and D_f values of about 20 - 40 mJ cm⁻².

- The aerial image and the resist contrast in combination, result in the quality of the latent image produced. (Gray area is "partially exposed" area which determines the resist edge sharpness.)
- By analogy to the MTF defined earlier for optical systems, the CMTF for resists is defined as

CMTF_{resist} =
$$\frac{D_f - D_0}{D_f + D_0} = \frac{10^{1/\gamma} - 1}{10^{1/\gamma} + 1}$$
 (12)

- In general CMTF < MTF is required for the resist to resolve the aerial image.
- There are often a number of additional issues that arise in exposing resist.

• Resist thickness may vary across the wafer. This can lead to under or over exposure in some regions and hence linewidth variations.

© 1999

• Reflective surfaces below the resist can set up reflections and standing waves and degrade resolution.

• In some cases an antireflective coating (ARC) can help to minimize these effects. Baking the resist after exposure, but before development can also help.

D. Mask Engineering - OPC and Phase Shifting

- Optical Proximity Correction (OPC) can be used to compensate somewhat for diffraction effects.
- Sharp features are lost because higher frequencies are lost due to diffraction. These effects are calculable and can be compensated for.

- Top mask with and without OPC. Bottom, calculated printed images.
- Another approach uses phase shifting to "sharpen" printed images.

• These techniques can allow existing exposure tools to be used in manufacturing at least one more technology generation.

Manufacturing Methods and Equipment

- The first projection printing systems were 1:1 systems introduced by Perkin-Elmer ≈ 20 years ago.
- These systems require full wafer 1X masks which become more difficult to manufacture as wafers get larger and device dimensions smaller.
- Today's steppers are almost all reducing machines 2X to 5X.
- This makes the masks a lot easier to make and the optics are required to be "perfect" over a smaller area.

• The most recent "steppers" are step and scan systems.

- This further decreases the optical "window" and therefore makes it possible to build higher performance optical systems over a smaller area.
- In addition, advanced optical systems are employed using Kohler illumination and/or off axis illumination.

- Kohler illumination systems focus the light at the entrance pupil of the objective lens. This "captures" diffracted light equally well from all positions on the mask.
- "Off-axis illumination" also allows some of the higher order diffracted light to be captured and hence can improve resolution.

• Typical resist process:

Adhesion promoter typically spun on the wafer Resist spun on wafer, typically 3000-6000 rpm, forming an ≈ 0.5 μm resist layer

Prepares surface for

photoresist application

Typically 10 - 30 min @ 90 - 100 °C

Typically aligned at each exposure site, exposed at 150 mJ cm⁻²

Sometimes used to minimize standing waves in resist Typically 10 min @ 100°C

Typically 30 - 60 sec @ room T using spray or immersion

Typically 10 - 30 min @ 100 - 140 °C • Practical resist processes are also much more complicated than the "simple" chemistry described earlier.

- Multi-layer resists are used to produce a thin, uniform imaging layer in which the aerial image is transformed into a latent image.
- Etching is then used to transfer the latent image down through the planarization layer.

Models and Simulation

- Lithography simulation relies on models from two fields of science:
 - Optics to model the formation of the aerial image.
 - Chemistry to model the formation of the latent image in the resist.

A. Wafer Exposure System Models

- There are several commercially available simulation tools that calculate the aerial image PROLITH, DEPICT, ATHENA.
- All use similar physical models.
- We will consider only projection systems.
- Light travels as an electromagnetic wave.

$$\mathcal{E}(\mathbf{P}, \mathbf{t}) = \mathbf{C}(\mathbf{P})\cos(\omega \mathbf{t} + \phi(\mathbf{t}))$$
(13)

or, in complex exponential notation,

$$\mathcal{E}(\mathbf{P},\mathbf{t}) = \mathbf{Re}\left\{\mathbf{U}(\mathbf{P})\mathbf{e}^{-\mathbf{j}\omega\mathbf{t}}\right\}$$
 where $\mathbf{U}(\mathbf{P}) = \mathbf{C}(\mathbf{P})\mathbf{e}^{-\mathbf{j}\phi(\mathbf{P})}$ (14)

• Consider a generic projection system:

• The mask is considered to have a digital transmission function

$$t(x_1, y_1) = \begin{cases} 1 \text{ in clear areas} \\ 0 \text{ in opaque areas} \end{cases}$$
(15)

