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ION IMPLANTATION - Chapter 8

Basic Concepts

• Ion implantation is the dominant method of
doping used today. In spite of creating enormous
lattice damage it is favored because:
• Large range of doses - 1011 to 1016 /cm2

• Extremely accurate dose control
• Essential for MOS VT control
• Buried (retrograde) profiles are possible
• Low temperature process
• Wide choice of masking materials

• There are also some significant disadvantages:
• Damage to crystal
• Anomalous transiently enhanced diffusion

(TED) upon annealing this damage
• Charging of insulating layers
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A. Implant Profiles

• At its heart ion implantation is a random process.
• High energy ions (1-1000keV) bombard the

substrate and lose energy through nuclear
collisions and electronic drag forces.
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• Profiles can often be described by a Gaussian
distribution, with a projected range and standard
deviation. (200keV implants shown below.)
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where Q is the dose in ions cm-2 and is measured by
the integrated beam current.

• The ranges and standard deviation ∆Rp of the
common dopants in randomly oriented silicon are
shown below.
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• Monte Carlo simulations of the random
trajectories of a group of ions implanted at a spot
on the wafer show the 3-D spatial distribution of
the ions. (1000 phosphorus ions at 35 keV.)
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• This appears as an elongated ellipse because most
of the high energy ions undergo only small angle
collisions.
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• Side view shows Rp and ∆Rp while the beam
direction view shows the lateral straggle.
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• The two-dimensional distribution is often assumed
to be composed of just the product of the vertical
and lateral distributions.
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• Now consider what happens at a mask edge - if
the mask is thick enough to block the implant, the
lateral profile under the mask is determined by the
lateral straggle. (35keV and 120keV As implants
at the edge of a poly gate from Alvis et al.)
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• The description of the profile at the mask edge is
given by a sum of point response Gaussian
functions, which leads to an error function
distribution under the mask.

B. Masking Implants    

How thick does a mask have to be?
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• Calculating the required mask thickness,
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• The dose that penetrates the mask is given by
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• Real structures may be more complicated because
mask edges or implants are not vertical.
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C. Profile Evolution        During Annealing

• Comparing Eqn. (1) with the Gaussian profile
from the last set of notes, we see that ∆Rp is
equivalent to 2 Dt . Thus
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∆RP

Implanted

After Diffusion

2Dt

• Thus if the implanted profile is Gaussian, later
thermal cycles produce a Gaussian profile as well
(assuming the surface doesn't come into play).

• The only other profile we can calculate
analytically is when the implanted Gaussian is
shallow enough that it can be treated as a delta
function and the subsequent anneal can be treated
as a one-sided Gaussian. (Recall example in
diffusion notes.)
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• Real implanted profiles are more complex.
• Light ions backscatter to skew the profile

upwards.
• Heavy ions scatter deeper.

• 4 moment descriptions of these profiles are often
used (with tabulated values for these moments).
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D. Implants in Real Silicon - Channeling

• At least until it is damaged by the implant, Si is a
crystalline material.

• Channeling can produce unexpectedly deep
profiles.
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• Screen oxides and tilting/rotating the wafer can
minimize but not eliminate these effects. (7˚ tilt is
common.)
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• Sometimes a dual Pearson profile description is
useful.
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Modeling of Range Statistics

• The total energy loss during an ion trajectory is
given by the sum of nuclear and electronic losses
(these can be treated independently).
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A. Nuclear Stopping

• An incident ion scatters off the core charge on an
atomic nucleus, modeled to first order by a
screened Coulomb scattering potential.
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• This potential is integrated along the path of the
ion to calculate the scattering angle. (Look-up
tables are often used in practice.)
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• Sn(E) in Eqn. (13) can be approximated by
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where Z1, m1 = ion and Z2, m2 = substrate.

B. Non-Local and Local Electronic Stopping

• Drag force caused by charged ion in "sea" of
electrons (non-local electronic stopping).

Dielectric Medium

Retarding E-field

Vion

• Collisions with electrons around atoms transfers
momentum and results in local electronic
stopping.
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• To first order,

S E cv kEe ion( ) /= = 1 2,  k x≅ −0 2 10 15.   ev  cm1/2 2   (16)

C. Total Stopping Power
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• The critical energy Ec  when the nuclear and
electronic stopping are equal is

B: ≈ 17keV
P:  ≈ 150keV
As, Sb : > 500keV

Damage Production

• Consider a 30keV arsenic ion, which has a range
of 25 nm, traversing roughly 100 atomic planes.



Class Handout #14 © 1999

EE212 1999-00 14 JDP, MDD, PBG

• The number of displaced particles created by an
incoming ion is given by
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300 eV Si Knock-on

30 keV
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Damage cylinder

t = 0.1 ps
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• Molecular dynamics simulation of a 5keV Boron
ion implanted into silicon [de la Rubia, LLNL]
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Amorphization

• For high enough doses, the crystal becomes
amorphous and loses all long range order. At this
point, the arrangement of lattice atoms is random
and the damage accumulation has saturated.
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• Cross sectional TEM images of amorphous layer
formation with increasing implant dose (300keV
Si -> Si) [Rozgonyi]

Damage Annealing

Goals:   

• Remove primary damage created by the implant
and activate the dopants.

• Restore silicon lattice to its perfect crystalline
state.

• Restore the electron and hole mobility.
• Do this without appreciable dopant redistribution.



Class Handout #14 © 1999

EE212 1999-00 16 JDP, MDD, PBG

10-8 10-6 10-4 10-2 1 100

0.1

1

10

100

Surface V
recombination

Bulk I&V
recombination

Surface I
recombination

Initial excess I & V

A
nn

hi
la

te
d 

I &
 V

 p
er

 im
pl

an
te

d 
io

n

Seconds

• Bulk and surface recombination take place on a
short time scale.

• "+1" I excess remains. These I coalesce into
{311} defects which are stable for longer periods.

• {311} defects anneal out in sec - min at moderate
temperatures (800 - 1000˚C) but eject I ⇒  TED.

<311>

<110>

311 Capture radius
I-dimer

Ribbon-like defect

• Stable dislocation loops can form when the
damage is greater (amorphizing implant - see
below).
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Solid Phase Epitaxy

• If the substrate is amorphous, it can regrow by
SPE.

5 min 10 min 15 min 20 min
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• Cross sectional TEM images of amorphous layer
regrowth at 525˚C, from a 200keV, 6e15 cm-2 Sb
implant [Fletcher].
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• BUT - the tail of damage beyond the a/c interface
can nucleate stable, secondary defects and cause
transient enhanced diffusion (TED).
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Dopant Activation

• When the substrate is amorphous, SPE provides
an ideal way of repairing the damage and
activating dopants.

• At lower implant doses, activation is much more
complex because stable defects form.
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• Plot (above) of fractional activation versus anneal
temperature for Boron. The intermediate
temperature range represents reverse annealing.

• Reverse annealing is though to occur because of a
competition between the native interstitial point
defects and the boron atoms for lattice sites.

Transient Enhanced Diffusion
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• TED is the result of interstitial damage from the
implant enhancing the dopant diffusion for a brief
transient period.

• It is the dominant effect today that determines
junction depths in shallow profiles.

• It is anomalous diffusion, because profiles can
diffuse more at low temperatures than at high
temperatures for the same Dt.
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• The basic model for TED assumes that all the
implant damage recombines rapidly, leaving only
1 interstitial generated per dopant atom when the
dopant atom occupies a substitutional site (the +1
model) [Giles].
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• TED effects may be very non-local. Here the As
profile recrystallizes by SPE without much TED.
The buried boron layer is drastically affected by
the +1 interstitials in the As tail  region.

Atomic Level Understanding Of TED

• {311} clusters form rapidly and then are stable for
extended periods (sec - min), driving TED by
emitting I while they shrink.
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• By 0.1 sec (750˚C), the {311} defects have
formed and CI is down to ≈ 1013 cm-3 (SUPREM).

• But CI
*≈ 108 cm-3 at 750˚C, so the enhancement is

> 105!
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• This enhancement decays over a time period of
sec - min as the {311} clusters break up.

• Given this picture, we can model the {311}
behavior as follows:

I Cl Cln n+ ⇔ +1 (18)

where Cln is a cluster with n interstitials.

− = = −

= −

∂
∂

∂
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C
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k C Cl k Cl

growth shrinkage

I
f I r (19)

• The most important part of the transient is while
the {311} clusters are evaporating I, maintaining
a constant supersaturation of I.

• During this period, dopant diffusivity
enhancements are ≈ constant and given by (see
text):
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Estimating the Duration of TED

• Over time the interstitial supersaturation decays to
zero and TED ends.
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• Example - Boron TED. Note that CI/ CI
* has

dropped from 104 to 102 in 10 min at 750˚C.
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• The excess I diffuse into the bulk and recombine
at the surface.

RP Diffusion
flux

Surface
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max
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Recombination

Flux
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• The flux towards the surface is d C RI I P
max /  where

RP is the range of the implant.
• The time to dissolve the clusters is given by the

dose divided by the flux (see text):
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• Thus the general picture of TED that emerges is:
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• Because the {311} clusters exist for longer times
at low T, there can actually be greater dopant
motion during low T anneals.
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