Medici
 Two-Dimensional Device
 Simulation Program
 User Manual

Version 2002.4, February 2003

Comments?
E-mail your comments about Synopsys documentation to doc@synopsys.com

Copyright Notice and Proprietary Information

Copyright © 2003 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only. Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:
"This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of and its employees. This is copy number \qquad ."

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks, Trademarks, and Service Marks of Synopsys, Inc.

Registered Trademarks (®)

Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, CoCentric, COSSAP, CSim, DelayMill, DesignPower, DesignSource, DesignWare, Eaglei, EPIC, Formality, in-Sync, LEDA, ModelAccess, ModelTools, PathBlazer, PathMill, PowerArc, PowerMill, PrimeTime, RailMill, RapidScript, SmartLogic, SNUG, Solv-It, SolvNet, Stream Driven Simulator, Superlog, System Compiler, TestBench Manager, TetraMAX, TimeMill, and VERA are registered trademarks of Synopsys, Inc.

Trademarks (${ }^{\text {TM }}$)

BCView, Behavioral Compiler, BOA, BRT, Cedar, ClockTree Compiler, DC Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design Compiler, DesignTime, DFT Compiler SoCBIST, Direct RTL, Direct Silicon Access, DW8051, DWPCI, ECL Compiler, ECO Compiler, ExpressModel, Floorplan Manager, FormalVera, FoundryModel, FPGA Compiler II, FPGA Express, Frame Compiler, HDL Advisor, HDL Compiler, Integrator, Interactive Waveform Viewer, JVXtreme, Liberty, Library Compiler, ModeISource, Module Compiler, MS-3200, MS-3400, NanoSim, OpenVera, Physical Compiler, Power Compiler, PowerCODE, PowerGate, ProFPGA, Protocol Compiler, RoadRunner, Route Compiler, RTL Analyzer, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger, SmartLicense, SmartModel Library, Source-Level Design, SWIFT, Synopsys EagleV, Test Compiler, TestGen, TetraMAX TenX, TimeTracker, Timing Annotator, Trace-On-Demand, TymeWare, VCS, VCS Express, VCSi, VHDL Compiler, VHDL System Simulator, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (${ }^{\text {SM }}$)

DesignSphere, SVP Café, and TAP-in are service marks of Synopsys, Inc.

Registered Trademarks and Trademarks of Avant! Corporation LLC, a Subsidiary of Synopsys, Inc.

Registered Trademarks (B)

ASYN, CALAVERAS ALGORITHM, CUT THE RISK GET IT RIGHT MAKE IT REAL, DESIGN INSIGHT, DEVICE MODEL BUILDER, EDA WORKSHOP, EDAASSIMILATOR, EDAVALIDATOR, Enterprise, GET REAL. GET ACEO!, HSPICE, HYDRAULICEXPRESS, HYPERMODEL, I, INSPECS, MAST, MASTER TOOLBOX, META, META-SOFTWARE, MODELEXPRESS, Raphael, Saber, TESTIFY, TMA, VERIASHDL, WAVECALC, XYNETIX

Trademarks (${ }^{T M}$)

Active Parasitics, AFGen, Apollo, Apollo II, Apollo-DPII, Apollo-GA, ApolloGAII, ASTRO, Astro-Rail, Astro-Xtalk, ATRANS, Aurora, AvanTestchip, AvanWaves, CALAVARAS, ChipPlanner, Circuit Analysis, Columbia, Columbia-CE, Comet 3D, Cosmos, Cosmos SE, CosmosLE, Cosmos-Scope, Cyclelink, Davinci, DFM-Workbench, Dynamic-Macromodeling, Dynamic Model Switcher, EDAnavigator, Encore, Encore PQ, Evaccess, FASTMAST, Formal Model Checker, FRAMEWAY, GATRAN, Hercules, Hercules-Explorer, Hercules-II, Hierarchical Optimization Technology, High Performance Option, HotPlace, HSPICE-LINK, iQBus, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, Libra-Passport, Libra-Visa, LRC, Mars, Mars-Rail, Mars-Xtalk, Medici, Metacapture, Metacircuit, Metamanager, Metamixsim, Milkyway, Nova Product Family, Nova-ExploreRTL, Nova-Trans, Nova-VeriLint, Nova-VHDLlint, Optimum Silicon, Orion_ec, Parasitic View, Passport, Planet, Planet-PL, Planet-RTL, Polaris, Polaris-CBS, Polaris-MT, Progen, Prospector, Proteus OPC, PSMGen, Raphael-NES, Saber Co-Simulation, Saber for IC Design, SaberDesigner, SaberGuide, SaberRT, SaberScope, SaberSketch, Saturn, ScanBand, Silicon Blueprint, Silicon Early Access, SinglePass-SoC, Smart Extraction, SOFTWIRE, Star, Star-DC, Star-Hspice, Star-HspiceLink, Star-MS, Star-MTB, Star-Power, Star-Rail, Star-RC, Star-RCXT, Star-Sim, Star-Sim XT, Star-Time, Star-XP, Taurus, Taurus-Device, Taurus-Layout, Taurus-Lithography, Taurus-OPC, Taurus-Process, Taurus-Topography, Taurus-Visual, Taurus-Workbench, The Power in Semiconductors, THEHDL, TimeSlice, TopoPlace, TopoRoute, True-Hspice, TSUPREM-4, Venus, VERIFICATION PORTAL, VERIVIEW, VFORMAL

SystemC ${ }^{\top \mathrm{M}}$ is a trademark of the Open SystemC Initiative and is used under license. All other product or company names may be trademarks of their respective owners.

Introduction to Medici

Overview

Medici is a powerful device simulation program that can be used to simulate the behavior of MOS and bipolar transistors and other semiconductor devices. It models the two-dimensional distributions of potential and carrier concentrations in a device. The program can be used to predict electrical characteristics for arbitrary bias conditions.

Analyzing Devices and Effects

The program solves Poisson's equation and both the electron and hole currentcontinuity equations to analyze devices such as diodes and bipolar transistors as well as effects in which the current flow involves both carriers, such as CMOS latchup. Medici can also analyze devices in which current flow is dominated by a single carrier, such as MOSFETs, JFETs, and MESFETs. In addition, Medici can be used to study devices under transient operating conditions.

Submicron Simulation

Medici simulates the behavior of deep submicron devices by providing the ability to solve the electron and hole energy balance equations self-consistently with the other device equations. Effects such as carrier heating and velocity overshoot are accounted for in Medici, and their influence on device behavior can be analyzed.

Medici uses a non-uniform triangular simulation grid, and can model arbitrary device geometries with both planar and nonplanar surface topographies. The simulation grid can also be refined automatically during the solution process. Additional nodes and elements can be added where a user-specified quantity, such as potential or impurity concentration, varies by more than a specified tolerance over existing mesh elements. This flexibility makes modeling of complicated devices and structures possible.

Electrodes can be placed anywhere in the device structure. Impurity distributions can be created by combining Medici's analytic functions with input from Synopsys TCAD's process modeling programs, TMA SUPREM-3 and TSUPREM-4, and input from text files containing the impurity distributions.

Physical Models

A number of physical models are incorporated into the program for accurate simulations, including models for recombination, photogeneration, impact ionization, band-gap narrowing, band-to-band tunneling, mobility, and lifetime. Medici also incorporates both Boltzmann and Fermi-Dirac statistics, including the incomplete ionization of impurities.

Additional Features

Other features that make Medici a powerful tool include the ability to:

- Attach lumped resistive, capacitive, and inductive elements to contacts
- Specify distributed contact resistances
- Specify either voltage and current boundary conditions during a simulation
- Automatic I-V curve tracing
- Perform an AC small signal analysis at virtually any frequency in order to calculate frequency-dependent capacitances, conductances, admittances, and S-parameters

Advanced Application Modules

Advanced Application Modules (AAM) are optionally available. They provide some unique and powerful capabilities for special purpose applications. The presently available AAMs are introduced in "Advanced Application Modules," p. Introduction-ix, and are discussed in more detail in Chapter 2.

Backward Compatibility

Medici maintains backward compatibility with all previous versions of the program, including TIF and structure files generated by previous versions. Refer to Chapter 3, "3.7 Old Statements," p. 3-445, for a listing of statements whose functions have been superseded by newer additions to the program.

Manual Overview

This manual contains 17 chapters, six appendices, and an index. Of particular note is Chapter 2, which describes the physical models that form the basis of Medici. Chapter 3 contains the input commands recognized by the program. Chapters 4 through 17 show examples of using Medici to simulate and analyze typical device behaviors.

Note:
Examples used as illustrations in this manual are not intended for use with actual simulations. They are presented as guidelines only.

Chapter 1 Discusses the execution of Medici, the required input files, the output files generated, and other files required to execute the program.
Chapter 2 Provides a description of the Medici program. This includes the physical models, the numerical methods, and the simulation grid used by the program. It also describes the Advanced Application Modules that are optionally available for Medici.

Chapter 3 Contains descriptions of the input statements recognized by Medici. The description of each statement includes a summary of the statement syntax, descriptions of the statement parameters, and a discussion of the use of the statement.
Chapter 4 Presents examples that illustrate the simulation and analysis of an n-channel MOSFET.

Chapter 5 Presents examples that illustrate the simulation and analysis of an NPN bipolar transistor.
Chapter 6 Presents examples that illustrate the transient analysis capabilities of Medici by studying the turn-on characteristics of a PN diode. It also presents examples that illustrate the use and effect of external lumped elements and contact resistance.
Chapter 7 Presents two examples that illustrate the photogeneration capabilities of Medici. The first example models a back-lit solar cell. The second is a simulation of single-event upset in an SRAM cell.

Chapter 8	Illustrates the use of parameterized template files for the automatic creation and simulation of MOS and bipolar structures.
Chapter 9	Presents examples that include the solution of the energy balance equation in the simulations. Both MOS and bipolar devices are studied.
Chapter 10	Presents examples that illustrate the interfaces between Medici and the process simulation and parameter extraction programs.
Chapter 11	Presents examples that illustrate the use of the Programmable Device AAM. For this purpose, the writing and erasing characteristics of a Flash EEPROM device are simulated.
Chapter 12	Presents examples that illustrate the use of the Circuit Analysis AAM.
Chapter 13	Presents examples that illustrate the use of the Lattice Temperature AAM.
Chapter 14	Presents examples that illustrate the use of the Heterojunction Device AAM.
Chapter 15	Presents examples that illustrate the use of the Trapped Charge AAM.
Chapter 16	Presents examples that illustrate the use of the Optical Device AAM.
Chapter 17	Presents examples that illustrate the use of the Anisotropic Material AAM.
Appendix A	Describes the structure and use of the parameterized template files for the automatic creation and simulation of MOS and bipolar devices.
Appendix B	Discusses Synopsys TCAD graphics and describes the mdpdev plot device definition file. This file contains information that controls use of the graphics output devices.
Appendix C	Describes the program enhancements in Medici Revision 2002.2 relative to Revision 2001.4.
Appendix D	Describes the Technology Interchange Format (TIF) for interprogram communication.
Appendix E	Describes the limitations of using Medici with the STUDIO Command Editor.
Appendix F	Describes limitations of using Medici with IBM SP2 platform.
Appendix G	Describes the format of the mask data files used by Medici. It is intended for use by experienced programmers, who wish to generate simple mask files by hand.

Advanced Application Modules

Advanced Application Modules (AAM) for Medici are optionally available from Synopsys TCAD Business Unit. They give the program additional capabilities for special purpose applications. One or more may be licensed in addition to the Medici program. AAMs are described in detail in Chapter 2, "Programmable Device Advanced Application Module," p. 2-142. Input statements and parameters used with the AAMs are discussed in Chapter 3, "Input Statements," p. 3-1. Presently available AAMs include:

Programmable Provides the ability to simulate the programming character-

Device AAM, Chapter 2, p. 2142

Circuit Analysis AAM, Chapter
2, p. 2-146
Lattice Temperature AAM, Chapter 2, p. 2148

Heterojunction Device AAM, Chapter 2, p. 2154

Chapter 2, p. 2-
180

Trapped	Provides the ability to simulate the behavior of a wide vari- Charge AAM, ety of devices containing traps, such as TFTs and power devices. It also provides the ability to simulate insulator Chapter 2, p. 2- traps; therefore it can be used to perform reliability simula-
168	Provides the ability to automatically calculate photogenera- tion rates that occur in a variety of optical devices, such as
Optical Device	
AAM, Chapter	CCDs, photodetectors and solar cells.
2, p. 2-171	Provides the ability to account for the anisotropic behavior
Anisotropic	
Material AAM,	
of some semiconductor materials, such as SiC.	

Provides the ability to perform circuit simulation where the active circuit elements can include Medici numeric devices.

Provides the ability to solve the lattice heat equation selfconsistently with the other device equations. This makes it possible to analyze the effects of lattice heating on a structure's electrical performance.

Provides the ability to simulate the behavior of a variety of heterojunction devices, such as HBTs and HEMTs.

Provides the ability to simulate the behavior of a wide variety of devices containing traps, such as TFTs and power devices. It also provides the ability to simulate insulator traps; therefore it can be used to perform reliability simulations.

Provides the ability to automatically calculate photogeneration rates that occur in a variety of optical devices, such as CCDs, photodetectors and solar cells.

Provides the ability to account for the anisotropic behavior of some semiconductor materials, such as SiC .

Note:
AAM input statements and parameters discussed in this manual have no effect on a simulation unless the appropriate AAMs are licensed and installed.

Typeface Conventions

The following typeface conventions are used in this manual:

Abstract

Typeface STATEMENT output text Text output by Medici or your system appears in this typeface. Output files are an example of this typeface. <pathname> Variable information you type, which must be replaced with specific text, is indicated in italics enclosed by angle brackets (<>). The plot device definition file mdpdev is an example of this convention. Do not type the angle brackets when entering your text.

Related Publications

This manual covers all aspects of the Medici 2D Simulation program. For information on Medici installation procedures, see the Synopsys TCAD Product Installation Manual.

Reference Materials

This manual uses many references from the changing body of literature in the industry. Where appropriate, you are directed to source material. A reference section is included in Chapter 2, "References," p. 2-196.

Problems and Troubleshooting

If you have problems or questions regarding Medici operation, first check the UNIX window from which you started Medici for warning or error messages:

- For help in resolving UNIX system errors (cannot create <file〉: Permission denied, and others), please see your UNIX systems administrator.
- For Medici-specific problems, please see the person who installed this product or associated Synopsys TCAD products in your company. Usually this is your UNIX systems administrator or the CAD manager.

For further help, please contact Synopsys TCAD or Synopsys TCAD's representative in your area.

Table of Contents

Introduction to Medici v
Overview v
Analyzing Devices and Effects v
Submicron Simulation v
Medici Grid. vi
Physical Models vi
Additional Features vi
Advanced Application Modules vi
Backward Compatibility vii
Manual Overview vii
Advanced Application Modules ix
Typeface Conventions x
Related Publications x
Reference Materials x
Problems and Troubleshooting x
Using Medici 1-1
Introduction. 1-1
Program Execution and Output. 1-1
Execution Command 1-1
Execution on IBM SP2 Systems with More than One Processor 1-2
Syntax Errors 1-2
Execution Errors and Warnings 1-3
Program Output 1-3
Printed Output 1-3
Graphical Output 1-4
File Specifications. 1-4
Output File Identifiers-<base> 1-4
Command Input File Identifier-<head> and <root> 1-5
Initially Assigned Names $1-5$
Environment Variables 1-7
Library Directory 1-7
Input Files 1-7
Command Input File 1-7
Statement Overview 1-7
Two-Dimensional Process Files 1-8
One-Dimensional Process Files 1-8
Output Files 1-9
Standard Output File-<base>.out 1-9
Informational Output File—<base>.inf 1-9
Diagnostic Output File—<base>.dia 1-9
Graphical Output 1-10
Formatted Plot Output Files 1-10
Binary Plot Output Files 1-10
Mesh Files 1-11
Profile Files 1-11
Boundary Files 1-11
Solution Files 1-11
TIF Files 1-11
Saved Solution Files. 1-12
Log Files 1-12
Execution Time Files 1-13
Miscellaneous Files 1-13
Path File-mdpath 1-13
Plot Device Definition File-mdpdev 1-14
Authorization File-mdauth 1-14
Formatted Key File—mdfky0 1-14
Unformatted Key File-mduky0 1-14
Error Message File-mderr0 1-15
Circuit Analysis Formatted Key File—mdfkyl 1-15
Coefficient File—mdcof1 1-15
Temporary Scratch Files 1-16