• After the light is diffracted, it is described by the Fraunhofer diffraction integral

$$\mathcal{E}(\mathbf{x',y'}) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} t(\mathbf{x_1,y_1}) e^{-2\pi j (\mathbf{f_x x + f_y y})} d\mathbf{x} d\mathbf{y} \qquad (16)$$

where f_x and f_y are the spatial frequencies of the diffraction pattern, defined as

$$\mathbf{f}_{\mathbf{x}} = \frac{\mathbf{x}'}{\mathbf{z}\lambda}$$
 and $\mathbf{f}_{\mathbf{y}} = \frac{\mathbf{y}'}{\mathbf{z}\lambda}$

• E(x',y') is the Fourier transform of the mask pattern.

$$\mathcal{E}(\mathbf{f}_{\mathbf{x}},\mathbf{f}_{\mathbf{y}}) = \mathbf{F}\{\mathbf{t}(\mathbf{x}_{1},\mathbf{y}_{1})\}$$
(17)

• The light intensity is simply the square of the magnitude of the E field, so that

$$\mathbf{I}(\mathbf{f}_{\mathbf{x}},\mathbf{f}_{\mathbf{y}}) = \left| \mathcal{E}(\mathbf{f}_{\mathbf{x}},\mathbf{f}_{\mathbf{y}}) \right|^{2} = \left| \mathbf{F} \{ \mathbf{t}(\mathbf{x}_{1},\mathbf{y}_{1}) \} \right|^{2}$$
(18)

• Example - consider a long rectangular slit:

- The Fourier transform of t(x) is in standard texts and is the sin(x)/x function.
- After passing through the mask, the light is collected by the objective lens (x', y' plane).

- But only a portion of the light is collected.
- This is characterized by a pupil function:

$$\mathbf{P}(\mathbf{f}_{\mathbf{x}},\mathbf{f}_{\mathbf{y}}) = \begin{cases} 1 \text{ if } \sqrt{\mathbf{f}_{\mathbf{x}}^{2} + \mathbf{f}_{\mathbf{y}}^{2}} < \frac{\mathbf{NA}}{\lambda} \\ 0 \text{ if } \sqrt{\mathbf{f}_{\mathbf{x}}^{2} + \mathbf{f}_{\mathbf{y}}^{2}} > \frac{\mathbf{NA}}{\lambda} \end{cases}$$
(19)

• The objective lens now performs the inverse Fourier transform.

EE 212 1999-00

$$\mathcal{E}(\mathbf{x},\mathbf{y}) = \mathbf{F}^{-1} \Big\{ \mathcal{E}(\mathbf{f}_{\mathbf{x}},\mathbf{f}_{\mathbf{y}}) \mathbf{P}(\mathbf{f}_{\mathbf{x}},\mathbf{f}_{\mathbf{y}}) \Big\} = \mathbf{F}^{-1} \Big\{ \mathbf{F} \Big\{ \mathbf{t}(\mathbf{x}_{1},\mathbf{y}_{1}) \big\} \mathbf{P}(\mathbf{f}_{\mathbf{x}},\mathbf{f}_{\mathbf{y}}) \Big\}$$
(20)

resulting in a light intensity at the resist surface (aerial image) given by

$$\mathbf{I}_{\mathbf{i}}(\mathbf{x},\mathbf{y}) = \left| \mathcal{E}(\mathbf{x},\mathbf{y}) \right|^2 \tag{21}$$

Summary: Lithography simulators basically perform these calculations, given a mask design and the characteristics of an optical system.

• Simulation using the ATHENA simulator by Silvaco. The colors correspond to optical intensity in the aerial image. The exposure system simulated had a NA = 0.43, partially coherent g-line illumination (λ = 436 nm) and no other aberrations or defocusing. The minimum feature size is 1 μ m.

• Same example as above except that the feature size has been reduced to 0.5 μ m. Note the poorer image.

- Same example as above except that the illumination wavelength has now been changed to i-line illumination ($\lambda = 365$ nm) and the NA has been increased to 0.5. Note the improved in image.
- In practice, additional effects such as spatial coherence, aberrations, depth of focus etc., are also modeled (see text).

B. Optical Intensity Pattern in the Resist (Latent Image)

• The second step in lithography simulation is the calculation of the latent image in the resist.

- The light intensity during exposure in the resist is a function of time and position because of
 - Light absorption and bleaching.
 - Defocusing.
 - Standing waves.
- These are generally accounted for by modifying Eqn. (21) as follows:

$$\mathbf{I}(\mathbf{x},\mathbf{y},\mathbf{z}) = \mathbf{I}_{\mathbf{i}}(\mathbf{x},\mathbf{y})\mathbf{I}_{\mathbf{r}}(\mathbf{x},\mathbf{y},\mathbf{z})$$
(22)

where $I_r(x,y,z)$ is a correction factor which models these effects (see text).

 Example of calculation of light intensity distribution in a photoresist layer during exposure using the ATHENA simulator. A simple structure is defined with a photoresist layer covering a silicon substrate which has two flat regions and a sloped sidewall. The simulation shows the [PAC] calculated concentration after an exposure of 200 mJ cm⁻². Lower [PAC] values correspond to more exposure. The color contours thus correspond to the integrated light intensity from the exposure.

<u>C. Photoresist Exposure</u>

• Neglecting standing wave effects (for the moment), the light intensity in the resist falls off as

$$\frac{\mathrm{d}\mathbf{I}}{\mathrm{d}\mathbf{z}} = -\alpha\mathbf{I} \tag{23}$$

(The probability of absorption is proportional to the light intensity and the absorption coefficient.)

• The absorption coefficient α depends on the resist properties and on the [PAC] (see text).

$$\alpha_{\text{resist}} = \mathbf{A}\mathbf{m} + \mathbf{B} \tag{24}$$

where A and B are resist parameters (first two Dill parameters) and

$$\mathbf{m} = \frac{[PAC]}{[PAC]_0} \tag{25}$$

• m is a function of time and is given by

$$\frac{\mathrm{dm}}{\mathrm{dt}} = -\mathrm{C}\,\mathrm{Im} \tag{26}$$

• Substituting (24) into (23), we have:

$$\frac{d\mathbf{I}}{dt} = -(\mathbf{Am} + \mathbf{B})\mathbf{I}$$
(27)

- Eqns. (26) and (27) are coupled equations which are solved simultaneously by resist simulators.
- The Dill resist parameters (A, B and C) can be experimentally measured for a resist (see text).

D. Photoresist Baking

- A post exposure bake is sometimes used prior to developing the resist pattern.
- This allows limited diffusion of the exposed PAC and smoothes out standing wave patterns.
- Generally this is modeled as a simple diffusion process (see text).

• Same simulation example as above except that a post exposure bake of 45 minutes at 115 °C has now been included. The color contours again correspond to the [PAC] after exposure. Note that the standing wave effects apparent earlier have been "smeared out" by this bake, producing a more uniform [PAC] distribution.

E. Photoresist Developing

- A number of models for resist developing have been proposed and implemented in lithography simulators.
- The simplest of these is purely empirical and is due to Dill and coworkers.

$$\mathbf{R}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \begin{cases} 0.006 \exp(\mathbf{E}_{1} + \mathbf{E}_{2}\mathbf{m} + \mathbf{E}_{3}\mathbf{m}^{2}) & \text{if } \mathbf{m} > - 0.5 \frac{\mathbf{E}_{2}}{\mathbf{E}_{3}} \\ 0.006 \exp\left(\mathbf{E}_{1} + \frac{\mathbf{E}_{2}}{\mathbf{E}_{3}}(\mathbf{E}_{2} - 1)\right) & \text{otherwise} \end{cases} \end{cases}$$
(28)

where R is the local developing rate and m is the local [PAC] after exposure. E_1 , E_2 and E_3 are empirical constants.

• A more physically based model has been developed by Mack which models developer diffusion and reaction (much like the deposition models discussed in Chpt. 8.)

• See the text for details on this development model.

• Example of the calculation of a developed photoresist layer using the ATHENA simulator. The resist was exposed with a dose of 200 mJ cm⁻², a post exposure bake of 45 min at 115 °C was used and the pattern was developed for a time of 60 seconds, all normal parameters. The Dill development model was used.

Future Trends (See Text)

- Optical lithography will likely be extendible to the 0.10 μ m generation (maybe further).
- Beyond that, there is no general agreement on which approach will work in manufacturing.
- Possibilities include e-beam, e-beam projection (SCALPEL), x-ray and EUV.
- New resists will also likely be required for these systems.