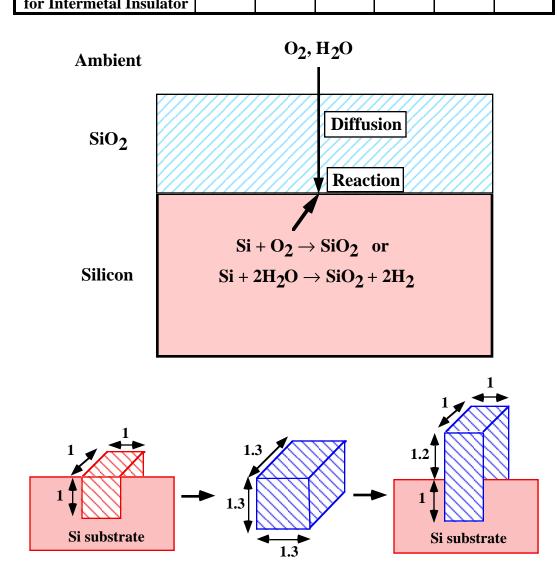
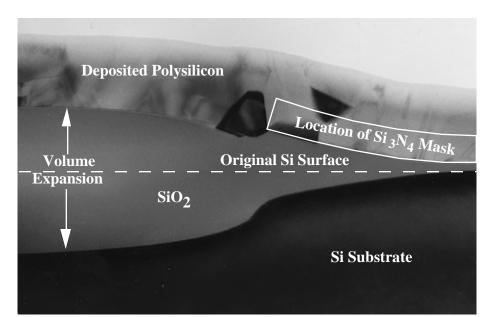
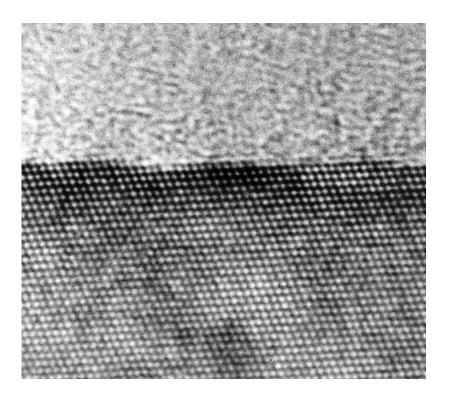

1

EE 212 FALL 1999-00

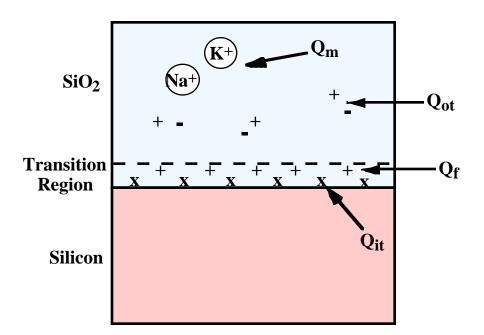

THERMAL OXIDATION - Chapter 6


Basic Concepts

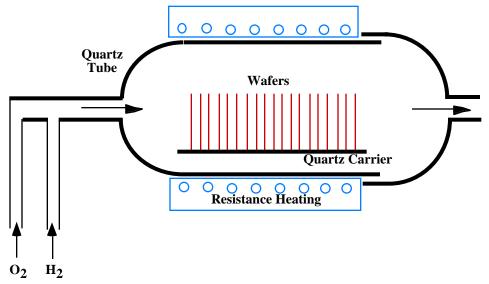
- SiO₂ and the Si/SiO₂ interface are the principal reasons for silicon's dominance in the IC industry.
- SiO₂:
 - Easily selectively etched using lithography.
 - Masks most common impurities (B, P, As, Sb).
 - Excellent insulator ($\rho > 10^{16} \Omega cm$, $E_g > 9 eV$).
 - High breakdown field (10⁷ Vcm⁻¹)
 - Excellent junction passivation.
 - Stable bulk electrical properties.
 - Stable and reproducible interface with Si.



Year of 1st DRAM Shipment	1997	1999	2003	2006	2009	2012
Minimum Feature Size	0.25µ	0.18µ	0.13µ	0.10µ	0.07µ	0.05µ
DRAM Bits/Chip	256M	1 G	4G	16G	64G	256G
Minimum Supply Voltage (volts)	1.8-2.5	1.5-1.8	1.2-1.5	0.9-1.2	0.6-0.9	0.5-0.6
Gate Oxide T _{ox} Equivalent (nm)	4-5	3-4	2-3	1.5-2	<1.5	<1.0
Thickness Control (% 3σ)	± 4	± 4	± 4-6	± 4-8	± 4-8	± 4-8
Equivalent Maximum E- field (MV cm ⁻¹)	4-5	5	5	>5	>5	>5
Gate Oxide Leakage (DRAM) (pA µm ⁻²)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Tunnel Oxide (nm)	8.5	8	7.5	7	6.5	6
Maximum Wiring Levels	6	6-7	7	7-8	8-9	9
Dielectric Constant, K	3.0-4.1	2.5-3.0	1.5-2.0	1.5-2.0	<1.5	<1.5

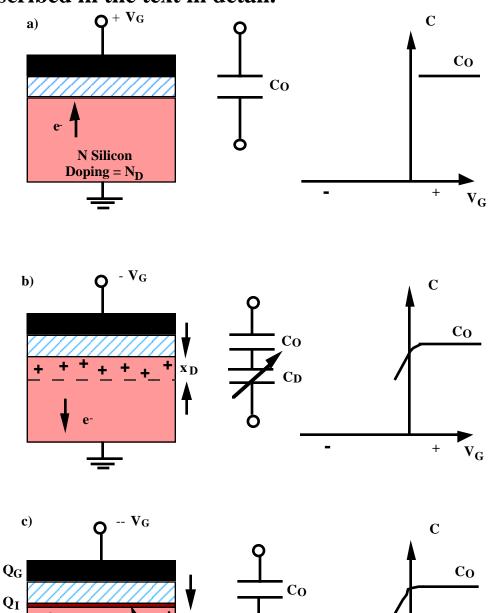


- Oxidation involves a volume expansion ($\approx 2.2X$).
- Especially in 2D and 3D structures, stress effects play a dominant role.



• SiO₂ is amorphous even though it grows on a crystalline substrate.

3


- Four charges are associated with insulators and insulator/semiconductor interfaces.
 - **Q**_f fixed oxide charge
 - **Q**_{it} interface trapped charge
 - $\tilde{Q_m}$ mobile oxide charge
 - $\tilde{\mathbf{Q}}_{ot}^{m}$ oxide trapped charge

- Oxidation systems are conceptually very simple.
- In practice today, vertical furnaces, RTO systems and fast ramp furnaces all find use.

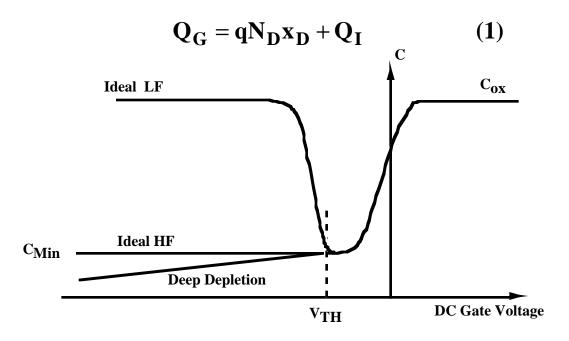
<u>C-V Measurements</u>

- There are a number of measurement techniques used to characterize SiO₂ and the Si/SiO₂ interface. • The most powerful of these is the C-V method which is
- described in the text in detail.

C_{DMin}

x_{DMax}

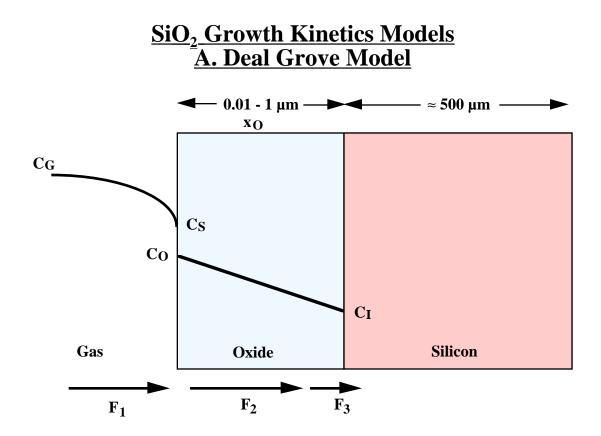
Holes


QD

V_G

+

V_{TH}


- Electric field lines pass through the "perfect" insulator and Si/SiO₂ interface, into the substrate where they control charge carriers.
- Accumulation, depletion and inversion result.

- HF curve inversion layer carriers cannot be generated fast enough to follow the AC signal so C_{inv} is $C_{ox} + C_{D}$.
- LF curve inversion layer carriers follow the AC signal so C_{inv} is just C_{ox}.
- Deep depletion "DC" voltage is applied fast enough that inversion layer carriers cannot follow it, so C_D must expand to balance the charge on the gate.
- C-V measurements can be used to extract quantitative values for:
 - t_{ox} oxide thickness
 - \tilde{N}_A the substrate doping profile
 - Q_{f} , Q_{it} , Q_{m} , and Q_{ot} oxide & interface charges.
- See text for more details on these measurements.

6

• The basic model for oxidation was developed in 1965 by Deal and Grove.

$$Si + O_2 \rightarrow SiO_2$$
 (2)

$$Si + 2H_2O \rightarrow SiO_2 + 2H_2$$
 (3)

• Three first order flux equations describe the three series parts of the process.

$$\mathbf{F}_1 = \mathbf{h}_G \left(\mathbf{C}_G - \mathbf{C}_S \right) \tag{4}$$

$$\mathbf{F}_2 = \mathbf{D} \frac{\partial \mathbf{N}}{\partial \mathbf{x}} = \mathbf{D} \left(\frac{\mathbf{C}_{\mathbf{O}} - \mathbf{C}_{\mathbf{I}}}{\mathbf{x}_{\mathbf{O}}} \right)$$
(5)

$$\mathbf{F_3} = \mathbf{k_S} \mathbf{C_I} \tag{6}$$

• Under steady state conditions, $F_1 = F_2 = F_3$, so

$$C_{I} = \frac{C^{*}}{1 + \frac{k_{S}}{h} + \frac{k_{S}x_{O}}{D}} \cong \frac{C^{*}}{1 + \frac{k_{S}x_{O}}{D}}$$
(7)
$$C_{O} = \frac{C^{*}\left(1 + \frac{k_{S}x_{O}}{D}\right)}{1 + \frac{k_{S}}{h} + \frac{k_{S}x_{O}}{D}} \cong C^{*}$$
(8)

- Note that the simplifications are made by neglecting F₁ which is a very good approximation.
- Combining (6) and (7), we have

$$\frac{\mathrm{dx}}{\mathrm{dt}} = \frac{\mathrm{F}}{\mathrm{N}_{1}} = \frac{\mathrm{k}_{\mathrm{S}}\mathrm{C}^{*}}{1 + \frac{\mathrm{k}_{\mathrm{S}}}{\mathrm{h}} + \frac{\mathrm{k}_{\mathrm{S}}\mathrm{x}_{\mathrm{O}}}{\mathrm{D}}} \tag{9}$$

• Integrating this equation (see text), results in the linear parabolic model.

$$\frac{x_0^2 - x_i^2}{B} + \frac{x_0 - x_i}{B/A} = t$$
(10)

where $B = \frac{2DC^*}{N_1}$ (parabolic rate constant) (11)

$$\frac{B}{A} = \frac{C^*}{N_1 \left(\frac{1}{k_S} + \frac{1}{h}\right)} \cong \frac{C^* k_S}{N_1} \quad \text{(linear rate constant) (12)}$$

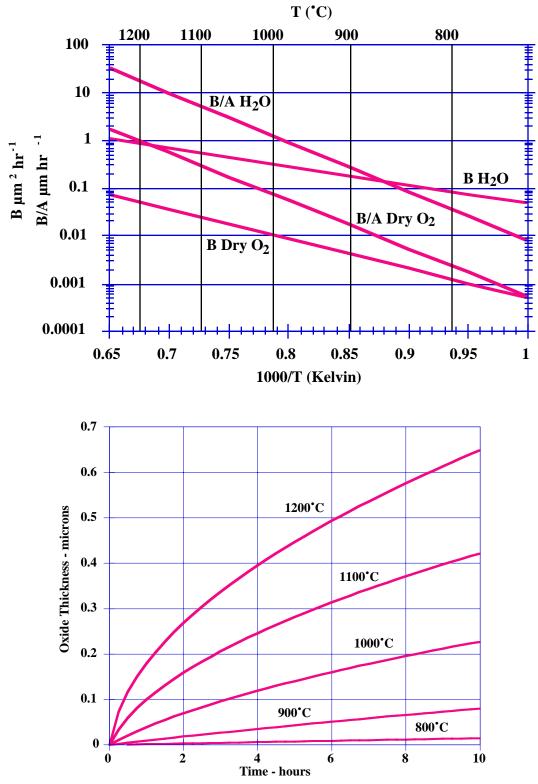
• (10) can also be written with oxide thickness as a function of time.

 $\tau = \frac{x_i^2 + Ax_i}{B}$

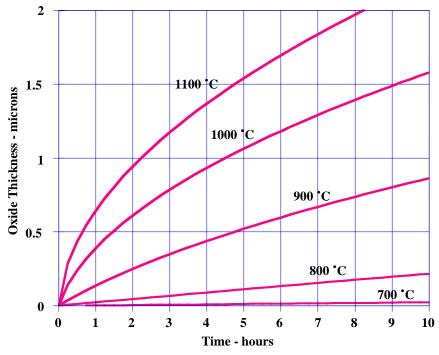
$$x_{O} = \frac{A}{2} \left\{ \sqrt{1 + \frac{t + \tau}{A^{2}/4B}} - 1 \right\}$$
 (13)

where

• The rate constants B and B/A have physical meaning (oxidant diffusion and interface reaction rate respectively).


$$\mathbf{B} = \mathbf{C}_1 \exp(-\mathbf{E}_1 / \mathbf{k}\mathbf{T}) \tag{15}$$

$$\frac{\mathbf{B}}{\mathbf{A}} = \mathbf{C}_2 \exp(-\mathbf{E}_2 / \mathbf{kT}) \tag{16}$$


Ambient	В	B/A
Dry O ₂	$C_1 = 7.72 \times 10^2 \mu^2 hr^{-1}$ $E_1 = 1.23 eV$	$C_2 = 6.23 \text{ x } 10^6 \text{hr}^{-1}$ $E_1 = 2.0 \text{eV}$
Wet O ₂	$C_1 = 2.14 \times 10^2 \mu^2 hr^{-1}$ $E_1 = 0.71 eV$	$C_2 = 8.95 \times 10^7 \mu hr^{-1}$ $E_1 = 2.05 eV$
H ₂ O	$C_1 = 3.86 \text{ x } 10^2 \mu^2 \text{hr}^{-1}$ E_1 = 0.78 eV	$C_2 = 1.63 \times 10^8 \mu hr^{-1} \\ E_1 = 2.05 eV$

(14)

9

• Calculated dry O₂ oxidation rates using Deal Grove.

• Calculated H₂O oxidation rates using Deal Grove.

B. Thin Oxide Growth Kinetics

- A major problem with the Deal Grove model was recognized when it was first proposed - it does not correctly model thin O₂ growth kinetics.
- Experimentally O_2 oxides grow much faster for ≈ 200 Å than Deal Grove predicts.
- MANY suggestions have been made in the literature about why. None have been widely accepted.

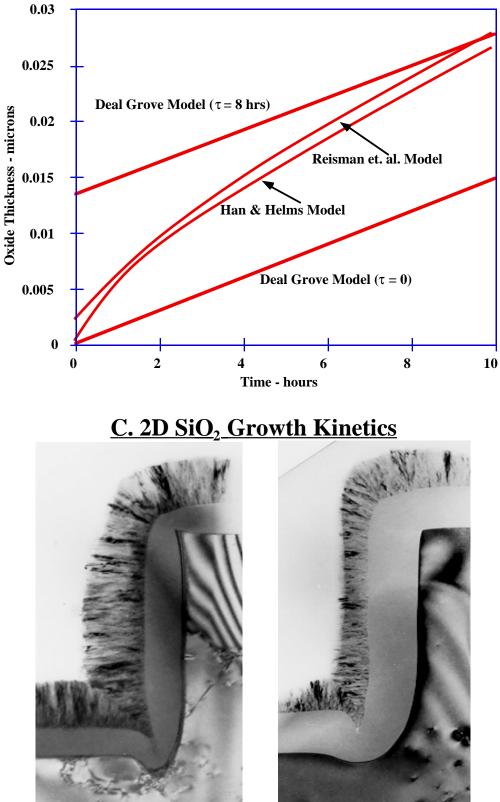
1. Reisman et. al. Model

$$\mathbf{x}_{\mathbf{O}} = \mathbf{a}(\mathbf{t} + \mathbf{t}_{\mathbf{i}})^{\mathbf{b}}$$
 or $\mathbf{x}_{\mathbf{O}} = \mathbf{a}\left(\mathbf{t} + \left(\frac{\mathbf{x}_{\mathbf{i}}}{\mathbf{a}}\right)^{\frac{1}{\mathbf{b}}}\right)^{\mathbf{b}}$ (17)

- a and b are experimentally extracted parameters.
- Physically interface reaction controlled, volume expansion and viscous flow of SiO₂ control growth.

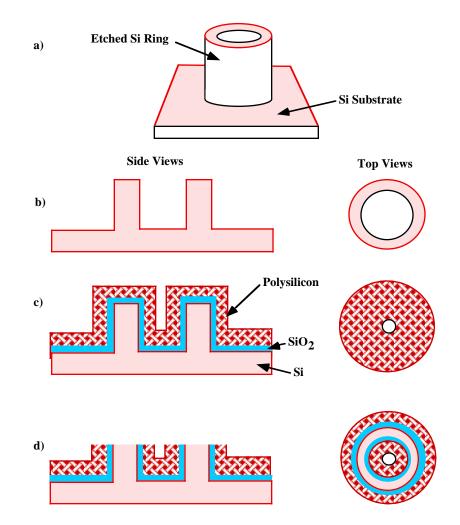
2. Han and Helms Model

$$\frac{dx_{O}}{dt} = \frac{B_{1}}{2x_{O} + A_{1}} + \frac{B_{2}}{2x_{O} + A_{2}}$$
(18)

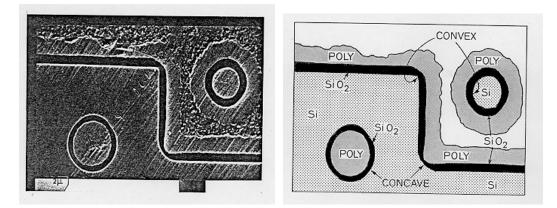

- Second parallel reaction added "fits the data" " over the whole range of oxide thicknesses.
- Three parameters (one of the A values is 0).
- Physically second process may be outdiffusion of O_V and reaction at the gas/SiO₂ interface.
- 3. Massoud et. al. Model

$$\frac{\mathrm{dx}_{\mathrm{O}}}{\mathrm{dt}} = \frac{\mathrm{B}}{2\mathrm{x}_{\mathrm{O}} + \mathrm{A}} + \mathrm{C}\exp\left(-\frac{\mathrm{x}_{\mathrm{O}}}{\mathrm{L}}\right) \tag{19}$$

- Second term added to Deal Grove model which gives a higher dx/dt during initial growth.
- L \approx 70 Å so the second term disappears for thicker oxides.
- Because it is simply implemented along with the Deal Grove model, this model has been used in process simulators.
- Experimental data agrees with the Reisman, Han and Massoud models. (800°C dry O₂ model comparison below.)

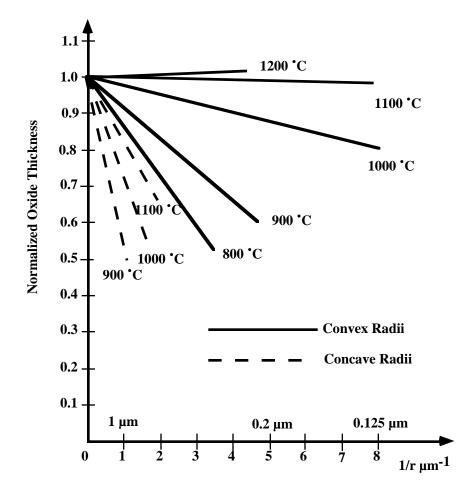

© 1999

13



• 950 °C oxidation (left), 1100 °C oxidation right (Marcus and Sheng).

• These effects were investigated in detail experimentally by Kao et. al. about 10 years ago.

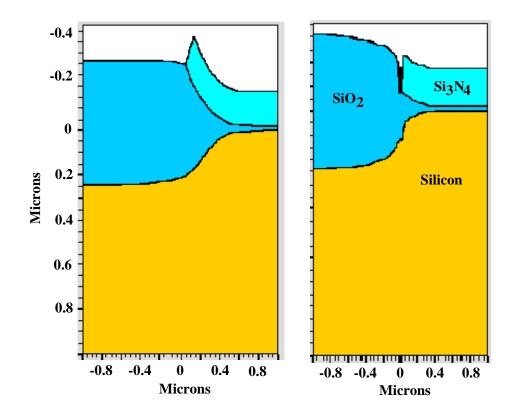


• Typical experimental results (from Kao et.al.)

© 1999

15

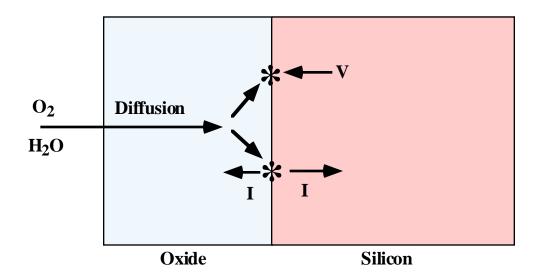
- Several physical mechanisms are important in explaining these results:
 - Crystal orientation
 - 2D oxidant diffusion simple to implement in a 2D numerical simulator
 - Stress due to volume expansion
- To model the stress effects, Kao et. al. suggested modifying the Deal Grove parameters.


$$k_{S}(stress) = k_{S} \exp\left(-\frac{\sigma_{n} V R}{kT}\right) \exp\left(-\frac{\sigma_{t} V T}{kT}\right)$$
 (20)

$$\mathbf{C}^{*}(\mathbf{stress}) = \mathbf{C}^{*} \exp\left(-\frac{(\mathbf{P})(\mathbf{VS})}{\mathbf{kT}}\right)$$
(22)

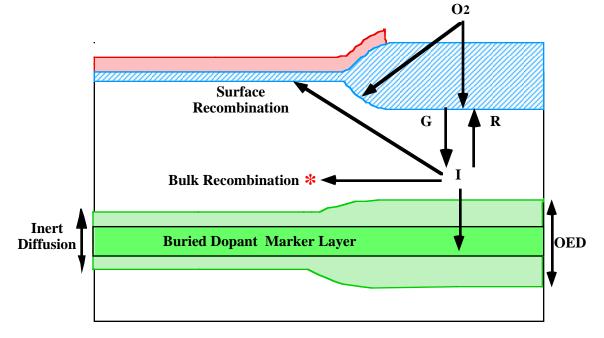
- where σ_n and σ_t are the normal and tangential stresses at the interface. VR, VT and VS are reaction volumes and are fitting parameters.
- Finally, the flow properties of the SiO₂ are described by a stress dependent viscosity

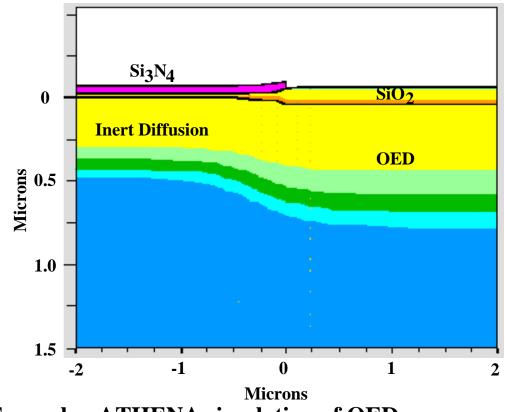
$$\eta(\text{stress}) = \eta(T) \frac{\sigma_{\text{S}} VC/2kT}{\sinh(\sigma_{\text{S}} VC/2kT)}$$
(23)


- where σ_{S} is the shear stress in the oxide and VC is again a fitting parameter.
- These models have been implemented in modern process simulators and allow them to predict shapes and stress levels for VLSI structures.

• Left - no stress dependent parameters. Right - including stress dependence. (ATHENA.)

D. Point Defect Based Models

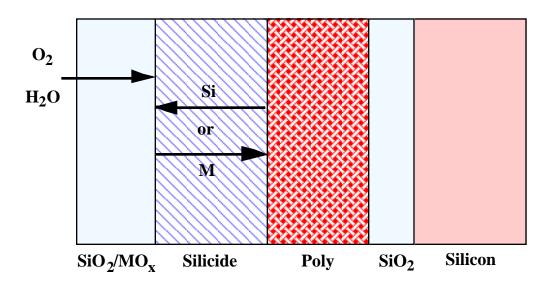

- The oxidation models we have considered to this point are macroscopic models (diffusion coefficients, chemical reactions etc.).
- There is also an atomistic picture of oxidation that has emerged in recent years.
- Most of these ideas are driven by the volume expansion occurring during oxidation and the need for "free volume".



• In Chapter 3 we described internal oxidation in the following way:

$$(1+2\gamma)$$
Si_{Si} + 2O_I + 2 β V \leftrightarrow SiO₂ + 2 γ I + stress (24)

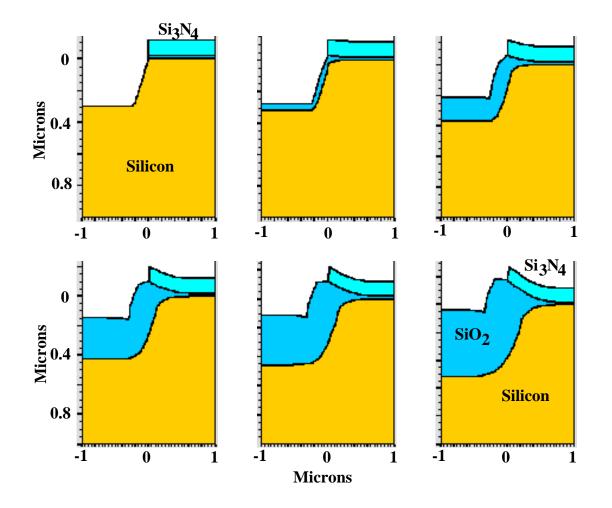
- Surface oxidation can be thought of in the same way.
- The connection between oxidation and other processes can then be modeled as shown below.



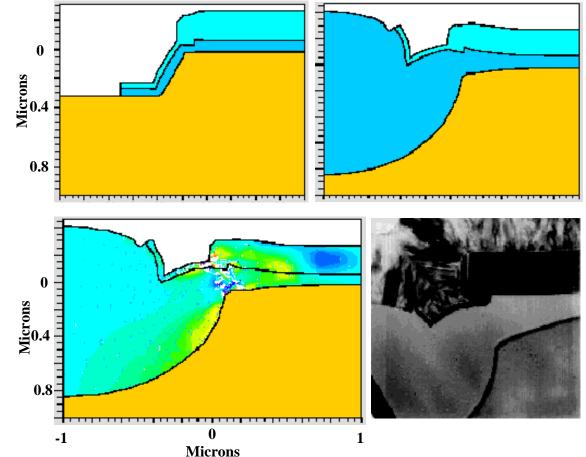
• Example - ATHENA simulation of OED.

E. Silicide Oxidation Models

• Other materials are often oxidized in silicon structures (poly, silicides). Models have been developed, based on the Deal Grove model for Si oxidation.


- In silicides, the physical processes include oxidant diffusion through the oxide and reaction at the oxide/silicide interface.
- Thus the basic linear parabolic model usually works.

$$\frac{x_0^2 - x_i^2}{B} + \frac{x_0 - x_i}{B/A} = t$$
(10)


- In most cases, SiO₂ forms rather than Mo_x (see text).
- If SiO₂ forms, then B is the same as for Si oxidation.
- B/A values for silicide oxidation are generally much larger than the Si values (10 20X).
- Apparently the bond breaking process at the SiO₂/silicide interface is much easier than at the SiO₂/Si interface.
- Therefore the overall kinetics may be just parabolic.

F. Complete Process Simulation of Oxidation

- Many of the models described above (and others that are in Chapter 5), have been implemented in programs like SUPREM.
- In an integrated simulator, these models must work in harmony with each other.

• Simulation of a recessed LOCOS isolation structure using SSUPREM IV. The initial structure (top left) is formed by depositing an SiO_2/Si_3N_4 structure followed by etching of this stack on the left side. The silicon is then etched to form a recessed oxide and the structure is oxidized for 90 min at 1000 °C in H₂O. The time evolution of the bird's head shape during the oxidation is shown in the simulations.

• Simulation of an advanced isolation structure (the SWAMI process originally developed by Hewlett-Packard), using SSUPREM IV. The structure prior to oxidation is on the top left. This structure is formed by depositing an oxide followed by a thick Si₃N₄ layer, both of which are etched away on the right side. A silicon etch on the right side is then followed by a second oxide and nitride deposition. These layers are then etched away on the far right side, leaving the thin SiO₂/Si₃N₄ stack covering the sidewall of the silicon. A 450 min H₂O oxidation at 1000 °C is then performed which results in the structure on the top right. An experimental structure fabricated with a similar process flow is shown on the bottom right. The stress levels in the growing SiO₂ are shown 100 min into the oxidation on the bottom left.