<base>.prs 1-16
<base>.ttn 1-16
<base>.cont 1-17
mdcof1.prs 1-17
Medici Description 2-1
Introduction 2-1
Physical Description 2-2
Basic Equations 2-2
Poisson's Equation 2-2
Continuity Equations 2-2
Boltzmann Transport Theory 2-2
SRH, Auger, and Direct Recombination 2-3
Surface Recombination 2-4
Concentration-Dependent Lifetimes 2-4
Lattice Temperature-Dependent Lifetimes 2-5
Recombination Including Tunneling 2-5
Schottky Barrier Tunneling 2-72-7
Tunneling Path 2-8
Tunneling Barrier Discretization 2-8
Generation Rate 2-9
Boltzmann Statistics 2-10
Bandgap and Effective Density of States 2-11
Bandgap Narrowing due to Heavy Doping 2-11
Stress-Induced Bandgap Change 2-13
Fermi-Dirac Statistics 2-14
Incomplete Ionization of Impurities 2-15
Doping and Temperature Dependent Impurity Activation Energies 2-16
High Doping Transition to Complete Ionization 2-16
Low Temperature Simulation 2-17
Quantum Mechanical Effects in MOSFET Inversion Layers 2-17
Modified Local Density Approximation Quantum Model 2-20
Mobility Models 2-22
Low Field Mobility 2-22
Constant Mobility 2-22
Concentration Dependent Mobility 2-22
Analytic Mobility 2-24
Aurora Mobility Model 2-24
Carrier-Carrier Scattering Mobility 2-26
Philips Unified Mobility 2-27
Surface Scattering 2-29
Surface Mobility Degradation Factors 2-29
Surface Mobility Model 2-29
Enhanced Surface Mobility Model. 2-30
Universal Mobility Model 2-31
Perpendicular Electric Field Mobility Model 2-32
Lombardi Surface Mobility Model. 2-33
Generalized Mobility Curve Mobility Model. 2-34
Shirahata Mobility Model. 2-36
Transverse Field- Dependent Mobility Model 2-36
High Field Effects 2-40
Parallel Field Mobility 2-41
Hewlett-Packard Mobility Model 2-44
Lucent Mobility Model 2-45
Inversion and Accumulation Layer Mobility Model 2-47
Electric Field Calculations for Mobility Models 2-52
Effective Electric Fields at Interfaces. 2-52
Electric Field Components 2-53
Mobility Model Choices 2-55
Comparison of Mobility Models 2-55
gsurfn Results 2-56
Transverse Field Mobility Results 2-56
ej.mobil Results 2-57
Comparison of CPU Time 2-57
EJ.MOBIL and Subsurface Current Flow 2-58
Electron-Hole Scattering 2-59
Stress-Induced Mobility 2-60
Boundary Conditions 2-61
Ohmic Contacts 2-62
Schottky Contacts 2-62
Imposing Finite Surface Recombination Velocities 2-63
Barrier Lowering 2-63
Contacts to Insulators 2-64
Neumann Boundaries 2-65
Interface Charge and Traps 2-65
Lumped Resistance, Capacitance, and Inductance Elements 2-66
Lumped Element Boundary Conditions 2-66
Specification 2-67
Current Boundary Conditions 2-68
Specification 2-68
Distributed Contact Resistance 2-69
Majority Carrier Contact 2-70
Numerical Methods 2-70
Relevant Statements 2-71
Selecting Equations to Solve 2-71
Discretization 2-71
Box Method 2-72
Carrier Flux Formulation 2-72
Nonlinear System Solutions 2-72
Common Concepts 2-72
Initial Guesses 2-74
Quasi-Fermi Level Adjustments 2-75
Coupled Solutions (Newton's Method) 2-76
Jacobian Matrix in Newton 2-76
Accelerating the Newton Iteration 2-77
When to Choose Full Newton 2-77
Newton Damping 2-77
Decoupled Solutions (Gummel's Method) 2-78
When to Use Gummel 2-78
Accelerating Gummel 2-79
Using ICCG 2-79
ICCG Parameters 2-79
Poisson Damping 2-79
Continuation Method 2-79
Continuation Steps 2-80
Parameter C.DVMAX 2-81
Linear Matrix Solution 2-82
Overview 2-82
Jacobian Matrix 2-82
Direct Method. 2-84
ICCG Solver 2-84
Incomplete Cholesky Decomposition. 2-84
ILUCGS Solver 2-86
Grid in Medici 2-88
Grid Allocation 2-89
Coordinate Systems 2-89
Cartesian Coordinates 2-89
Cylindrical Coordinates 2-89
Maximum Number of Nodes and Memory Use 2-90
Memory Requirements 2-90
Grid Specification 2-91
Grid Refining Restrictions 2-91
Initial Grid Generation 2-91
Rectangular Mesh Specification 2-91
Mesh Statements 2-91
Initial Mesh Specification 2-92
Grid Spacings 2-92
Horizontal Spacing 2-93
Vertical Spacing 2-93
Mesh Spacing Parameters 2-93
Specifying Mesh Within a Section. 2-94
Uniform Mesh Spacing. 2-94
Monotonically Increasing or Decreasing Mesh Spacing 2-94
Increasing or Decreasing Mesh Section Spacing 2-95
TCAD Compatibility 2-95
Regrid. 2-96
Regrid Algorithm 2-96
Limiting the Refinement 2-96
Interpolation 2-97
Reading Doping Information 2-97
Refinement Criterion 2-98
Mesh Smoothing 2-98
Node Smoothing 2-99
Element Smoothing 2-99
Undesirable Effects of Obtuse Elements 2-101
Transient Device Simulation 2-101
BDF1 Formula 2-101
104BDF2 Formula 2-102
Time Steps Selection 2-103
Dynamic Error Tolerance 2-103
Time Step Restrictions 2-103
User Specifications 2-103
Impulse Response 2-103
AC Small-Signal Analysis 2-104
Basic Concepts 2-104
Sinusoidal Steady-State Analysis 2-105
Successive Over-Relaxation Method (SOR) 2-107
Bi-CGSTAB Method 2-107
AC Analysis Beyond the Basic Equations 2-108
Impact Ionization Analysis 2-108
Post-Processing Method 2-108
Specification 2-109
Output 2-109
Self-Consistent Method 2-109
Electron-Hole Generation Rate 2-109
Non-Local Impact Ionization 2-111
Examining Results 2-113
Gate Current Analysis 2-113
Lucky-Electron Gate Current Model 2-114
Probability Factors 2-114
Gate Current Parameters 2-115
Angle-Dependent Gate Current Model 2-116
Insulator Probability 2-117
Electron Scattering 2-118
Surface Generation 2-118
Non-Maxwellian Hot Carrier Generation Option 2-118
Carrier Temperature Dependent Gate Current Models 2-119
Electron Probability 2-119
Conversion to Local Electric Field Model 2-120
Direct Tunneling 2-120
Parameter Specification 2-122
Relationship to Fowler-Nordheim Tunneling 2-123
Direct Tunneling Model 2-123
Direct Tunneling Method 1: Analytical Evaluation 2-124
Direct Tunneling Method 2: Numerical Integration of WKB Tunneling Coefficient 2-125
Direct Tunneling Method 3: Numerical Integration of Gundlach Tunneling Coefficient 2-126
Direct Tunneling Method 4: Numerical Integration of AiryTMT Tunneling Coefficient 2-127
Ionization Integrals 2-128
Calculations 2-128
Specification. 2-129
Electric Field Lines 2-130
Band-to-Band Tunneling 2-130
Energy Balance Equations 2-132
Implemented Differential Equations 2-132
Compound Semiconductor EB Model 2-134
Boundary Conditions 2-135
Physical Models 2-135
Carrier Temperature-Based Mobility 2-136
Energy Relaxation Times 2-137
Impact Ionization 2-138
Thermally Enhanced Diffusion Current 2-139
Energy Balance Post-Processing Analysis 2-139
Plotting Simulation Results 2-140
Decoupled Solution 2-140
Coupled Solution 2-141
Regional Specification of Semiconductor Parameters 2-142
Programmable Device Advanced Application Module 2-142
Charge Boundary Condition 2-143
Fowler-Nordheim Tunneling 2-143
Tunneling Model 2-144
Hot Carrier Injection 2-144
Specifying Structure (Electrodes and Charges) 2-145
Graphical Output 2-145
Circuit Analysis Advanced Application Module 2-146
Numerical Method Used in the CA-AAM 2-146
Construction of Circuit and Device Equations 2-146
Multiple Device Matrix Description 2-147
Lattice Temperature Advanced Application Module 2-148
Heat Equation Model 2-149
Heat Flow Equation 2-149
Overriding Default Modules. 2-149
Electric Field Terms 2-150
Poisson's Equation 2-151
Current Density Equations 2-151
Numeric Methods 2-152
Parameters and Statements 2-152
Decoupled Block Iterative Method 2-152
Optimizing Convergence 2-153
Thermal Electrodes 2-153
Thermal Lumped Elements 2-153
Physical Models 2-154
Heterojunction Device Advanced Application Module 2-154
Material Parameters 2-155
Band Diagram 2-156
Materials 2-156
Device Equations for Heterojunctions 2-156
Models for Compound Materials 2-157
Permittivity 2-157
Density of States 2-157
Energy Bandgap Choices 2-157
Energy Bandgap and Electron Affinity 2-158
Lattice Temperature-Dependent Energy Bandgap 2-158
Strained Energy Bandgap Model 2-1582-159
Unstrained Energy Bandgap Model 2-159
Models Specific to III-V Compound Semiconductors 2-159
Mobility Models Specific to III-V Compound Semiconductors 2-162
Low-Field Mobility Model 2-163
High-Field Mobility Model 2-164
Virtual Nodes 2-165
Poisson Equation and Band Alignment 2-166
Heterojunction Currents 2-166
Thermionic Emission Current Model 2-167
Tunneling Current Model 2-167
Trapped Charge Advanced Application Module 2-168
Analysis with Trapped Charge 2-168
Recombination 2-168
Modeling. 2-169
Optical Device Advanced Application Module 2-171
Transmittance and Reflectance Calculation. 2-171
Simple Interface 2-171
Transmission Through Planar Optical Layers 2-173
Photogeneration Model 2-175
Absorption Models 2-176
Wavelength Dependent Empirical Tables 2-176
Absorption Mechanisms 2-176
Fundamental Absorption (Band-to-Band Transitions) 2-177
Band-Tail Absorption 2-178
Free Carrier Absorption 2-179
Optical Energy Gap 2-179
Anisotropic Material Advanced Application Module 2-180
Permittivity Tensor 2-180
Additional Capabilities 2-181
Thermal Diffusion 2-182
Advanced Band Structure 2-182
Notes on Usage 2-183
Symbol Definitions 2-184
References. 2-196
Input Statement Descriptions 3-1
Introduction. 3-1
Input Statements 3-1
Format 3-1
Input Limits 3-2
Syntax 3-2
Appending 3-2
Statements with Parameters 3-2
Statements without Parameters. 3-3
Parameters 3-3
Logical 3-3
True or False Value 3-3
Character and Numerical Value 3-3
Numerical 3-3
Array 3-4
Format. 3-4
Character 3-4
Value. 3-4
Length 3-4
Numerical Expressions 3-5
Components and Use 3-5
Numerical Values 3-5
Logical Values 3-5
Assigned Names 3-5
Character Expressions 3-5
Delimiters 3-6
Arithmetic Operators 3-6
Relational Operators 3-6
Logical Operators 3-6
Numerical Functions 3-6
Logical Functions 3-7
Conversion Functions 3-7
Component Precedence 3-8
Examples of Numerical Expressions 3-8
Character Expressions 3-9
Syntax. 3-9
Length 3-9
Character Expression Examples 3-9
Statement Description Format 3-10
Parameter Definition Table 3-10
Parameter Type 3-10
Example 3-10
Syntax of Parameter Lists 3-11
Value Types < > 3-11
Defining Groups \{ \}, [], (), | 3-12
Optional Groups []. 3-12
List of Groups \{\}, | 3-12
Group Hierarchy () 3-12
3.1 Device Structure Specification 3-13
Rectangular Mesh Specification 3-14
Mesh Statements 3-14
MESH 3-15
Description 3-21
Generating an Initial Mesh 3-22
Cartesian and Cylindrical Coordinates 3-22
Statement Specification 3-22
Mesh Smoothing 3-23
Periodic Boundary Conditions 3-23
Automatic Boundary Conforming Mesh Generation 3-24
Algorithm 3-24
New Automatic Boundary Conforming Mesh Generator 3-25
Spacing Parameters 3-25
Gridding Region Boundaries 3-25
Gridding Region Interiors 3-26
Automatic Refinement Near Corners 3-26
Junctions 3-26
Electrodes 3-26
Old Automatic Boundary Conforming Mesh Generator 3-27
Lateral and Normal Mesh Spacings 3-27
Unstructured Delaunay Mesh 3-27
Selecting Aspect Ratios 3-27
Automatic Failure Handling 3-28
Obtuse Elements 3-28
Junction Conforming Mesh 3-28
Terminal Handling 3-28
Large Geometry Features 3-28
Quadtree Mesh Generation 3-28
Algorithm 3-29
Boundary Fidelity 3-29
Immediate Regridding 3-29
Quadtree Files 3-29
Previously Generated Meshes 3-30
Restrictions and Limitations 3-30
TSUPREM-4 3-31
Other Programs and TIF 3-31
Smoothing Region Shape 3-31
X.MESH 3-32
Description 3-32
See Also 3-33
Node Placement 3-33
NODE, LOCATION, and RATIO 3-33
LOCATION and SPACING 3-33
WIDTH, N.SPACES, H1, H2, H3, and RATIO 3-34
Y.MESH 3-35
Description 3-36
See Also 3-36
Node Placement 3-36
NODE, LOCATION, and RATIO 3-36
LOCATION and SPACING 3-36
DEPTH, N.SPACES, H1, H2, H3, and RATIO 3-37
ABC.MESH 3-38
Description 3-42
Spacing Boxes 3-42
Gridding Region Boundaries 3-42
Alignment 3-44
Example 3-45
Gridding Region Interiors 3-46
Example 3-47
Automatic MOSFET Meshing 3-48
ELIMINATE 3-51
Description 3-52
See Also 3-52
Restrictions 3-52
SPREAD 3-53
Description 3-54
See Also 3-54
Examples 3-54
BOUNDARY 3-56
Description 3-57
See Also 3-58
Input and Boundaries 3-58
Statement Ordering 3-58
Restrictions 3-58
File I/O 3-58
Termination, Overlap, and Intersect Examples 3-59
Termination 3-59
Overlap 3-59
Intersect 3-60
Compatibility 3-60
Synopsys TCAD 3-60
Process Simulator Data Files 3-61
Transformation and Truncating 3-61
Boundary Analysis 3-61
Kinks. 3-61
Boundary Matching (Intersections) 3-63
Aspect-Ratio-Based Subdivision 3-63
Troubleshooting 3-63
Unsuccessful Termination, Subdivision Error 3-63
Unassigned Elements 3-64
Overwriting Region 3-64
Gridlines Removed 3-65
Examples 3-65
TSUPREM-4 LOCOS Process 3-65
TSUPREM4 3-68
Description 3-69
Examples 3-69
REGION 3-71
Description 3-75
See Also 3-75
Material Types 3-75
Boundaries 3-75
Bounding Box 3-75
Polygon. 3-75
Rotation 3-75
Point Within an Existing Region 3-76
Examples 3-76
ELECTRODE 3-77
Description 3-79
See Also 3-79
Boundaries 3-79
Bounding Box 3-79
Polygon 3-80
Rotation 3-80
Region Name 3-80
Point Within a Region Specification 3-80
Electrode Nodes 3-81
Adding Electrodes to Existing Structures 3-81
RENAME 3-82
Description 3-82
See Also 3-82
Examples 3-82
PROFILE 3-83
Description 3-88
See Also 3-88
Profile Types 3-89
Specifying Individual Impurity Profiles 3-89
Specifying Profiles for Other Quantities 3-89
Analytic Profiles 3-90
Vertical Variation 3-90
Lateral Direction Variation 3-90
Junction Depth 3-91
Impurity Dose 3-91
Polygonal Profiles 3-91
Polygonal Profiles from Taurus Layout Mask Files 3-91
Profile Rotation 3-92
One-Dimensional Profiles from Data Files 3-92
Vertical Range 3-92
Lateral Range 3-93
Rotational Profile Extension 3-93
Choosing Profiles to Input 3-93
Two-Dimensional Profiles From Data Files 3-94
Vertical and Lateral Ranges 3-94
Choosing Profiles to Input 3-94
REGRID 3-95
Description 3-99
See Also 3-99
Grid Refinement 3-99
Refinement Levels 3-99
Using the FACTOR Option 3-100
Other Notes 3-100
Quadtree Mesh Refinement 3-100
Mesh Spacing and Refinement Criteria 3-100
Controlling Mesh Quality 3-101
Multiple Regrids 3-102
See Also 3-102
STITCH 3-103
STITCH Statement Usage 3-104
3.2 Solution Specification 3-107
MODELS 3-108
Description 3-115
See Also 3-115
Impact Ionization 3-115
Carrier Temperature 3-115
Fowler-Nordheim Tunneling 3-116
Direct Tunneling 3-116
Quantum Mechanical Effects in MOSFET Inversion Layers 3-116
Stress-Induced Effects in Silicon 3-116
Models in Solution Files 3-117
PHOTOGEN 3-118
Description 3-124
See Also 3-124
Model 3-124
Photogeneration Equation 3-125
Time-Dependent Term 3-125
Pulse Light Type Source 3-126
Radial Dependence 3-126
Length Dependence 3-126
Spatially Dependent Terms 3-127
Shockley-Read-Hall Lifetime Modifier 3-128
Examples 3-128
Single-Event Upset (SEU) \#1 3-128
Single-Event Upset (SEU) \#2 3-129
Gaussian X-Ray Pulse 3-129
Uniform X-Ray Pulse 3-130
Visible Light Simulation 3-131
Ray Tracing 3-131
Incident Ray Quantities 3-131
TM and TE Wave 3-131
Boundary Conditions 3-132
Ray Termination 3-133
Spectral Intensity File 3-133
Transmission Through a Stack of Material Layers 3-134
Example Statements 3-134
Black-Body Radiation 3-135
TRAPS 3-136
Description 3-138
See Also 3-138
Trap Model 3-138
Trap States 3-139
Saved Information 3-139
Trap Statement Examples 3-139
Single Electron Trap 3-139
Time Dependent Traps 3-139
TFT Simulation 3-140
Interface Traps 3-142
Identifying Interface Nodes 3-142
Specifying Interface States 3-142
Trap Placement 3-143
Heterojunction Limitations 3-143
SYMBOLIC 3-144
Description 3-145
See Also 3-145
Usage 3-146
METHOD 3-147
Description 3-154
See Also 3-155
Solution Methods 3-155
Convergence Criteria 3-155
Default 3-155
3-156
XRI.NORM
XRI.NORM 3-156
Error Tolerances 3-156
Energy Balance Solution 3-157
Lattice Temperature Solution 3-157
ILUCGS and Bi-CGSTAB 3-157
Gummel's Method 3-158
Newton's Method 3-158
DAMP.CON 3-159
Continuation Methods 3-159
Transient Simulation 3-160
SOI Convergence 3-160
SOLVE 3-161
Description 3-171
See Also 3-171
Initial Guesses 3-171
Bias Selection 3-172
Multiple Solutions 3-172
Synchronization in Saving Solutions 3-172
Circuit Analysis Parameters 3-173
Continuation Method 3-173
User-Input 3-173
Trace Back Problems 3-174
Transient Simulations 3-174
Ramped Voltage or Current 3-175
Sinusoidal Waveform 3-175
Post-Processing Impact Ionization 3-175
Gate Current 3-175
Fowler-Nordheim Tunneling Analysis 3-176
Direct Tunneling Analysis 3-176
AC Small-Signal Analysis 3-176
S-Parameters. 3-177
AC Analysis with Circuit Simulation. 3-177
Optical Analysis 3-177
Monochrome Light DC Response 3-177
Multi-Spectral Light DC Response 3-178
Light Modulation Analysis 3-178
3.3 Input/Output 3-179
EXTRACT 3-180
Description 3-183
See Also 3-183
Extraction with Expressions and Names 3-184
Extraction of Maximum Electric Field. 3-184
Calculation 3-184
Defining Mobility and Lifetime Values 3-184
Binary Search 3-185
Defining Doping Profiles Using EXTRACT Expressions 3-185
Optimization 3-188
Optimization Guidelines 3-189
Parameter Selection 3-189
Initial Guess and Limits 3-189
Examining the Results 3-189
Terminating the Process 3-189
Simple Extraction 3-190
Extraction of MOS Device Parameters 3-191
Predefined Quantities in Expressions 3-191
Gradients of Predefined Quantities 3-195
PRINT 3-196
Description 3-198
PLOT.1D 3-199
Description 3-211
See Also 3-211
Line Plots 3-211
Minimum or Maximum Quantity and Location 3-211
Internal Plots of AC Quantities 3-212
Plots of Log File Data 3-212
Axis Quantities 3-213
Circuit Analysis AAM 3-213
Other Information 3-213
PLOT.2D 3-215
Description 3-218
Description 3-218
See Also 3-218
Disabling Clear 3-218
Disabling Clear 3-218
Physical Device Boundaries 3-219
Junctions, Depletion Regions, and Grid. 3-219
Schematic Representations 3-219
Device Structure 3-219
Required Solutions 3-220
PLOT.3D 3-221
Description 3-228
See Also 3-228
Viewport, Plot Axes, and Rotation Angles 3-228
Viewport 3-228
Plot Axes and Rotation Angle 3-228
3D.SURFACE 3-230
Description 3-231
See Also 3-231
Limitations and Plotting Combinations 3-231
Quantity Ranges 3-231
CONTOUR 3-232
Description 3-237
See Also 3-238
Minimum, Maximum, and Interval Values 3-238
Examples 3-239
VECTOR 3-240
Description 3-243
See Also 3-243
Vector Scaling 3-243
Vector Size 3-244
AC Vectors 3-244
FILL 3-245
Description 3-246
See Also 3-247
Properties and Parameters 3-247
E.LINE 3-248
Description 3-252
See Also 3-252
Identifying Output and Input 3-253
First Potential Gradient Path 3-253
Previously Defined Solutions 3-253
Line Type 3-253
LABEL 3-254
Description 3-256
See Also 3-256
Example 3-256
Parameters 3-256
Sizing 3-256
Location 3-256
Line and Arrowhead 3-257
Starting Coordinates 3-258
LOG 3-259
Description 3-262
See Also 3-263
Medici Log Files 3-263
Aurora Data Files 3-263
IC-CAP Data Files 3-263
Input Variables 3-264
Output Variables 3-264
S-Parameters 3-265
Y-Parameters and H-Parameters 3-265
Electrode Names 3-265
IC-CAP Example 3-265
Data File Names 3-266
LOAD 3-267
Description 3-267
See Also 3-268
Parameters 3-268
Single Solution 3-268
Two Solutions. 3-268
Analyzing Differences 3-268
Storing a Solution 3-268
Solution File Data 3-269
Setup Information 3-269
SAVE 3-270
Description 3-274
See Also 3-274
File Formats 3-274
Saving AC Quantities in TIF Files 3-274
Saving a Quadtree Mesh 3-274
3.4 Coefficients and Material Parameters 3-277
MATERIAL 3-278
Description 3-295
See Also 3-295
Applicable Regions 3-295
Parameters from Solution Files 3-295
Optical Device AAM Parameters 3-296
Changing Table Values 3-296
Coefficient Files 3-296
Physical Absorption Models 3-297
Default Parameters 3-298
Other Semiconductor Parameters 3-305
Some Remarks on BGN2 Model 3-305
MOBILITY 3-306
Description 3-322
See Also 3-322
Impurity Dependent Mobility Tables 3-322
Mobility Parameters from Solution Files 3-322
Default Mobility Parameters 3-323
IMPURITY 3-332
Description 3-334
CONTACT 3-335
Description 3-338
See Also 3-338
Work Function Potentials 3-338
Cautions 3-339
Contacts to
P-type Regions 3-339
Insulator Contacts 3-339
N+ Poly Gate MOS Simulations 3-339
Special Boundary Conditions 3-339
Schottky Contacts 3-340
Mixing Boundary Conditions 3-340
INTERFACE 3-341
Description 3-342
See Also 3-342
Interface Selection 3-342
Insulator Charge 3-342
Saving Interface Parameters in Files 3-343
ANISOTROPIC 3-344
Description 3-350
See Also 3-351
Simple Anisotropic Models 3-351
Anisotropic Properties of Materials 3-351
Carrier Thermal Diffusivities 3-353
Example 3-353
General Anisotropic Models 3-353
Impact Ionization 3-354
Thermal Conductivity 3-354
Examples 3-355
Advanced Band Structure Parameters 3-355
3.5 Circuit Analysis 3-357
Circuit Mode Overview 3-358
Syntax and Use 3-358
Control Statements 3-359
Order of Execution 3-359
Circuit Elements 3-359
Punctuation and Case 3-359
Circuit Nodes 3-359
Current Nodes 3-360
Medici Devices 3-360
Parameters 3-360
Numerical Parameters 3-360
Unit Identifiers 3-361
Logical Parameters 3-361
Character Parameters 3-361
Regional Parameters 3-361
Active Circuit Elements 3-362
Model Types 3-362
Model Parameters 3-362
Using Your Own mdfkyl File 3-363
MOSFET Models 3-363
START 3-364
Example 3-364
See Also 3-364
C<name> 3-365
Example 3-365
See Also 3-365
D<name> 3-365
Example 3-366
E<name> 3-366
Example 3-366
F<name> 3-367
Example 3-367
G<name> 3-368
Example 3-368
H<name> 3-368
Example 3-368
I<name> 3-369
Example 3-371
See Also 3-371
K<name> 3-371
Example 3-371
L<name> 3-371
Example 3-372
M<name> 3-372
Example 3-372
See Also. 3-373
P<name> 3-373
Example 3-373
See Also 3-373
Q<name> 3-374
Example 3-374
R<name> 3-374
Example 3-375
See Also 3-375
V<name> 3-375
Example 3-377
See Also 3-377
W<name> 3-378
Example 3-378
MODEL 3-380
Description 3-386
See Also 3-386
Examples 3-387
SPICE Capacitance Models 3-387
.NODESET 3-388
Example 3-388
See Also 3-388
.IC 3-389
Example 3-389
OPTIONS 3-390
Example 3-391
See Also 3-391
LOAD 3-392
Example 3-392
See Also 3-392
FIdNISH 3-393
Example 3-393
See Also 3-393
3.6 Documentation and Control 3-395
Control Statements 3-396
Obtaining Help 3-396
Interactive and Batch Input Modes 3-396
Statement Line Numbers 3-397
Processing Order 3-397
Example 3-397
Currently Available Input Statements 3-397
Output of Statement Information 3-398
Output to Terminal 3-398
Controlling Program Execution 3-398
CALL Statement 3-398
Conditional Statements 3-399
LOOP Statements 3-399
ASSIGN Statement 3-399
RETURN Statement 3-399
STOP Statement 3-399
IGNORE Statement 3-399
Optimization 3-400
Optimization Process 3-400
Sensitivity Analysis 3-400
Sensitivity Analysis Process 3-401
TITLE 3-402
Description 3-402
See Also 3-402
COMMENT 3-402
Description 3-402
See Also 3-403
OPTION 3-404
Description 3-404
HELP 3-405
Description 3-405
CALL 3-406
Reading a CALL File 3-406
Range Parameters 3-407
Default Values 3-407
Statement Modification 3-407
Nesting CALL Statements 3-408
Generating Template Files 3-409
Construction Methods 3-409
Example 3-409
Using Template Files 3-409
See Also 3-410
INTERACTIVE 3-411
Starting Interactive Mode. 3-411
Terminating Interactive Mode 3-411
Entering Long Statements 3-412
Entering Statements in Loops 3-412
BATCH. 3-413
Description 3-413
I.PRINT 3-414
Range Parameters 3-414
CALL Statements 3-414
Output. 3-415
I.SAVE 3-416
Description 3-416
Saving Input Statements. 3-416
Saving a Range of Statements 3-417
Repeated I.SAVE. 3-417
Statement Modification 3-418
IF 3-419
Specifying Block Sequence 3-419
Matching and Nesting. 3-419
Processing 3-419
Example 3-420
See Also 3-420
ELSE 3-421
Description 3-421
See Also 3-421
IF.END 3-422
LOOP 3-423
Statement Looping 3-423
Loop Processing 3-424
Matching and Nesting 3-424
Loop Counters 3-424
Parameter Values in Loops 3-425
Syntax 3-425
Parameter Varying Loop 3-426
Parameters in Value Specification 3-426
Value <increment> 3-426
Value <level> 3-426
Single Loop Example 3-427
Complex Example 3-427
See Also 3-428
L.MODIFY 3-429
Description 3-430
Modifying Passes Through the Loop 3-430
L.END 3-431
Preventing Subsequent Passes 3-431
Terminating All Loops 3-431
See Also 3-432
ASSIGN 3-433
Description 3-435
See Also 3-435
Definitions 3-436
Values. 3-436
Mixed Type Usage 3-436
Numerical Values 3-436
Logical Values 3-437
Character Values 3-437
Incrementing 3-437
Assigned Names in Optimization 3-438
Overriding Assigned Values 3-438
Environment Variable 3-438
Interactive Input Prompt 3-439
Examples 3-439
Simple Example 3-439
Complex Example 3-440
ECHO 3-441
Description 3-441
Example 3-441
Steps Not Specified 3-441
Steps Specified 3-441
RETURN 3-442
Description 3-442
STOP 3-442
Description 3-442
IGNORE 3-443
Description 3-443
3.7 Old Statements 3-445
CALCULATE 3-446
Description 3-447
Specifying Quantities 3-447
A Quantity 3-447
B Quantity 3-447
C Quantity 3-447
Calculating Square Roots 3-447
Previous Definitions 3-448
CHECK 3-449
Description 3-449
DEPOSITION 3-450
Description 3-451
Specifying Density of Carrier Boxes 3-451
Examples 3-451
.DC 3-452
SPICE Compatibility 3-452
Example 3-452
See Also 3-453
Different Bias Point Densities 3-453
Fixed Voltages and Nodes 3-453
Procedures 3-454
Troubleshooting 3-454
First Bias Point Failure 3-455
Failure to Converge: Too Many Iterations 3-456
Failure to Converge: Impact Ionization 3-457
.SAVE. 3-458
Example 3-458
.TRAN 3-459
Example 3-459
Failed Convergence 3-459
Failed Time Points 3-459
Switching Waveforms 3-460
MOSFET Models 3-460
3.8 Statement Summary 3-461
N-Channel MOSFET Examples 4-1
Example Specifications 4-1
Generation of the Simulation Structure 4-2
Mesh 4-3
Defining the Initial Mesh 4-3
Grid Refinement 4-6
Saving Zero Bias Solution 4-8
Impurity Distribution Plots 4-9
Simulation of Gate Characteristics 4-11
Calculating Gate Characteristics 4-11
Initialization 4-11
Solve Options 4-11
Log File 4-11
Gate Characteristics 4-11
Simulation of Drain Characteristics 4-12
Procedures 4-13
Initial Solution 4-13
Solve Options 4-13
Log File 4-13
Drain Characteristics 4-13
Potential Contours Plot 4-14
Substrate and Gate Current Calculation 4-15
Procedures 4-16
Initial Solution 4-16
Log File 4-16
Impact Ionization and Gate Current 4-16
Substrate Current vs. Vgs Plot 4-16
Gate Current vs. Vgs Plot 4-17
Generation Rate Contours Plot 4-18
Analysis Including Fast Interface States. 4-19
Procedures 4-20
Removing the Interface Charge 4-20
Initial Solution 4-21
Interface State Parameters 4-21
Three Interface State Cases 4-21
Log File 4-21
Graphical Output 4-21
Positive States Case 4-22
Negative States Case 4-22
Analysis Including Band-to-Band Tunneling 4-25
Procedures 4-26
Grid Refinement 4-26
Models 4-27
Solution. 4-27
Drain Current vs. Vgs Plot 4-27
Band-to-Band Generation Contour Plot 4-28
Avalanche Breakdown Analysis 4-28
Procedures 4-28
Modifying Simulation Structure 4-29
Solutions 4-31
Ionization Integrals 4-31
Potential Contours and E-Line Plots 4-32
Breakdown Simulation with Impact Ionization Model 4-35
Procedures 4-35
Structure 4-35
Models 4-35
Initial Zero-Carrier Solution 4-35
Impact Ionization Model Selection 4-35
Initial Two-Carrier Solution 4-364-38
Continuation Method 4-38
Drain Current Snapback Plot-- Local Model 4-40
Flowline Plot-- Local Model 4-40
Drain Current Snapback Plot-- Non-local Model 4-42
Flowline Plot-- Non-local Model 4-42
Direct Tunneling Analysis in a N-MOSCAP 4-43
Mesh. 4-43
Regions 4-45
Tunneling Parameters 4-46
Models 4-46
Direct Tunneling Analysis 4-46
Quadtree Mesh for a MOSFET 4-47
Initial Quadtree Mesh 4-48
Potential Regrid 4-49
NPN Bipolar Transistor Examples 5-51
Example Specifications 5-51
Generation of the Simulation Structure 5-51
Defining the Initial Mesh 5-52
Mesh Specifications 5-52
Device Regions 5-53
Impurity Profiles 5-53
Regrid 5-53
Models and Initial Solution 5-53
Simulation of Forward Characteristics 5-55
Input Statements 5-56
AC Small-Signal 5-56
Post-Processing of Forward Bias Results 5-56
Input Statements 5-56
Collector and Base Currents 5-56
Beta 5-58
Cutoff Frequency 5-59
Current Vectors and Potential Contours 5-60
Impurity and Carrier Concentrations 5-61
Simulation with Modified Emitter Region 5-62
Modification of Mesh 5-63
Hole Mobility and Lifetime 5-64
Final Adjustments and Saves 5-64
Post-Processing of Device with Modified Emitter 5-64
Metal Contact vs. Metal-Poly-Silicon 5-64
Simulation of a One-Dimensional Bipolar Transistor 5-69
Creating a One-Dimensional Device Structure 5-69
Base Contact 5-69
Grid. 5-70
Electrodes 5-70
Doping Profiles 5-70
Solutions 5-71
Graphical Output 5-73
Diode and Lumped Element Examples 6-1
Example Specifications 6-1
Transient Simulation of a PN Diode 6-1
Mesh Generation 6-1
Doping Regrid 6-3
Transient Analysis 6-4
Models and Boundary Conditions 6-4
Solution Methods 6-4
Initial Solution 6-4
Transient Solutions 6-4
Graphical Results 6-4
One-Dimensional Plots of Hole Concentrations 6-6
One-Dimensional Plots of Electron Concentration 6-8
Stress-Induced Leakage Example 6-9
Reading and Specification of the Device Structure 6-10
Reverse Leakage Simulation Without Stress 6-11
Reverse Leakage Simulation With Stress 6-12
Lumped Resistance and Distributed Contact Resistance Example 6-13
Mesh Generation 6-14
Lumped Resistance Solution 6-14
Contact Resistance Solution 6-15
MOSFET with Inductive Load 6-16
Mesh 6-17
Models 6-17
Initial Device Solution 6-17
Adding Lumped Elements 6-18
Transient Simulation 6-18
Photogeneration Examples 7-1
Example Specifications 7-1
Back-Lit Solar Cell 7-1
Wavelength of Light 7-2
Generation of the Simulation Structure and Solutions 7-2
Initial Mesh 7-3
Grid and Device Dimensions 7-3
Fine Grid for Photogeneration 7-3
Device Specification 7-4
Doping 7-4
Regrid 7-4
Models 7-4
Photogeneration Rate Model 7-5
Specifying Photogeneration Model Parameters 7-6
Generation Path 7-7
Solutions File 7-7
Total Generated Charge 7-8
Cell Power and Load Resistance 7-8
Single-Event Upset of a SRAM Cell 7-9
Overview 7-9
Geometric Symmetry 7-10
Limitation with Medici Simulation. 7-10
Generation of the Simulation Structure and Transient Solutions 7-10
Mesh Generation 7-11
Cylindrical Coordinates 7-11
Structure Definitions 7-11
Models 7-13
Initial Solution 7-13
Boundary Conditions 7-13
Solution 7-13
Generation Track 7-13
Transient Solution 7-15
Examination of Internal Device Behavior 7-16
Plot Generation 7-16
Evolution of the Charge Column 7-17
Template Examples 8-1
Example Specifications. 8-1
N-Channel LDD MOSFET Example 8-1
Templates Used 8-1
Suppressing Content Listing 8-1
MOS Definition Template 8-2
Default Changes 8-2
MOS Structure Template 8-2
Regrid 8-2
Regrid Plots 8-3
Template. 8-7
P-Channel MOSFET Example 8-7
Template Used 8-8
Suppress Content Listing 8-8
MOS Definition Template 8-8
Default Changes 8-8
MOS Structure Template 8-9
Mesh 8-9
Simulation Mesh Plot 8-9
Doping Plots 8-9
Template. 8-9
NPN Bipolar Junction Transistor Example 8-12
Templates Used 8-12
Suppress Content Listing 8-12
Bipolar Definition Template 8-12
Bipolar Structure Template 8-13
Mesh 8-13
Simulation Mesh. 8-13
Doping Plots 8-13
Gummel Plot Template 8-14
Energy Balance Examples 9-1
Example Specifications 9-1
Substrate Current Simulation in an LDD MOSFET 9-1
Mesh Specifications 9-1
Solutions. 9-2
Full Energy Balance Model 9-3
Plots 9-4
Bipolar Junction Transistor Example 9-8
Mesh Specification 9-9
Solution 9-9
Electron Energy Balance Method 9-9
Plots 9-10
Interface Examples 10-1
Introduction 10-1
Interfaces to Process Simulators 10-1
Interfaces to Parameter Extractors 10-2
Interface to TMA SUPREM-3 10-2
TMA SUPREM-3 Simulation 10-2
Mask Layout 10-3
Processing Steps 10-4
Files for Medici 10-5
Medici Simulation of Gate Characteristics 10-7
Device Specification 10-7
Using TMA SUPREM-3 Profiles 10-7
Device Plots 10-9
Gate Characteristics Simulation 10-10
Interface to TSUPREM-4 10-12
TSUPREM-4 Simulation 10-12
Initial Mesh 10-12
Medici Considerations 10-12
Processing Steps 10-12
Electrodes 10-12
Completing the Device Structure 10-13
Medici Simulation. 10-17
Gate Characteristics Simulation 10-17
Structure Definition with TSUPREM-4 10-17
Device Plots 10-18
Drain Characteristics Simulation 10-19
Interface to Taurus-Lithography 10-23
Taurus-Lithography Simulation 10-23
Files for Medici. 10-24
Medici Simulation of Electric Field Distribution 10-25
Topology from Taurus-Lithography 10-25
Regrid 10-25
Plots 10-25
Interface to Aurora 10-29
Conversion of Medici Log File to Aurora Format 10-29
Input and Output Files 10-29
Electrode 10-29
Device Parameters 10-29
Aurora Extraction 10-30
Parameter Extraction 10-30
Figures and Plot 10-30
Interface to IC-CAP 10-32
Conversion of Medici Log File into IC-CAP Format. 10-32
Input and Output Files 10-32
Electrodes 10-32
Input Variables 10-33
Output 10-33
2002.4 Programmable Device Examples 11-1
Example Specifications 11-1
Writing and Erasing of a Flash EEPROM Cell 11-1
Writing 11-2
Erasing 11-2
Procedures 11-2
Device Structure 11-2
Gate Characteristics 11-2
Grid. 11-2
Writing of the EEPROM 11-2
Erasing of the EEPROM 11-3
Circuit Analysis Examples 12-1
Example Specifications. 12-1
Bipolar Transistor With Resistive Load 12-1
Generation of the Simulation Structure and Solutions 12-2
Mesh File 12-2
Transistor Type 12-2
Models 12-3
Circuit Mode 12-3
Voltage Source 12-3
Transistor 12-3
Initial Guess 12-3
Potentials 12-3
Solution. 12-3
Plots 12-4
Single Event Upset of SRAM Cell with Circuit 12-7
SEU Schematic 12-7
Generation of the Simulation Structure and Solutions 12-7
Creating the Cylindrical Diode 12-8
Simulation. 12-8
Circuit Mode 12-8
Lumped Circuit Elements 12-8
Cylindrical Diode 12-8
Initial Guess 12-8
Exiting Circuit Mode 12-8
Solution. 12-8
Charge Track 12-9
Logfile 12-9
Time Step and Solve 12-9
Plots 12-9
Transfer Curves for CMOS Pair with Compact Load 12-15
Circuit Specifications 12-15
Generation of the Simulation Structure 12-15
N-Channel Transistors 12-15
P-Channel Transistors 12-16
Generation of Circuit and DC Simulations 12-21
Procedures 12-21
Time Dependent Input Source 12-21
P - and N-Channel Devices 12-21
Other Circuit Elements 12-21
Initial Guess 12-21
Solution 12-22
DC Sweep 12-22
Saving the Solution and Mesh 12-22
Plots 12-22
Transient Simulation of CMOS Pair with Compact Load 12-26
Procedures 12-26
Structure 12-26
Solution 12-27
Input Source 12-27
Time Step Tolerance 12-27
Transient Simulation 12-27
Inverter Plot 12-27
Load Inverter Plot 12-28
Drain Current Plot 12-28
Power Supply Plot 12-28
AC Analysis Simulation of CMOS Pair with Compact Load 12-31
Procedures 12-31
Device Structure 12-31
Initial Solution 12-31
AC Analysis Mode 12-31
AC Analysis Plot 12-31
Lattice Temperature Examples 13-1
Example Specifications. 13-1
SOI Drain Characteristics Example 13-1
Procedures 13-2
Mesh and Device Structure 13-2
Electrode 13-2
Simulation Mesh Plot 13-2
Models 13-2
Gate Bias and Solution 13-2
Generating Drain Curves 13-2
Drain Curve Plot 13-3
Temperature Distribution Plot 13-3
Bipolar Transistor Thermal Run-Away Analysis 13-7
Device Failure 13-7
Collector Current 13-8
Collector Voltage 13-8
Procedures 13-9
Device Structure 13-9
Mesh 13-9
Electrode 13-9
Thermal Resistance 13-9
Models 13-10
Solution. 13-10
Circuit Simulation 13-10
Numerical Bipolar Transistor Model 13-10
Current Source 13-10
Amplifier 13-11
Initial Guess 13-11
Curve Calculation 13-11
Exiting Circuit Mode 13-11
Thermal Runaway Plot 13-11
Insulated Gate Bipolar Transistor Example 13-16
IGBT Device Structure 13-16
Latch-Up Stability 13-16
Device Structure Plots 13-16
Boundary Conditions 13-16
Non-Isothermal Solution 13-17
Isothermal Solution 13-17
Plots 13-17
I-V Curves and Internal Functions 13-17
Forward Bias Current Voltage 13-17
Internal Device Behavior 13-17
Heterojunction Examples 14-1
Example Specification 14-1
SiGe Heterojunction Bipolar Transistor Simulation 14-2
Device Structure and Plots 14-2
Forward Bias Simulation 14-6
Plots 14-6
High Electron Mobility Transistor Simulation 14-8
Structure Generation 14-8
Device Structure 14-8
Doping 14-8
Material and Mobility Parameters 14-9
Simulation 14-9
Solution. 14-10
Plots 14-11
2D Plots 14-12
Trapped Charge Examples 15-1
Example Specifications 15-1
Thin Film Transistor Example 15-1
Trap States 15-2
DOS Example 15-2
Simulation 15-2
Device Structure 15-2
Without Traps 15-3
With Traps 15-4
Creating Traps 15-5
Electron Traps 15-6
Simulation 15-6
Bipolar Junction Transistor Turn-Off with Traps Simulation 15-7
Structure Generation 15-7
Device Structure 15-7
Electrodes and Doping 15-7
Initial Solution 15-8
Simulation 15-8
Without Traps 15-8
Time Dependent Traps 15-8
Fast Traps 15-8
Trap Analysis Plot 15-8
Breakdown Walk-Out in Power MOS Device 15-10
Structure Generation and Simulation 15-10
Device Structure Specification 15-11
Models 15-12
Initial Solution 15-13
Oxide Traps 15-13
Time Dependent Simulation 15-13
Results 15-13
Optical Device Examples 16-1
Example Specifications 16-1
A-Silicon Solar Cell Example 16-1
Structure Generation 16-2
Refractive Index 16-2
Description of Light Source 16-2
Solar Light-Spectra 16-2
Solutions for the Spectral Response and I/V Characteristics 16-3
Simulation Results and Plots 16-3
Short Circuit Current and Spectral Power Density 16-4
External Collection Efficiency Plot 16-4
I-V Plot 16-4
Power and Load Resistance Plot 16-4
Simulation of a GaAs Photodetector 16-13
Structure Generation and Solution Creation 16-13
Steady State Solutions and Photogeneration 16-14
Transient Simulations 16-14
Small-Signal AC Analysis 16-14
Examining Results 16-17
Anisotropic Material Examples 17-1
Example Specifications 17-1
Anisotropic Block Example 17-1
Device Structure and Simulation 17-1
Tensor Mobility 17-1
Solution. 17-2
Plots 17-2
Appendix A: Template Files A-1
Introduction A-1
Available Templates A-2
MOS Templates A-3
MOS Default Value File: mosdef07. A-3
Default Value File A-3
Parameter and Dimension Values A-6
Additional Parameters A-6
MOS Structure Definition Templates: mosstr0 and mosstr1 A-7
Template mosstr0 A-7
Template mosstr1 A-7
MOS Bias Templates: mosgat0 and mosdrn0 A-8
Required Variables A-8
Template Examples A-8
NMOS A-9
PMOS A-10
Single Carrier Solutions A-11
Bipolar Templates A-11
Bipolar Default Value File: bipdef0 A-11
Default Value File A-12
Parameter and Dimension Values A-15
Additional Parameters A-15
Bipolar Structure Definition Template: bipstr0 A-16
Advantage A-16
Limitation A-17
Base and Emitter Contacts A-17
Bipolar Bias Template: bipgum0 A-17
Examples A-17
NPN A-18
PNP. A-18
Cutoff Frequency A-18
Appendix B: Synopsys TCAD Graphics B-1
Specifying the Graphics Device B-1
Driver Subroutine B-1
Graphics Devices B-2
Direct Device Drivers B-2
Driver Output B-2
Available Drivers B-2
Graphics Software Library Drivers B-4
Enabling B-5
Output B-5
Available Drivers B-5
Special Device Drivers. B-6
Available Drivers B-6
Plot Device Definition File B-9
mdpdev File B-9
Syntax. B-9
Graphics Device Characteristics B-9
Defaults. B-11
Multiple Lines and Entries B-12
Editing B-12
$m d p d e v$ Listing B-12
Unique Operating System Specifications B-14
Appendix C: Version 2002.4 Enhancements C-1
Enhancements to Medici Version 2002.4 C-1
Schottky Barrier Tunneling C-1
Post-Processing Enhancements C-3
Printing and Plotting Total Acceptors and Donors. C-3
Printing and Plotting Ionized Impurities C-3
Depletion Edges and Ionized Impurities C-3
Extraction of Nc and Nv C-3
Gradients of Spatially Varying Predefined Quantities C-3
Traps Stored in TIF Files C-3
Total Mobility Saved in TIF Files C-4
Miscellaneous Enhancements C-4
New Quadtree Mesh Generator Parameters C-4
Material Conversion of Regions. C-4
Temperature Dependence of MLDA Parameters C-5
Bug Fixes in Medici Version 2002.4 C-6
Direct Tunneling Related Fixes C-6
MLDA Related Fixes C-6
Mesh Related Fixes C-6
Post-Processing Related Fixes C-6
Miscellaneous Bug Fixes C-7
References C-8
Appendix D: Technology Interchange Format (TIF) D-1
Introduction D-1
Current Applications D-1
Format. D-2
Informational Group D-2
Record Types D-2
Core Records. D-3
Nodal Coordinates Record D-3
Edge Record D-3
Region Record D-3
Boundary Record D-4
Interface or Electrode Record D-4
Interface Edge Record D-4
Triangle Record D-4
Fields Record (Solution Functions) D-5
Node Record D-5
Optional Records D-5
Curve Data Records D-6
Three-Dimensional Structure Records D-6
TIF Example D-7
Appendix E: Medici and STUDIO Command Editor E-1
Introduction E-1
Restrictions E-1
Creating Input Files with the STUDIO Command Editor E-2
Command Mode E-2
Text Mode E-2
Parameter Error Message E-2
Reading Existing Input Files into the STUDIO Command Editor E-3
Appendix F: Limitations of IBM SP2 Versions of Medici F-1
Energy Balance and Lattice Temperature Equations F-1
Flowline Plots F-1
Linear Matrix Solution in Medici F-1
Appendix G: Format of Mask Data Files G-1
Mask File Format G-1
Glossary Glossary-1
Index Index-1

Using Medici

Introduction

This chapter discusses starting Medici, required input files, output files generated, and miscellaneous files required to execute the program. The chapter includes discussions of the following:

- Execution command
- Syntax errors
- Error and warning messages
- Program output
- File specification
- Required input files
- Output files generated
- Miscellaneous files required to execute the program

Program Execution and Output

This section describes the Medici execution command, syntax and execution errors, and types of program output.

Execution Command

Execution of Medici is initiated with the following command:

```
medici
```

or
medici <filename>
where <filename> is the name of a command input file (see "Command Input File," p. 1-7 and Figure 1-1).

The program responds by displaying a header identifying the program version on your terminal. If <filename> is not specified, you will be prompted for this information:

Figure 1-1 Medici command prompt

Note:

The file specification must conform to conventions in the operating system and cannot contain more than 80 characters.

If the file specification is blank, the program enters interactive input mode, as described in Chapter 3, "INTERACTIVE," p. 3-411. In this case, the input statements in the command input file must be entered from your terminal.

Execution on

 IBM SP2Systems with More than One Processor

When you execute Medici on the IBM SP2 for more than one processor, the number of processors (<n>) must follow the program command

```
medici n
```

The program responds as described above. The limitations of the IBM SP2 version of Medici are listed in Appendix E: Medici and STUDIO Command Editor.

Syntax Errors

The input statements in the command input file are printed on the standard output (see Standard Out File-<base>.out on p. 1-9) with assigned sequential line numbers. Each statement is checked for syntax errors. Syntax error messages are displayed on your terminal and on the standard output. Syntax error messages contain the following:

- The error number
- The line number of the statement responsible for the error
- The invalid portion of the statement text
- A description of the error

Execution Errors and Warnings

If no syntax errors are found, the input statements are then processed to check the validity of parameter combinations and values. The validity of a statement is also considered in the context of the preceding statements. Errors and warnings are indicated by messages displayed on your terminal and on the standard output.

Execution errors and warnings contain the following:

- The error number
- The line number of the statement responsible for the error
- A description of the error

Error and warning messages associated with file input and output include available system I/O error numbers.

The occurrence of execution errors terminates program execution after it is determined that no further reliable error checking can be performed.

Note:
Warnings are not fatal and serve only to indicate possible problems that you may choose to correct. Warning messages normally indicate the corrective action taken automatically by the program.

Program Output

Medici generates both printed and graphical output that describes the simulation results. All output is made available to the user before termination of the program, as described in "Output Files," p. 1-9.

Printed Output The following printed output can be obtained:

- Terminal voltages and currents for each bias and/or time point
- Terminal capacitances, conductances, and admittances as the result of an AC small-signal analysis
- Quantities obtained from mathematical expressions involving terminal data and internal device variables
- Structure information at each node of the simulation mesh, such as node number, coordinates, impurity concentration, interface charge, and electrode connections
- Mesh element information, such as element number, vertex nodes, material, coupling coefficients between nodes of the element, and the area of each node assigned to the element
- Material, mobility, contact, and model parameters, including values for concentration-dependent mobilities and lifetimes at each node
- Potential, carrier concentrations, current densities, recombination and generation rates, and electric field at each node in the simulation region

Graphical Output

The following graphical output can be obtained:

- One-dimensional plots of terminal data

This can include DC characteristics, such as applied voltage, contact voltage, terminal current, and time (in the case of transient simulations). It can also include AC quantities, such as capacitance, conductance, admittance, and frequency (if a frequency analysis is performed), and user-defined data.

- One-dimensional plots of quantities along arbitrary straight line paths through the structure

Some of the quantities that can be plotted include potential, carrier quasiFermi potential, electric field, carrier concentration, impurity concentration, recombination and generation rates, and current density.

- Two-dimensional structure plots that can include the grid, boundaries, electrode and junction locations, and depletion line edges
- Two-dimensional contour plots of quantities, such as potential, carrier quasiFermi potential, electric field, carrier concentration, impurity concentration, recombination and generation rates, current density, and flowlines
- Two-dimensional vector plots of current density and electric field
- Three-dimensional projection plots of quantities, such as potential, carrier quasi-Fermi potential, electric field, carrier concentration, impurity concentration, recombination and generation rates, and current density, against location in the structure

File Specifications

This section contains discussions of the various file specifications used by Medici, their configuration, locations, and how they might be used. This section includes the following:

- Output file identifiers
- Command input file indefinites
- Initially assigned names
- Environmental variables
- Library directory

Output File Identifiers-<base>

The names of standard output files are based on a common value referred to as <base>. The default value of <base> is set to the value of <root> (described
below), which depends on the identifier for the command input file. This allows the names of output files to be uniquely associated with the name of the command input file. Multiple copies of Medici may be executed simultaneously, using different command input files, in a single directory without encountering naming conflicts among the output files.

The default value of <base> may be overridden by setting the MBASE environment variable to an alternate value before executing Medici. The value of <base> is available in the command input file through the MBASE initially assigned name. Environment variables are discussed in "Environment Variables," p. 1-7, and initially assigned names are discussed in "Initially Assigned Names," p. 1-5.

Command Input File Identifier-<head> and <root>

The identifier for the command input file is represented by the following components:

<head>	The directory containing the file.
<root>	The portion of the file name before the last period.
<ext>	The portion of the file name after the last period.

The format of the file identifier is:
<head>/<root>.<ext>

The following special cases can occur:

- If the file identifier is blank, Medici has entered interactive input mode, <head> is defined as "." and <root> is defined as " $m d$ ".
- If the file identifier does not include a directory, <head> is defined as ".".
- If the file name does not include a period, <root> is defined as the entire file name.

The default values of <head> and <root> may be overridden by setting the MDINH and MDINR environment variables (see "Environment Variables," p. 17), to alternate values before executing Medici. The values of 〈head> and <root> are available in the command input file through the MDINH and MDINR initially assigned names (see "Initially Assigned Names," p. 1-5).

Initially Assigned Names

At the beginning of execution, Medici establishes values for a predetermined set of assigned names (see the description of the ASSIGN statement in Chapter 3, p. 3-433). These are referred to as "initially assigned names." These names are
associated with the standard file identifiers used by Medici. The following initially assigned names are defined:

Initially Assigned Names	Description	Manual Section
MDINH	<head>-directory containing the command input file	See Command Input File Identifier<head> and <root> on p. 1-5.
MDINR	<root>-root of the command input file name	See Command Input File Identifier<head> and <root> on p. 1-5.
MDBASE	<base>-base for standard output file names	See Output File Identifiers-<base> on p. 1-4.
MDLIB	Location of the library directory	See Library Directory on p. 1-7.
MDPATH	Path file identifier	See Path File-mdpath on p. 1-13.
MDAUTH	Authorization file identifier	See Authorization File-mdauth on p. 1-14.
MDFKY0	Formatted key file identifier	See Formatted Key File--mdfky0 on p. 1-14.
MDUKY0	Unformatted key file identifier	See Unformatted Key File—mduky0 on p. 1-14.
MDERR0	Error message file identifier	See Error Message File—mderr0 on p. 115.
MDPDEV	Plot device definition file identifier	See Plot Device Definition File—mdpdev on p. 1-14.
MDFKYI	Circuit analysis formatted key file identifier	See Circuit Analysis Formatted Key Filemdfkyl on p. 1-15.
MDCOF1	Coefficient file identifier	See Coefficient File-mdcofl on p. 1-15.
MDOUT	Standard output file identifier	See Standard Output File-<base>.out on p. 1-9.
MDINF	Informational output file identifier	See Information Output File--<base>.inf on p. 1-9.
MDDIA	Diagnostic output file identifier	See Diagnostic Output File—<base>.dia on p. 1-9.
MDPRS	Parsing scratch file identifier	See Temporary Scratch Files on p. 1-16.
MDDPLT	Formatted plot output file identifier	See Formatted Plot Output Files on p. 1-10.
MDBPLT	Binary plot output file identifier	See Binary Plot Output Files on p. 1-10.
MDCPU	Execution time file identifier	See Execution Time Files on p. 1-13.
MDIVL	I-V log file identifier	See Log Files on p. 1-12.
MDSAV	Saved solution file identifier	See Saved Solution Files on p. 1-12.
MDTTN	Triangle tree storage file identifier	See Temporary Scratch Files on p. 1-16.
MDCONT	Temporary solution file identifier	See Temporary Scratch Files on p. 1-16.

The default value of each initially assigned name may be overridden by setting the environment variable (see "Environment Variables," p. 1-7) of the same name to an alternate value before executing Medici.

Environment Variables

Environment variables can be used to override the default values for the library directory location (see "Library Directory," p. 1-7), the standard file identifiers, and the graphics output device. Graphic devices are discussed in Appendix B: Synopsys TCAD Graphics.

A unique environment variable is associated with each library file and each standard output file. These environment variables are described in the remainder of this chapter in the descriptions of the file identifiers that they control.

Library Directory

The library directory contains files that are required to execute Medici (see "Miscellaneous Files," p. 1-13). The required files are: mdpath, mdpdev, mdauth, $m d f k y 0, m d f k y 1$, and $m d e r r 0$. The most important file is mdpath, which defines the default values for the library directory location and the standard file identifiers. The library directory may also contain the optional file mdcofl.

The default location of the library directory is defined as the current directory. It can be overridden by setting the MDLIB environment variable to an alternate directory location before executing Medici.

Input Files

Medici requires several types of input files. You must always supply a command input file. All other input files are optional.

Command Input File

The command input file contains statements that direct the Medici simulation. It is a text file that is created and modified using any text editor. Chapter 3 contains a detailed description of the valid input statements and their formats.

Statement

 OverviewThe initial structure definition consists of MESH, X. MESH, Y.MESH, ELIMINATE, SPREAD, BOUNDARY, TSUPREM4, REGION, ELECTRODE, and PROFILE statements. These statements define the structure and simulation grid. REGRID statements may be used to refine the simulation grid.

INTERFACE statements may be included to specify interface charge, traps, or recombination velocities. Use CONTACT statements to include special boundary
conditions at electrodes and MATERIAL statements to alter the material characteristics of the structure. MOBILITY statements specify parameters associated with the various mobility models. MODELS statements specify physical models used during the simulation.

SYMBOLIC statements are used to select the solution methods in the simulation. METHOD statements are used to choose special techniques for use with the selected solution method. The SOLVE statement is used to select bias conditions and analysis type, which can be either steady state, transient, or AC small-signal.

The PLOT. 3D statement is used to initiate a three-dimensional plot sequence. Other statements that can form part of the sequence are 3D.SURFACE, TITLE, and COMMENT.

The PLOT. 2D statement is used to initiate a two-dimensional plot sequence. The two-dimensional plot sequence can consist of CONTOUR, VECTOR, E.LINE, LABEL, TITLE, and COMMENT statements.

The PLOT .1D statement is used to initiate a one-dimensional plot. The E. LINE, LABEL, TITLE, and COMMENT statements can be used in conjunction with onedimensional plots.

Two-Dimensional Process Files

Two-dimensional process files can contain either two-dimensional electrically active impurity distributions or boundary information describing device structures, or both.

Two-dimensional process files containing impurity distributions can be specified as input on the PROFILE statement to define impurity distributions in Medici. These files can be generated by TSUPREM-4, or they may be formatted text files. In addition, TSUPREM-4 files can be specified as input on the MESH statement in order to define both a Medici grid and its doping distribution.

Two-dimensional process files containing boundary information can be specified as input on the BOUNDARY statement. They are used to derive grids conforming closely to the boundaries. These files can be generated by Taurus-Lithography or TSUPREM-4, or they may be formatted text files.

One-Dimensional Process Files

One-dimensional process files contain one-dimensional electrically active impurity distributions. They are specified as input on the PROFILE statement to define vertical impurity distributions. One-dimensional process files can be generated by TMA SUPREM-3, or they may be formatted text (ASCII) files.

Output Files

Medici produces a variety of printed and graphical output and data files. Messages and output indicating the progress of the program are displayed on your terminal. These files are described in this section.

Standard Output File-<base>.out

Standard output is placed in the <base>.out file. It consists of a listing of the simulation input statements, error and warning messages, and printed output produced during a Medici session. Each input statement in the listing is preceded by a line number. The <base>.out file is formatted as standard FORTRAN list output. It should be examined after Medici completes a simulation.

The default file identifier for the file <base>.out is defined by the path file mdpath (see Path File-mdpath on p. 1-13). This default may be overridden by setting the MDOUT environment variable to an alternate file identifier before executing Medici. The file identifier used for the file <base>.out is available within the command input file through the MDOUT initially assigned name.

Informational Output File—<base>.inf

Informational output is placed in the <base >.inf file, and consists of supplementary information. It is formatted as standard FORTRAN list output, and is normally not of interest to you.

The default file identifier for the file <base >.inf is defined by the path file mdpath (see Path File-mdpath on p. 1-13). This default may be overridden by setting the MDINF environment variable to an alternate file identifier before executing Medici. The file identifier used for the file <base>.inf is available within the command input file through the MDINF initially assigned name.

Diagnostic Output File—<base>.dia

Diagnostic output is placed in the <base>.dia file, and consists of information that is used during the diagnosis of program errors. It is formatted as standard FORTRAN list output, and is useful only if you have a detailed knowledge of the internal operation of Medici.

The default file identifier for the file <base>.dia is defined by the path file mdpath (see Path file-mdpath on p. 1-13). This default may be overridden by setting the MDDIA environment variable to an alternate file identifier before executing Medici. The file identifier used for the file <base>.dia is available within the command input file through the MDDIA initially assigned name.

Graphical Output

Graphical output is sent to the graphics output device specified by the DEVICE parameter on PLOT.1D, PLOT. 2D, and PLOT. 3D statements. This is usually your terminal. Valid names for the graphics output device are defined by the mdpdev plot device definition file (see Appendix B).

Device drivers are available for a variety of devices, including graphics terminals, pen plotters, and graphics software libraries. In addition, custom drivers may be developed and installed at your site.

Formatted Plot Output Files

Formatted plot output files are FORTRAN formatted files containing the character sequences that control the graphics device. These files may be output to the graphics device to reproduce the graphical output.

Output is sent to the file specified by the PLOT .OUT parameter on PLOT .1D, PLOT.2D, and PLOT. 3D graphics statements, if this parameter is specified. Otherwise, if the DF entry is "T" in the mdpdev plot device definition file, output is sent to the 〈base〉.dplt formatted plot output file. Output to these files is only available for the direct device drivers, as discussed in the description of the graphics statements in Chapter 3 and Appendix B.

The default file identifier for the file <base>.dplt is defined by the path file mdpath (see Path File-mdpath on p. 1-13). This default may be overridden by setting the MDDPLT environment variable to an alternate file identifier before executing Medici. The file identifier used for the file <base>.dplt is available within the command input file through the MDDPLT initially assigned name.

Binary Plot Output Files

Binary plot output files are unformatted (binary) files with each line containing the arguments X (real), Y (real), and IPEN (integer) for one call to the driver subroutine. The arguments X and Y are in units of centimeters. This output is not in the same format as the output sent to the output device, and is only useful as input to graphics post-processors.

Output is sent to the file specified by the PLOT .BIN parameter on PLOT .1D, PLOT . 2D, and PLOT . 3D statements, if this parameter is specified. Otherwise, if the BF entry is "T" in the mdpdev plot device definition file, output is sent to the <base>.bplt binary plot output file.

The default file identifier for the file <base>.bplt is defined by the path file mdpath (see Path File—mdpath on p. 1-13). This default may be overridden by setting the MDBPLT environment variable to an alternate file identifier before executing Medici. The file identifier used for the file <base>.bplt is available within the command input file through the MDBPLT initially assigned name.

Mesh Files

Mesh files contain coordinates of simulation mesh nodes region information and doping information at each node. They can be generated and given user-specified names by using the MESH and REGRID statements. Mesh files can be used to define the simulation mesh in subsequent simulations through the MESH statement. By default, mesh files are created in binary format. They may also be created as formatted files.

Profile Files

Profile files contain the original specification of the impurity profiles for a Medici simulation. They can be generated and given user-specified names by using the PROFILE statement. Profile files are in binary format and are used to define the impurity profiles during regridding operations.

Boundary Files

Boundary files contain descriptions of the material interfaces of grids created by the BOUNDARY statement. Since they are formatted files, you can alter them so they can be reread as input to the BOUNDARY statement.

Solution Files

Solution files contain the results of solutions to the following:

- Poisson's equation
- Electron and hole current-continuity equations (if used)
- Electron and hole energy balance equations (if used)
- Lattice heat equation (if used)

Solution files can be generated and given user-specified identifiers by using the SOLVE statement. Use solution files to initialize the simulation solutions through the LOAD statement. By default, solution files are created in binary format, but they can also be created as formatted files.

TIF Files

Technology Interchange Format (TIF) files are formatted files that can contain both mesh and solution information. TIF files provide a simple method for exchanging information between Medici and other programs such as TSUPREM-4 and Michelangelo. TIF files can be generated and given userspecified identifiers by using the SOLVE and SAVE statements. You can also use TIF files to initialize a simulation through the MESH statement.

Note:

Technology Interchange Format (TIF) is a proprietary but publicly open Synopsys TCAD format. It should not be confused with the graphics format, Tagged Image File Format (TIF or TIFF).

Saved Solution Files

Saved solution files contain the two most recent completed solutions. These files are generated by specifying the SAVE. SOL parameter on the OPTION statement. The files can be given user-specified identifiers by using the SOL .FILE parameter on the OPTION statement. Saved solution files are in binary format, and can be used to initialize the simulation solutions through the LOAD statement.

If the user-specified identifier is not specified for the saved solution files, a default of <base〉.sav is used.

The default file identifier for the file <base>.sav is defined by the path file mdpath (see Path File-mdpath on p. 1-13). This default may be overridden by setting the MDSAV environment variable to an alternate file identifier before executing Medici. The file identifier used for the file <base>.sav is available within the command input file through the MDSAV initially assigned name.

Log Files

Log files contain the terminal characteristics (I-V, AC, or arbitrary data) for all solutions performed after opening the log file. These files can be generated and given user-specified identifiers by using the LOG statement. Log files have the format of standard list output, and can be used as input during PLOT .1D statements.

If the user-specified identifier is not provided for the log files, a default of <base >.ivl is used.

The default file identifier for the file <base>.ivl is defined by the path file mdpath (see Path File-mdpath on p. 1-13). This default may be overridden by setting the MDIVL environment variable to an alternate file identifier before executing Medici. The file identifier used for the file <base >.ivl is available within the command input file through the MDIVL initially assigned name.

Execution Time Files

Execution time files contain detailed execution－time information for the simulation．These files are generated by specifying the CPU ．STAT parameter on the OPTION statement．The files can be given user－specified identifiers by using the CPU．FILE parameter on the OPTION statement．Execution time files have the format of standard list output，and are usually not generated or of interest to the user．

If an user－specified identifier is not provided for the execution time file，a default of 〈base〉．cpu is used．

The default file identifier for the file＜base＞．cpu is defined by the path file mdpath（see Path File－mdpath on p．1－13）．This default may be overridden by setting the $M D C P U$ environment variable to an alternate file identifier before executing Medici．The file identifier used for the file＜base＞．cpu is available within the command input file through the $M D C P U$ initially assigned name．

Miscellaneous Files

Medici uses several miscellaneous files which are generally not of interest to the user．

CAUTION

With the exception of mdcofl，Medici cannot run if these files are missing or inaccessible．

Path File－mdpath

mdpath defines the following：
－The default location of the library directory，and the default file identifiers for files in the library directory，such as mdpdev，mdauth，mdfky0，mduky0，and mderr0．
－The default file identifiers for standard output files，such as＜base＞．out，〈base〉．inf，〈base〉．dia，〈base〉．prs，〈base〉．dplt，and 〈base＞．bplt．

The path file is a text file，and can be modified with any text editor．
The default file identifier for mdpath is defined in Medici to be located in the library directory．This default may be overridden by setting the MDPATH environment variable to an alternate file identifier before executing Medici．The file identifier used for the file mdpath is available within the command file through the MDPATH initially assigned name．

Plot Device Definition File—mdpdev

The $m d p d e v$ file contains information that controls the use of the driver subroutines that send graphical output to a graphics device or graphics software library. It is a text file, and you can modify it with any text editor. This file is described in detail in Appendix B.

The default file identifier for $m d p d e v$ is defined by the path file mdpath (see Path File-mdpath on p. 1-13). This default may be overridden by setting the MDPDEV environment variable to an alternate file identifier before executing Medici. The file identifier used for the file $m d p d e v$ is available within the command file through the MDPDEV initially assigned name.

Authorization File—mdauth

The mdauth file contains authorization values that enable the execution of Medici. If this file contains invalid authorization values, error 1074 is generated. You have to contact Synopsys TCAD Business Unit for assistance in correcting the problem. This file is a text file.

The default file identifier for mdauth is defined by the path file mdpath (see Path File-mdpath on p. 1-13). This default may be overridden by setting the MDAUTH environment variable to an alternate file identifier before executing Medici. The file identifier used for the file mdauth is available within the command file through the MDAUTH initially assigned name.

Note:

This file is only applicable to the Cray system.

Formatted Key File—mdfky0

The $m d f k y 0$ file defines the statement names, parameter names, and some of the default values used by Medici. It is used to check the syntax of the command input file. This file is a text file.

The default file identifier for $m d f k y 0$ is defined by the path file mdpath (see Path File-mdpath on p. 1-13). This default may be overridden by setting the MDFKYO environment variable to an alternate file identifier before executing Medici. The file identifier used for the file $m d f k y 0$ is available within the command file through the MDFKY0 initially assigned name.

Unformatted Key File—mduky0

The $m d u k y 0$ file contains the same information as the $m d f k y 0$ formatted key file, but it is in binary format. Although this file does not originally exist, it can be used much more efficiently than $m d f k y 0$ to check the syntax of the command input file.

When Medici is executed, it attempts to open the $m d u k y 0$ file. If $m d u k y 0$ does not exist or is inaccessible, the data in $m d f k y 0$ is used to generate $m d u k y 0$, so it can perform the syntax check. Once $m d u k y 0$ has been created, $m d f k y 0$ is no longer needed. If it is necessary to change the statement names, parameter names, or default values by modifying $m d f k y 0$, $m d u k y 0$ should be deleted and the updated $m d f k y 0$ file made available for the next execution of Medici.

The default file identifier for mduky0 is defined by the path file mdpath (see Path File--mdpath on p. 1-13). This default may be overridden by setting the MDUKY0 environment variable to an alternate file identifier before executing Medici. The file identifier used for the file $m d u k y 0$ is available within the command file through the MDUKYO initially assigned name.

Error Message File—mderr0

The mderr0 file defines the error messages used by Medici to report syntax and other execution errors. It also defines the information printed by the HELP statement. It should always be present and available to Medici. The mederr0 file is a text file.

The default file identifier for m derr0 is defined by the path file mdpath (see Path File—mdpath on p. 1-13). This default may be overridden by setting the MDERRO environment variable to an alternate file identifier before executing Medici. The file identifier used for the file mderr0 is available within the command file through the MDERRO initially assigned name.

Circuit Analysis Formatted Key File—mdfky1

The $m d f k y l$ file defines the statement names, parameter names, and some of the default values used by the Circuit Analysis AAM in Medici. It is used to check the syntax of the command input file. The mdfkylfile is a text file.

The default file identifier for $m d f k y l$ is defined by the path file mdpath (see Path File-mdpath on p. 1-13). This default may be overridden by setting the MDFKY1 environment variable to an alternate file identifier before executing Medici. The file identifier used for the file $m d f k y l$ is available within the command file through the MDFKY1 initially assigned name.

Coefficient File—mdcof1

The coefficient file $m d c o f l$ contains simulation input statements that specify MATERIAL, MOBILITY, ANISOTROPIC, and IMPURITY parameters that will be used to override the Medici built-in default parameter values. This file is not required for program execution; however, Medici will check for its existence at the start of every simulation. If it is not found, the default values used by the program will be those that are described in the coefficients section of this user's manual. If this file is found, parameters specified in the file will replace the built-
in default parameter values. The coefficient file is a text file and can be created and modified with any text editor.

The statements allowed in the coefficient file include MATERIAL, MOBILITY, ANISOTROPIC, IMPURITY, COMMENT, and TITLE. An error will be issued for any other statement. When specifying parameters for a statement, a material type that the parameters apply to should also be given (for example, SILICON or GAAS). As an example, the following represents a valid coefficient file:

```
$ Coefficient file. Values specified here will replace the
$ Medici built-in defaults.
$ Use parameters from Green (JAP 67, p.2945, 1990) for
$ silicon bandgap and densities of states
MATERIAL SILICON EG300=1.1241 EGALPH=2.73E-4 EGBETA=0.0
+ NC300=2.86E19 NC.F=1.58
+ NV300=3.10E19 NV.F=1.85
```

The default file identifier for $m d c o f 1$ is defined by the path file mdpath (see Path File-mdpath on p. 1-13). This default may be overridden by setting the MDCOF1 environment variable to an alternate file identifier before executing Medici. The file identifier used for the file $m d c o f l$ is available within the command file through the MDCOF1 initially assigned name.

Temporary Scratch Files

Temporary scratch files are created and deleted as needed by Medici. These files do not need to be present before or after Medici is executed, and are usually deleted when execution terminates. If the program terminates abnormally, these files may not be deleted. If they are not deleted, you may delete them. The temporary scratch files created by Medici are described below.

<base>.prs is used in the parsing of input statements. The default file identifier for <base〉.prs is defined by the path file mdpath (see Path File-mdpath on p. 113). This default may be overridden by setting the MDPRS environment variable to an alternate file identifier before executing Medici. The file identifier used for the file <base>.prs is available within the command file through the MDPRs initially assigned name.
<base>.ttn is used to store the history of regridding operations for REGRID statements that do not specify an output mesh file. This file is used by the next REGRID statement to initialize the history of previous regridding operations. The default file identifier for the file <base>.ttn is defined by the path file mdpath (see Path File-mdpath on p. 1-13). This default may be overridden by setting the MDTTN environment variable to an alternate file identifier before executing Medici. The file identifier used for the file <base>.ttn is available within the command input file through the MDTTN initially assigned name.

<base>.cont <base>.cont is used to store the potential and carrier concentrations during continuation of a solution. The default file identifier for <base>.cont is defined by the path file mdpath (see Path File-mdpath on p. 1-13). This default may be overridden by setting the MDCONT environment variable to an alternate file identifier before executing Medici. The file identifier used for the file <base>.cont is available within the command file through the MDCONT initially assigned name.

mdcof1.prs mdcof1.prs is used in the parsing of statements in the coefficient file mdcof1. The file will be created in the <head> directory, and the root name for the file will be the same as the root name of the coefficient file.

Medici Description

Introduction

This chapter describes the Medici program for the analysis of electrical device operation. It contains, in order of presentation, discussions and/or descriptions of the following:

- Physical equations used by the program to describe semiconductor device behavior
- Mobility modeling capabilities, boundary conditions, numerical methods, and simulation grid
- Analysis capabilities including, transient, AC small-signal, impact ionization, gate current, ionization integrals, and band-to-band tunneling
- Simulation of deep submicron devices made possible by Medici's ability to include energy balance equations self-consistently within the system of device equations (See "Energy Balance Equations," p. 2-132.)
- Modification on a region by region basis of all accessible model and material parameters (See "Regional Specification of Semiconductor Parameters," p. 2142.)
- Advanced Application Modules (AAM) available for Medici (See pp. 2-142 through p. 2-180.)

Equations and discussions include the statement parameters documented in Chapter 3. Definitions and units for all symbols used in this chapter not documented in Chapter 3 are found beginning on p. 2-184. References for Chapter 2 begin on p. 2-196.

Physical Description

This section describes the following:

- Fundamental equations solved by Medici
- Recombination mechanisms and carrier and impurity statistics
- Temperature dependencies of parameters and models

The actual temperature, T, at which the simulation is performed can be specified with the TEMPERAT parameter on the MODELS statement.

Basic Equations

The primary function of Medici is to solve the three partial differential equations (Equations 2-1, 2-2, and 2-3) self-consistently for the electrostatic potential ψ and for the electron and hole concentrations n and p, respectively.

Poisson's The electrical behavior of semiconductor devices is governed by Poisson's Equation equation.

$$
\varepsilon \nabla^{2} \psi=-q\left(p-n+N_{D}^{+}-N_{A}^{-}\right)-\rho_{S}
$$

Equation 2-1

Continuity Continuity equations for electrons and holes also govern electrical behavior. Equations

$$
\begin{aligned}
& \frac{\partial n}{\partial t}=\frac{1}{q} \vec{\nabla} \cdot \vec{J}_{n}-U_{n}=F_{n}(\psi, n, p) \\
& \frac{\partial p}{\partial t}=\frac{-1}{q} \vec{\nabla} \cdot \vec{J}_{p}-U_{p}=F_{p}(\psi, n, p)
\end{aligned}
$$

Throughout Medici, ψ is always defined as the intrinsic Fermi potential. That is, $\psi=\psi_{\text {intrinsic. }} N_{D}^{+}$and N_{A}^{-}are the ionized impurity concentrations and ρ_{s} is a surface charge density that may be present due to fixed charge in insulating materials or charged interface states (see "Interface Charge and Traps," p. 2-65).

Boltzmann From Boltzmann transport theory, \vec{J}_{n} and \vec{J}_{p} in Equations 2-2 and 2-3 can be Transport Theory written as functions of the carrier concentrations and the quasi-Fermi potentials for electrons and holes, ϕ_{n} and ϕ_{p}.
$\overrightarrow{J_{n}}=-q \mu_{n} n \stackrel{\vec{\nabla}}{\nabla} \phi_{n}$
Equation 2-4
$\overrightarrow{J_{p}}=-q \mu_{p} p \vec{\nabla} \phi_{p}$

Alternatively, ${\overrightarrow{J_{n}}}_{n}$ and $\overrightarrow{J_{p}}$ can be written as functions of ψ, n, and p, consisting of drift and diffusion components

$$
\begin{align*}
& \overrightarrow{J_{n}}=q \mu_{n} \vec{E}_{n} n+q D_{n} \vec{\nabla}^{\prime} n \\
& \overrightarrow{J_{p}}=q \mu_{p} \vec{E}_{p} p-q D_{p} \vec{\nabla}_{p}
\end{align*}
$$

where μ_{n} and μ_{p} are the electron and hole mobilities and D_{n} and D_{p} are the electron and hole diffusivities, neglecting the effects of bandgap narrowing and assuming Boltzmann carrier statistics (see "Boltzmann Statistics," p. 2-10).

$$
\vec{E}_{n}=\vec{E}_{p}=\vec{E}=-\vec{\nabla} \psi
$$

Equation 2-8

SRH, Auger, and Direct Recombination

U_{n} and U_{p} in Equations 2-2 and 2-3 represent net electron and hole recombination, respectively. Currently Medici supports Shockley-Read-Hall, Auger, and direct recombination (also known as band-to-band or optical recombination).

That is,

$$
U=U_{n}=U_{p}=U_{S R H}+U_{\text {Auger }}+U_{d i r}
$$

where

$$
\begin{gather*}
U_{S R H}=\frac{p n-n_{i e}^{2}}{\tau_{p}\left[n+n_{i e} \exp \left(\frac{\mathbf{E T R A P}}{k T}\right)\right]+\tau_{n}\left[p+n_{i e} \exp \left(\frac{-\mathbf{E T R A P}}{k T}\right)\right]} \\
U_{d i r}=\mathbf{C . D I R E C T}\left(n p-n_{i e}^{2}\right) \\
U_{\text {Auger }}=\operatorname{AUGN}\left(p n^{2}-n n_{i e}^{2}\right)+\mathbf{A U G P}\left(n p^{2}-p n_{i e}^{2}\right)
\end{gather*}
$$

In the above, $n_{i e}$ is the effective intrinsic concentration and τ_{n} and τ_{p} are the electron and hole lifetimes, which may be concentration-dependent (see "Concentration-Dependent Lifetimes," p. 2-4). The parameter ETRAP represents the difference between the trap energy level E_{t} and the intrinsic Fermi energy E_{i} (i.e., ETRAP $=E_{t}{ }^{-} E_{i}$) and AUGN and AUGP are specified constants. The

MATERIAL statement can be used to modify the default values of ETRAP, AUGN, AUGP, and C.DIRECT.

Surface Recombination

In addition to the recombination mechanisms described in the previous section, Medici also includes an additional recombination component at specific insulatorsemiconductor interfaces. This recombination mechanism can be described by a surface recombination velocity as described in [1].

Surface recombination velocities for electrons and holes can be specified for any interface, using the INTERFACE statement. Note that the INTERFACE statement can also be used to include fixed charge densities, $\mathbf{Q F}$, for the interface and interface traps (see "Interface Charge and Traps," p. 2-65).

For each node on the interface so specified, an effective SRH lifetime for each carrier $\tau_{n}^{e f f}$ and $\tau_{p}^{e f f}$ is computed based on the given recombination velocities $\mathbf{S . N}$ and S.P

$$
\begin{align*}
& \frac{1}{\tau_{n}^{e f f}(i)}=\frac{\mathbf{S . N} d_{i}}{A_{i}}+\frac{1}{\tau_{n}(i)} \\
& \frac{1}{\tau_{p}^{e f f}(i)}=\frac{\mathbf{S . P} d_{i}}{A_{i}}+\frac{1}{\tau_{p}(i)}
\end{align*}
$$

where $\tau_{n}(i)$ and $\tau_{p}(i)$ are the regular SRH lifetimes at node i (possibly concentration dependent), A_{i} is the semiconductor area associated with node i, and d_{i} is the length of the interface associated with node i.

Each interface or portions of a particular interface can be defined separately with arbitrary recombination velocities at each interface.

Concentration-Dependent Lifetimes

Electron and hole lifetimes used in Medici may be concentration-dependent, as shown below

$$
\begin{align*}
& \frac{\mathbf{T A U N O}}{\tau_{n}(x, y)}=\mathbf{A N}+\mathbf{B N}\left(\frac{N_{\text {total }}(x, y)}{\text { NSRHN }}\right)+\mathbf{C N}\left(\frac{N_{\text {total }}(x, y)}{\mathbf{N S R H N}}\right)^{\mathrm{EN}} \\
& \frac{\mathrm{TAUP} 0}{\tau_{p}(x, y)}=\mathrm{AP}+\operatorname{BP}\left(\frac{N_{\text {total }}(x, y)}{\mathrm{NSRHP}}\right)+\mathbf{C P}\left(\frac{N_{\text {total }}(x, y)}{\mathrm{NSRHP}}\right)^{\mathrm{EP}}
\end{align*}
$$

where $N_{\text {total }}$ is the local total impurity concentration.

The parameters NSRHN, NSRHP, TAUNO, TAUP O, AN, AP, BN, BP, CN, CP, EN, and EP are user-accessible constants which can be changed from their default values on the MATERIAL statement (see [2]). The default values of these parameters reduce the above expressions to

$$
\begin{aligned}
\tau_{n}(x, y) & =\frac{\text { TAUN0 }}{1+N_{\text {total }}(x, y) / \mathbf{N S R H N}} \\
\tau_{p}(x, y) & =\frac{\text { TAUP 0 }}{1+N_{\text {total }}(x, y) / \mathbf{N S R H P}}
\end{aligned}
$$

Equation 2-17

Equation 2-18

Lattice Temperature-Dependent Lifetimes

Electron and hole lifetimes used in Medici may be lattice temperature-dependent, as follows.

$$
\begin{align*}
\tau_{n}(x, y, T) & =\tau_{n}(x, y)\left(\frac{T}{300}\right)^{\mathbf{E X N} \cdot \mathbf{T A U}} \\
\tau_{p}(x, y, T) & =\tau_{p}(x, y)\left(\frac{T}{300}\right)^{\mathrm{EXP} \cdot \mathrm{TAU}}
\end{align*}
$$

Equation 2-20

The default values for EXN. TAU and EXP. TAU are zero, which disables the lattice temperature-dependent lifetimes. The models can be activated by specifying nonzero values for these parameters on the MATERIAL statement.

Recombination Including Tunneling

A generalization of the Shockley-Read-Hall recombination model that includes tunneling in the presence of strong electric fields [5] is available by specifying R. TUNNEL on the MODELS statement. It extends $U_{S R H}$ to

$$
U_{R T U N}=U_{S R H}^{*}+U_{b t b t}
$$

where $U_{S R H}^{*}$ is the modified SRH recombination using field-dependent lifetimes and $U_{b t b t}$ represents recombination due to band-to-band tunneling. The fielddependent lifetimes for electrons are

$$
\tau_{n}=\frac{\tau_{n}^{0}}{1+\Gamma_{n}}
$$

where τ_{n}^{0} is electron lifetime for $E=0$ and Γ_{n} is the field-enhancement factor due to trap-assisted tunneling, and is given by

$$
\Gamma_{n}=\frac{\Delta E_{n}}{k T} \int_{0}^{1} \exp \left[\frac{\Delta E_{n}}{k T} u-K_{n} u^{3 / 2}\right] d u
$$

where K_{n} is given by

$$
K_{n}=\frac{4}{3} \frac{\sqrt{2\left(\mathrm{M} \cdot \mathrm{RTUN} \cdot m_{0}\right) \Delta E_{n}^{3}}}{q \frac{h}{2 \pi} E}
$$

The expression for Γ_{n} is approximated by analytic expressions for low field and high field as described in [5], except that here the low field expression has been enhanced to provide a smooth transition from low field to high field

Equation 2-25

$$
\Gamma_{n}=\sqrt{\pi} \frac{E}{E_{\text {trap }}} \exp \left[\frac{1}{3}\left(\frac{E}{E_{\text {trap }}}\right)^{2}\right]\left\{2-\operatorname{erfc}\left[\frac{1}{2}\left(\frac{E_{\text {trap }}}{E}-\frac{E}{E_{\text {trap }}} \cdot \frac{\Delta E_{n}}{k T}\right)\right]\right\}
$$

when $\frac{E}{E_{\text {trap }}} \leq \sqrt{\frac{\Delta E_{n}}{k T}}$ and
Equation 2-26

$$
\begin{gathered}
\Gamma_{n}=\sqrt{\pi \frac{E}{E_{\text {trap }}}}\left(\frac{\Delta E_{n}}{k T}\right)^{1 / 4} \exp \left[-\frac{\Delta E_{n}}{k T}+\frac{E}{E_{\text {trap }}}\left(\frac{\Delta E_{n}}{k T}\right)^{1 / 2}+\frac{1}{3} \frac{E_{\text {trap }}}{E}\left(\frac{\Delta E_{n}}{k T}\right)^{3 / 2}\right] \\
\times \operatorname{erfc}\left[\left(\frac{E}{E_{\text {trap }}}\right)^{1 / 2}\left(\frac{\Delta E_{n}}{k T}\right)^{1 / 4}-\left(\frac{E_{\text {trap }}}{E}\right)^{1 / 2}\left(\frac{\Delta E_{n}}{k T}\right)^{3 / 4}\right]
\end{gathered}
$$

elsewhere. Expressions for $E_{\text {trap }}$ and $\Delta E_{n} /(k T)$ are given by

$$
E_{\text {trap }}=\frac{\sqrt{8\left(\mathbf{M} \cdot \mathrm{RTUN} \cdot m_{0}\right)(k T)^{3}}}{q \frac{h}{2 \pi}}
$$

$$
\frac{\Delta E_{n}}{k T}=\left\{\begin{array}{ll}
0 & n>n_{i e} \exp \left(E_{g} / 2 k T\right) \\
\frac{E_{g}}{2 k T}-\ln \frac{n}{n_{i e}} & n_{t} \leq n \leq n_{i e} \exp \left(E_{g} / 2 k T\right) \quad \text { Equation 2-28 } \\
\frac{E_{g}}{2 k T}-\ln \frac{n_{t}}{n_{i e}} & n<n_{t}
\end{array} \quad\right. \text { }
$$

$$
n_{t}=n_{i e} \exp \left(\frac{\text { ETRAP }}{k T}\right)
$$

Similar expressions exist for $\tau_{p}, \Gamma_{p}, \Delta E_{p} / k T$ and p_{t} is defined by
$p_{t}=n_{i e} \exp \left(-\frac{\mathbf{E T R A P}}{k T}\right)$
Equation 2-30

The recombination due to band-to-band tunneling is expressed by

$$
U_{b t b t}=-\mathbf{B} \cdot \mathbf{R T U N} E^{\mathbf{S} \cdot \mathbf{R T U N}} D \exp \left(-\frac{E_{b t b t}}{E}\right)
$$

The factor D is expressed by [5]
Equation 2-32

$$
D= \begin{cases} & \vec{\nabla} \phi_{n, p} \cdot \vec{E}<0 \\ 0 & \vec{\nabla}_{i e}^{2}-p n \\ \frac{n_{i e p}}{\left(n+n_{i e}\right)\left(p+n_{i e}\right)} & \vec{E}>0, \quad J_{n, p}<10^{-3} q n_{i e} v_{s a t} \\ 1 & \vec{\nabla} \phi_{n, p} \cdot \vec{E}>0, \quad J_{n, p}>10^{-3} q n_{i e} v_{s a t}\end{cases}
$$

where $v_{s a t}$ is the saturated drift velocity. $E_{b t b t}$ is given by
$E_{b t b t}=\mathbf{E} \cdot \operatorname{RTUN}\left(\frac{E_{g}(T)}{E_{g}(T=300)}\right)^{3 / 2}$
Equation 2-33

All parameters associated with the R. TUNNEL model are accessible through the
MATERIAL statement.

Schottky Barrier Tunneling

The Schottky Barrier Tunneling (SBT) model augments the thermionic emission boundary condition at Schottky contacts to include tunneling through the potential barrier formed by a Schottky contact. The model is activated by specifying the SBT parameter on the MODELS statement. The SBT model is calculated using a self-consistent, distributed generation rate and can be used for DC, AC, and transient simulations. The resulting generation rates for electrons and holes can be
plotted using the SBT. NGEN and SBT. PGEN parameters, respectively, on the plot statements and can be saved to a TIF file for subsequent visualization.

Figure 2-1
a) Area around a Schottky contact. Tunneling paths from two internal semiconductor nodes are shown. b) Discretized tunneling barrier for electrons along a path. Discretizations using all the original segments and using a single segment are shown.

Tunneling Path

Tunneling Barrier Discretization

Figure 9-4 (a) in Chapter 9 shows an example of the area around a typical Schottky contact. Internal nodes within the semiconductor region near the contact exchange carriers with the contact via tunneling. The tunneling path from an internal node at location r in the semiconductor region to the nearest Schottky contact is determined by finding the closest point on the contact boundary to the internal node. Figure 9-4 (a) shows an example of two of these tunneling paths. The SBT generation rate typically decays very rapidly as the distance from the contact increases. Simulations using the SBT model and, therefore, can be accelerated by limiting the calculation to nodes within a small band around each Schottky contact. The width of this band can be set using the DIST . SBT on the MATERIAL statement.

The calculation of the SBT generation rate requires that the tunneling barrier along the tunneling path be discretized. For electrons, the tunneling barrier is the conduction band while for holes the tunneling barrier is the valence band. As the tunneling path crosses through mesh nodes and mesh edges, the tunneling barrier is linearly interpolated onto the tunneling path. This breaks up the tunneling path into a large number of linearly-interpolated segments as shown in Figure 9-4 (b). The number of segments that are actually used in the calculation of the generation
rate can be set using the SBT. NSEG parameter on the MODELS statement. Setting SBT . NSEG to a value less than the number of original segments along a path causes the path discretization to be coarsened down to SBT . NSEG segments of approximately equal length. Setting SBT . NSEG to a value larger than the number of original segments results in no coarsening; i.e. the original discretization is used. Setting SBT . NSEG to such a large value implements the Ieong version of the SBT model [1]. Setting SBT. NSEG=1 produces a single segment with a triangular shaped tunneling barrier and implements the Matsuzawa version of the SBT model of Matsuzawa [2].

Generation Rate

Following Ieong [1] and Matsuzawa [2], the tunneling due to SBT is calculated as a distributed generation rate. For electrons, the generation rate at location r is given by:

$$
G_{S B T}(r)=Ð \frac{\text { ARICHN } T}{q}|E| \Gamma(r) \ln \frac{1+\frac{n}{\gamma_{n} N_{c}}}{1+\exp \left[\left(E_{F m} Đ E_{c}(r)\right) / k T\right]}
$$

Equation 2-34
where the tunneling coefficient Γ is given by the WKB integral:
$\Gamma(r)=\exp \left(Đ \frac{2 \sqrt{2 m_{0} \mathbf{M E} \cdot \mathbf{S B T}}}{h} \int_{0}^{r}\left[E_{c}\left(r^{\prime}\right) Đ E_{c}(r)\right] d r^{\prime}\right) \quad$ Equation 2-35

... $\overline{\mathrm{h}}$ is Planck's constant.

and T is the ambient or lattice temperature, q is the electron charge, E is the electric field, n is the electron concentration at location r, γ_{n} is the Fermi-Dirac factor at location r, N_{c} is the conduction band density of states at location $r, E_{F m}$ is the electron Fermi level in the contact, $E_{c}(r)$ is the conduction band at location r, m_{0} is the free electron mass, k is Boltzmann's constant, and h is Planck's constant.
Two parameters can be set on the MATERIAL statement: ARICHN which is the electron Richardson constant and ME. SBT which is the effective electron SBT tunneling mass. The hole SBT generation rate is formulated in a similar manner, allowing for AIRCHP, the hole Richardson constant, and MH. SBT, the effective hole SBT tunneling mass, to be set on the MATERIAL statement.

The integral in Equation $9-1$ is evaluated using the discretized tunneling barrier. Limiting the number of segments via the SBT. NSEG parameter typically reduces the evaluation time of this integral but can lead to an inaccurate representation of the tunneling barrier for highly curved barriers.

Boltzmann Statistics

The electron and hole concentrations in semiconductors are defined by FermiDirac distributions and a parabolic density of states. When these are integrated, they yield

$$
\begin{align*}
& n=N_{C} \mathbf{F}_{1 / 2}\left(\eta_{n}\right) \\
& p=N_{V} \mathbf{F}_{1 / 2}\left(\eta_{p}\right)
\end{align*}
$$

Equation 2-37
where

$$
\begin{align*}
& \eta_{n}=\frac{E_{F n}-E_{C}}{k T} \\
& \eta_{p}=\frac{E_{V}-E_{F p}}{k T}
\end{align*}
$$

Equation 2-39

In Equations 2-34, 2-35, 2-36, and 2-37 and N_{V} are the effective density of states in the conduction and valence bands. E_{C} and E_{V} are the conduction and valence band energies, and $E_{F n}$ and $E_{F p}$ are the electron and hole Fermi energies. For example $E_{F n}=-q \phi_{n}$ and $E_{F p}=-q \phi_{p}$.

The Fermi-Dirac integral of order one-half is defined as

$$
\mathbf{F}_{1 / 2}\left(\eta_{S}\right)=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \frac{\eta^{1 / 2}}{1+\exp \left(\eta-\eta_{S}\right)} d \eta
$$

For the operating range of most semiconductor devices, Equations 2-34 and 2-35 can be simplified using Boltzmann statistics.

$$
\begin{aligned}
& n \approx N_{C} \exp \left(\eta_{n}\right)=n_{i e} \exp \left[\frac{q}{k T}\left(\psi-\phi_{n}\right)\right] \\
& p \approx N_{V} \exp \left(\eta_{p}\right)=n_{i e} \exp \left[\frac{q}{k T}\left(\phi_{p}-\psi\right)\right]
\end{aligned}
$$

where, neglecting bandgap narrowing, the intrinsic carrier concentration is

$$
n_{i e}(T)=n_{i}(T)=\sqrt{N_{C} N_{V} e^{-E_{g} / 2 \mathrm{kT}}}
$$

Equation 2-43
where E_{g} is the bandgap energy of the semiconductor, that is, $E_{g}=E_{C}{ }^{-} E_{V}$.

Bandgap and Effective Density of States

As described in [8], for the isotropic element semiconductors, the bandgap and effective density of states in the conduction and valence band have temperature dependencies, as follows

$$
\begin{align*}
& E_{g}(T)=E_{g}(0)-\frac{\text { EGALPH } T^{2}}{T+\text { EGBETA }} \\
& =E_{g}(300)+\text { EGALPH }\left[\frac{300^{2}}{300+\text { EGBETA }}-\frac{T^{2}}{T+\mathbf{E G B E T A}}\right] \\
& N_{C}(T)=2 M_{C}\left(\frac{2 \pi m_{d e} k T}{h^{2}}\right)^{3 / 2} \\
& N_{V}(T)=2 M_{V}\left(\frac{2 \pi m_{d h} k T}{h^{2}}\right)^{3 / 2}
\end{align*}
$$

Equation 2-45

Equation 2-46
where for homogenous material, $E_{g}(300)=\mathbf{E G} 300$. In Medici, the effective density of states are expressed as follows.

$$
\begin{align*}
& N_{C}(T)=\operatorname{NC300}\left(\frac{T}{300}\right)^{\mathrm{NC} \cdot \mathrm{~F}} \\
& N_{V}(T)=\operatorname{NV} 300\left(\frac{T}{300}\right)^{\mathrm{NV} \cdot \mathrm{~F}}
\end{align*}
$$

Equation 2-48

The parameters EG300, EGALPH, EGBETA, NC300, NC.F, NV300, and NV.F can be modified on the MATERIAL statement. Note that ψ is related to the bandgap and the effective density of states by the expression

$$
-q \psi=E_{C}-\frac{E_{g}}{2}-\frac{k T}{2} \ln \left(\frac{N_{C}}{N_{V}}\right)
$$

Bandgap Narrowing due to Heavy Doping

Bandgap narrowing effects due to heavy doping is included as spatial variations in the intrinsic concentration [9] and band edge shifts

Equation 2-50
$\Delta E_{g}=\frac{\mathrm{VO} \cdot \mathrm{BGN} q}{2 k T}\left[\ln \frac{N_{\text {total }}(x, y)}{\mathrm{NO.BGN}}+\sqrt{\left(\ln \frac{N_{\text {total }}(x, y)}{\mathrm{NO.BGN}}\right)^{2}+\mathrm{CON} . \mathrm{BGN}}\right]$ $n_{i e}(x, y)=n_{i} \exp \left(\Delta E_{g}\right)$

Equation 2-51

This model is selected by specifying the BGN parameter on the MODELS statement. The parameters VO.BGN, NO .BGN, and CON.BGN can be adjusted from their default values on the MATERIAL statement.

An alternative model for bandgap narrowing effects due to heavy doping can be selected by specifying BGN2 on the MODELS statement [10], [11]. The model uses general closed-form equations for bandgap narrowing for n-type and p-type semiconductors. The equations are derived by identifying the exchange energy shift of the majority band edge, correlation energy shift of the minority band edge, and impurity interaction shifts of the two band edges. The band shifts at the conduction and valence band edges for n-type and p-type material are given by

Equation 2-52
$\Delta E_{C n}=\mathbf{A N C} \cdot \operatorname{BGN}\left(\frac{N}{10^{18}}\right)^{\frac{1}{3}}+\operatorname{BNC} \cdot \operatorname{BGN}\left(\frac{N}{10^{18}}\right)^{\frac{1}{4}}+\operatorname{CNC} \cdot \operatorname{BGN}\left(\frac{N}{10^{18}}\right)^{\frac{1}{2}}$
Equation 2-53
$\Delta E_{V n}=\operatorname{ANV} \cdot \mathbf{B G N}\left(\frac{N}{10^{18}}\right)^{\frac{1}{3}}+\mathbf{B N V} \cdot \mathbf{B G N}\left(\frac{N}{10^{18}}\right)^{\frac{1}{4}}+\mathbf{C N V} \cdot \mathbf{B G N}\left(\frac{N}{10^{18}}\right)^{\frac{1}{2}}$
Equation 2-54
$\Delta E_{C p}=\operatorname{APC} \cdot \mathbf{B G N}\left(\frac{N}{10^{18}}\right)^{\frac{1}{3}}+\operatorname{BPC} \cdot \mathbf{B G N}\left(\frac{N}{10^{18}}\right)^{\frac{1}{4}}+\mathbf{C P C} \cdot \mathbf{B G N}\left(\frac{N}{10^{18}}\right)^{\frac{1}{2}}$
Equation 2-55
$\Delta E_{V p}=\operatorname{APV} \cdot \operatorname{BGN}\left(\frac{N}{10^{18}}\right)^{\frac{1}{3}}+\mathrm{BPV} \cdot \mathrm{BGN}\left(\frac{N}{10^{18}}\right)^{\frac{1}{4}}+\mathrm{CPV} \cdot \mathrm{BGN}\left(\frac{N}{10^{18}}\right)^{\frac{1}{2}}$
The parameters ANC.BGN, BNC.BGN, CNC.BGN, ANV .BGN, BNV.BGN, CNV.BGN, APC.BGN, BPC.BGN, CPC.BGN, APV.BGN, BPV.BGN and CPV. BGN can be adjusted from their defaults values on the MATERIAL statement. Appropriate defaults for these parameters are available for silicon, germanium, gallium arsenide, and silicon carbide.

The resulting intrinsic carrier concentration due to this bandgap change can then be expressed as

$$
\begin{align*}
& \Delta E_{g n, p}=\Delta E_{V n, p}-\Delta E_{C n, p} \\
& n_{i e}(x, y)=n_{i} \exp \left(\Delta E_{g n, p}\right)
\end{align*}
$$

The spatial dependence of $n_{i e}$ results in an adjustment to the electric field terms in the transport Equations 2-6 and 2-7, obtained by substitution of Equations 2-41 and 2-42 into Equations 2-7 and 2-5.

$$
\begin{aligned}
& \vec{E}_{n}=-\vec{\nabla}\left(\psi+\frac{k T}{q} \ln n_{i e}\right) \\
& \vec{E}_{p}=-\vec{\nabla}\left(\psi-\frac{k T}{q} \ln n_{i e}\right)
\end{aligned}
$$

Equation 2-58

Equation 2-59

Stress-Induced Bandgap Change

In addition to temperature and doping-induced variations in the bandgap, Medici can also consider variations in the bandgap due to mechanical stress and strain in silicon regions. Under Boltzmann statistics, the change in the conduction and valence band edges are [104]

$$
\begin{array}{ll}
\Delta E_{C}=-k T \ln \left(\sum_{i=1}^{3} \frac{\exp \left(-\frac{\Delta E_{C i}}{k T}\right)}{3}\right) & \text { Equation 2-60 } \\
\Delta E_{V}=k T \ln \left(\frac{x_{0}}{1+x_{0}} \exp \left(\frac{\Delta E_{V l}}{k T}\right)+\frac{1}{1+x_{0}} \exp \left(\frac{\Delta E_{V h}}{k T}\right)\right) & \text { Equation 2-61 }
\end{array}
$$

where $\Delta E_{C i}$ is the shift in the band edge of the $\mathrm{i}^{\text {th }}$ ellipsoidal conduction minima and $\Delta E_{V l}$ and $\Delta E_{V h}$ are the shifts in the band edges for the light and heavy hole maxima, respectively, that make up the valence band. x_{0} is given by $(\mathbf{M L O} / \mathbf{M H O})^{3 / 2}$. The band edge shifts are computed using the deformation potential theory from Bir and Pikus [105]

$$
\begin{array}{ll}
\Delta E_{C i}=\mathrm{D} . \operatorname{STRESS}\left(\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33}\right)+\mathrm{U} . \operatorname{STRESS} \varepsilon_{i i} & \text { Equation 2-62 } \\
\Delta E_{V(h, l)}=\mathrm{A} . \operatorname{STRESS}\left(\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33}\right) \pm \sqrt{\xi} & \text { Equation 2-63 }
\end{array}
$$

where

$$
\begin{aligned}
& \xi=\frac{\operatorname{B.STRESS}^{2}}{2}\left\{\left(\varepsilon_{11}-\varepsilon_{22}\right)^{2}+\left(\varepsilon_{22}-\varepsilon_{33}\right)^{2}+\left(\varepsilon_{33}-\varepsilon_{11}\right)^{2}\right\} \text { Equation 2-64 } \\
& +\boldsymbol{C} \cdot \boldsymbol{S T R E S S}^{2}\left(\varepsilon_{12}^{2}+\varepsilon_{13}^{2}+\varepsilon_{23}^{2}\right)
\end{aligned}
$$

and ε is the strain tensor in the crystallographic coordinate system. The deformation potential constants, D. Stress, U.STRESS, A.STRESS,
B. Stress, and C.Stress, can be adjusted from their default values on the MATERIAL statement.

The spatial variation of E_{C} and E_{V} result in an adjustment to the electric field terms that are used in the transport equations. The independent variations of E_{C} and E_{V} are handled using a formulation similar to that used for graded
heterostructures. Using this formulation, the effective electric fields for electrons and holes can be written as

$$
\begin{align*}
& \vec{E}_{n}=\frac{\vec{\nabla} E_{C}}{q} \\
& \vec{E}_{p}=\frac{\vec{\nabla} E_{V}}{q}
\end{align*}
$$

Equation 2-66

Stress-induced changes to the band edges can be selected with the STRESS parameter on the MODELS statement. The orientation of the y-axis relative to the crystallographic coordinate system should also be specified using the Y. ORIENT parameter on the MODELS statement. By default, a <100> oriented substrate is assumed. In addition, the nodal values of the 2D stress tensor should be read using the Profile statement. The stress tensor, σ, is converted to strain for use in Equations 2-62 through 2-64, using the compliance tensor $S: \varepsilon=S \sigma$. In silicon, S has three unique, non-zero components which are taken as $S_{11}=7.684 \mathrm{e}-13 \mathrm{~cm}^{2} /$ dyne, $S_{12}=-2.139 \mathrm{e}-13 \mathrm{~cm}^{2} /$ dyne, $S_{44}=1.257 \mathrm{e}-12 \mathrm{~cm}^{2} /$ dyne. A plane strain condition is assumed.

Fermi-Dirac Statistics

Medici implements Fermi-Dirac statistics in a form quite similar to Boltzmann statistics after Yu [12]. The form of Equations 2-41 and 2-42 is adjusted by introducing degeneracy factors γ_{n} and γ_{p}.

$$
\begin{align*}
& \gamma_{n}=\frac{\boldsymbol{F}_{1 / 2}\left(\eta_{n}\right)}{\exp \left(\eta_{n}\right)} \\
& \gamma_{p}=\frac{\mathbf{F}_{1 / 2}\left(\eta_{p}\right)}{\exp \left(\eta_{p}\right)}
\end{align*}
$$

Equation 2-68

So, Equations 2-41 and 2-42 generalize to

$$
\begin{aligned}
& n=N_{C} \gamma_{n} \exp \left(\eta_{n}\right) \\
& p=N_{V} \gamma_{p} \exp \left(\eta_{p}\right)
\end{aligned}
$$

Equation 2-69
where $\gamma_{n}=\gamma_{p}=1$ for Boltzmann statistics, but are less than 1 for Fermi-Dirac statistics.

The identification of the exponential term in Equations 2-69 and 2-70 facilitates the standard Scharfetter-Gummel discretization of the continuity equations. The actual code implementation requires both the Fermi-Dirac function $\mathbf{F}_{1 / 2}\left(\eta_{s}\right)$ and its inverse $\mathbf{F}_{1 / 2}^{-1}\left(X_{S}\right)$. The inverse function is calculated from the Joyce-Dixon approximation [13] given by Equation 2-71

Equation 2-71

$$
\mathbf{F}_{1 / 2}^{-1}\left(X_{S}\right)=\eta_{S}=\ln \left(X_{S}\right)+a X_{S}+b\left(X_{s}\right)^{2}+c\left(X_{S}\right)^{3}+d\left(X_{S}\right)^{4}
$$

where η_{S} represents either η_{n} or η_{p} and X_{S} denotes either n / N_{C} or p / N_{v}. The constants a, b, c, and d can be found in either [12] or [13]. For values of $X_{S}>8.0$, the asymptotic expansion for the Fermi-Dirac inverse is used.

$$
\eta_{S}=\left[\left(\frac{3 \sqrt{\pi}}{4} X_{S}\right)^{4 / 3}-\frac{\pi^{2}}{6}\right]^{1 / 2}
$$

Equation 2-72

In either case, the Fermi-Dirac function is calculated from its inverse through a straight forward inversion process.

Fermi-Dirac statistics can be selected with the FERMIDIR parameter on the MODELS statement. To activate Fermi-Dirac statistics in a specific region, qualifying with REGION=<c>.

Note:
When using Fermi-Dirac statistics in a simulation, it is strongly recombmended that incomplete ionization of impurities also be included for accurate simulations (see "Incomplete Ionization of Impurities," p. 2-15).

With regard to the correlation between the mobilities and diffusivities in Equations 2-6 and 2-7, by assuming Boltzmann statistics, the Einstein relationship has been tacitly assumed, for example

$$
\begin{align*}
& D_{n}=\frac{k T}{q} \mu_{n} \\
& D_{p}=\frac{k T}{q} \mu_{p}
\end{align*}
$$

Equation 2-74

However, using Fermi-Dirac statistics,

$$
\begin{align*}
D_{n} & =\left(\frac{k T}{q} \mu_{n}\right) \boldsymbol{F}_{1 / 2}\left(\eta_{n}\right) / \boldsymbol{F}_{-1 / 2}\left(\eta_{n}\right) \\
D_{p} & =\left(\frac{k T}{q} \mu_{p}\right) \boldsymbol{F}_{1 / 2}\left(\eta_{p}\right) / \boldsymbol{F}_{-1 / 2}\left(\eta_{p}\right)
\end{align*}
$$

Equation 2-76

Incomplete Ionization of Impurities

Poisson's equation (Equation 2-1, p. 2-2) includes the ionized impurity concentrations N_{D}^{+}and N_{A}^{-}in the expression for space charge. Although, for most practical cases, full impurity ionization may be assumed (that is, $N_{D}^{+}=$ $N_{D, \text { total }}$ and $N_{A}=N_{A, \text { total }}$, Medici can treat impurity freeze-out [14] using Fermi-

Dirac statistics with appropriate degeneracy factors for the conduction and valence bands.

The incomplete ionization of impurities model is selected by specifying the INCOMPLE parameter on the MODELS statement. By default, the model is applied individually to each impurity in the structure. If it is desired to apply the model to only select impurities, this can be accomplished by specifying the impurities using the IMPURITY parameter.

For donor impurities, the expression for incomplete ionization is given by

$$
N_{D}^{+}=\frac{N_{D}}{1+\mathrm{GB} \exp \left[\left(E_{F n}-E_{C}+\Delta E_{D}\right) /(k T)\right]}
$$

while for acceptor impurities you have

$$
N_{A}^{+}=\frac{N_{A}}{1+\mathrm{GB} \exp \left[\left(E_{V}-E_{F p}+\Delta E_{A}\right) /(k T)\right]}
$$

In these expressions, GB is the band degeneracy factor which is an impurity dependent parameter that can be changed from its default value on the IMPURITY statement.

Doping and Temperature Dependent Impurity Activation Energies

In the above expressions, ΔE_{D} and ΔE_{A} are the donor and acceptor impurity activation energies. By default, these are given by the impurity dependent parameter EBO, which can be changed from its default value on the IMPURITY statement.

Medici also provides for the doping and temperature dependence of the impurity activation energies [15]. If the parameter ENERGY.L is specified on the MODELS statement (in addition to INCOMPLE), the activation energy for donor and acceptor impurities will be given by

Equation 2-79

$$
\Delta E_{D, A}=\mathbf{E B O}-\mathbf{A L P H A} N_{D, A}^{1 / 3}+\mathbf{B E T A}\left(T^{-\mathbf{G A M M A}}-300^{-\mathbf{G A M M A}}\right) \frac{k T}{q}
$$

where ALPHA, BETA, and GAMMA are impurity dependent parameters that can be changed from their default values on the IMPURITY statement.

High Doping
Transition to Complete Ionization

For very high dopings, the physics of incomplete ionization becomes very complicate due to effects such as band-edge lowering, band tailing and impurity band broadening. In most cases, such effects lead to complete ionization of the impurity, even at very low temperatures.

To account for the transition from incomplete ionization to complete ionization at high doping levels, Medici uses a simple approach similar to [16]. If the parameter HIGH .DOP is specified on the MODELS statement, Medici will assume incomplete ionization according to the expressions above for impurity
concentrations less than HDT.MIN and complete ionization for impurity concentration greater than HDT . MAX. Linear interpolation on the fraction of ionization is used in the interval between HDT .MIN and HDT . MAX.

The parameters HDT .MIN and HDT. MAX are impurity dependent and can be changed from their default values on the IMPURITY statement.

Low Temperature Simulation

In conjunction with the Fermi-Dirac statistics and impurity freeze-out, Medici has been structured to allow low temperature simulations. In general, simulations can be made at temperatures as low as 50 K without loss of quadratic convergence. Below this temperature, the carrier and ionization statistics develop sharp transitions that induce severe damping, resulting in loss of quadratic convergence in the nonlinear Newton step. Since several iterations are required below 50 K , the ITLIMIT parameter on the METHOD statement should be increased.

Due to the limited exponent range on some machines, it may be difficult to calculate the quasi-Fermi level of minority carriers. As the temperature decreases, the intrinsic carrier concentration n_{i} also decreases. An example of this is $n_{i} \approx 10^{-}$ 10 at 100 K for silicon.

In the quasi-neutral regions, the minority carrier concentration can easily underflow. Previously, such situations were handled by setting those concentrations to zero. This does not allow an accurate post-calculation of the minority carrier quasi-Fermi levels.

To compensate, the quasi-Fermi level calculations, the majority carrier concentration, and the relation $n p=n_{i}^{2}$ are used to deduce the minority carrier concentrations should they underflow. Despite these efforts, false readings are occasionally observed at low temperatures in minority quasi-Fermi levels. The current calculations, however, are not affected by these false readings as the semiconductor equations are solved with the ψ, n, and p variable set.

Quantum Mechanical Effects in MOSFET Inversion Layers

For deep submicron devices, quantum mechanical effects are becoming increasingly more important. In particular, thinner oxides and higher substrate dopings used in advanced technologies lead to high electric fields that can quantize electron motion in the inversion layer. This phenomena has an effect on the following:

- Threshold voltages
- CV characteristics
- Carrier distribution

In general, a solution of Schrödinger's equation is needed to correctly account for quantum mechanical effects. However, approximate methods for dealing with these effects can be extremely useful in many situations.

By specifying QM.PHILI on the MODELS statement, the Medici program accounts for quantum mechanical effects in MOSFET inversion layers in an approximate manner by using van Dort's bandgap widening approach [90]. An expression for $\Delta E_{g, q m}$ that approximately accounts for both the splitting of energy levels in the conduction band to higher sub-bands and for a displacement of the carrier concentration away from the semiconductor-insulator interface, in the case of electron-inducing interface field, is given by

$$
\Delta E_{g, q m}=\text { KAPPA } \cdot \mathbf{N} \cdot \frac{13}{9} \cdot \beta \cdot\left(\frac{\varepsilon_{\text {semi }}}{4 k T}\right)^{1 / 3} \cdot\left|E_{n}\right|^{2 / 3} \cdot \quad \text { Equation 2-80 }
$$

In this expression, E_{n} is the normal electric field at the semiconductor-insulator interface and β is a factor that can be determined experimentally. In Medici, β is given by [90]
$\beta=4.1 \times 10^{-8} \mathrm{eV}-\mathrm{cm}$
Equation 2-81
The factor KAPPA. N was introduced in [91] to account for the effect of quantized levels above the ground state and is used as a fitting parameter. In the accumulation regime, if QM. EXTEN is set (the default), β is further modified as suggested in [108].

$$
\beta_{\mathrm{accum}}=\beta \times \frac{\mathbf{N} \cdot \mathbf{A C C U M}}{\mathbf{N} \cdot \mathbf{A C C U M}+\left|\mathrm{N}_{\mathrm{dop}}\right|}
$$

Equation 2-82

A similar expression evaluates $\Delta E_{g, q m}$ in the case of hole-inducing interface field with KAPPA. N replaced by KAPPA. P and N. ACCUM by P. ACCUM. Choosing KAPPA.N or KAPPA. $\mathbf{P}=1.0$ (the default for silicon) and disable QM.EXTEN results in the van Dort model. KAPPA.N, KAPPA.P, N. ACCUM, and P.ACCUM can be specified on the MATERIAL statement.

The value of $\Delta E_{g, q m}$ is used to calculate a new value for the intrinsic carrier concentration at the interface according to the expression
$n_{i, q m}=n_{i, c o n v} \exp \left(-\Delta E_{g, q m} /(2 k T)\right)$
where $n_{i, \text { conv }}$ is the conventional intrinsic carrier concentration at the interface when quantum mechanical affects are not taken into account.

Medici includes two options for computing how the effective intrinsic carrier concentration at the interface given by Equation 2-83 falls off with distance as you move away from the interface. Specifying QM. METHO $=1$ on the MODELS statement uses an approach suggested by van Dort
$n_{i, e f f}=(1-F(a)) n_{i, c o n v}+F(a) n_{i, q m}$
Equation 2-84
where $F(a)$ is given by
$F(a)=\frac{2 \exp \left(-a^{2}\right)}{1+\exp \left(-2 a^{2}\right)} ; \quad a=\frac{d}{\operatorname{DREF} \cdot \mathrm{QM}} \quad \quad$ Equation 2-85
and d is the distance from the interface and DREF. $\mathbf{Q M}$ is a reference distance for the material (specified on the MATERIAL statement). If QM. METHO $=2$ is specified, then an approach suggested by Vande Voorde, et al. [91] is used
$n_{i, \text { eff }}=n_{i, \text { conv }} \exp \left(-F(a) \Delta E_{g, q m} /(2 k T)\right) \quad$ Equation 2-86
where $F(a)$ is the same function given above.
Parameters are also provided that allow you to control the conditions for which this model is applied. Specifying QM. NORP $=1,-1$, or 0 (on the MATERIAL statement) causes band-gap widening to be applied in n-type regions only, p-type regions only, or both, respectively. Specifying QM. NORP=2 or -2 will cause the program to behave as if $\mathbf{Q M} . \mathbf{N O R P}=1$ or -1 is specified when the channel is not inverted, but allows the program to switch to a $\mathbf{Q M} . \mathrm{NORP}=0$ behavior as the device approaches inversion. Whenever possible the default value of $\mathbf{Q M} . \operatorname{NORP}=0$ should be used. Specifying QM. NORP=1 or -1 (for P-channel or N-channel devices, respectively) often helps with convergence, but can sometimes introduce artificial electric fields at the edge of the channel that can result in excessive velocity saturation. Specifying $\mathbf{Q M}$. NORP=2 or -2 will usually improve convergence for gate characteristic simulations, but does not introduce the velocity saturation problem just mentioned.

The sign of the normal electric field at the interface can also be used as a criterion for applying QM.PHILI. Specifying QM.EFIEL=1 (on the MATERIAL statement) will cause the program to apply the model only when the electric field points into the semiconductor (confining field for electrons). A value of QM.EFIEL=-1 will cause the program to apply the model only when the electric field points into the insulator (confining field for holes). A value of QM.EFIEL=0 will apply the model regardless of the sign of the electric field.

Finally, the magnitude of the normal electric field at the interface can be used as a criterion for applying QM.PHILI. The parameter QM. EMIN on the MODELS statement represents the minimum interface field that must be present before the QM corrections are applied.

Note:

The parameters QM. NORP and QM. EFIEL appear on both the MODELS and MATERIAL statements. Values specified on the MODELS statement will effect quantum mechanical calculations for the entire device structure. Generally, however, QM. NORP and QM.EFIEL should be specified on the MATERIAL statement, which will allow the quantum mechanical calculations to be applied differently in different regions.

Modified Local Density Approximation Quantum Model

The Modified Local Density Approximation (MLDA) is an alternative quantum mechanical model that is capable of calculating the confined carrier distributions that occur near $\mathrm{Si} / \mathrm{SiO}_{2}$ interfaces [3]. It can be applied to both inversion and accumulation and simultaneously to electrons and holes. It is based on a rigorous extension of the local density approximation, and provides a good compromise between accuracy and runtime. The MLDA model is activated on the MODELS statement by using the MLDA parameter. The MLDA model and the van Dort model should not be used together; i.e. only specify one of MLDA and QM. PHIL. The MLDA model can be used for DC, transient, and AC analysis.

Following Paasch and Ubensee [3], the confined electron density at a distance z from a $\mathrm{Si} / \mathrm{SiO}_{2}$ interface is given under Fermi-Dirac statistics by

Equation 2-87

$$
n_{M L D A}\left(\eta_{n}\right)=N_{c}\left(\frac{2}{\sqrt{\pi}}\right) \int_{0}^{\infty} d \eta \frac{\sqrt{\eta}}{1+\exp \left[\left(\eta-\eta_{n}\right)\right]}\left[1-j_{0}\left(2 z \sqrt{\eta} / \lambda_{n}\right)\right]
$$

where η_{n} is given by Equation 2-38, N_{c} is the conduction band density of states, j_{0} is the zero-order spherical Bessel function, and

$$
\lambda_{n}=\sqrt{(h / 2 \pi)^{2} / 2 m_{n}^{*} k_{B} T}
$$

is the electron thermal wavelength which can be set via the MLDA. LN parameter on the MATERIALS statement. The integrand of Equation 2-87 is very similar to the classical Fermi-Dirac integrand, Equation 2-40, with an additional factor describing confinement for small z. Holes are treated similarly with the hole thermal wavelength set via the MLDA. LP parameter. The MLDA model can be deactivated separately in a particular region for electrons and holes by setting the appropriate wavelength parameter to a negative value.

By default, the carrier thermal wavelengths are given directly by the MLDA. LN and MLDA. LP parameters and are independent of temperature. Their temperature dependence can be included by specifying the MLDA. TEM parameter on the MODELS statement. In this case, the MLDA. LN and MLDA. LP parameters specify the thermal wavelengths are 300 K , and the computed values are given by:

$$
\begin{align*}
& \lambda_{n}=\operatorname{MLDA} \cdot \operatorname{LN} \sqrt{300 / T} \\
& \lambda_{p}=\operatorname{MLDA} \cdot \operatorname{LP} \sqrt{300 / T}
\end{align*}
$$

where T is taken as the ambient temperature for an isothermal simulation and the lattice temperature when solving the lattice heat equation.

Under Boltzmann statistics, Equation 2-87 simplifies to the following expression for the electron density.
$n_{M L D A}\left(\eta_{n}\right)=N_{c} \exp \left(\eta_{n}\right)\left[1-\exp \left(-\left(z / \lambda_{n}\right)^{2}\right)\right]$
Equation 2-91

The distance z from a mesh node to the nearest semiconductor-insulator boundary is found automatically during the MLDA calculation. At ohmic contacts, however, this distance is ignored and classical carrier statistics are used instead. To allow a smooth transition to this boundary condition at a contact, only boundary elements greater than $75 \AA$ from the contact to their doping well are included in the distance calculation.

The confined carrier densities calculated from Equations 2-87 or 2-91 are coupled to the device equations via so-called quantum potentials [4]. The electron quantum potential, ψ_{qn}, is given by the following expressions.
$\psi_{q n}=\left\{\begin{array}{lr} & \text { Equatio } \\ -\psi+\phi_{n}+V_{T}\left[\ln \left(N_{c} / n_{i e}\right)+F_{1 / 2}^{-1}\left(n_{M L D A} / N_{c}\right)\right] & \text { Fermi } \\ -\psi+\phi_{n}+V_{T} \ln \left(n_{M L D A} / n_{i e}\right) & \text { Boltzmann }\end{array}\right.$
where ψ is the classical intrinsic potential, ϕ_{n} is the electron quasi-fermi potential, $n_{i e}$ is the effective intrinsic carrier density, V_{T} is the thermal voltage, and $F_{1 / 2}^{-1}$ is the inverse of the Fermi-Dirac integral. Similar expressions define the hole quantum potential $\psi_{\text {qp }}$. The electron and hole quantum potentials can be plotted and are stored in solution files under the names QPOTN and QPOTP, respectively.

The quantum potentials describe the deviation of the carrier concentrations from a classical distribution due to quantum mechanical confinement. The quantum potentials are added to the classical intrinsic potential, ψ, when calculating the carrier concentrations for a Poisson-only solve or to determine the net driving force when solving the continuity equations.

Because carrier confinement alters even the equilibrium carrier concentrations, modifications to the expressions for SRH, Auger, and direct recombination must be made. With the MLDA model, equations 2-10-2-12 become

Equation 2-93

$$
U_{S R H}=\frac{p n-n_{i e}^{2} \exp \left(\left(\psi_{q n}-\psi_{q p}\right) / V_{T}\right)}{\tau_{p}\left[n+n_{i e} \exp \left(\frac{\mathbf{E T R A P}}{k T}+\frac{\psi_{q n}}{V_{T}}\right)\right]+\tau_{n}\left[p+n_{i e} \exp \left(\frac{-\mathbf{E T R A P}}{k T}-\frac{\psi_{q p}}{V_{T}}\right)\right]}
$$

$$
U_{d i r}=\operatorname{C.DIRECT}\left(n p-n_{i e}^{2} \exp \left(\left(\psi_{q n}-\psi_{q p}\right) / V_{T}\right)\right) \quad \text { Equation 2-94 }
$$

$$
U_{\text {Auger }}=\operatorname{AUGN}\left(p n^{2}-n n_{i e}^{2} \exp \left(\left(\psi_{q n}-\psi_{q p}\right) / V_{T}\right)\right)+\quad \text { Equation 2-95 }
$$

$$
\operatorname{AUGP}\left(n p^{2}-p n_{i e}^{2} \exp \left(\left(\psi_{q n}-\psi_{q p}\right) / V_{T}\right)\right)
$$

Mobility Models

The carrier mobilities μ_{n} and μ_{p} account for scattering mechanisms in electrical transport. Medici provides several mobility model choices. Mobility models to be included in a Medici simulation can be specified on the MODELS statement. The parameters used in the models can be modified from their default values using the MOBILITY statement.

Low Field Mobility

The following six choices are available to account for low field mobility:

- Constant values for electron and hole mobility can be specified with the MUNO and MUPO parameters
- A concentration-dependent mobility model can be selected with the CONmOB parameter
- Either of two analytic mobility models can be selected with the ANALYTIC or ARORA parameters
- A carrier-carrier scattering mobility model can be selected with the CCSMOB parameter
- A unified mobility model that includes acceptor, donor, and carrier-carrier scattering can be selected with the PHUMOB parameter

Constant Mobility

The simplest alternative is to choose low field mobilities for electrons and holes that are constant throughout the structure. That is,

$$
\begin{aligned}
& \mu_{0 n}=\text { MUNO } \\
& \mu_{0 p}=\text { MUPO }
\end{aligned}
$$

This is the default if no other low field mobility model is selected.

Concentration Dependent Mobility

The effect of impurity scattering can be included by using mobility values from tables which depend on the local total impurity concentration, $N_{\text {total }}(x, y)$. That is,

$$
\begin{aligned}
& \mu_{0 n}=\mu_{0 n}\left(N_{\text {total }}(x, y)\right) \\
& \mu_{0 p}=\mu_{0 p}\left(N_{\text {total }}(x, y)\right)
\end{aligned}
$$

Equation 2-98
Equation 2-99
For silicon and gallium arsenide, Medici has tables of low field mobility versus total impurity concentration for both electrons and holes at $T=300 \mathrm{~K}$. The default values are shown in Table 2-1.

Using these tables, concentration dependent mobility can be selected with the CONMOB parameter on the MODELS statement. The table values may be modified using the MOBILITY statement.

Table 2-1 Mobility vs Impurity Concentration for Silicon and Gallium Arsenide (T=300 K)

Concentration (cm^{-3})	Mobility in Silicon ($\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$)		Mobility in GaAs ($\mathrm{cm}^{2} / \mathrm{V}$-s)	
	Electrons	Holes	Electrons	Holes
1.0E14	1350.0	495.0	8000.0	390.0
2.0 E 14	1345.0	495.0	7718.0	380.0
4.0E14	1335.0	495.0	7445.0	375.0
6.0E14	1320.0	495.0	7290.0	360.0
8.0E14	1310.0	495.0	7182.0	350.0
1.0 E 15	1300.0	491.1	7300.0	340.0
2.0 E 15	1248.0	487.3	6847.0	335.0
4.0 E 15	1200.0	480.1	6422.0	320.0
6.0E15	1156.0	473.3	6185.0	315.0
8.0E15	1115.0	466.9	6023.0	305.0
1.0E16	1076.0	460.9	5900.0	302.0
2.0E16	960.0	434.8	5474.0	300.0
4.0E16	845.0	396.5	5079.0	285.0
6.0E16	760.0	369.2	4861.0	270.0
8.0E16	720.0	348.3	4712.0	245.0
1.0E17	675.0	331.5	4600.0	240.0
2.0 E 17	524.0	279.0	3874.0	210.0
4.0 E 17	385.0	229.8	3263.0	205.0
6.0 E 17	321.0	203.8	2950.0	200.0
8.0 E 17	279.0	186.9	2747.0	186.9
1.0 E 18	252.0	178.0	2600.0	170.0
2.0 E 18	182.5	130.0	2060.0	130.0
4.0 E 18	140.6	90.0	1632.0	90.0
6.0 E 18	113.6	74.5	1424.0	74.5
8.0E18	99.5	66.6	1293.0	66.6
1.0E19	90.5	61.0	1200.0	61.0
2.0 E 19	86.9	55.0		
4.0 E 19	83.4	53.7		
6.0E19	78.8	52.9		
8.0E19	71.6	52.4		
1.0 E 20	67.8	52.0		
2.0 E 20	52.0	50.8		
4.0 E 20	35.5	49.6		
6.0 E 20	23.6	48.9		
8.0E20	19.0	48.4		
1.0 E 21	17.8	48.0		

Analytic Mobility

As an alternative to the concentration-dependent mobility tables for $T=300 \mathrm{~K}$, concentration- and temperature-dependent empirical mobility functions for silicon [17], [18] and gallium arsenide [8], [12] are also available. These are given by the expressions

$$
\begin{align*}
& \mu_{0 n}=\text { MUN.MIN }+\frac{\text { MUN.MAX }\left(\frac{T}{300}\right)^{\text {NUN }}-\text { MUN . MIN }}{1+\left(\frac{T}{300}\right)^{\text {XIN }}\left(\frac{N_{\text {total }}(x, y)}{\text { NREFN }}\right)^{\text {ALPHAN }}} \\
& \mu_{0 p}=\operatorname{MUP} \cdot \operatorname{MIN}+\frac{\operatorname{MUP} \cdot \operatorname{MAX}\left(\frac{T}{300}\right)^{\text {NUP }}-\text { MUP.MIN }}{1+\left(\frac{T}{300}\right)^{\text {XIP }}\left(\frac{N_{\text {total }}(x, y)}{\text { NREFP }}\right)^{\text {ALP HAP }}}
\end{align*}
$$

Equation 2-101
where $N_{\text {total }}(x, y)$ is the local total impurity concentration (in \#/cm ${ }^{3}$) and T is the temperature (in K). This analytic mobility model can be selected with the ANALYTIC parameter on the MODELS statement.

The default values for the parameters used in the above expressions are shown in Table 2-2 for SILICON and GAAS. Default values for other materials can be found in Chapter 3, Table 3-9, "Constant Mobility Parameters," p. 3-323. These values may be modified with the MOBILITY statement.

Table 2-2 Default Parameter Values for the Analytic Mobility Model

Parame- ter	SILICON	GAAS	Parame- ter	SILICON	GAAS
MUN .MIN	55.24	0.0	MUP . MIN	49.70	0.0
MUN . MAX	1429.23	8500.0	MUP . MAX	479.37	400.0
NREFN	1.072 E 17	1.69 E 17	NREFP	1.606 E 17	2.75 E 17
NUN	-2.3	-1.0	NUP	-2.2	-2.1
XIN	-3.8	0.0	XIP	-3.7	0.0
ALP HAN	0.73	0.436	ALPHAP	0.70	0.395

Also available is an analytic mobility model based on work by Arora [19] that takes into account total impurity concentration and temperature. The mobility expressions are

Equation 2-102

$$
\mu_{0 n}=\operatorname{MUN1} \cdot \operatorname{ARO}\left(\frac{T}{300}\right)^{\operatorname{EXN} \cdot \operatorname{ARO}}+\frac{\operatorname{MUN2} \cdot \operatorname{ARO}\left(\frac{T}{300}\right)^{\operatorname{EXN} 2 \cdot \operatorname{ARO}}}{1+\left(\frac{N_{t o t a l}(x, y)}{\operatorname{CN} \cdot \operatorname{ARORA}\left(\frac{T}{300}\right)^{\operatorname{EXN} \cdot \operatorname{ARO}}}\right)^{\alpha_{n}}}
$$

Equation 2-103

$$
\mu_{0 p}=\operatorname{MUP} 1 \cdot \operatorname{ARO}\left(\frac{T}{300}\right)^{\operatorname{EXP1} \cdot \operatorname{ARO}}+\frac{\operatorname{MUP} 2 \cdot \operatorname{ARO}\left(\frac{T}{300}\right)^{\operatorname{EXP} 2 \cdot \operatorname{ARO}}}{1+\left(\frac{N_{\text {total }}(x, y)}{\operatorname{CP} \cdot \operatorname{ARORA}\left(\frac{T}{300}\right)^{\operatorname{EXP} 3 \cdot \operatorname{ARO}}}\right)^{\alpha_{p}}}
$$

where

$$
\begin{aligned}
& \alpha_{n}=\operatorname{AN} \cdot \operatorname{ARORA}\left(\frac{T}{300}\right)^{\mathrm{EXN} 4 \cdot \mathrm{ARO}} \\
& \alpha_{p}=\operatorname{AP} \cdot \operatorname{ARORA}\left(\frac{T}{300}\right)^{\mathrm{EXP} 4 \cdot \mathrm{ARO}}
\end{aligned}
$$

The Arora mobility model is selected with the ARORA parameter on the MODELS statement. Default parameter values for SILICON are shown in Table 2-3, and can be modified with the MOBILITY statement. Default parameter values for other materials can be found in Chapter 3, Table 3-11, "III-V Compound Semiconductor Analytic Mobility Model Parameters," p. 3-323.

Table 2-3 Default Parameter Values for the Arora Model

Parameter	Default	Parameter	Default
MUN1 . ARO	88.0	MUP1 . ARO	54.3
MUN2 . ARO	1252.0	MUP2 . ARO	407.0
AN . ARORA	0.88	AP . ARORA	0.88
CN . ARORA	1.26×10^{17}	CP . ARORA	2.35×10^{17}
EXN1 . ARO	-0.57	EXP1 . ARO	-0.57
EXN2 . ARO	-2.33	EXP2 . ARO	-2.23
EXN3 . ARO	2.4	EXP3 . ARO	2.4
EXN4 . ARO	-0.146	EXP4 . ARO	-0.146

Carrier-Carrier Scattering Mobility

A semi-empirical mobility model that takes into account carrier-carrier scattering effects, based on work by Dorkel and Leturcq [20], has been incorporated into Medici. These effects are important when high concentrations of electrons and holes are present in a device. The model also takes into account the effects of lattice scattering and ionized impurity scattering. The new model can be described by the expression
$\mu_{0 n, 0 p}=\mu_{n, p}^{L}\left(\frac{\mathbf{A . L I C}}{1+\left[\mathbf{B . L I C}\left(\frac{\mu_{n, p}^{L}}{\mu_{n, p}^{I C}}\right)\right]^{\mathbf{E X} . \mathbf{L I C}}}-\mathbf{C . L I C}\right)$
Equation 2-106
where the superscripts L, I, and C stand for lattice scattering, ionized impurity scattering, and carrier-carrier scattering, respectively. The term $\mu_{n, p}^{I C}$ is obtained from μ^{C} and $\mu_{n, p}^{I}$ according to Matthiessen's rule

$$
\mu_{n, p}^{I C}=\left[\frac{1}{\mu^{C}}+\frac{1}{\mu_{n, p}^{I}}\right]^{-1}
$$

Equation 2-107

The carrier-carrier scattering term μ^{C} is given by the expression

$$
\mu^{C}=\frac{\mathbf{A} \cdot \operatorname{ccs}\left(\frac{T}{300}\right)^{3 / 2}}{\sqrt{n p} \ln \left(1+\mathbf{B} \cdot \operatorname{ccs}\left(\frac{T}{300}\right)^{2}(n p)^{-1 / 3}\right)}
$$

Equation 2-108

The ionized impurity scattering terms μ_{n}^{I} and $\mu_{L p}^{I}$ are given by the expressions

$$
\begin{aligned}
& \mu_{n}^{I}=\frac{\mathbf{A N} \cdot \operatorname{IIS}\left(\frac{T}{300}\right)^{3 / 2}}{N_{\text {total }}} \cdot g_{B}\left[\frac{\operatorname{BN} \cdot \operatorname{IIS}\left(\frac{T}{300}\right)^{2}}{n+p}\right] \\
& \mu_{p}^{I}=\frac{\mathbf{A P} \cdot \operatorname{IIS}\left(\frac{T}{300}\right)^{3 / 2}}{N_{\text {total }}} \cdot g_{B}\left[\frac{\operatorname{BP} \cdot \operatorname{IIS}\left(\frac{T}{300}\right)^{2}}{n+p}\right]
\end{aligned}
$$

Equation 2-109
where
$g_{B}(x)=\left[\ln (1+x)-\frac{x}{1+x}\right]^{-1}$
Equation 2-111

And finally, the lattice scattering terms μ_{n}^{L} and μ_{p}^{L} are given by

$$
\begin{aligned}
& \mu_{n}^{L}=\operatorname{MUNO} \cdot \operatorname{LAT}\left(\frac{T}{300}\right)^{-\mathrm{EXN} \cdot \mathrm{LAT}} \\
& \mu_{p}^{L}=\operatorname{MUPO.LAT}\left(\frac{T}{300}\right)^{-\mathrm{EXP} \cdot \mathrm{LAT}}
\end{aligned}
$$

This model can be selected by specifying the CCSMOB parameter on the MODELS statement. The parameters in the above equations can be adjusted from their default values on the MOBILITY statement.

Philips Unified

 MobilityThe Philips Unified mobility model [21], [22] takes into account the following:

- Distinct acceptor and donor scattering
- Carrier-carrier scattering
- Screening

It separately models majority and minority carrier mobilities and is appropriate for addressing bipolar devices. The majority mobility agrees with the work of Masetti, et al. [23]. The electron mobility is described by the following expressions
$\mu_{n}^{-1}=\mu_{l a t t, n}^{-1}+\mu_{D+A+p}^{-1}$
Equation 2-114
where

$$
\mu_{l a t t, n}=\mathbf{M M X N} \cdot \mathbf{U M}\left(\frac{T}{300}\right)^{-\mathrm{TETN} \cdot \mathrm{UM}}
$$

Equation 2-115

Equation 2-116

$$
\mu_{D+A+p}=\mu_{1, n}\left(\frac{N_{s c, n}}{N_{s c, e f f, n}}\right)\left(\frac{\mathbf{N R F N} \cdot \mathbf{U M}}{N_{s c, n}}\right)^{\text {ALPN.UM }}+\mu_{2, n}\left(\frac{n+p}{N_{s c, e f f, n}}\right)
$$

and $\mu_{1, n}, \mu_{2, n}, N_{s c, n}$ and $N_{s c, e f f, n}$ are given by

$\mu_{2, n}=\frac{\text { MMXN. UM } \cdot \text { MMNN. UM }}{\text { MMXN. UM }- \text { MMNN. UM }}\left(\frac{300}{T}\right)^{0.5}$
$N_{s c, n}=N_{D}^{*}+N_{A}^{*}+p$
Equation 2-119
$N_{s c, e f f, n}=N_{D}^{*}+N_{A}^{*} G\left(P_{n}\right)+\frac{p}{F\left(P_{n}\right)}$
Equation 2-120

The effective impurity levels N_{D}^{*} and N_{A}^{*} take ultra-high doping effects into account and are defined by

$$
\begin{align*}
& N_{D}^{*}=N_{D}\left[1+\frac{1}{\text { CRFD.UM }+\left(\frac{\mathrm{NRFD} \cdot \mathrm{UM}}{N_{D}}\right)^{2}}\right] \\
& N_{A}^{*}=N_{A}\left[1+\frac{1}{\mathrm{CRFA} \cdot \mathrm{UM}+\left(\frac{\mathrm{NRFA} \cdot \mathrm{UM}}{N_{A}}\right)^{2}}\right]
\end{align*}
$$

The functions $F\left(P_{n}\right)$ and $G\left(P_{n}\right)$ that take the finite mass of scattering holes and the repulsive potential for acceptors into account are given by

$$
\begin{aligned}
F\left(P_{n}\right)= & \frac{0.7643 P_{n}^{0.6478}+2.2999+6.5502 \frac{m_{e}}{m_{h}}}{P_{n}^{0.6478}+2.3670-0.8552 \frac{m_{e}}{m_{h}}} \\
G\left(P_{n}\right)= & 1-\frac{0.89233}{\left[0.41372+P_{n}\left(\frac{m_{0}}{m_{e}} \frac{T}{300}\right)^{0.28227}\right]^{0.19778}} \\
& +\frac{0.005978}{\left[P_{n}\left(\frac{m_{e}}{m_{0}} \frac{300}{T}\right)^{0.72169}\right]^{1.80618}}
\end{aligned}
$$

Equation 2-123

For values of $P_{n,} \leqslant P_{n, \text { min }} G\left(P_{n, \text { min }}\right)$ is used instead of $G\left(P_{n}\right)$, where $P_{n, \text { min }}$ is the value at which $G\left(P_{n}\right)$ reaches it's minimum. The P_{n} parameter that takes screening effects into account is given by

$$
P_{n}=\left(\frac{2.459}{3.97 \times 10^{13} N_{s c, n}^{-2 / 3}}+\frac{3.828}{\frac{1.36 \times 10^{20}}{n+p}\left(\frac{m_{e}}{m_{0}}\right)}\right)^{-1}\left(\frac{T}{300}\right)^{2}
$$

Similar expressions hold for holes. The effective electron and hole mass used are $m_{e}=1.0 m_{0}$ and $m_{h}=1.258 m_{0}$ with m_{0} being the free electron rest mass.

The model can be selected by specifying the PHUMOB parameter on the MODELS statement. The parameters in the above equations can be adjusted from their default values on the MOBILITY statement.

Note:
Bandgap narrowing parameters are closely tied to the mobility model [24]. Using the РНUМОВ model and its default settings produce sensible results when the bandgap narrowing parameters are set to $\mathrm{V} 0 . \mathrm{BGN}=$ 6.92×10^{-3}, NO. $\mathbf{B G N}=1.3 \times 10^{17}$, and CON. $\mathbf{B G N}=0.5$.

Surface Scattering

Along insulator-semiconductor interfaces, the carrier mobilities can be substantially lower than in the bulk of the semiconductor due to surface scattering. Medici can account for this difference in the following ways:

- Mobility degradation factors GSURFN and GSURFP can be applied at interfaces.
- A surface mobility model can be specified with one of the parameters SRFMOB or SRFMOB2.
- A transverse electric field mobility model can be specified with the parameter PRPMOB.
- A number of MOS inversion layer models are available through the parameters UNIMOB, LSMMOB, GMCMOB SHIRAMOB, and TFLDMOB.
- Transverse field effects are also accounted for by HPMOB, described in "Hewlett-Packard Mobility Model," p. 2-44.

Surface Mobility

 Degradation FactorsThe mobility used for calculating current along semiconductor-insulator interfaces may be reduced by specifying degradation factors GSURFN and GSURFP that multiply the low field mobility. That is,

$$
\mu_{S, n}(\text { surface })=\text { GSURFN } \cdot \mu_{0 n}(\text { surface })
$$

Equation 2-126
$\mu_{S, p}($ surface $)=\operatorname{GSURFP} \cdot \mu_{0 p}($ surface $)$
Equation 2-127
where $0<$ GSURFN, GSURFP ≤ 1. The default value of both GSURFN and GSURFP is 1 . Other values for GSURFN and GSURFP can be selected on the MOBILITY statement.

Surface Mobility

Model

In addition to the degradation factors described above, Medici also allows the selection of an effective-field based surface mobility model that is applied only at insulator-semiconductor interfaces [25]. This model calculates effective mobilities at interfaces using the expressions

$$
\mu_{S, n}(\text { surface })=\operatorname{GSURFN} \cdot\left(\frac{E_{\text {eff }}^{\perp}, n}{\text { EREFN }}\right)^{- \text {EXN.SM }} \quad \text { MUREFN } \quad \text { Equation 2-128 }
$$

$\mu_{S, p}($ surface $\left.)=\operatorname{GSURFP} \cdot\left(\frac{E_{\text {eff }}, p}{}\right)_{\text {EREFP }}\right)^{-\operatorname{EXP} \cdot \mathbf{S M}} \quad$ MUREFP \quad Equation 2-129
This model can be selected by specifying the SRFMOB parameter on the MODELS statement.

In Equations $2-128$ and $2-129, E_{\text {eff }}^{\perp}, n \underset{\rightarrow}{\text { and }} E_{\text {eff }}, \not{ }_{\sim}^{p}$ represent the perpendicular components of effective electric fields, $E_{\text {eff, } n}$ and $E_{\text {eff, }, p}$, that are computed at the insulator-semiconductor interfaces. These are described in "Effective Electric Fields at Interfaces," p. 2-52.

Note:

This model is only applied at the interface because it assumes that the carrier inversion layer width is smaller than the grid spacing used at the interface. With this assumption, all the inversion charge effectively occurs at the interface, and it is appropriate to use this model. If the grid spacing is smaller than the inversion layer width, then use of this model may not be appropriate.

Note:
Since SRFMOB is only applied at the interface, a low-field mobility model, such as CONMOB, should usually be selected to properly model current flow away from the surface. At the interface itself, Medici will use the minimum of the SRFMOB calculated mobility and the selected low-field mobility.

Enhanced
 Surface Mobility
 Model

An enhanced surface mobility model [26] has been included in Medici that takes into account phonon scattering, surface roughness scattering, and charged impurity scattering. This model can be described by the expressions

$$
\begin{aligned}
& \mu_{S, n}(\text { surface })=\text { GSURFN } \cdot \mu_{e f f, n} \\
& \mu_{S, p}(\text { surface })=\text { GSURFP } \cdot \mu_{e f f, p}
\end{aligned}
$$

Equation 2-130
where
Equation 2-132

$$
\begin{gathered}
\frac{1}{\mu_{e f f, n}}=\frac{1}{\mathbf{M U N} 1 \cdot \mathbf{S M}}\left(\frac{E_{e f f_{\perp}, n}}{10^{6}}\right)^{\mathrm{EXN1} \cdot \mathbf{S M}}+\frac{1}{\mathbf{M U N} 2 \cdot \mathbf{S M}}\left(\frac{E_{e f f_{\perp}, n}}{10^{6}}\right)^{\mathrm{EXN2} \cdot \mathbf{S M}} \\
+\frac{1}{\mathbf{M U N} 3 \cdot \mathbf{S M}}\left(\frac{N_{B}}{10^{18}}\right)\left(\frac{10^{12}}{N_{\text {inv }}}\right)^{\mathrm{EXN} 3 \cdot \mathbf{S M}}
\end{gathered}
$$

$$
\begin{gathered}
\frac{1}{\mu_{e f f, p}}=\frac{1}{\operatorname{MUP} 1 . \mathbf{S M}}\left(\frac{E_{e f f_{\perp}, p}}{10^{6}}\right)^{\mathrm{EXP1} \cdot \mathrm{SM}}+\frac{1}{\operatorname{MUP} 2 \cdot \mathbf{S M}}\left(\frac{E_{e f f_{\perp}, p}}{10^{6}}\right)^{\mathrm{EXP2} \cdot \mathrm{SM}} \\
+\frac{1}{\operatorname{MUP} 3 \cdot \mathbf{S M}}\left(\frac{N_{B}}{10^{18}}\right)\left(\frac{10^{12}}{N_{i n v}}\right)^{\mathrm{EXP} 3 . \mathrm{SM}}
\end{gathered}
$$

where the effective electric fields used in these expressions are described in "Effective Electric Fields at Interfaces," p. 2-52.

This model can be selected by specifying the SRFMOB2 parameter on the MODELS statement. The parameters in the above equations can be adjusted from their default values on the MOBILITY statement.

Note:
This model is only applied at the interface because it assumes that the carrier inversion layer width is smaller than the grid spacing used at the interface. With this assumption, all the inversion charge effectively occurs at the interface, and it is appropriate to use this model. If the grid spacing is smaller than the inversion layer width, then use of this model may not be appropriate.

Note:
Since SRFMOB is only applied at the interface, a low-field mobility model, such as CONMOB, should usually be selected to properly model current flow away from the surface. At the interface itself, Medici will use the minimum of the SRFMOB calculated mobility and the selected low-field mobility.

Universal Mobility Model

The Universal Mobility Model is appropriate for the modeling of MOSFET inversion layers. This model is similar in form to the surface mobility model described previously; however, it does not require that the channel vertical grid spacing be greater than the inversion layer width.

The Universal Mobility Model can be selected by specifying UNIMOB on the MODELS statement. When selected, this model will be applied to all grid points that occur within the MOSFET inversion layer. The mobility is given by the following expressions

$$
\frac{\text { MUN.UNI }\left(\frac{T}{300}\right)^{- \text {EXNO.UNI }}}{1+\left(\frac{E_{e f f_{\perp}, n}}{\text { ECN. UNI }}\right)^{\text {EXN.UNI }}} \text { Equation 2-134 }
$$

$$
\mu_{S, p}(\text { inversion layer })=\operatorname{GSURFP} \cdot \frac{\operatorname{MUP} \cdot \mathbf{U N I}\left(\frac{T}{300}\right)^{-\mathbf{E X P O} \cdot \mathbf{U N I}}}{1+\left(\frac{E_{e f f_{\perp}, p}}{\mathbf{E C P} \cdot \mathbf{U N I}}\right)^{\mathbf{E X P} \cdot \mathrm{UNI}}} \text { Equation 2-135 }
$$

where

$$
\begin{align*}
& E_{e f f, n}=\mathbf{E T A N} \cdot E_{s}+(\mathbf{Z E T A N}-\mathbf{E T A N}) \cdot E_{0} \\
& E_{e f f, p}=\mathbf{E T A P} \cdot E_{s}+(\mathbf{Z E T A P}-\mathbf{E T A P}) \cdot E_{0}
\end{align*}
$$

In the above expressions, E_{s} is the transverse semiconductor field at the interface and E_{0} is the transverse field at the edge of the inversion layer.

Note:

At the present time, this model can only be used with "rectangular" grid structures in the inversion layer beneath the MOSFET gate.

Perpendicular Electric Field Mobility Model

Medici includes a model for the perpendicular electric field reduction of mobility that can be selected as an alternative to the models described previously. This model is applied at every position in the device and not just at interfaces or in the inversion layer.

The perpendicular electric field mobility model can be selected with the PRPMOB parameter on the MODELS statement. When selected, the low field mobility described in "Low Field Mobility," p. 2-22 [27], [28] is modified by the expressions
$\mu_{S, n}=$ GSURFN $\cdot \frac{\mu_{0 n}}{\sqrt{1+\frac{E_{\perp, n}}{\text { ECN } \cdot \mathbf{M U}}}}$
Equation 2-138
$\mu_{S, p}=\operatorname{GSURFP} \cdot \frac{\mu_{0 p}}{\sqrt{1+\frac{E_{\perp, p}}{\mathbf{E C P} \cdot \mathbf{M U}}}}$
Equation 2-139
where $E_{\perp, n}$ and $E_{\perp, p}$ are the components of electric field that are perpendicular to the side of an element (the default) or the components of electric field perpendicular to the current direction (if EJ.MOBIL is selected on the MODELS statement). At interfaces, $E_{\perp, n}$ and $E_{\perp, p}$ are replaced by effective electric field components $E_{e f f_{\perp}, n}$ and $E_{e f f_{\perp}, p}$ described in "Effective Electric Fields at Interfaces," p. 2-52.

Note:
The factors GSURFN and GSURFP are only applied at interfaces between semiconductor and insulator. Everywhere else, these factors should be considered to have values of unity.

Lombardi Surface Mobility Model

Medici also incorporates an empirical model that combines mobility expressions for semiconductor-insulator interfaces and for bulk silicon [29]. The basic equation is given by Matthiessen's rule

$$
\mu_{S}=\left[\frac{1}{\mu_{a c}}+\frac{1}{\mu_{b}}+\frac{1}{\mu_{s r}}\right]^{-1}
$$

where

- μ_{S} is total electron or hole mobility accounting for surface effects
- $\mu_{a c}$ is mobility degraded by surface acoustical phonon scattering
- μ_{b} is mobility in bulk silicon
- $\mu_{s r}$ is mobility degraded by surface roughness scattering.

The expressions for $\mu_{a c}$ for holes and electrons are

$$
\begin{align*}
& \mu_{a c, n}=\frac{\mathrm{BN} \cdot \mathrm{LSM}}{E_{\perp, n}}+\frac{\mathrm{CN} \cdot \mathrm{LSM} N_{\text {total }}^{\mathrm{EXNA} \cdot \mathrm{LSM}}}{T \sqrt[3]{E_{\perp, n}}} \\
& \mu_{a c, p}=\frac{\mathrm{BP} \cdot \mathrm{LSM}}{E_{\perp, p}}+\frac{\mathrm{CP} \cdot \mathrm{LSM} N_{\text {total }}^{\mathrm{EXP4}}}{T \sqrt[3]{E_{\perp, p}}}
\end{align*}
$$

Equation 2-142

The equations for μ_{b} are
Equation 2-143

$$
\mu_{b, n}=\text { MUNO.LSM }+\frac{\mu_{\max , n}-\text { MUN0.LSM }}{1+\left(\frac{N_{\text {total }}}{\text { CRN. LSM }}\right)^{\text {EXN1.LSM }}}-\frac{\text { MUN1. LSM }}{1+\left(\frac{\text { CSN.LSM }}{N_{\text {total }}}\right)^{\text {EXN2.LSM }}}
$$

$$
\begin{aligned}
\mu_{b, p}=\text { MUPO.LSM } & \exp \left(\frac{-\mathbf{P C} \cdot \mathbf{L S M}}{N_{\text {total }}}\right)+\frac{\mu_{\max , p}}{1+\left(\frac{N_{\text {total }}}{\mathbf{C R P} \cdot \mathbf{L S M}}\right)^{\text {EXP1.LSM }}} \\
- & \frac{\text { MUP1.LSM }}{1+\left(\frac{\mathbf{C S P} \cdot \mathbf{L S M}}{N_{\text {total }}}\right)^{\operatorname{EXP} 2 \cdot \text { LSM }}}
\end{aligned}
$$

where

$$
\begin{align*}
& \mu_{\max , n}=\operatorname{MUN} 2 \cdot \operatorname{LSM}\left(\frac{T}{300}\right)^{-\mathrm{EXN} 3 \cdot \mathrm{LSM}} \\
& \mu_{\max , p}=\operatorname{MUP} 2 \cdot \operatorname{LSM}\left(\frac{T}{300}\right)^{-\operatorname{EXP} 3 \cdot \mathrm{LSM}}
\end{align*}
$$

Equation 2-146

And finally, the expressions for $\mu_{s r}$ are given by

$$
\begin{aligned}
& \mu_{s r, n}=\left(\frac{\text { DN. LSM }}{E_{\perp}^{\text {EXN8.LSM }}}\right) \\
& \mu_{s r, p}=\left(\frac{\text { DP.LSM }}{E_{\perp}^{\text {EXP8.LSM }}}\right)
\end{aligned}
$$

The Lombardi surface mobility model is activated with the LSMMOB parameter on the MODELS statement, with all parameters accessible through the MOBILITY statement.

Generalized Mobility Curve Mobility Model

A mobility model that follows the Generalized Mobility Curve (GMC) [87] can be selected by specifying GMCMOB on the MODELS statement. Although the model was developed for NMOS devices, it has been implemented here for both NMOS and PMOS devices. The default parameters for the electron mobility are taken from [87]. The default parameters for hole mobility are the same as those for electron mobility. All parameters can be modified by on the MOBILITY statement.

The GMCMOB mobility model is a modified version of the Lombardi Surface Mobility Model (see "Lombardi Surface Mobility Model," p. 2-33). It contains additional terms to account for screened and unscreened impurity scattering. The model can be described as
$\mu_{S}=\left[\frac{1}{\mu_{\text {universal }}}+\frac{1}{\mu_{\text {impurity }}}\right]^{-1}$

The universal part is given by the following expression

$$
\mu_{\text {universal }}=\min \left\{\left[\mu_{a c}^{-1}+\mu_{s r}^{-1}\right]^{-1}, \mu_{b}\right\}
$$

Equation 2-150
where the acoustic-phonon terms for electrons and holes are given by

$$
\begin{align*}
& \mu_{a c, n}=\frac{\mathrm{BN} \cdot \mathrm{GMC}}{E_{\perp, n}}+\frac{\mathrm{CN} \cdot \mathrm{GMC} N_{\text {total }}^{\mathrm{EXN4} \cdot \mathrm{GMC}}}{T \sqrt[3]{E_{\perp, n}}} \\
& \mu_{a c, p}=\frac{\mathrm{BP} \cdot \mathrm{GMC}}{E_{\perp, p}}+\frac{\mathrm{CP} \cdot \mathrm{GMC} N_{\text {total }}^{\mathrm{EXP} 4 \cdot \mathrm{GMC}}}{T \sqrt[3]{E_{\perp, p}}}
\end{align*}
$$

Equation 2-152 and the surface roughness terms for electrons and holes are given by

$$
\begin{align*}
& \mu_{s r, n}=\left(\frac{\mathrm{DN} \cdot \mathrm{GMC}}{E_{\perp}^{\text {EXN8.GMC }}}\right) \\
& \mu_{s r, p}=\left(\frac{\mathrm{DP} \cdot \mathrm{GMC}}{E_{\perp}^{\text {EXP8.GMC }}}\right)
\end{align*}
$$

Equation 2-154

The bulk mobility terms for electrons and holes are exactly the same as those used in the Lombardi Surface Mobility model (see "Lombardi Surface Mobility Model," p. 2-33).

The impurity scattering term of Equation 2-149 is given by

$$
\mu_{\text {impurity }}=\max \left\{\mu_{\text {screened }}, \mu_{\text {unscreened }}\right\}
$$

Equation 2-155
where the screened terms for electrons and holes are given by

$$
\begin{align*}
& \mu_{\text {screened, } n}=\mathrm{D} 1 \mathrm{~N} . \mathrm{GMC} \cdot \frac{n^{\mathrm{EXN5} \cdot \mathrm{GMC}}}{N_{\text {total }}^{\mathrm{EXN} 6 . \mathrm{GMC}}} \\
& \mu_{\text {screened, } p}=\mathrm{D} 1 \mathrm{P} . \mathrm{GMC} \cdot \frac{p^{\mathrm{EXP} 5 \cdot \mathrm{GMC}}}{N_{\text {total }}^{\mathrm{EXP} 6 . \mathrm{GMC}}}
\end{align*}
$$

and the unscreened terms for electrons and holes are given by
$\mu_{\text {unscreened, } n}=\frac{\mathrm{D} 2 \mathrm{~N} \cdot \mathrm{GMC}}{N_{\text {total }}^{\mathrm{EXN} 7 \mathrm{GMC}}}$
Equation 2-158

$$
\mu_{\text {unscreened, } p}=\frac{\text { D2P.GMC }}{N_{\text {total }}^{\text {EXP7.GMC }}}
$$

Equation 2-159

The default parameters for the GMСМОВ model are given in the following table for materials defined as SILICON. Values for other materials are shown in Table 317, "Lombardi Surface Mobility Model Parameters," p. 3-326.

Table 2-4 GMCMOB Default Parameters

Parameter	Default	Parameter	Default
BN. GMC	8.95×10^{5}	BP . GMC	8.95×10^{5}
CN. GMC	3.23×10^{6}	CP . GMC	3.23×10^{6}
DN. GMC	8.29×10^{14}	DP. GMC	8.29×10^{14}
D1N. GMC	1.35×10^{11}	D1P. GMC	1.35×10^{11}
D2N. GMC	2.89×10^{8}	D2P. GMC	2.89×10^{8}
EXN4 . GMC	0.0284	EXP4 . GMC	0.0284
EXN5 . GMC	1.5	EXP5. GMC	1.5
EXN6 . GMC	2.0	EXP6. GMC	2.0
EXN7. GMC	0.35	EXP7. GMC	0.35
EXN8 . GMC	2.0	EXP8 . GMC	2.0

Shirahata Mobility Model

The Shirahata mobility model [107] incorporates the transverse field effect into the Philips Unified Mobility (see "Philips Unified Mobility," p. 2-27).
Specifically, the electron mobility due to lattice scattering in the Philips Unified Mobility is expanded to include the transverse field effect with the following expression.

Equation 2-160

$$
\mu_{\text {latt }, n}^{\text {Shirahata }}=\frac{\mu_{\text {latt, } n}^{\text {PhilipsUnified }}}{\left(1+\frac{E_{\text {eff }}, n}{\text { E1N.SHI }}\right)^{\mathbf{E X 1 N} . \mathbf{S H I}}+\left(\frac{E_{e f f_{1}, n}}{\mathbf{E 2 N} . \mathbf{S H I}}\right)^{\mathbf{E X 2 N} . \mathbf{S H I}}}
$$

A similar expression applies for hole mobility. The Shirahata mobility model is activated with the SHIRAMOB parameter on the MODELS statement, with the parameters accessible through the MOBILITY statement.

SHIRAMOB and PHUMOB common parameters are accessed on the MOBILITY statement as P HUMOB parameters.

Transverse FieldDependent Mobility Model

A MOSFET inversion layer mobility model, based on work at the University of Texas at Austin [85], [86] for simulation of MOSFETs with planar surfaces, has been generalized for use with devices implemented in Medici that have an arbitrary geometry.

The model calculates local mobility values so that an integration across the inversion layer results in the experimentally-observed value of mobility.

The model has the form

$$
\mu=f\left(\mu_{e f f}, E_{\|}, v^{s a t}\right)+\left(E_{\perp}-E_{0}\right) \cdot \frac{d f\left(\mu_{e f f}, E_{\|}, v^{s a t}\right)}{d E_{\perp}}
$$

Equation 2-161

For electrons,

$$
f=\frac{\mu_{e f f, n}}{\left(1+\left(\frac{\mu_{e f f, n} E_{\|}}{v_{n}^{s a t}}\right)^{\mathrm{BETAN}}\right)^{1 / \mathrm{BETAN}}}
$$

Equation 2-162
where $v_{n}^{\text {sat }}$ is computed by default (see next section) or can be specified explicitly with the VSATN parameter. The effective electron mobility is given by

$$
\begin{aligned}
\mu_{e f f, n} & =\left(\frac{1}{\mu_{p h, n}\left(E_{e f f, n}\right)}+\frac{1}{\mu_{s r, n}\left(E_{e f f, n}\right)}+\frac{1}{\mu_{c l, n}}\right)^{-1} \\
E_{e f f, n} & =\frac{\left(E_{\perp}+E_{0}\right)}{2}
\end{aligned}
$$

Equation 2-163
Equation 2-164
$\mu_{p h, n}=\left\{\left(\operatorname{TEMPN} \cdot \mathbf{U T} \cdot\left(\frac{T}{300}\right)^{-5 / 2}\right)^{-1}+\right.$

$$
\left.\left\{\frac{\frac{0.0388 \cdot\left(\frac{T}{300}\right)}{E_{e f f, n}}+1.73 \cdot 10^{-5} \cdot E_{e f f, n}^{-1 / 3}}{\text { PHONN . UT } \cdot\left(\frac{T}{300}\right)^{1 / 2} \cdot\left(0.09 \cdot\left(\frac{T}{300}\right)^{7 / 4}+4.53 \cdot 10^{-8} \cdot n^{-1 / 4} \cdot \frac{N_{f}}{\left(\frac{T}{300}\right)}\right)}\right)^{-1}\right)^{-1}
$$

$$
\begin{aligned}
& \mu_{s r, n}=\frac{\text { SURFN.UT }}{E_{e f f, n}^{2}} \\
& \mu_{c l, n}=\frac{\text { COULN.UT } \cdot\left(\frac{T}{300}\right)^{\frac{3}{2}}}{N_{a} \cdot\left(\ln \left(1+\gamma_{n}\right)-\frac{\gamma_{n}}{\left(1+\gamma_{n}\right)}\right)} \\
& \gamma_{n}=\frac{2 \cdot 10^{19}}{n}\left(\frac{T}{300}\right)^{2} \\
& \mu_{i n v, n}=\mu_{e f f, n} \cdot \mathbf{I N V} \cdot \mathbf{N} \cdot \mathbf{U T} \\
& \mu_{a c c, n}=\mu_{e f f, n} \cdot \mathbf{A C C} \cdot \mathbf{N} \cdot \mathbf{U T}
\end{aligned}
$$

Equation 2-166

For holes,

$$
f=\frac{\mu_{e f f, p}}{\left(1+\left(\frac{\mu_{e f f, p} \cdot E_{\|}}{v_{p}^{\text {sat }}}\right)^{\text {BETAP }}\right)^{1 / \mathrm{BETAP}}}
$$

where $v_{p}^{\text {sat }}$ is computed by default (see next section) or can be specified explicitly with the ${ }^{p}$ VSATP parameter. The effective hole mobility is given by

$$
\begin{align*}
& \mu_{e f f, p}=\left(\frac{1}{\mu_{p h, p}\left(E_{e f f, p}\right)}+\frac{1}{\mu_{s r, p}\left(E_{e f f, p}\right)}+\frac{1}{\mu_{c l, p}}\right)^{-1} \\
& E_{e f f, p}=\frac{\left(E_{\perp}+2 \cdot E_{0}\right)}{3}
\end{align*}
$$

Equation 2-173

$$
\begin{aligned}
& \mu_{p h, p}=\left\{\left(\operatorname{TEMPP} \cdot \mathbf{U T} \cdot\left(\frac{T}{300}\right)^{-7 / 5}\right)^{-1}+\quad \text { Equation } 2-174\right. \\
& \binom{\frac{0.039 \cdot\left(\frac{T}{300}\right)}{E_{e f f, p}}+1.51 \cdot 10^{-5} \cdot E_{e f f, p}^{-1 / 3}}{\text { РНONP .UT } \cdot\left(\frac{T}{300}\right)^{1 / 2} \cdot\left(0.334 \cdot\left(\frac{T}{300}\right)^{3 / 2}+3.14 \cdot 10^{-7} \cdot p^{-0.3} \cdot \frac{N_{f}}{\left(\frac{T}{300}\right)}\right)}
\end{aligned}
$$

$$
\mu_{s r, p}=\frac{\text { SURFP.UT }}{E_{e f f, p}}
$$

Equation 2-175

$$
\mu_{c l, p}=\frac{\operatorname{COULP} \cdot \mathrm{UT} \cdot\left(\frac{T}{300}\right)^{\frac{3}{2}}}{N_{d} \cdot\left(\ln \left(1+\gamma_{p}\right)-\frac{\gamma_{p}}{\left(1+\gamma_{p}\right)}\right)}
$$

Equation 2-176

$$
\gamma_{p}=\frac{8.4 \cdot 10^{16}}{p \cdot\left(\frac{T}{300}\right)^{3.4}}
$$

Equation 2-177

$$
\mu_{i n v, p}=\mu_{e f f, p} \cdot \text { INV.P.UT }
$$

Equation 2-178

$$
\mu_{a c c, p}=\mu_{e f f, p} \cdot \mathbf{A C C . P . U T}
$$

where

- $\mu_{\text {eff }}$ is experimentally-measured effective (or average) carrier mobility in the inversion layer.
- E_{0} is transverse electric field at the edge of the inversion layer.
- $\mu_{p h}$ is mobility degraded by acoustic phonon scattering.
- $\mu_{s r}$ is mobility degraded by surface roughness scattering.
- $\mu_{c l}$ is mobility degraded by Coulombic scattering.
- $\mu_{i n v}$ is mobility at the surface of the weak inversion layers.
- $\mu_{a c c}$ is mobility at the surface of the accumulation layers.
- $\quad N_{f}$ is interface charge.

The transverse field-dependent mobility model is activated with the TFLDMOB parameter on the MODELS statement, with the parameters accessible through the MOBILITY statement. Note that parameters VSATN, VSATP, BETAN, and BETAP used in the Caughey-Thomas expression above are shared with the parallel field mobility model (FLDMOB) described in the next section.

This model can be applied to a device with a planar, vertical, tilted, or nonplanar channel. There are no restrictions in regard to the mesh when using this model, and it may be imported from a process simulator. Moreover, the model can be used for any device where a substantial transverse field is present, not just for MOSFETs.

Note:
ETAN and ETAP, two of the parameters for effective electric field at the surface, should be set to 1 when TFLDMOB is requested.

Note:

This model has been calibrated using source/drain contact resistances of approximately 500 Ohm/micron for nFETs and 900 Ohm/micron for pFETs. If the model is used without the external resistances attached to the terminals, the drain current most likely will be 50 to 100% higher than measured.

Note:
When using TFLDMOB for n-channel MOSFETs, the FLDMOB parameter (see "High Field Effects," p. 2-40) should also be specified. However, for p-channel MOSFETs, best results are obtained when FLDMOB is not specified.

High Field Effects

The following mobility models available in Medici can account for effects due to high field in the direction of current flow:

- FLDMOB
- HPMOB
- LUCMOB
- IALMOB

These models may be selected on the MODELS statement. The HPMOB model also takes into account mobility dependence on perpendicular field. LUCMOB and IALMOB are all-inclusive models accounting for low-field, transverse field and longitudinal field.

When simulations are performed that include the solution of the carrier energy balance equation, selecting the TMPMOB parameter on the MODELS statement will use an effective electric field calculated from carrier temperature in the mobility calculations. This is described in "Carrier Temperature-Based Mobility," p. 2136.

Parallel Field Mobility

Field-dependent models for mobility can be derived that account for carrier heating and velocity saturation effects. This is done by using analytic expressions for the drift velocity v_{d} as a function of the electric field in the direction of current flow, $E_{\|}$, and defining $\mu\left(\mathrm{E}_{\|}\right)=v_{d}\left(E_{\|}\right) / E_{\|}$. Such models have been implemented for both silicon and gallium arsenide.

Medici offers great flexibility for modeling complex device structures by allowing different parallel field-dependent mobility models to be used in different regions of the structure. For example, it is possible to use a "silicon-like" mobility model in one region of the structure and a "gallium arsenide-like" mobility model in a different region. It is also possible to locally disable the parallel field-dependent mobility calculations, in which case the low field mobilities described in the previous sections are used.

To activate the parallel field mobility calculations, the FLDMOB parameter on the MODELS statement must be specified. To specify that a particular parallel field mobility model is to be used in specific materials or regions, the FLDMOB=<n> parameter on the MOBILITY statement should be used, where <n> is an integer that identifies the model.

To clarify this point, the MODELS statement is used to invoke the parallel fielddependent calculations, but the MOBILITY statement is used to select which models to use and where they are to apply. In most cases, the default model choices are appropriate, and there is no need to make adjustments on the MOBILITY statement.

The parallel field-dependent mobility model choices in Medici are given below, as well as how these models are selected and the defaults that are used in the program.

Disabling Parallel
 Field-Dependent Mobility

Caughey-Thomas Expression

When $\operatorname{FLDMOB}=0$ is specified on the MOBILITY statement, the parallel fielddependent mobility calculation is disabled in the materials or regions for which the statement applies. In these regions, the low field values $\mu_{S, n}$ and $\mu_{S, p}$ are used (which may include the scattering mechanisms described in "Surface Scattering," p. 2-29).

When $\operatorname{FLDMOB}=1$ is specified on the MOBILITY statement, a Caughey-Thomas expression for both electron and hole mobility is used in the materials or regions
for which the statement applies. This is the default for regions that are defined as SILICON, POLYSILI, SEMICOND, GERMANIU, SIC, or SIGE on the REGION statement. In this case, the mobility has the form [17]

$$
\begin{align*}
& \mu_{n}=\frac{\mu_{S, n}}{\left[1+\left(\frac{\mu_{S, n} E_{\|, n}}{v_{n}^{\text {sat }}}\right)^{\mathrm{BETAN}}\right]^{1 / \mathrm{BETAN}}} \\
& \mu_{p}=\frac{\mu_{S, p}}{\left[1+\left(\frac{\mu_{S, p} E_{\|, p}}{v_{p}^{\text {sat }}}\right)^{\mathrm{BETAP}}\right]^{1 / \mathrm{BETAP}}}
\end{align*}
$$

Equation 2-181
where

- $\quad \mu_{S, n}$ and $\mu_{S, p}$ are the low field mobilities (which may include the scattering mechanisms described in "Surface Scattering," p. 2-29).
- $v_{n}^{s a t}$ and $v_{p}^{s a t}$ are saturation velocities for electrons and holes, respectively. Values for $v_{n}^{s a t}$ and $v_{p}^{s a t}$ are computed by default from the expression [8]

$$
v_{n, p}^{\text {sat }}(T)=\frac{2.4 \times 10^{7}}{1+0.8 \cdot \exp \left(\frac{T}{600}\right)}
$$

Equation 2-182

Alternatively, specific values for $v_{n}^{\text {sat }}$ and $v_{p}^{\text {sat }}$ can be selected with VSATN and VSATP parameters on the MOBILITY statement. Note that in this model, the carrier drift velocity $\left(\mu E_{\|}\right)$saturates at high fields and $\partial\left(\mu E_{\|}\right) / \partial E_{\|}>0$ for all values of $E_{\|}$.

Gallium ArsenideLike Mobility

When $\operatorname{FLDMOB}=2$ is specified on the MOBILITY statement, a mobility model that has often been used for modeling gallium arsenide is used in the materials or regions for which the statement applies. This is the default for regions that are defined as GAAS or ALGAAS on the REGION statement. In this case, the mobility has the form [30]

$$
\mu_{n}=\frac{\mu_{S, n}+\frac{v_{n}^{s a t}}{E_{\|, n}}\left(\frac{E_{\|, n}}{\mathbf{E O N}}\right)^{4}}{1+\left(\frac{E_{\|, n}}{\mathbf{E O N}}\right)^{4}}
$$

Equation 2-183

$$
\mu_{p}=\frac{\mu_{S, p}+\frac{v_{p}^{\text {sat }}}{E_{\|, p}}\left(\frac{E_{\|, p}}{\mathrm{EOP}}\right)^{4}}{1+\left(\frac{E_{\|, p}}{\mathrm{EOP}}\right)^{4}}
$$

where values for $v_{n}^{\text {sat }}$ and $v_{p}^{\text {sat }}$ are computed by default from the expression [31]

$$
v_{n, p}^{s a t}(T)=11.3 \times 10^{6}-1.2 \times 10^{4} T
$$

Specific values of $v_{n}^{s a t}$ and $v_{p}^{\text {sat }}$ can be selected with VSATN and VSATP parameters on the MOBILITY statement. Note that as the electric field increases in this model, the carrier drift velocity ($\mu E_{\|}$) reaches a peak and then begins to decrease at high fields due to the transferred electron effect. The result is that $\partial\left(\mu E_{\|}\right) / \partial E_{\|}<0$ for high fields.

Alternative Parallel
 Field-Dependent Expression (Hansch Mobility)

When $\operatorname{FLDMOB}=3$ is specified on the MOBILITY statement, the following parallel field-dependent mobility expressions will be used in the materials or regions for which the statement applies [53]:

$$
\begin{aligned}
& \mu_{n}=\frac{2 \mu_{S, n}}{1+\left[1+\left(\frac{2 \mu_{S, n} E_{\|, n}}{v_{n}^{\text {sat }}}\right)^{\mathrm{BETAN} \cdot \mathrm{HA}}\right]^{1 / \mathrm{BETAN} \cdot \mathrm{HA}}} \\
& \mu_{p}=\frac{2 \mu_{S, p}}{1+\left[1+\left(\frac{2 \mu_{S, p} E_{\|, p}}{v_{p}^{\text {sat }}}\right)^{\mathrm{BETAP} \cdot \mathrm{HA}}\right]^{1 / \mathrm{BETAP} \cdot \mathrm{HA}}}
\end{aligned}
$$

Equation 2-186

Note:
This expression is used to describe the parallel field-dependence for both electrons and holes with the "Lucent Mobility Model," p. 2-45 (LUCМОВ) and the "Inversion and Accumulation Layer Mobility Model," p. 2-47 (IALMOB). The parameters BETAN. HA and BETAP. HA can be changed from their default values of 2 on the MOBILITY statement.

Hewlett-Packard Mobility Model

The Hewlett-Packard mobility model [100], [101] takes into account dependence on electric fields both parallel and perpendicular to the direction of current flow. The expressions for mobility used by this model are

$$
\begin{align*}
& \mu_{n}=\frac{\mu_{\perp, n}}{\sqrt{1+\frac{\left(\frac{\mu_{\perp, n} E_{\|, n}}{\mathrm{VCN} . \mathrm{HP}}\right)^{2}}{\frac{\mu_{\perp, n} E_{\|, n}}{\mathrm{VCN} . \mathrm{HP}}+\mathrm{GN} \cdot \mathrm{HP}}+\left(\frac{\mu_{\perp, n} E_{\|, n}}{\mathrm{VSN} . \mathrm{HP}}\right)^{2}}} \\
& \mu_{p}=\frac{\mu_{\perp, p}}{\sqrt{1+\frac{\left(\frac{\mu_{\perp, p} E_{\|, p}}{\mathrm{VCP} \cdot \mathrm{HP}}\right)^{2}}{\mu_{\perp, p} E_{\|, p}} \frac{\mathrm{VCP} \cdot \mathrm{HP}}{}+\mathrm{GP} \cdot \mathrm{HP}}+\left(\frac{\mu_{\perp, p} E_{\|, p}}{\mathrm{VSP} \cdot \mathrm{HP}}\right)^{2}}
\end{align*}
$$

Equation 2-189

The expressions for $\mu_{\perp, n}$ and $\mu_{\perp, p}$ are given by

$$
\mu_{\perp, n}=\frac{\text { MUNO.HP }}{1+\frac{E_{\perp, n}}{\text { ECN.HP }}} \text {, if } N_{\text {total }}(x, y)<\text { NRFN.HP }
$$

Equation 2-190
$\mu_{\perp, p}=\frac{\text { MUPO.HP }}{1+\frac{E_{\perp, p}}{\mathrm{ECP} . \mathrm{HP}}}$, if $N_{\text {total }}(x, y)<\mathrm{NRFP} . \mathrm{HP}$
Equation 2-191

The default value for both NRFN. HP and NRFP. HP is 5×10^{17}. If the above conditions are not satisfied, then $\mu_{\perp, n}=\mu_{0, n}$ and $\mu_{\perp, p}=\mu_{0, p}$, where $\mu_{0, n}$ and $\mu_{0, p}$ are the low field mobility values described in "Low Field Mobility," p. 2-22.

The HP mobility model may be selected by specifying HPMOB on the MODELS statement. All mobility parameters are accessible through the MOBILITY statement.

Lucent Mobility

 ModelAn all-inclusive model has been developed by Darwish, et al. [102] that incorporates slightly modified versions of the Philips Unified Mobility model (PHUMOB) and the Lombardi Surface Mobility model (LSMMOB), as well as accounting for high field effects. The model is selected with the LUCMOB parameter on the MODELS statement.

For low longitudinal field, the carrier mobility is given by
$\mu_{S}=\left[\frac{1}{\mu_{b}}+\frac{1}{\mu_{a c}}+\frac{1}{\mu_{s r}}\right]^{-1}$
Equation 2-192
where

- μ_{b} is mobility in bulk silicon.
- $\mu_{a c}$ is mobility degraded by surface acoustical phonon scattering.
- $\mu_{s r}$ is mobility degraded by surface roughness scattering.

The equations for μ_{b} are very similar to those used for PHUMOB. For electron mobility we have

$$
\frac{1}{\mu_{b, n}}=\frac{1}{\mu_{L, n}}+\frac{1}{\mu_{I, n}}
$$

where

$$
\mu_{L, n}=\mathbf{M M X N} \cdot \mathbf{U M}\left(\frac{T}{300}\right)^{-\mathbf{T E T N} \cdot \mathbf{U M}}
$$

$$
\mu_{I, n}=\mu_{1, n}\left(\frac{N_{\text {total }}}{N_{\text {Ieff }, n}}\right)\left(\frac{\text { NRFN. UM }}{N_{\text {total }}}\right)^{\text {ALPN.UM }}+\mu_{2, n}\left(\frac{n+p}{N_{\text {Ieff }, n}}\right)
$$

and $\mu_{1, n}, \mu_{2, n}$ and $\quad N_{\text {Ieff }, n} \quad$ are given by

$$
\begin{align*}
& \mu_{1, n}=\frac{\text { MMXN. UM }}{}{ }^{2} \\
& M_{2, n}=\frac{T}{\text { MMXN. UM }- \text { MMNN. UM }}\left(\frac{T}{300}\right)^{3(\text { ALPN } \cdot \mathbf{U M})-1.5} \\
& N_{I \text { Ieff }, n}=N_{D}+N_{A} G\left(P_{n}\right)
\end{align*}
$$

Equation 2-197

Equation 2-198

For holes, $N_{\text {Ieff }, p}$ is given by

$$
N_{\text {Ieff }, p}=N_{A}+N_{D} G\left(P_{p}\right)
$$

The functions $G\left(P_{n}\right)$ and $G\left(P_{p}\right)$ and the screening parameters P_{n} and P_{p} are described in "Philips Unified Mobility," p. 2-27.

Similar expressions hold for hole mobility. Note that the parameters used in the above expressions are the same as those used with Р $\mathbf{~ H U M O B . ~}$

The expressions for $\mu_{a c}$ and $\mu_{s r}$ for electrons and holes are very similar to those used with the LSMMOB

$$
\begin{aligned}
& \mu_{a c, n}=\frac{\mathrm{BN} \cdot \mathbf{L U C}}{E_{\perp, n}}+\frac{\mathrm{CN} \cdot \mathrm{LUC} N_{\text {total }}^{\mathrm{EXN} 4 \cdot \mathrm{LUC}}}{(T / 300)^{\mathrm{KN} \cdot \mathrm{LUC}} \sqrt[3]{E_{\perp, n}}} \\
& \mu_{a c, p}=\frac{\mathrm{BP} \cdot \mathbf{\mathrm { LUC }}}{E_{\perp, p}}+\frac{\mathrm{CP} \cdot \mathrm{LUC} N_{\text {total }}^{\mathrm{EXP} 4 \cdot \mathrm{LUC}}}{(T / 300)^{\mathrm{KP} \cdot \mathrm{LUC}} \sqrt[3]{E_{\perp, p}}} \\
& \mu_{s r, n}=\left(\frac{\mathrm{DN} \cdot \mathrm{LUC}}{E_{\perp, n}^{\gamma_{n}}}\right) \\
& \mu_{s r, p}=\left(\frac{\mathrm{DP} \cdot \mathrm{LUC}}{E_{p}}\right)
\end{aligned}
$$

Equation 2-200

Equation 2-201

Equation 2-202

Equation 2-203
where

$$
\begin{aligned}
& \gamma_{n}=\mathbf{A N} \cdot \mathbf{L U C}+\frac{\mathrm{FN} \cdot \mathbf{L U C}(n+p)}{N_{\text {total }}^{\mathrm{EXN} 9 \cdot \mathrm{LUC}}} \\
& \gamma_{p}=\mathbf{A P} \cdot \mathbf{L U C}+\frac{\mathrm{FP} \cdot \mathbf{L U C}(n+p)}{N_{\text {total }}^{\mathrm{EXP} \cdot \mathrm{LUC}}}
\end{aligned}
$$

Equation 2-204

Equation 2-205

Finally, the total mobility is obtained using the expressions:

$$
\begin{aligned}
& \mu_{n}=\frac{2 \mu_{S, n}}{1+\left[1+\left(\frac{2 \mu_{S, n} E_{\|, n}}{v_{n}^{\text {sat }}}\right)^{\mathrm{BETAN} \cdot \mathrm{HA}}\right]^{1 / \mathrm{BETAN} \cdot \mathrm{HA}}} \\
& \mu_{p}=\frac{2 \mu_{S, p}}{1+\left[1+\left(\frac{2 \mu_{S, p} E_{\|, p}}{v_{p}^{\text {sat }}}\right)^{\mathrm{BETAP} \cdot \mathrm{HA}}\right]^{1 / \mathrm{BETAP} \cdot \mathrm{HA}}}
\end{aligned}
$$

Equation 2-206

Default silicon parameters for LUCMOB are given in the following table:

Table 2-5 LUCMOB Default Parameters

Parameter	Default	Parameter	Default
AN . LUC	2.58	AP . LUC	2.18
BN . LUC	3.61×10^{7}	BP. LUC	1.51×10^{7}
CN. LUC	1.70×10^{4}	CP . LUC	4.18×10^{3}
DN. LUC	3.58×10^{18}	DP. LUC	4.10×10^{15}
FN. LUC	6.85×10^{-21}	FP. LUC	7.82×10^{-21}
KN. LUC	1.7	KP. LUC	0.9
EXN4. LUC	0.0233	EXP4. LUC	0.0119
EXN9. LUC	0.0767	EXP9. LUC	0.123

Inversion and Accumulation Layer Mobility Model

A model that includes modified versions of the "Philips Unified Mobility," p. 227 (PHUMOB) for bulk Coulomb impurity scattering and the "Lombardi Surface Mobility Model," p. 2-33 (LSMMOB) for acoustic phonon and surface roughness scattering and that takes high field effects into account has been developed by S . A. Mujtaba [103]. Although the model has been designed for NMOS devices, it has been implemented into Medici for both NMOS and PMOS devices. While a simplified version of the Klaassen model [21], [22] is used for bulk Coulomb impurity scattering, the model switches to a two-dimensional approach similar to the impurity scattering part of the "Generalized Mobility Curve Mobility Model," p. 2-34 if a perpendicular field leads to a significant confinement of the carriers. The model can be selected by specifying the IALMOB parameter on the MODELS statement.

For low longitudinal field, the carrier mobility is given by

$$
\mu_{S}=\left[\frac{1}{\mu_{p h}}+\frac{1}{\mu_{s r}}+\frac{1}{\mu_{C b}}\right]^{-1}
$$

Equation 2-208
where

- $\mu_{C b}$ is the mobility degraded due to Coulomb scattering.
- $\mu_{p h}$ is the mobility degraded by acoustical phonon scattering.
- $\mu_{s r}$ is the mobility degraded by surface roughness scattering.

The contributions for phonon and Coulomb scattering have a two-dimensional and a three-dimensional part. The phonon interaction switches between a model for surface acoustic phonon scattering $\mu_{p h, 2 D}$ and a model for the bulk semiconductor behavior $\mu_{p h, 3 D}$. The total degradation due to the carrier phonon interaction is given by

$$
\mu_{p h}=\min \left\{\mu_{p h, 2 D}, \mu_{p h, 3 D}\right\}
$$

Equation 2-209
where for electrons (n) and holes (p)

$$
\begin{align*}
& \mu_{p h, 3 D, n}=\operatorname{MMXN} \cdot \mathbf{U M}\left(\frac{T}{300}\right)^{-\mathrm{TETN} \cdot \mathrm{UM}} \\
& \mu_{p h, 3 D, p}=\operatorname{MMXP} \cdot \mathbf{U M}\left(\frac{T}{300}\right)^{-\mathrm{TETP} \cdot \mathrm{UM}} \\
& \mu_{p h, 2 D, n}=\frac{\mathrm{BN} \cdot \mathbf{I A L}}{E_{\perp, n}}+\frac{\mathrm{CN} \cdot \mathbf{I A L} N_{\text {total }}^{\mathrm{EXNA} \cdot \mathrm{IAL}}}{T \sqrt[3]{E_{\perp, n}}} \\
& \mu_{p h, 2 D, p}=\frac{\mathbf{B P} \cdot \mathbf{I A L}}{E_{\perp, p}}+\frac{\mathrm{CP} \cdot \mathbf{I A L} N_{\text {total }}^{\mathrm{EXP} 4 \mathrm{IAL}}}{T \sqrt[3]{E_{\perp, p}}}
\end{align*}
$$

Due to a transverse electric field, carriers get confined to the semiconductor surface region and are increasingly scattered due to surface roughness leading to a decrease of the mobility.

$$
\mu_{s r, n}=\frac{\text { DN.IAL } N_{\text {total }}^{\text {EXN4.IAL }}}{E_{\perp, n}^{2}}
$$

$$
\mu_{s r, p}=\frac{\mathrm{DP} \cdot \mathbf{I A L} N_{\text {total }}^{\mathrm{EXP4} \cdot \mathrm{IAL}}}{E_{\perp, p}^{2}}
$$

The total Coulomb impurity scattering contribution to the degradation of the mobility consists of a three-dimensional part $\mu_{C b, 3 D}$ and a two-dimensional part $\mu_{C b, 2 D}$, accounting for the confinement of carriers in a quasi two-dimensional space by an increasing transverse field.

$$
\mu_{C b}=f(\alpha) \mu_{C b, 3 D}+[1-f(\alpha)] \mu_{C b, 2 D}
$$

Equation 2-216
To achieve a sharp but continuous transition, $f(\alpha)$ is given by a Fermi function

$$
f(\alpha)=\frac{1}{1+e^{(\alpha-\lambda) / \eta}}
$$

Equation 2-217
with $\lambda=2$ and $\eta=0.5$. The argument describes an approximate expression for the energy separation of the lowest-confined states in a triangular well as a measure of the two-dimensional character of the system.
$\alpha=\frac{2.1 \times 10^{-24} E_{\perp}^{2 / 3}}{k T}$
Equation 2-218

The two-dimensional Coulomb part contains the accumulation layer mobility $\mu_{C b, 2 D}^{a c c}$ and a contribution accounting for inversion layers $\mu_{C b, 2 D}^{i n v}$, which are summed up via Matthiessen's rule.

$$
\begin{array}{ll}
\mu_{C b, 2 D}=\left[\frac{1}{\mu_{C b, 2 D}^{a c c}}+\frac{1}{\mu_{C b, 2 D}^{i n v}}\right]^{-1} & \text { Equation 2-219 } \\
\mu_{C b, 2 D, n}^{i n v}=\max \left\{\frac{\mathrm{D} 1 \mathrm{~N} \cdot \mathrm{IAL} n^{\text {EXN5.IAL }}}{N_{A}^{\text {EXN6.IAL }}}, \frac{\mathrm{D} 2 \mathrm{~N} \cdot \mathrm{IAL}}{\left.N_{A}^{\text {EXN7.IAL }}\right\}}\right. & \text { Equation 2-220 } \\
\mu_{C b, 2 D, p}^{i n v}=\max \left\{\frac{\mathrm{D} 1 \mathrm{P} \cdot \mathrm{IAL} p^{\text {EXP5.IAL }}}{N_{D}^{\text {EXP6.IAL }}}, \frac{\mathrm{D} 2 \mathrm{P} \cdot \mathrm{IAL}}{N_{D}^{\text {EXP7.IAL }}}\right\} & \text { Equation 2-221 }
\end{array}
$$

To take the effects of ultra-high doping into account, the acceptor and donor concentrations are corrected by the cluster function given in Equations 2-121 and $2-122$. The ratio between attractive and repulsive carrier mobility has been modeled by Klaassen [21], [22] and can be expressed by the function $G(P)$.

$$
\begin{aligned}
& G\left(P_{n}\right)=1+\frac{0.005978}{\left[P_{n}\left(\text { MASSN } \cdot \mathbf{I A} \frac{300}{T}\right)^{0.72169}\right]^{1.80618}} \\
& 0.89233 \\
& {\left[0.41372+P_{n}\left(\text { MASSN . IA }{ }^{-1} \frac{T}{300}\right)^{0.28227}\right]^{0.19778}} \\
& G\left(P_{p}\right)=1+\frac{0.005978}{\left[P_{p}\left(\text { MASSP } . \mathbf{I A} \frac{300}{T}\right)^{0.72169}\right]^{1.80618}} \\
& 0.89233 \\
& -\overline{\left[0.41372+P_{p}\left(\text { MASSP } \cdot \mathbf{I A} \mathbf{A}^{-1} \frac{T}{300}\right)^{0.28227}\right]^{0.19778}}
\end{aligned}
$$

The functions $G\left(P_{n}\right)$ and $G\left(P_{p}\right)$ and the screening parameters P_{n} and P_{p} are described in more detail in "Philips Unified Mobility," p. 2-27. Besides carrier concentration and temperature, P depends on the mass, which can be adjusted via the parameters MASSN. IA, MASSP. IA for electrons and holes, respectively.

$$
\begin{align*}
& P_{n}^{-1}=\frac{2.459}{3.97 \times 10^{13} N_{\text {total }}^{-2 / 3}}+\frac{3.828 n}{1.36 \times 10^{20} \text { MASSN. IA }}\left(\frac{T}{300}\right)^{2} \\
& P_{p}^{-1}=\frac{2.459}{3.97 \times 10^{13} N_{\text {total }}^{-2 / 3}}+\frac{3.828 p}{1.36 \times 10^{20} \text { MASSP . IA }}\left(\frac{T}{300}\right)^{2}
\end{align*}
$$

Equation 2-225

In Contrast to the full Klaassen model (РнUMOB), the minimum of the function $G(P)$ is not calculated to provide a lower cut off $G\left(P_{\text {min }}\right)$ for $P, P_{\text {min }}$.

Now, the accumulation layer mobility can be written in a similar way as the inversion layer contribution Equations 2-220, 2-221.

$$
\begin{aligned}
& \mu_{C b, 2 D, n}^{a c c}=\max \left\{\frac{\mathrm{D} 1 \mathrm{~N} \cdot \mathrm{IAL} n^{\mathrm{EXN5} \cdot \mathrm{IAL}}}{N_{D}^{\mathrm{EXN} 6 \cdot \mathrm{IAL}}}, \frac{\mathrm{D} 2 \mathrm{~N} \cdot \mathrm{IAL}}{\left.N_{D}^{\mathrm{EXN} 7 \cdot \mathrm{IAL}}\right\} G\left(P_{n}\right) \quad \text { Equation 2-226 }}\right. \\
& \mu_{C b, 2 D, p}^{a c c}=\max \left\{\frac{\mathrm{D} 1 \mathrm{P} \cdot \mathrm{IAL} p^{\mathrm{EXP} 5 \cdot \mathrm{IAL}}}{N_{A}^{\mathrm{EXP} \cdot \mathrm{IAL}}}, \frac{\mathrm{D} 2 \mathrm{P} \cdot \mathrm{IAL}}{\left.N_{A}^{\text {EXP7.IAL }}\right\} G\left(P_{p}\right) \quad \text { Equation 2-227 }}\right.
\end{aligned}
$$

The three-dimensional Coulomb scattering contribution is described by a simplified version of the Klaassen model (compare РнUMOB "Philips Unified Mobility," p. 2-27).

$$
\begin{aligned}
\mu_{C b, 3 D, n} & =\mu_{1, n}\left(\frac{N_{\text {total }}}{N_{\text {Ieff }, n}}\right)\left(\frac{\text { NRFN. UM }}{N_{\text {total }}}\right)^{\text {ALPN.UM }}+\mu_{2, n}\left(\frac{n}{N_{\text {Ieff }, n}}\right) \text { Equation 2-228 } \\
\mu_{C b, 3 D, p} & =\mu_{1, p}\left(\frac{N_{\text {total }}}{N_{\text {Ieff }, p}}\right)\left(\frac{\text { NRFP. UM }}{N_{\text {total }}}\right)^{\text {ALPP.UM }}+\mu_{2, p}\left(\frac{p}{N_{\text {Ieff }, p}}\right) \text { Equation 2-229 }
\end{aligned}
$$

Assuming that the electron or hole concentration dominates in accumulation or inversion layers $p<n(p » n)$, respectively, the sum of the concentrations can be approximated as $n+p \approx n(n+p \approx p) \cdot \mu_{1}, \mu_{2}$ and $N_{\text {Ieff }}$ for electrons and holes are given by

$$
\begin{align*}
& \mu_{1, n}=\frac{\text { MMXN. UM }}{}{ }^{2}\left(\frac{T}{\text { MMXN. UM }- \text { MMNN. UM }} 3\right)^{3(\text { ALPN. UM })-1.5} \\
& \mu_{1, p}=\frac{\text { MMXP } \cdot \text { UM }^{2}}{\text { MMXP } \cdot \mathbf{U M}-\text { MMNP }^{2} \mathbf{U M}}\left(\frac{T}{300}\right)^{3(\text { ALPP } \cdot \mathbf{U M})-1.5} \\
& \mu_{2, n}=\frac{\text { MMXN. UM } \cdot \text { MMNN. UM }}{\text { MMXN. UM }- \text { MMNN. UM }}\left(\frac{300}{T}\right)^{1 / 2} \\
& \mu_{2, p}=\frac{\text { MMXP } \cdot \mathbf{U M} \cdot \operatorname{MMNP} \cdot \mathbf{U M}}{\text { MMXP } \cdot \mathbf{U M}-\operatorname{MMNP} \cdot \mathbf{U M}}\left(\frac{300}{T}\right)^{1 / 2} \\
& N_{\text {Ieff }, n}=N_{D}+N_{A} G\left(P_{n}\right) . \\
& N_{\text {Ieff }, p}=N_{A}+N_{D} G\left(P_{p}\right)
\end{align*}
$$

Equation 2-231

Equation 2-232

Equation 2-233

Note that the parameters used in the above expressions are the same as those used with PHUMOB.

Finally, the total mobility including high field effects is obtained using the expressions ("Alternative Parallel Field-Dependent Expression (Hansch Mobility)," p. 2-44),

$$
\begin{align*}
& \mu_{n}=\frac{2 \mu_{S, n}}{1+\left[1+\left(\frac{2 \mu_{S, n} E_{\|, n}}{v_{n}^{\text {sat }}}\right)^{\mathrm{BETAN} \cdot \mathrm{HA}}\right]^{1 / \mathrm{BETAN} \cdot \mathrm{HA}}} \\
& \mu_{p}=\frac{2 \mu_{S, p}}{1+\left[1+\left(\frac{2 \mu_{S, p} E_{\|, p}}{v_{p}^{s a t}}\right)^{\mathrm{BETAP} \cdot \mathrm{HA}}\right]^{1 / \mathrm{BETAP} \cdot \mathrm{HA}}}
\end{align*}
$$

Equation 2-237

The default parameters for IALMOB are given in the following table:

Table 2-6 IALMOB Default Parameters

Parameter	Default	Parameter	Default
MASSN. IAL	0.26	D2N. IAL	4.00×10^{10}
BN. IAL	9.00×10^{5}	EXN4. IAL	0.057
CN. IAL	1.32×10^{6}	EXN5. IAL	1.5
DN. IAL	3.97×10^{13}	EXN6. IAL	2.0
D1N. IAL	1.35×10^{11}	EXN7. IAL	0.5

Note that the corresponding parameters for holes have the same default parameters. The default parameters taken from the work of S. A. Mujtaba [103] for the masses used in the Klaassen part of the model significantly deviate from the parameters used in PHUMOB. All other parameters given by Mujtaba for the Klaassen part of his model are in good agreement with the original Klaassen parameters used as defaults in РНUMOB. The parameters can be adjusted on the MOBILITY statement.

Electric Field Calculations for Mobility Models

This section describes two aspects of the electric field calculations that are used within the mobility models discussed in the previous sections:

- The effective electric field calculation that is performed (by default) at semiconductor-insulator interfaces
- A discussion of how the parallel and perpendicular components of electric field are calculated, including a description of the EJ.MOBIL parameter

Effective Electric
Fields at Interfaces

By default, Medici calculates and uses effective electric fields at semiconductorinsulator interfaces when performing the mobility calculations described in the previous sections. The vector expressions for these effective fields are given by the following equations:

$$
\vec{E}_{\text {eff, } n}=\left\{\operatorname{ZETAN} E_{\text {semi, } \perp_{s}}+\mathbf{E T A N}\left[\left(\frac{\varepsilon_{\text {insul }}}{\varepsilon_{\text {semi }}}\right) E_{\text {insul, } \perp_{s}}+\frac{q \mathbf{Q F}}{\varepsilon_{\text {semi }}}-E_{\text {semi, } \perp_{s}}\right]\right\} \hat{n}_{\perp}+E_{\text {semi, } \|_{s}} \hat{n}_{\|}
$$

$$
\vec{E}_{\text {eff, }, p}=\left\{\mathbf{\operatorname { z E T A P } E _ { \text { semi, } \perp _ { s } } + \mathbf { E T A P } [(\frac { \varepsilon _ { \text { insul } } } { \varepsilon _ { \text { semi } } }) E _ { \text { insul } , \perp _ { s } } + \frac { q \mathbf { Q F } } { \varepsilon _ { \text { semi } } } - E _ { \text { semi, } \perp _ { s } }] \} \hat { n } _ { \perp } + E _ { \text { semi, } \| _ { s } } \hat { n } _ { \| }}\right.
$$

where $E_{\text {semi, } \perp_{s}}$ and $E_{\text {insul, } \perp_{s}}$ are components of the electric field in the semiconductor and insulator, respectively. These components are perpendicular to the interface. $E_{\text {semi, }} \|_{s}$ is the component of the electric field in the semiconductor that is parallel to the interface, and \hat{n}_{\perp} and $\hat{n}_{\|}$are unit vectors normal to and parallel to the interface. Note that the above effective electric fields also account for the presence of interface charge, QF .

When calculating the perpendicular components of the effective fields, $E_{\text {eff }}, n$ and $E_{e f f_{\perp}, p}$, Medici by default calculates the components perpendicular to the interface. However, if EJ.MOBIL is selected on the MODELS statement, then $E_{e f f_{\perp}, n}$ and $E_{e f f_{\perp}, p}$ are the components of effective electric field perpendicular to current flow (see Electric Field Components below).

Electric Field

 ComponentsWhen assembling the current densities within a device structure, Medici calculates the Scharfetter-Gummel current densities [32] along each side of each triangular element. For example, the electron and hole current densities between nodes 1 and 2 in Figure 2-2 are given by

$$
\begin{align*}
& J_{n_{12}}=\frac{q \mu_{n_{12}}}{(q / K T) d_{12}}\left[\left(n_{2}-n_{1}\right) B\left(\Delta_{12}\right)-\Delta_{12} n_{1}\right] \\
& J_{p_{12}}=\frac{q \mu_{p_{12}}}{(q / K T) d_{12}}\left[\left(p_{1}-p_{2}\right) B\left(\Delta_{12}\right)-\Delta_{12} p_{2}\right]
\end{align*}
$$

where

- $\quad \mu_{n_{12}}$ and $\mu_{p_{12}}$ are the electron and hole mobility values for the side
- d_{12} is the distance between nodes 1 and $2, B$ is the Bernoulli function,
- Δ_{12} is the potential difference between nodes 1 and 2 scaled by $k T / q$.

Figure 2-2 Typical triangular element used in Medici

The mobility values $\mu_{n_{1}}$ and $\mu_{p_{1}}$ used in the above expressions may depend on electric field. By default, the electric field components $E_{\|}$and E_{\perp} used in the mobility models are the components of electric field parallel and perpendicular to the side for which the mobility values are being calculated. For example, for the side connecting nodes 1 and 2 ,

$$
\begin{align*}
& E_{\|}=E_{\|_{12}}=\frac{\left|\psi_{2}-\psi_{1}\right|}{d_{12}} \\
& E_{\perp}=E_{\perp_{12}}=\frac{\left|\psi_{3}-\psi_{p}\right|}{d_{3 p}}
\end{align*}
$$

Equation 2-243
where $\psi_{1}, \psi_{2}, \psi_{3}$, and ψ_{p} are the potentials at nodes $1,2,3$, and at point p , respectively. Mobility calculations using the electric field components obtained in this way can be quite accurate in situations where the current flow in a device is directed primarily along the edges of the triangular elements.

In general, however, current flow in a device is not directed exactly parallel to element edges. For such cases, the electric field components $E_{\|}$and E_{\perp} used in the mobility models should be the components of electric field that are parallel and perpendicular to current flow. If EJ. MOBIL is selected on the MODELS statement, Medici calculates electric field components for each element as follows:

$$
\begin{aligned}
& E_{\|}=\frac{\max (0, \vec{E} \cdot \vec{J})}{|\vec{J}|} \\
& E_{\perp}=\frac{|\vec{E} \times \vec{J}|}{|\vec{J}|}
\end{aligned}
$$

Equation 2-244

Equation 2-245
where \vec{E} is the electric field vector for the element and \vec{J} is the current density vector for the element that is computed as a weighted average of the ScharfetterGummel current densities for each side.

Although this method of obtaining electric field components generally results in more accurate mobility calculations, it is also computationally more complex and it may require more iterations for convergence when obtaining solutions.

Mobility Model Choices

The program provides several choices for mobility. Table 2-7 is intended to simplify the process of mobility model selection by illustrating the possible combinations of available mobility models.

The mobility models presently available in Medici can be classified into three categories:

- Low Field
- Transverse Field
- Parallel Field

These three categories are identified by the column headings shown in Table 2-7. The mobility choices, based on the dependencies accounted for by each model, appear in the appropriate column(s) below the headings. Note that some of the mobility models span more than one column.

Table 2-7 Mobility Choices in Medici

Low Field	Transverse Field	Parallel Field
LUCMOB		
IALMOB		
CCSMOB	HPMOB	
LSMMOB		FLDMOB
GMCMOB		TMPMOB
SHIRAMOB		
ANALYTIC	PRPMOB	
ARORA	SRFMOB	
CONMOB	SRFMOB2	
PHUMOB	TFLDMOB	

When selecting mobility models for a simulation, only one model from each of the three categories shown in the table is allowed. For example, both "cоNмOB PRPMOB FLDMOB" and "LSMMOB FLDMOB" represent valid choices. However, "LSMMOB нРMOB" is not a valid choice because it includes two entries in the "Transverse Field" category.

Comparison of Mobility Models

This section presents examples illustrating how different mobility options affect a particular simulation. For this purpose, the N-channel MOSFET structure is used (see Chapter 1).

Figure 2-3 shows the results of selecting several different methods to account for surface scattering effects. The gate and drain characteristics of the N -channel MOSFET under consideration were simulated using:

- A reduction of electron mobility at the interface by a specified factor (GSURFN=.75)
- The surface mobility model (SRFMOB)
- The enhanced surface mobility model (SRFMOB2)
- The Lombardi surface mobility model (LSMMOB)
- The Hewlett-Packard mobility model (HPMOB)
- The perpendicular electric field mobility model (PRPMOB)
- The perpendicular electric field mobility model (PRPMOB) using electric field components parallel and perpendicular to current flow (EJ.MOBIL)

In all cases, the parameters CONMOB and FLDMOB were also selected, except when using НРмOB, when simultaneous use of FLDMOB is not allowed and when using LSMMOB when CONMOB is not allowed. All cases used default values for parameters associated with the selected models.

GSURFN Results

Although the degradation factors GSURFN and GSURFP can be used to approximate the effects of surface scattering, the actual values used in most cases depend on the structure and biases involved. From the gate characteristics shown in Figure 2-3, it can be seen that specifying GSURFN=. 75 provides reasonable agreement with most of the transverse field-dependent mobility models for $V_{g s}<$ $2 V$. However, smaller values of GSURFN would be required to provide agreement at higher values of $V_{g s}$.

Transverse Field Mobility Results

The transverse field-dependent mobility models can account for high gate biases, but as seen in Figure 2-3, the mobility reduction differs for the various cases as $V_{g s}$ is increased. It is apparent that some characterization would be required to obtain better agreement between the models themselves and also with measured experimental data.

Figure 2-3 N-channel MOSFET simulation with seven mobility choices

EJ.MOBIL Results

The final two cases illustrated in this comparison use the same mobility model (PRPMOB); however, they differ in the way that the electric field calculations are done. In case 7, the parameter EJ. MOBIL is selected to force the use of the electric field components parallel and perpendicular to current flow as opposed to the electric field components parallel and perpendicular to the side of an element.

Figure 2-3 shows that the resulting gate and drain curves show no visible difference from the case when EJ. MOBIL is not selected (the curves for these two cases coincide in Figure 2-3). This can be explained by the fact that the current flow for this device occurs primarily at the interface and is directed along the edges of elements that make up the interface; therefore, in this case, the components of electric field parallel and perpendicular to the sides of the interface elements are almost identical to the components of field parallel and perpendicular to the direction of current. This accounts for the nearly-identical results.

Comparison of CPU Time

Table 2-8 compares the relative CPU time required to simulate the gate and drain curves shown in Figure 2-3. As the table indicates, selecting EJ. MOBIL can be quite expensive in terms of CPU time. Although using EJ. MOBIL results in more accurate solutions, as the above example illustrates, it often is not necessary.

Table 2-8 Comparison of Relative CPU Times for Various Options

Model	Gate Characteristics	Drain Characteristics
GSURFN $=.75$	1.00	1.00
SRFMOB	1.00	1.02
SRFMOB2	1.05	1.02

Table 2-8 Comparison of Relative CPU Times for Various Options (Continued)

Model	Gate Characteristics	Drain Characteristics
LSMMOB	1.51	1.53
HPMOB	1.30	1.22
PRPMOB	1.17	1.16
PRPMOB EJ.MOBIL	1.52	1.79

EJ.MOBIL and Subsurface Current Flow

Finally, an example is presented that illustrates a case where selection of EJ. MOBIL does affect device behavior. The device structure used for this example is nearly identical to the N -channel MOSFET structure considered previously. The difference is that a much finer simulation mesh is used near the oxide-silicon interface so that deviations of the current flow from the surface may be studied. Such deviations are known to occur near the drain region of the channel when the drain is biased beyond the onset of saturation.

Figure 2-4a shows the average current path (50% flowline) for the cases when EJ. MOBIL is selected (solid line) and when it is not selected (dashed line). The mobility models selected for these simulations include CONMOB, FLDMOB, and PRPMOB.

Figure 2-4 N-channel MOSFET with and without es.mobil selected

As explained in [33], the vertical deflection of the current path is exaggerated when field components parallel and perpendicular to the sides of elements are used in the mobility calculations. The resulting drain current for the two cases, including the effects of impact ionization, are shown in Figure 2-4b. The exaggerated vertical deflection of the current path when EJ.MOBIL is not selected causes the current to flow in a region of lower electric field. This results in a less accurate (higher) simulated breakdown voltage for the device than when EJ. MOBIL is selected.

Electron-Hole Scattering

If EHSCAT is specified on the MODELS statement, electron-hole scattering is included in the electron and hole current density equations. Electron-hole scattering is important when there are large numbers of electrons and holes present simultaneously, as in power bipolar devices. When electron-hole scattering is included, the electron and hole continuity equations become [83]
$\overrightarrow{J_{n}}=-q \mu_{n} n \vec{\nabla} \phi_{n}+\sigma \vec{\nabla} \phi_{p}$
$\overrightarrow{J_{p}}=-q \mu_{p} p \vec{\nabla} \phi_{p}+\sigma \vec{\nabla} \phi_{n}$
Equation 2-247
The terms μ and σ due to electron-hole scattering are given by the follow equations:

$$
\begin{align*}
& \mu_{n}=\mu_{n}^{0} \frac{1+n \mu_{p}^{0} M}{1+\left(p \mu_{n}^{0}+n \mu_{p}^{0}\right) M} \\
& \mu_{p}=\mu_{p}^{0} \frac{1+p \mu_{n}^{0} M}{1+\left(p \mu_{n}^{0}+n \mu_{p}^{0}\right) M} \\
& \sigma=q n \mu_{n}^{0} \frac{p \mu_{p}^{0} M}{1+\left(p \mu_{n}^{0}+n \mu_{p}^{0}\right) M} \\
& M=\mathbf{A} . \mathbf{E H S} \frac{1+\mathbf{B} \cdot \mathbf{E H S} \frac{n+p}{2}}{1+\mathbf{C} \cdot \mathbf{E H S} \frac{n+p}{2}}
\end{align*}
$$

Equation 2-249

Equation 2-250

In the above equations, A.EHS, B.EHS, and C.EHS are user-specified parameters accessible through the MATERIAL statement. μ_{n}^{0} and μ_{p}^{0} are the normal electron and hole mobilities, which include field, doping, and temperature dependence. In the above equations, when M is small, the model reduces to the normal drift-diffusion case.

Note:
Use of electron-hole scattering with CCSMOB and PHUMOB is not recommended. These two models already contain mobility degradation due to electron-hole scattering. When anisotropic mobilities are used, the elec-tron-hole scattering terms also become anisotropic due to their dependence on mobility.

Stress-Induced Mobility

Selecting STRMOB on the models statement causes mechanical stress effects in silicon regions to be included in the electron and hole mobilities. This model must be used in conjunction with the stress-induced bandgap model described in the MODELS statement. Due to the very different band structure of the conduction and valence bands, the effect of stress of the electron and hole mobilities is very different. Using the model from Egley [104], the electron mobility becomes anisotropic under stress and can be written as a diagonal tensor in the crystallographic coordinate system as

$$
\mu_{n}^{\prime}=\mu_{n 0}\left(\begin{array}{ccc}
1+\beta_{1} & 0 & 0 \\
0 & 1+\beta_{2} & 0 \\
0 & 0 & 1+\beta_{3}
\end{array}\right)
$$

Equation 2-252
where $\mu_{\mathrm{n} 0}$ is the nominal, isotropic mobility without stress and

$$
\beta_{i}=\left(\frac{1-\mathbf{M L T} \cdot \mathbf{S T R}}{1+2 \mathbf{M L T} \cdot \mathbf{S T R}}\right)\left(\frac{\exp \left(-\frac{\Delta E_{C i}}{k T}\right)}{\exp \left(-\frac{\Delta E_{C}}{k T}\right)}-1\right)
$$

Equation 2-253
where:

- $\Delta E_{C i}$ is the shift in the band edge of the $\mathrm{i}^{\text {th }}$ ellipsoidal conduction minima from Equation 2-62.
- ΔE_{C} is the net effective shift in the conduction band from Equation 2-60.
- MLT . STR $=m_{L} / m_{T}$ is the ratio of the longitudinal and transverse effective masses.

During device simulation, the mobility tensor $\mu^{\prime}{ }_{n}$ must be transformed to the device coordinate system using a similarity transformation

$$
\underline{\underline{\mu_{n}}}=\left(\begin{array}{ll}
\mu_{x x} & \mu_{x y}
\end{array} \mu_{x z}{ }_{x}\left(\begin{array}{ll}
\mu_{x y} & \mu_{y y} \\
\mu_{y z} \\
\mu_{x z} & \mu_{y z}
\end{array} \mu_{z z}\right)=A \underline{\underline{\mu_{n}^{\prime}}} A^{-1}\right.
$$

where A is the transformation from the crystallographic coordinate system to device coordinate system as determined by the substrate orientation. For an arbitrary substrate orientation, the mobility tensor in the device coordinate system contains, in general, off-diagonal components. However, similar to the inclusion of anisotropic transport in the Anisotropic Material Advance Application Module, these off-diagonal components are neglected in the discretization of the continuity equations. Under certain circumstances, the transformed mobility tensor in Equation 2-254 remains diagonal and is thus treated exactly. This occurs, for example, for a device under plane strain with a substrate orientation of $\langle 100\rangle$ and an x-axis orientation of $\langle 110\rangle$.

In the model from Egley, the hole mobility remains isotropic and is given by
Equation 2-255

$$
\mu_{p}=\mu_{p 0}\left\{1+(\mathbf{M U L O . S T R}-1) \frac{x_{0}}{1+x_{0}}\left[\exp \left(\frac{\Delta E_{V l}-\Delta E_{V h}}{k T}\right)-1\right]\right\}
$$

where:

- $\mu_{p 0}$ is the nominal hole mobility without stress
- $x_{0}=(\mathbf{M L O} / \mathbf{M H} 0)^{3 / 2}, \Delta E_{V l}$ and $\Delta E_{V h}$ are the shifts in the light and heavy hole maxima from Equation 2-63
- MULO.STR $=\mu_{p l} / \mu_{p 0}$ is the ratio of the unstressed light hole mobility to the total hole mobility

The default value of MULO.STR is chosen as 2.79 from the hole mobility model of Ottaviani [106]. The coefficients MLT . STR and MULO . STR can be changed on the MOBILITY statement.

Boundary Conditions

Medici supports four types of basic boundary conditions:

- Ohmic contacts
- Schottky contacts
- Contacts to Insulators
- Neumann (reflective) boundaries

In addition to these, three auxiliary boundary conditions are also included, which are useful for some types of applications.

- To save grid space, it is beneficial to include lumped resistances, capacitances, and inductances between applied biases and semiconductor device contacts.
- For devices such as SCRs, where current is a multivalued function of applied voltage, a current boundary condition can be used.
- To account for the finite resistivity of contacts to the semiconductor, a true distributed contact resistance can be specified.

Medici now supports all the appropriate combinations of one local and one nonlocal boundary condition. The lumped elements contact and current boundary are considered non-local since they impact all the nodes of the contact. The remaining boundary conditions are local. For example, distributed contact resistance, a local boundary condition, can be applied to the same contact as lumped elements, a non-local boundary condition. Both the basic and auxiliary boundary conditions are described below.

Ohmic Contacts

Ohmic contacts are implemented as simple Dirichlet boundary conditions, where the surface potential and electron and hole concentrations (ψ_{s}, n_{s}, p_{s}) are fixed. The minority and majority carrier quasi-Fermi potentials are equal and are set to the applied bias of that electrode, i.e. $\phi_{n}=\phi_{p}=V_{\text {applied. }}$. The potential, ψ_{s}, is fixed at a value consistent with zero space charge, i.e.

$$
n_{s}+N_{A}^{-}=p_{s}+N_{D}^{+}
$$

Equation 2-256
Substituting Equations 2-36 and 2-37 for n_{s} and p_{s}, Equation 2-256 can be solved for ψ_{s} and hence n_{s} and p_{s}, since ϕ_{n} and ϕ_{p} are known. If Boltzmann statistics are used, substitution of Equations 2-262 and 2-263 into Equation 2-256 yields

$$
\begin{align*}
& n_{s}=\frac{1}{2}\left[\left(N_{D}^{+}-N_{A}^{-}\right)+\sqrt{\left(N_{D}^{+}-N_{A}^{-}\right)^{2}+4 n_{i e}^{2}}\right] \\
& p_{s}=\frac{n_{i e}^{2}}{n_{s}}
\end{align*}
$$

Equation 2-258
where

$$
\psi_{s}=\phi_{n}+\frac{k T}{q} \ln \left(\frac{n_{s}}{n_{i e}}\right)=\phi_{p}-\frac{k T}{q} \ln \left(\frac{p_{s}}{n_{i e}}\right)
$$

Schottky Contacts

Schottky contacts to the semiconductor are defined by a work function of the electrode metal and an optional surface recombination velocity. The surface potential at a Schottky contact is defined by

$$
\psi_{s}=\chi_{\text {semi }}+\frac{E_{g}}{2 q}+\frac{k T}{2 q} \ln \left(\frac{N_{C}}{N_{V}}\right)-\text { WORKFUNC }+V_{\text {applied }}
$$

Equation 2-260

The work function of the metal, WORKFUNC, can be specified on the CONTACT statement. In the above expression, $\chi_{s e m i}$ is the electron affinity of the semiconductor which can be specified with the AFFINITY parameter on the MATERIAL statement.

Imposing Finite Surface Recombination Velocities

Finite surface recombination velocities can be imposed by specifying the SURF . REC parameter on the CONTACT statement. In this case, ϕ_{n} and ϕ_{p} are no longer equal to $V_{\text {applied }}$ and instead are defined by current boundary conditions at the surface [34]

$$
\begin{aligned}
& J_{s n}=q v_{s n}\left(n_{s}-n_{e q}\right) \\
& J_{s p}=q v_{s p}\left(p_{s}-p_{e q}\right)
\end{aligned}
$$

Equation 2-261

Equation 2-262
where

- $J_{s n}$ and $J_{s p}$ are the electron and hole current densities at the contact.
- n_{s} and p_{s} are the actual surface electron and hole concentrations.
- $\quad n_{e q}$ and $p_{e q}$ are the equilibrium electron and hole concentrations assuming infinite surface recombination velocities $\left(\phi_{n}=\phi_{p}=V_{\text {applied }}\right)$.

The surface recombination velocities for electrons and holes, $v_{s n}$ and $v_{s p}$, are calculated by default from the expressions
$v_{s n}=\frac{\text { ARICHN } T^{2}}{q N_{C}}$
Equation 2-263
$v_{s p}=\frac{\text { ARICHP } T^{2}}{q N_{V}}$
Equation 2-264
where ARICHN and ARICHP are the effective Richardson constants for electrons and holes which take into account quantum mechanical reflection and tunneling, and can be specified on the MATERIAL statement. Alternatively, specific values can be selected for $v_{s n}$ and $v_{s p}$ using the VSURFN and VSURFP parameters on the CONTACT statement.

Barrier Lowering

The Schottky model can also account for field-dependent barrier-lowering mechanisms, arising from image forces and possible static dipole layers at the metal-semiconductor interface. In Medici, the barrier height is defined as [8]
$\phi_{b n}=$ WORKFUNC $-\chi_{\text {semi }}$
Equation 2-265
$\phi_{b p}=\frac{E_{g}}{q}+\chi_{s e m i}-$ WORKFUNC
Equation 2-266

Barrier lowering can be requested with the BARRIERL parameter on the CONTACT statement. The amount by which the barriers are lowered [35] can be expressed as
$\Delta \phi_{b}=\mathbf{B E T A}\left[\frac{q}{4 \pi \varepsilon_{s e m i}}\right]^{1 / 2} E^{1 / 2}+\mathbf{A L P H A} E^{\text {GAMMA }}$
Equation 2-267
where E is the magnitude of the electric field at the interface and ALPHA, BETA, and GAMMA are parameters that can be specified on the CONTACT statement. Note that the term with the square root dependence on electric field corresponds to the image force, while the linear term (when GAMMA=1, the default) corresponds to the dipole effect. Typical values for ALPHA can be found in [35]. The above expression can be used to account for other physical effects occurring at contacts, such as direct tunneling [117], with an appropriate selection of the parameters.

Barrier lowering had been previously implemented in an experimental version of the program (see [36]). It has been reincorporated in Medici in a slightly different manner. The basic procedure is to solve Poisson's equation normally with the surface potential defined as in Equation 2-260. However, using the electric field consistent with the solved potentials, effective surface potentials are computed as

$$
\psi_{s_{e f f}}=\psi_{s} \pm \Delta \phi_{b}
$$

Equation 2-268
where the + is for electrons and the - for holes, respectively. The continuity equations are then solved using Equations 2-261 and 2-262 as boundary conditions, but with $n_{s}, n_{e q}, p_{s}$, and $p_{e q}$ replaced with $n_{s_{e f f}}, n_{e q_{e f f}}, p_{s_{e f f}}$, and $p_{e q_{e f f}}$ which are computed using $\Psi_{s_{e f f}}$.
Using a physical interpretation of this approach, the Poisson equation is solved consistently with the charge, but the electrons and holes see a combined Poisson and image-force potential. Note that the full barrier lowering term has been applied directly at the surface; in reality, the peak occurs a slight distance within the semiconductor.

In Medici, surface recombination is implemented on a element-by-element basis; that is, using the surface recombination velocity and geometrical data, a recombination component is calculated for each element to which an element of interest is connected. Using the electric field for each element, an adjusted recombination term can be computed if barrier lowering is to be incorporated. This is in contrast to [36], where a single field value for the electrode node was used to compute a total recombination value. Also unlike [36], barrier lowering can be used with any of the basic numerical solution procedures (i.e., Gummel or Newton).

Contacts to Insulators

These contacts generally have a work function dictating a value for ψ_{s} similar to Equation 2-256. The electron and hole concentrations within the insulator and at the contact are forced to be zero, i.e. $n_{s}=p_{s}=0$.

Neumann Boundaries

Along the outer (noncontacted) edges of devices to be simulated, homogeneous (reflecting) Neumann boundary conditions are imposed so that current only flows out of the device through the contacts.

Additionally, in the absence of surface charge along ${ }_{s}$ uch edges, the normal component of the electric field goes to zero, i.e. $\hat{n} \cdot \nabla \psi=0$. In a similar fashion, current is not permitted to flow from the semiconductor into an insulating region.

At the interface between two different materials, the difference between the normal components of the respective electric displacements must be equal to any surface charge density, σ_{s}, present along the interface.
$\hat{n} \cdot \varepsilon_{1} \vec{\nabla} \psi_{1}-\hat{n} \cdot \varepsilon_{2} \vec{\nabla} \psi_{2}=\sigma_{s}$
Equation 2-269
The possibilities for the surfaces charge density, σ_{s}, are described in the next section.

Interface Charge and Traps

The surface charge density used in Equation 2-269 may be composed of both fixed charge and interface trapped charge.

$$
\sigma_{s}=\sigma_{f}+\sigma_{a, p}+\sigma_{a, n}+\sigma_{d, p}+\sigma_{d, n}
$$

In this expression, σ_{f} is the fixed interface charge density, and the remaining terms are charge densities due to the presence of fast interface states. These interface states can be charged or neutral, depending on whether or not they hold a carrier. Fast interface states are allowed only in the semiconductor forbidden bandgap, and are classified as either donor or acceptor of electrons or holes

$$
\begin{array}{cl}
\sigma_{a, p} & \begin{array}{l}
\text { charge density of hole acceptor states (positively charged above } \\
\text { the hole quasi-Fermi level, neutral below) }
\end{array} \\
\sigma_{a, n} & \begin{array}{l}
\text { charge density of electron acceptor states (neutral above the elec- } \\
\text { tron quasi-Fermi level, negatively charged below) }
\end{array} \\
\sigma_{d, p} & \begin{array}{l}
\text { charge density of hole donor states (neutral above the hole quasi- } \\
\text { Fermi level, negatively charged below) }
\end{array} \\
\sigma_{d, n} & \begin{array}{l}
\text { charge density of electron donor states (positively charged above } \\
\text { the electron quasi-Fermi level, neutral below) }
\end{array}
\end{array}
$$

135

Expressions for the various charge density terms are given as follows:

$$
\sigma_{f}=q \cdot \mathbf{Q F}
$$

$$
\begin{aligned}
& \sigma_{a, p}=q \cdot \mathbf{P} \cdot \mathbf{A C C E P T} \cdot\left(E_{C}-E_{F p}\right) \\
& \sigma_{a, n}=-q \cdot \mathbf{N} \cdot \mathbf{A C C E P T} \cdot\left(E_{F n}-E_{V}\right) \\
& \sigma_{d, p}=-q \cdot \mathbf{P} \cdot \mathrm{DONOR} \cdot\left(E_{F p}-E_{V}\right) \\
& \sigma_{d, n}=q \cdot \mathbf{N} \cdot \text { DONOR } \cdot\left(E_{C}-E_{F n}\right)
\end{aligned}
$$

In the above expressions, QF is a number density (\#/cm ${ }^{2}$) and \mathbf{P}. ACCEPT, N. ACCEPT, P. DONOR, N. DONOR are number densities per unit energy $\left(\# / \mathrm{cm}^{2}-\mathrm{eV}\right)$. These parameters can be specified on the INTERFACE statement.

Lumped Resistance, Capacitance, and Inductance Elements

The development of lumped elements capability addresses two needs:

- To reduce the number of grid points used to discretize device structures (to save CPU time)
- To perform transient simulation more accurately (see comments at the end of "Transient Device Simulation," p. 2-101)

Note:

Medici requires that the Newton method be specified when using resistance, capacitance, and inductive elements.

Simulation of an entire CMOS structure provides a typical case where a lumped resistance might be useful. Such a structure may contain a purely resistive section that could be tens or hundreds of microns away from the primary area of interest of possibly only 10 to 20 microns of the structure. If the whole structure were simulated, a large number of grid points (more than half) would be wasted to account for the purely resistive region of the device. Because CPU time is a superlinear function of the number of grid points for all numerical methods of interest (see [37]), simulating such regions explicitly can prove costly. Another example is the simulation of the substrate of a MOSFET, where inclusion of grid points through to the back side of a wafer may be prohibitive. In both cases, a simple, lumped resistance might be substituted. Similar arguments hold true for capacitance.

Lumped Element Boundary Conditions

Lumped element boundary conditions are implemented by introducing extra unknowns, the voltage on the semiconductor contact (ϕ) and the current flowing in an optional inductance, $\left(I_{l}\right)$, to be solved for. These unknowns are defined by Kirchhoff equations

Equation 2-276

$$
\frac{V_{\text {applied }}-\phi}{R}+C \frac{d\left(V_{\text {applied }}-\phi\right)}{d t}+I_{l}-\sum_{i=1}^{N_{b}}\left(I_{n}+I_{p}+I_{d i s p}\right)_{i}=0
$$

$$
V_{a p p l i e d}-\phi-L \frac{d I_{l}}{d t}=0
$$

where N_{b} is the number of boundary grid points associated with the electrode of interest. The first auxiliary equation, due to the currents inside the summation, has dependencies on the values of potential and carrier concentrations at the nodes on the electrode as well as all nodes directly adjacent to the electrode.

It is important to note the following:

- Temporal terms associated with the capacitor and inductor must be discretized in a manner consistent with the device equations (see "Transient Device Simulation," p. 2-101).
- In contrast to the distributed resistance to be described below, a lumped element contact has a single voltage (or potential, adjusted for possible doping nonuniformities) associated with the entire electrode.

Specification

Within Medici, values for lumped resistances, capacitances and inductance, are specified with the RESISTAN, CAPACITA, INDUCTAN parameters on the CONTACT statement.

Because auxiliary equations must be added to the system, a new symbolic matrix factorization must be performed after these boundary conditions are specified or changed. Medici detects the changes in the user-specification and takes care of this automatically. In addition, the Newton solution method must be used with lumped elements or contact resistance.

The specified values should be in units of:

- $\quad \Omega-\mu \mathrm{m}$ for resistance
- $\quad F / \mu \mathrm{m}$ for capacitance
- Henrys $-\mu \mathrm{m}$ for inductance

Capacitance increases with device width (into the z plane), while conversely, resistance and inductance decrease. Except for the case of extremely large resistances, where the arrangement becomes similar to a pure current source (see below), no convergence degradation has been observed for a lumped element boundary in comparison to a simple ohmic contact.

The simulator should be used as much as possible to help calculate any resistance (or capacitance) components that might be included as lumped elements. For instance, in the case of the CMOS structure mentioned above, just the resistive portion of the structure may be simulated with ohmic contacts at either end. From the plot of terminal current (in $\mathrm{A} / \mu \mathrm{m}$) versus voltage, the resistance can be directly extracted from the slope.

CAUTION

Be careful to account for any three-dimensional effects (such as current spreading) before using such a resistance value in further simulations.

Current Boundary Conditions

One of the first applications of Medici was in the analysis of CMOS latch-up triggering [38]. The terminal current of an SCR type structure is a multivalued function of the applied voltage. This condition implies that for some voltage boundary conditions, depending on the initial guess, a numerical procedure may produce a solution in one of three distinct and stable states:

- A low current "off" state
- An intermediate region typified by negative resistance
- A high current "on" state

The condition of primary interest is the point at which $d V / d I=0$, known as the trigger point, which is exceedingly difficult to obtain with a simple voltage boundary condition. It is nearly impossible to compute any solutions in the negative resistance regime using only voltage inputs.

Since voltage can be thought of as a single-valued function of the terminal current, a possible alternative to the problem described above would be to define a current boundary condition. Such a boundary condition has been implemented within Medici as an auxiliary equation with an additional unknown boundary potential. Like the lumped R/C case, a Kirchhoff equation is written at the electrode

$$
I_{\text {source }}-\sum^{N_{b}}\left(I_{n}+I_{p}+I_{\text {disp }}\right)_{i}=0
$$

Unlike the lumped R/C case, $I_{\text {source }}$ is constant and has no dependence on the boundary potential ϕ (the ϕ dependence is buried in the summation). Because of this weaker dependence on ϕ, the convergence of the nonlinear Newton iteration is affected, but not always for the worse.

Specification

To specify that current boundary conditions are to be used at an electrode, the parameter CURRENT should be specified on the CONTACT statement. The actual value of current to use at the electrode is specified when a solution is requested on the SOLVE statement.

Note:

Medici requires that the Newton method be specified when using current boundary conditions.

In regions where $d I / d V$ is small, the voltage boundary condition is preferable.
In operating regions where $d I / d V$ is large, the current boundary condition may be preferable.

It is common for the negative resistance regime of an SCR to have a slope $d I / d V$ very close to 0 . Such behavior should be considered when using a current source to trace out an entire I-V curve (i.e., it might be preferable to switch back to a voltage source after passing the trigger point). Or the continuation method (see "Continuation Method," p. 2-79) can be used, which automatically selects the best boundary condition and bias step size.

Distributed Contact Resistance

For a contact with a lumped element or for a simple voltage boundary condition, a single potential is associated with the entire electrode. However, because contact materials have finite resistivities, the electrostatic potential is not truly uniform along the metal-semiconductor interface. To account for this effect, a distributed contact resistance can be associated with any electrode in a Medici simulation.

The implementation of distributed contact resistance is as follows: Medici internally places a resistance R_{i} at each node i associated with the contact of interest. The value of each R_{i} is computed from the contact resistance, CON.RESI (in $\Omega-\mathrm{cm}^{2}$, specified on the CONTACT statement) as
$R_{i}=\operatorname{CON} . \operatorname{RESI} / d_{c, i}$
Equation 2-279
where $d_{c, i}$ is the length of the contact associated with node i. An auxiliary equation is then added for each electrode node, unlike the lumped element case where a single equation is added for the entire electrode. So for every node i that is part of the contact

$$
\frac{1}{R_{i}}\left[V_{\text {applied }}-\left(\psi_{i} \pm \frac{k T}{q} \ln \left(\frac{N}{n_{i}}\right)\right)\right]-\left(I_{n}+I_{p}+I_{d i s p}\right)_{i}=0
$$

Equation 2-280

Extra equations added to the system are strictly local in nature. Only the current at node i is included in Equation 2-280 as opposed to the summation over the contact in Equation 2-276, so that there is no direct coupling between nonadjacent electrode nodes and neighbors. Distributed contact resistance is simpler to implement numerically than are the lumped element or current boundary conditions.

Alternatively, a doping-dependent contact resistance model [116] can be selected by specifying CRS . CON on the CONTACT statement. With this model, the value specified with CON.RESI is replaced by
$R_{c}=\operatorname{A.CONRES}\left(\frac{300}{T}\right) \exp \left(\frac{\text { C.CONRES }}{E_{00} \operatorname{coth}\left(\frac{E_{00}}{k T}\right)}\right)$
Equation B-281
where

$$
E_{00}=\mathbf{B . C O N R E S} \sqrt{N_{d o p}}
$$

The three parameters associated with the model can also be specified on the CONTACT statement. The default values are those for n-silicon at 300 K [116].

An example illustrating the effects of specifying contact resistance for an electrode can be found in Chapter 6.

Majority Carrier Contact

One-dimensional simulation of bipolar devices requires a majority carrier contact to set the majority carrier Fermi level at the base contact. This is established by the standard contact. The standard contact also sets the minority carrier Fermi level. It is this level that fixes the concentration of minority carriers to the equilibrium value, with the result that no minority carriers can cross the base. To allow the one-dimensional simulation of bipolar devices (using a single line of elements), a majority carrier contact was created in Medici. This contact is selected by specifying MAJORITY on the corresponding ELECTRODE statement.

The majority carrier contact is implemented by injecting a majority carrier current I_{m} at the nodes of the electrode. The majority carrier current is calculated from $\mathrm{I}_{m}=G\left(\phi_{n}{ }^{-} V_{a}\right)$ for N-type material and $\mathrm{I}_{m}=G\left(\phi_{p}{ }^{-} V_{a}\right)$ for P-type material. The conductivity G is calculated by the program, and corresponds to the resistivity of 0.1 micron of silicon. V_{a} is the voltage applied to the contact.

Numerical Methods

Six partial differential equations (PDEs) describe the bulk behavior of semiconductor devices:

- Poisson's equation (Equation 2-1 on p. 2-2) governs the electrostatic potential.
- Continuity equations for electrons and holes (Equations 2-2 and 2-3 on p. 2-2) govern the carrier concentrations.
- Carrier energy balance equations for electrons and holes (Equations 2-382 and 2-383 on p. 2-133) govern the carrier temperatures.
- The lattice heat equation (Equation 2-415 on p. 2-149) governs the lattice temperature.

These differential equations are discretized in a simulation grid, as described in "Discretization," p. 2-71. The resulting set of algebraic equations is coupled and nonlinear; consequently, the equations cannot be solved directly in one step. Instead, starting from an initial guess, the equations must be solved by a nonlinear iteration method.

The various solution methods are detailed in "Nonlinear System Solutions," p. 272 through "Coupled Solutions (Newton's Method)," p. 2-76. Choice of initial guess is explained in "Initial Guesses," p. 2-74.

Relevant Statements

The solution method and the number of carriers to be solved for are specified at symbolic time on the SYMBOLIC statement. The program also generates a map of the matrix at symbolic time. The various parameters, acceleration factors and iteration limits are specified later on the METHOD statement. If defaults are not given, they are also chosen at this time.

Selecting Equations to Solve

Given a particular device and range of operation, no single solution method is optimal in all cases. Several possibilities are shown in the following:

- At zero bias, a Poisson solution alone is sufficient.
- For MOSFET I-V characteristics, only one carrier need be solved for.
- In bipolar and MOSFET breakdown simulations, both carriers are needed.
- For simulating hot-carrier effects in small geometry devices where the electric field changes rapidly, carrier energy balance equations may be added.
- When device heating effects are important, the lattice heat equation must be solved.

The equation to be solved is specified on the SYMBOLIC statement.
When zero or one carrier is to be solved, a quasi-Fermi level needs to be set for the carrier(s) not solved for. See "Quasi-Fermi Level Adjustments," p. 2-75.

Discretization

To solve the device equations on a computer, they must be discretized on a simulation grid. The continuous functions of the PDEs are represented by vectors of function values at the nodes, and the differential operators are replaced by suitable difference operators. Instead of solving for six unknown functions, Medici solves for $6 N$ unknown real numbers, where N is the number of grid points.

For further details on the discretization of the device equations, and particularly for a discussion of the impact of obtuse elements in the grid, see Price [40]. A discussion of the time-dependent discretization of the device equations can be found in "Transient Device Simulation," p. 2-101. Time discretization is completely automatic, and no intervention is required.

Box Method The key to discretizing the differential operators on a general grid is the box method [39]. Each equation is integrated over a small volume enclosing each node, yielding 6 N nonlinear algebraic equations for the unknown variables. The integration equates the flux entering the volume with the sources and sinks inside it, so that conservation of relevant flux is built into the solution. The integrals involved are performed on an element-by-element basis, leading to a simple and elegant way of handling general surfaces and boundary conditions.

Carrier Flux

In the case of the continuity equation, the carrier fluxes must be evaluated with Formulation care. Classic finite difference formulas are modified as first demonstrated by Scharfetter and Gummel in 1969 [32].

Nonlinear System Solutions

Newton's method with Gaussian elimination of the Jacobian is by far the most stable method of solution. For low current solutions, Gummel's method offers an attractive alternative to inverting the full Jacobian.

The discretization of the semiconductor device equations gives rise to a set of coupled nonlinear algebraic equations. These must be solved by a nonlinear iteration method. Two approaches are widely used:

- Decoupled solutions (Gummel's method)
- Coupled solutions (Newton's method)

Either approach involves solving several large linear systems of equations. The total number of equations in each system is on the order of 1-4 times the number of grid points, depending on the number of device equations being solved for.

When a carrier energy balance and/or lattice heat equations are also solved for, a block iteration approach can be specified to solve the equations self-consistently. In such an approach, up to four equations (three basic equations plus one of the advanced equations) can be specified in the Newton block, while the rest are Gummel block equations.

The total cost of a simulation is the product of the number of matrix solutions and the cost of each solution. The objective of the various methods detailed below is to minimize one component or the other of that cost.

Several ideas are common to all methods of solving the equations. This section Concepts covers the following:

- Convergence rate
- Error norms
- Convergence criteria
- Error norms selection
- Linear solution options
- Initial guess

Convergence Rate

Error Norms

Convergence Criteria

The nonlinear iteration usually converges either at a linear rate or at a quadratic rate. At a linear rate, the error decreases by about the same factor at each iteration. In a quadratic method, the error is approximately squared at each iteration, giving rise to rapid convergence.

Newton's method, which is quadratic, is more accurate than Gummel's method, which is linear in most cases.

The error remaining at each step can be measured in two ways:

- Right-hand-side norm (RHS norm)
- X norm ("x" at each step)

The right-hand-side norm (RHS norm) is the difference between the left and right hand sides of the equations (Equations 2-1 through 2-3, Equations 2-382 and 2383, and Equation 2-415). Since this is the quantity to be reduced to zero, the RHS norm is the most natural measure of the error. It is measured in $C / \mu \mathrm{m}$ for the Poisson equations, in $A / \mu \mathrm{m}$ for the continuity equations, and in $W / \mu \mathrm{m}$ for the advanced equations. At zero bias, there is always a residual current due to numerical error. The RHS norm may be interpreted as the size of this current.

The size of the updates to the device variables at each iteration may also be a measure of the error. At each step, the update is the unknown " x ", and is called the X norm. Potential updates are measured in $k T / q$. Updates to the other solution variables are measured relative to the previous value at a particular point.

A solution is considered converged and an iteration terminates when either the X norm or the RHS norm falls below a certain tolerance. For the X norm, the default error tolerances are:

- (PX.TOLER) $=10^{-5} \mathrm{kT} / \mathrm{q}$ for potential
- $($ CX.TOLER $)=10^{-5}$ relative change in concentration
- $($ ETX. TOLE $)=10_{-3}^{-2}$ for carrier temperature
- $(\mathbf{L T X} . \operatorname{TOLE})=10^{-3}$ for lattice temperature

For the RHS norm, the error default tolerances are:

- (PR.TOLER) $=10^{-26}{ }_{-18} / \mu \mathrm{m}$ for the Poisson equation
- (CR.TOLER) $=5 \times 10^{-18} \mathrm{~A} / \mu \mathrm{m}$ for the continuity equations
- (ETR. TOLE $)=10_{-11}^{-18} \mathrm{~W} / \mu \mathrm{m}$ for the energy balance equations
- (LTR. TOLE) $=10^{-11} \mathrm{~W} / \mu \mathrm{m}$ for the lattice heat equation

The RHS norm tolerances are the maximum acceptable divergences of relevant fluxes.

Error Norm Selection

Depending on the current level in the device, one error norm or another may be more suitable. For example, at low current levels, the exact value of the smallest minority concentrations has little influence on the current, and these small
concentrations are almost indeterminate. The size of the relative updates used by the X norm may remain as large as 1% long after the current stops changing. Therefore, the RHS norm may be more suitable at low current levels.

As the current level increases so does numerical error in the continuity equations, and the absolute criterion on the RHS becomes harder to satisfy. The relative error, however, remains the same and the X norm is usually more appropriate.

By default, Medici uses a combination of the X norm and RHS norm for determining convergence. The program assumes a solution is converged when either the X norm or RHS norm tolerances are satisfied at every node in the device. Compared to using either the X norm or RHS norm alone, the combination of the two reduces the number of iterations required to obtain a solution without sacrificing accuracy.

Linear Solution Options

Given an outer nonlinear iteration, the resulting linearized system can be solved by either:

- A direct method (Gaussian elimination)
or
- An inner (linear) iteration method

In general, the direct method is more stable than the inner iteration method. However, as the number of grid points increases, the cost of the inner iteration increases less rapidly than does the direct method. The tradeoff between stability and speed must be considered in choosing an appropriate method. Medici uses the direct method as the default.

Initial Guesses

Six types of initial guesses are used in Medici:

- INITIAL
- PREVIOUS
- LOCAL
- PROJECT
- P.LOCAL
- Post-regrid initial guess

INITIAL This guess imposes the charge neutrality assumption to obtain an initial guess for the first bias point, which is the starting point of any device simulation. Any later solution with applied bias must arrive at an initial guess by modifying the bias point of one or two previous solutions.

PREVIOUS The solution currently loaded is used as the initial guess, modified by setting the applied bias at the contacts.

IOCAI This guess uses the solution in memory, sets the applied bias, and changes the majority carrier Fermi potentials throughout heavily doped regions to be equal to the bias applied to that region. This procedure is effective in the context of a Gummel iteration, particularly in reverse bias, and is less effective for a Newton method.

PROJECT This guess uses an extrapolation of two previous solutions to the new bias, assuming that equivalent bias steps are taken. It is particularly economical in generating I-V data.
P.IOCAL Previous-local (P.LOCAL) is a local guess used in the heavily doped regions connected to electrodes while a previous initial guess is used elsewhere. This is a useful alternative to PREVIOUS when the lattice heat equation is solved.

Post-Regrid Initial Guess

Initial Guess Selection

Post-Regrid Initial Guess involves interpolation of a solution from a coarse mesh on to a new (regridded) mesh. It can be used to start the solution of the same bias point on the new grid. In spite of being an interpolation of an exact solution, this type of guess does not give rise to rapid convergence.

Medici selects the projection method whenever two appropriate solutions are available, otherwise it defaults to a previous guess or initial guess, if this is the first bias point. In some cases you may wish to override this choice. For instance, given two solutions of a MOSFET with 0 V and 1 V on the gate, it is unwise to extrapolate to 2 V on the gate if the device has a threshold close to 1 V . The extrapolation makes the incorrect assumption that the change in surface potential, when stepping from 1 V to 2 V , is the same as when stepping from 0 V to 1 V . In this case, using the parameter PREVIOUS would converge more rapidly. Similar situations can arise whenever a device changes from one operating regime to another within a single bias step.

Quasi-Fermi Level Adjustments

In order to simplify the analysis of particular devices and save large amounts of computational time, it may be desirable to do the following:

- Solve Poisson's equation and one continuity equation
- Solve Poisson's equation alone

The following devices profit from this simplification:

- Majority carrier devices such as MOSFETs, JFETs, and MESFETs
- Devices where all junctions are not forward biased and currents may not be required, such as CCDs or capacitors

If a carrier is not explicitly solved for, it still must have a value consistent with the electrostatic potential throughout the device. Medici chooses appropriate quasiFermi potentials for these carriers. The quasi-Fermi levels are chosen to be locally constant, and change only at metallurgical junctions within the device, thereby contributing no current component.

For example, if holes are not being solved for, then in a p-type region, ϕ_{p} is set to the local bias voltage. In any n-type region, ϕ_{p} is set to the lowest applied (semiconductor) potential in the device, so that excess holes do not occur as minority carriers. Similarly, if electrons are not explicitly solved for, ϕ_{n} is set to the local bias in any n-type region and to the maximum (semiconductor) bias in the system for all p-type regions.

Coupled Solutions (Newton's Method)

Newton's method, with Gaussian elimination of the Jacobian, is by far the most stable method of solution. Unfortunately, it can be expensive for two-carrier simulations, both in time and memory. For low current solutions, the Gummel method offers an alternative to inverting the full Jacobian.

The basic algorithm is a generalization of the Newton-Raphson method for the root of a single equation. It can be expressed as follows.

Assuming Equations 2-1 through 2-3 are solved, they can be rewritten as

$$
\begin{array}{ll}
F_{\psi}(\psi, n, p)=0 & \text { Equation 2-283 } \\
F_{n}(\psi, n, p)=0 & \text { Equation 2-284 } \\
F_{p}(\psi, n, p)=0 & \text { Equation 2-285 }
\end{array}
$$

Given an initial guess for the unknowns at each node, ψ_{0}, n_{0}, and p_{0} calculate a new update $(\Delta \psi \Delta n \Delta p)$ by solving the linear system

$$
\left[\begin{array}{lll}
\frac{\partial F_{\psi}}{\partial \psi} & \frac{\partial F_{\psi}}{\partial n} & \frac{\partial F_{\psi}}{\partial p} \\
\frac{\partial F_{n}}{\partial \psi} & \frac{\partial F_{n}}{\partial n} & \frac{\partial F_{n}}{\partial p} \\
\frac{\partial F_{p}}{\partial \psi} & \frac{\partial F_{p}}{\partial n} & \frac{\partial F_{p}}{\partial p}
\end{array}\right]\left[\begin{array}{l}
\Delta \psi \\
\Delta n \\
\Delta p
\end{array}\right]=-\left[\begin{array}{l}
F_{\psi} \\
F_{n} \\
F_{p}
\end{array}\right]
$$

Equation 2-286

Jacobian Matrix in Newton

This Jacobian matrix has 3 times as many columns and rows (or twice as many when solving for only one carrier) as the matrix for a single variable. The disadvantage of Newton's method is that for large grids the memory and time necessary to invert the Jacobian matrix may be excessive.

Typically the $3 N \times 3 N$ matrix takes 20 times longer to invert, and the $2 N \times 2 N$ seven times longer than an $N \times N$ matrix on the same grid. Thus, the overhead per iteration is high, but the number of iterations is low, typically between three and eight.

CAUTION

A large number of Newton iterations almost guarantees that the problem is not clearly posed. The most frequent cause is that the nonphysical boundary condition set up by a depletion layer extends beyond the bottom of the device but intersects a neutral contact.

Accelerating the Newton Iteration

The biggest acceleration of a Newton iteration is the Newton-Richardson method (AUTONR). This method re-factors the Jacobian matrix only when necessary. Frequently, the Jacobian matrix needs to be factorized twice per bias point using Newton-Richardson, as opposed to once per iteration.

The decision to re-factor is made on the basis of the decrease per step of the error norm (NRCRITER). When the norm of the error falls by more than a certain criterion, the Jacobian is considered sufficiently accurate, and refactorization is not needed.

The default criterion is set at 0.1 . Adjustments can be made by the following:

- Downwards to increase stability
- Upwards to increase speed

Note:

NRCRITER should not be increased above 0.5, to preserve the stability of the Newton iteration in high level injection.

When to Choose

 Full NewtonFull Newton is the method of choice for solving the following:

- One-carrier problems after turn-on

The solution time is typically a factor of three below the corresponding Gummel time.

- Two-carrier simulations

For this use, full Newton becomes expensive both in time and memory for increasingly-complicated device structures. Gummel's method, however, becomes increasingly-slow as the power level increases. It ceases to converge for on-state bipolar problems.

- When using "continuation" (see "Continuation Method," p. 2-79)

Newton Damping
There are three methods of damping the nonlinear iteration process when using the full Newton method.

- Use the \mathbf{N}. DVLIM parameter on the ME THOD statement to make the change in potential between Newton iterations to a fixed limit. Careful use of this parameter can greatly improve convergence when calculating an initial solution or when taking large bias steps. A value of about one third (or less) of the bias step is best.
- Specify N.DAMP on the METHOD statement. This method multiplies the updates (for all equations) by a factor $t \operatorname{damp}<1$, which is determined by how rapidly the RHS error norms are decreasing (a rapidly decreasing RHS norm gives t damp ≈ 1). Given a reasonable initial guess, this method is usually capable of finding the solution. It is similar to that suggested by Rose and Bank [41].
- Specify DAMP. ONE on the METHOD statement. On the first Newton iteration, it will limit the maximum update to the larger of the maximum change in the bias and TH.DAMP1. On the subsequent Newton iterations, the damping will be applied only when the updates has increased substantially over the previous iteration. it will limit the maximum update to the larger of previous maximum update and TH. DAMP 2. This method may improve the convergence for difficult simulations caused by the discontinuities in the model. One such example is the impact ionization simulation in the presence of floating regions.

Refer to the METHOD statement for more details.

Decoupled Solutions (Gummel's Method)

In Gummel's method, the equations are solved sequentially.

1. The Poisson equation is solved assuming fixed quasi-Fermi potentials; since the Poisson equation is nonlinear, it is itself solved by an inner Newton loop.
2. The new potential is substituted into the continuity equations, which are linear and can be solved directly to obtain carrier concentrations.
3. The new potential and carrier concentrations are substituted in the advanced equations to be solved (if any). Since these are nonlinear equations, they are also solved by an inner Newton loop.

When the convergence criteria for all the equations are met, the loop is terminated. At each state only one equation is being solved, so the matrix has N rows and N columns regardless of the number of equations being solved. This method is a decoupled method; one set of variables is held fixed while another set is solved for.

When to Use

 GummelThe success of the method depends on the degree of coupling between the equations. The most important coupling is the drift term of carrier current, which is directly related to the Poisson solution. Whenever drift terms are unimportant, for instance in isolation structures, Gummel's method is suitable. When the current is drift-dominated, for example in a pure resistive structure, convergence is slow.

Accelerating Gummel
 Solution of Poisson's equation can be sped up to maximize the speed of the Gummel algorithm by

- Using the ICCG for the linear matrix solution
- Using damping schemes for Poisson update

Using ICCG

Poisson Damping

Incomplete Cholesky Conjugate Gradients (ICCG) is chosen in Medici to solve symmetric matrices iteratively. With ICCG selected, the expensive Gaussian elimination step is no longer needed in the inner Newton loop of Poisson's equation, thereby speeding up the solution process. In particular, with a Poissononly solution, no Gaussian elimination is necessary in the entire Gummel cycle. The ICCG method is recommended whenever the usual Gummel algorithm is used, particularly for large grids.

This is the fastest possible solution mode with Medici for capacitance analysis or zero bias solutions. It can sometimes be used to provide initial guesses for other methods.
ameters LU1CRIT and LU2CRIT govern the behavior of the iteration relating to the termination criterion. The defaults are chosen as "safe" numbers that maintain the quadratic convergence in the Newton inner loop [41]. More speed can be obtained by loosening the bounds.

It is usually necessary to damp numerical ringing in the Poisson iteration when the biases applied to electrodes are abruptly changed by large steps (more than 1 V). The simplest mechanism is to limit the maximum voltage change per iteration inside the device (DVLIMIT). A bound that is too tight slows convergence, while too large a value can allow overflow. The default value of DVLIMIT is 1.0 V unless ${ }^{\wedge}$ DAMPED is specified, in which case it is 0.1 V . For faster but slightly more risky simulations, larger values are possible. The speed advantage is usually significant.

A more sophisticated mechanism (DAMPED) is the Newton damping method [41]. This damping scheme frequently speeds convergence by rejecting updates which would cause the error norm to increase. The default parameters controlling the damping are usually satisfactory.

Continuation Method

Medici contains a powerful continuation method for the automatic tracing of I-V curves. This method automatically selects the bias step and boundary conditions appropriately for the bias conditions. The continuation method is activated by specifying CONTINUE on the SOLVE statement.

CAUTION

When using the continuation method

- A fully coupled solution method must be used (two-carrier Newton with coupled energy balance or lattice heat equation, if applicable).
- Only semiconductor electrodes may be selected.

Continuation Steps

The operation of the method can best be understood by referring to Figure 2-5 in conjunction with the steps below.

1. First the program alters the boundary conditions by connecting a resistor in series with the user-specified terminal. The value of this resistor is calculated by the program and assumes different values along the I-V curve.
2. Starting at point P , the program calculates the derivative of the current I with respect to the voltage V , giving the slope of the tangent line at point P .
3. The voltage and current are then projected along the tangent line to point Q .
a. The length of the projection is selected automatically by the program based on a the local truncation error at point P. In this way the program takes large steps in flat areas of the I-V curve and shorter steps in regions where the curvature is greatest.
b. The initial length of the projection can be controlled by the C.TOLER parameter on the SOLVE statement. The program automatically adjusts the tolerance target (equal to C.TOLER, initially), depending on how easily the previous step has been solved.

Note:

The length of the first step must be specified using the $\mathrm{C} . \mathrm{VSTEP}$ parameter on the SOLVE statement.
4. From point Q , the load line is computed as perpendicular to the tangent and passing through point Q .
5. The resistance R and applied voltage Va are calculated to give the desired load line. Note that the resistance R can be less than zero if the dynamic resistance of the device is less than zero.
6. The program then solves the system of equations and arrives at point S. Point S then replaces point P, and the process is repeated.

Figure 2-5 Continuation method used by Medici
When the I-V curve is rising steeply, the load line is nearly horizontal and R is very large. This case is similar to a current boundary condition (which corresponds to $R=\infty$). On the other hand, if the I-V curve is nearly horizontal, the load line is vertical and R is small. This case corresponds to a voltage boundary condition $(\mathrm{R}=0)$.

The simulator continues along the I-V curve until one of the four termination criteria is met, these being:

$$
V>\text { C } . \text { VMAX } ; \quad V<\text { C } . \text { VMIN } ; \quad I>\text { C } . \text { IMAX } ; \quad I<\text { C } . \text { IMAN }
$$

These parameters are also specified on the SOLVE statement.

Parameter C. DVMAX
C. DVMAX specifies the maximum potential update in thermal voltage units. If the potential update exceeds this value, the program executes the following steps:

1. Bias point terminates.
2. Bias step is reduced.
3. Program tries again.

This limit on the potential update is used to trap bias points not likely to converge. It allows the program to stop after one or two Newton iterations rather than 20 to discover that the bias point will not converge. Since projection is used, the potential updates should be small, and setting C. DVMAX to $50 \mathrm{kT} / q$ (the default value) is a good choice.

Linear Matrix Solution

The following matrix solvers are available:

- Direct method (Gaussian Elimination)
- Incomplete Cholesky conjugate gradient method (ICCG)
- Incomplete LU conjugate gradient squared (ILUCGS) method

The advantages and disadvantages to each method are discussed below. For a discussion of the Jacobian matrix, see "Jacobian Matrix," p. 2-82.

Overview Direct method-This method has the advantage of finding the answer in a predetermined number of operations without iterations. The direct method always finds the correct solution to the linear problem. However, for large problems, the memory and CPU requirements quickly become intractable, particularly with the two-carrier Newton method.

ICCG-This is an iterative method and has the advantage of requiring very little memory. Typically, ICCG has good convergence properties and systems with tens of thousands of equations can be solved in less than 50 iterations; however, it can only be used with a symmetric matrix. This limits its use to solving the Poisson equation while using Gummel's method. Because the Jacobian matrices are asymmetric, ICCG cannot be used with Newton's method or to solve the continuity equations in Gummel's method.

ILUCGS-To solve the large asymmetric matrices that result from device simulation, the ILUCGS method has been recently developed. ILUCGS is an iterative method which, under most conditions, converges rapidly to an accurate solution and requires manageable amounts of memory.

Jacobian Matrix

An essential part of the Newton or Gummel iteration is the solution of the linear problem $J x=b$ where

- J is the Jacobian matrix.
- $\quad x$ is the update vector $[\Delta \psi, \Delta n, \Delta p]^{T}$ for a two-carrier Newton solution.
- $\quad b$ is the right hand side vector (RHS), ${ }^{[}[F \psi, F n, F p]^{T}$.

Matrix Density
The density of the Jacobian matrix is influenced by parameter STRIP. When STRIP is true, the coupling coefficients along the hypotenuse of the right triangles are removed, resulting in a more compact matrix and reduced matrix solution time. When impact ionization or perpendicular field mobility models are used, STRIP default to false, otherwise it is true.

Matrix Structure

For a pure rectangular grid (STRIP is true), J is a sparse matrix with five rough bands and zeros between the bands. The bands result from the coupling between nodes in the X and Y directions:

- Two bands, c_{i} and e_{i}, resulting from Y couplings
- Two bands, b_{i} and f_{i}, resulting from X couplings
- The matrix diagonal, d_{i}, from coupling of each node to itself

Equation 2-287
where

- The dimension of the matrix is $N=N_{x} \times N_{y}$, where N_{x} and N_{y} are the number of grid points in the X and Y directions.
- The separation between bands b and f and the diagonal is N_{y}
- The separation between bands c and e and the diagonal is 1 .

If Gummel's method is used, each element in the above matrix consists of a single number. With Newton's method and one-carrier, each element becomes a 2×2 submatrix. When Newton's method with two-carriers is used, each element is a
3×3 submatrix. The storage for the J matrix is approximately:

- $5 N$ for Gummel's method
- $20 N$ for one-carrier Newton
- $45 N$ for two-carrier Newton

If impact ionization, perpendicular field mobility models (STRIP is false), or nonrectangular grids are used, additional nodal couplings occur and the storage for J expands to a maximum of:

- $7 N$ for Gummel's method
- $28 N$ for one-carrier Newton
- $63 N$ for two-carrier Newton

While the storage for J can become large, at least the dependence on the number of nodes is linear.

Direct Method

Advantages
Since L and U are triangular, these operations (known as backsolves) are easy to perform and require little CPU time. The decomposition step, where L and U are calculated, takes the most effort.

The Newton-Richardson method takes advantage of the easy backsolve sequence and simply replaces x while using the same J or equivalently the same L and U for several Newton steps. If J does not change much from iteration to iteration, large savings in CPU time can be realized.

Disadvantages Problems arise with the direct method because, during the factorization step, fillin between the bands occurs, and the sparse structure of the matrix is destroyed (i.e. L and U become full matrices). In particular, all the elements between bands may become nonzero, requiring their values to be stored.
In the direct method, Medici uses a form of Gaussian elimination known as the $L U$ decomposition. By default, the minimum degree algorithm (MIN. DEGR) from the Yale Sparse Matrix Package [43] is used to reorder the nodes to reduce the size of the factorized matrix. In the $L U$ decomposition, the matrix J is factored into an upper triangular matrix U and a lower triangular matrix L. After factorization, the system $L U_{x}=b$ is solved in two steps:
$L z=b$
Equation 2-288
$U x=z$
Equation 2-289

ICCG uses the method of conjugate gradients to iteratively minimize the residual defined as $r=b^{-} J x$. If r is zero, then an exact solution has been found. It can be shown that the conjugate gradient method converges to the exact solution in at most N iterations if there are N equations in N unknowns. In practice, the method converges to a usable solution in much less than N iterations if the matrix has many degenerate eigenvalues (i.e., the matrix is approximately an identity matrix).

The process of transforming a matrix J to an approximate identity matrix is called preconditioning. A common approach is to construct an approximate factorization $L U$ of J, so that $U L J=1+E$, where E is an error matrix which should be small. In particular, if the positions of nonzero elements in $L U$ are the same as those in J, you have incomplete $L U(I L U)$ decomposition.

Incomplete The conjugate gradient method only applies to symmetric matrices, and if the Cholesky Decomposition Cholesky $L U$ decomposition is performed on a symmetric matrix, $U=L$ so $J=L L$. The incomplete Cholesky decomposition simply computes elements of L only where the elements of J are nonzero.

Iteration Sequence
Using the incomplete Cholesky decomposition, the iteration sequence for ICCG is as follows:

Calculate L from J
$r_{0}=b-J x$
$q_{0}=p_{0}=\left(L L^{T}\right)^{-1} r_{0}$
Repeat on i
$c_{i}=\left(r_{i} \cdot q_{i}\right)$
$t_{i}=J p_{i}$
$a_{i}=\frac{c_{i}}{\left(p_{i} \cdot t_{i}\right)}$
$x_{i+1}=x_{i}+a_{i} p_{i}$
$r_{i+1}=r_{i}-a_{i} t_{i}$
$q_{i+1}=\left(L L^{T}\right)^{-1} r_{i+1}$
$b_{1}=\frac{\left(r_{i+1} \cdot q_{i+1}\right)}{c_{1}}$
$p_{i+1}=q_{i+1}+b_{i} p_{i}$
Each iteration requires one set of backsolves and one multiplication of J by the vector p. For memory storage it is necessary to retain the original J matrix and L, which is one half the size of J, plus five vectors of length N.

The iteration process ends when $\left\|r_{i}\right\|$ is sufficiently small. In Medici, the iterations stop when

$$
\left\|r_{i}\right\| \infty<0.1 \times \mathbf{P X} . \mathbf{T O L E R}
$$

or
$\left\|r_{i}\right\|_{2}<\min \left(\mathbf{L U 1 C R I T}, \mathbf{L U 2 C R I T} \times\|b\|_{2} /\left\|b^{\prime}\right\|_{2}\right)$
where b^{\prime} is the RHS vector from the last Poisson iteration.

Advantages Compared to the direct method, this method requires very little memory. Typically, ICCG has good convergence properties, and systems with tens of thousands of equations can be solved in less than 50 iterations.

Disadvantages ICCG can only be used with a symmetric matrix. This limits its use to solving the Poisson equation while using Gummel's method. Because the Jacobian matrices are asymmetric, ICCG cannot be used with Newton's method or to solve the continuity equations in Gummel's method.

The ILUCGS solver is very similar to the ICCG solver. Since the matrices are asymmetric, the conjugate gradient squared method and incomplete $L U$ decomposition are used instead of the conjugate gradient method and Cholesky decomposition. In the incomplete $L U$ method, elements of L and U are only computed where there are nonzero elements in J. The ILUCGS method is as follows:

Calculate L and U from J.
$x_{0}=(L U)^{-1} b$
$r_{0}=q_{0}=p_{0}=(L U)^{-1}\left(b-J x_{0}\right)$
Repeat on i.
$c_{i}=r_{0} \cdot r_{i}$
$t_{1}=(L U)^{-1} J q_{i}$
$a=\frac{c_{i}}{\left(r_{0} \cdot t_{i}\right)}$
$s_{i+1}=p_{i}-a_{i} t_{i}$
$r_{i+1}=r_{i}-a_{i}(L U)^{-1} J\left(p_{i}+s_{i}\right)$
$x_{i+1}=x_{i}+a_{i}\left(p_{i}+s_{i+1}\right)$
$b_{i}=\frac{\left(r_{0} \cdot r_{i+1}\right)}{c_{i}}$
$p_{i+1}=r_{i+1}+b_{i} s_{i+1}$
$q_{i+1}=p_{i+1}+b_{i}\left(s_{i+1}+b_{i} q_{i}\right)$
Each iteration requires two sets of backsolves and one matrix multiplication involving J. For memory storage, it is necessary to retain the original J matrix and L and U, each of which is one half the size of J. In addition, seven vectors of length N are needed.

In the Medici program, the ILUCGS iterations terminate when

$$
\left\|r_{i}\right\|_{2}^{2}<\text { ILU. TOL }
$$

and when
$\left|1-\left\|x_{i}\right\|_{2} /\left\|x_{i-1}\right\|_{2}\right|<$ ILU.XTOL
During AC small-signal analysis, an additional error criterion is used to insure the required accuracy.
$\left\|\left(x_{i}-x_{i-1}\right) / x_{i}\right\|<$ TOLERANC

Normally this is the last error criterion to be satisfied. (ILU. TOL and ILU .XTOL are found on the METHOD statement and TOLERANC is found on the SOLVE statement and only applies to AC analysis.)

Advantages ILUCGS is a robust iterative solver for asymmetric matrices encountered in semiconductor device simulation. It has been found to work well in high level injection problems such as latch-up and bipolar analysis. It may be used to solve large problems where the cost of using the direct method becomes excessive.

Newton Method Implications

With ILUCGS there is no longer an exact $L U$ decomposition; therefore, the backsolve is no longer available as a quick route to a solution when using the same Jacobian. As a result, the Newton-Richardson method loses its speed advantage and may harm the convergence of the Newton loop.

This occurs since the only CPU savings would be in the initial incomplete $L U$ factorization, which is no longer the dominant factor in the solution process. Due to these differences, the default for the AUTONR parameter on the METHOD card is FALSE when ILUCGS is used.

AC Implications

With ILUCGS, the Successive Over-Relaxation (SOR) method cannot be used in the AC small-signal analysis because the backsolve operation is missing. Instead, ILUCGS is used to solve the entire Jacobian matrix obtained from the complex AC system. Although it is slower than SOR at low frequencies, ILUCGS is able to converge at much higher frequencies. As a result, bipolar transistors and MOSFETs can be analyzed well beyond their cut-off frequencies.

Convergence Degradation

The ILUCGS method is robust in its convergence behavior. ILUCGS converges very well in all the examples found in the example chapters. However, some convergence problems have been encountered.

Convergence behavior begins to degrade for floating body problems (such as SOI MOSFETS) or devices with nearly isolated PN junctions (such as a diode $100 \mu \mathrm{~m}$ long with junction area of $1 \mu \mathrm{~m}^{2}$).

Because the condition number of the Jacobian matrix becomes very large in floating body problems, any numerical errors that occur during the solution process are greatly magnified.

From a physical standpoint (in a floating body problem), the floating regions are loosely coupled to the electrodes, causing their potential to become highly dependent on the junction currents. The junction currents are, in turn, exponentially- dependent on the potential of the floating region. This makes it difficult for the program to find the correct potential for the floating regions since small errors are amplified.

Improving ILUCGS Convergence

If convergence difficulties are experienced, the following suggestions may be of use.

- To give the initial one- or two-carrier Newton solution a better starting point, first perform a zero-carrier Gummel solution at the same bias.
- Occasionally ILUCGS converges to an inaccurate solution. This happens particularly in floating body problems with impact ionization. What usually happens then is that the Newton iteration either converges to the wrong solution or does not converge at all. A quick way to spot the wrong solutions is to examine the terminal currents which should always sum to zero.
The exception is very small currents ($<\mathrm{le}^{-} 15 / A \mu m$), where harmless numerical errors may prevent the currents from summing to zero. