Point Defects

e Defects are any deviation from the perfect, infinite crystal.

e Point defects are defects which limited in size to approximately atomic

dimensions.

® There are also line, plane and volume defects which have, respectively, one,

two or three dimensions which are significantly greater than the atomic scale.

-

® An impurity, such as a dopant, can be considered a point defect; however,
when we refer to point defects in this class we will generally be referring to
intrinsic point defects, interstitials and vacancies, W]nch are present even in

pure material.

® In an infinite crystal, point defects can only be created in pairs (Frenkel
pairs); however, the existence of surfaces allows the generation of interstitials

and vacancies independently (Schottky defects).
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Intrinsic point defects are present even under thermal equilibrium. A% ter.

peratures above 0°K, there is an equilibrium number of both interstitials and

vacancies.

Question: Why would an ideal Iatizce form an interstitial at ali?

From thermodynamics, if pressure is consta.nt the Gibbs Free Energy G tends

to be a minimum,

G=H-TS | (1)

The perfect crystal has lowest enthalpy,

H. However, entropy S is a measure of

disorder; therefore, S increases as the number of defects increases. In general,

S=khw, (2)

where w is the number of possible arrangements. For a perfect crystal, w = 1

and S =kIn1 =0.

Ifa va.ca.néy is generated (by bring- |

‘ing an atom from the bulk to the
surface), entropy increases since there
are many possible locations for the

~ vacancy, but just one perfect con-

figuration of the crystal.
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Setting AGy to zero,

AH{ —T (AST + ASG + AS{) = AH| - TAS) — kT PV(OZ: O")} =0 (8)
V

Therefore, in equilibrium

C% AHY — TASY
— —
G- % exp ( T (9)
More generally, we can consider an arbitrary defect X:
Cx = concentration of sites occupied by a defect
Cs — Cx = concentration of defect sites without a defect (unoccupied sites)
Cx = equilibrium defect concentration
G _ fx ex —AGK (10)
C,—C;  XTPI T
AG, = AHL —TASE (11)
For dilute solutions (most cases), Cx < C, so
* "—AG‘f T
Cx = 0xCsexp ( T X) (12)

_—




Point Defect Structures

The structure of a silicon vacancy is reasonably well-characterized.

There remains considerable debate over the structure of the silicon interstitial.

Originally, it was thought that the interstitial would occupy one of the largest
open spaces in the lattice.
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More recent calculations have shown that the interstitial interacts strongl}(_

sharing electrons with the rest of the lattice. Possible configurations are for t

atoms to share a single lattice site.

(AD) 0, acceptor
I+ ' I

(Al) *, donor

The equilibrium structure may depend on the charge state.

For most of our analysis, the precise structure of point defects does not the
modeling of fabrication processes.
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Charged Point Defects

Like other deviations from the ideal crystal (impurities, surfaces, etc.), native
point defects have charge states within the band-gap. That means they can take
on electrons or holes and become charged. For exa ample, a neutral defect X° can

become negatively charged by taking on an electron.
e+ X' e X~ (1)

The ratio of numbers in the different charge states just depends on the differences
in the free energy of formation since we assume that electronic processes (chargmg
reactions) are fast enough to keep up with the much slower processes of chemical

reactions and diffusion.

_ B G’f -
exp[ —— &7 | B
Cx- 8- k / Gx- AGx- — AG xo
= = exp(- ) @
C'Xo 9X° .._AGXO 9}(0 kT
PR

We can also think of the reaction in terms of the change in energy of the electron
upon becoming captured. The expected value of the energy of an electron removed
from (or added to) the conduction and valence bands is just the Fermi level (Ey),
and Ex- is the energy of the extra electron that makes the defect negatively charged.

The relative numbers of defects in each of the charge states can therefore be

written in terms of the Fermi level location.

Cx- O Ex- — Ef)
= X [ _EX- T B 3
Cxo _ B0 Xp( iT (3)

The ratio of the number of configurations accounts for the fact that with un-

paired electrons there is a spin degeneracy of 2 (spin could be + or -).




Similarly, it is possible for defects to take on additional electrons, becoming (
more negatively charged.

e+ X" o X (4)
Ox= _ Cx-Cx- 5)
OXO OX— CXU

CX= (9}(= ( EX= -+ Ex— -— 2Ef)
exp| —

Cxo  Oxo kT (6)

Eventually, the energy required to add an extra electron will be above the con-
duction band minimum and can be neglected since they will generally remain un-
occupied. Similarly, point defects can capture holes (

positively charged.

emit electrons) to become

(7)

Cx++  Bxy+s / 2K Fs

(8)

For vacancies, it is believed that the singly- and doubly-negative and singly- and
doubly—positi_ve states all exist within the band-gap, while for vacancies

, only the
singly-charged levels are thought to be within the band-gap. o




" Estimated location of charge states for vacancies and interstitials
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Note: Usually, the second ionization energy is higher, i.e. it’s harder to remove
the second electron. But for the silicon vacancy, the doubly-positive level Ey.,
is closer to E, so it has a lower ionization energy than V*. This is an unususl

operty and V™% is known as a “negative-U” defect.

For the extrinsic defects (like dopants), the total number of defects is fixed so
that as the Fermi level chaa;ges the relative numbers of defects in different charge

states cha.nges, but the total number remains fixed by the composition.
Ntota! = NX— + NX° + NX+ (9)

Thus for Ef T, Nx—/.[VXn 1, Nx- T, Nxo _L




Intrinsic point defects are different in that every lattice site is a r.>otentiz{3/T
point defect. Thus if a defect becomes negatively charged, another defect can be
generated to replace it. |

In addition, the equilibrium number of neutral defects is independent of the
Fermi level since they are uncharged. Therefore, as the Fermi level is shifted, the

total number of point defects changes, not just the relative numbers.
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The relative occupation of the defect charge states can also be expressed in
terms of the electron concentration since they both have the same dependence on

the Fermi level position.

Cx- Ey '—-Eﬁ) n
= )= 1
(CX“);' exp( kT n; ( O)

where the ¢ subscript indicates in intrinsic material where n = n;.
This is also apparent from basic chemistry. The law of mass-action says that

for any reaction,

A+B&C, (11)
in equilibrium, [
CuCr = K(T)Co (12)'

where K(T') is a temperature-dependent equilibrium constant.
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Thus for electron capture by a defect,
e+ X e X (13)
ncxo =K (T) Cx— (14)

in equilibrium (which we assume for the charging reactions as noted earlier).

Similarly, for other charge states,

(g:),- - (‘:f‘) | (15)
(gff), == - (16)
ey =(2) = (%) ()




Bandgap Narrowing
An additional complication that enters at high temperatures and in heavily-

doped material is band-gap narrowing.

E;, = Eyn— BT . (19)
More accurately, N
T

E_q = Ego -_— ﬁ (m) (20)

where Ey = 1.17eV, 8 = 4.73 x 10~%eV/°K.

Van Vechten has claimed (although it is still controversial) that the acceptor
states remain at a fixed distance from the conduction band and the donor states
remain at a fixed distance from the valence band as the gap narrows so that at
high temperature, the charged defect states are more dominant than at lower

temperatures.
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Migration of Point Defects

Point defects move by hopping between their lowest energy sites.
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For vacancies, it is the other surrounding atoms that move, but as for holes,

it is easier to think of the movement of the empty sites.
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To move, point defects must gain the saddle-point energy, which can be

divided into enthalpy and entropy terms.

N ER=HP-TS§ (1

S S ® S ’Di\s {‘a nee

'R?“‘Qh"i;kl 6 Weyy Y

As for chemical kinetics in general, the rate of a process such as hopping
depends on attempt frequency »° and activation barrier.

The jump frequency V¥ is given by:

m 0 X
Uy = U exD 2
% ‘(M/ (2)
which can be rewritten as
T m
0 S [ —HY '
vy =V exp(T)expk o7 ) (3)

The attempt frequency 1° is generally only a weak function of temperature
(~ 10%3sec™).
From a macroscopic perspective, the result of random hopping on a lattice

leads to diffusion as described by Fick’s Law.

Jx = —dxVCxk (4)
where Jx is .the material flux.
Since 8C/0t = V - J, considering only diffusion we arrive at a simple conti-

nuity equation.

0Cx . s
5 =dxV°Cx (5)




The diffusivity is proportional to the hopping frequency
dx = \2/6 (6)

where A is the hop distance (distance between minima).

The diffusivity thus can be written
dx = dyexp (—Qx/kT) (7)

and d% and Qx can be determined by plotting experimental data with the log
of the diffusivity versus 1/T (called an Arrhenius plot).

Experimental values for vacancies genera,ted via radiation at low tempera-

tures (70-220°K) give Qv = Hy in the range of 0.1 to 0.45 eV, dependent on

charge state.

The total point defect flux requires summmg over all the charge states so

oCct |
eff
= 8
E Jxi = Y __ (8)
where i represents the charge state; C§ = ¥; Cx:, and

Ckxi

i 9)

de ot (9)

The fraction of defects in each of the charge states depends on the location
of the levels in the gap and the Fermi level location (or electron concentration

or doping level).




Silicon Self Diffusion

Self-diffusion is the diffusion of silicon in silicon. It can be measured by
monitoring the movement of silicon isotopes (tracers) or inferred from metal
diffusion studies.

A typical result is

5.01 eV
Dias = 1400exp (—— T ) (10)
Silicon self-diffusion arises from the motion of point defects so that
C C'
Dsi=(fr+1)d" 5 + (v + D 5 BEEY

C, VG,
where the ¢’s are correction factors due to non-random jumping (correlation
coefficients).
It is clear from Equation (11) that it is the product of defect concentration
times defect diffusivity (DxCx) which determines the rate of self diffusion.
If one mechanism is dominant (either interstitials or vacancies of a specific

charge state) then self diffusion would be expected to show an Arrhenius de-

pendence.
Dg; = Dgiexp (—Qsi/kT) (12)
with
Qs = H{ + HY (13)
and
0 Sx
DY = 0x(¢x + L)d%exp (—];—) (14)

The activation energy of self-diffusion includes both the formation and mi-
gration barriers.

The preexponential terms often calculated from experiment have been used
to suggest that defect formation and /or migration is accompanied by substantial

lattice relaxations.




The experimental data does generally follow an Arrhenius relationship,
Yut larger activation energies are found at higher temperatures. It has been
suggested that interstitials dominate at higher temperatures and vacancies

at lower temperatures, with the sum of the two mechanisms giving the total

self-diffusion.

5 eV
Ds;; = 4000exp (-— \‘k‘; ) (15)
46 eV
Dsiy = 40exp (— k; ) (16)
Dsi = Dgjp + Dsiv (17)
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Since the concentrations of point defects increase in extrinsically-doped ma-
terial, the self-diffusion coefficient does also.
For example, considering positively and negatively charged as well as neutral

interstitials,

d‘fﬁCI = (dIoCIo) + (dI— CI—) -+ (d1+01+) (18)
The total self-diffusion coefficient as a function of doping level can then be
written as:
(] n 2 F% g 2
Dgi = Dxo + —Dx- + (——) Dy=+ —Dx+ + (—) Dx++ (19)
; g n n
where, for example,
1
Dx- = & [(1+¢v-) Cv-dy- + (1 + ¢r-) Cr-dr-] (20)




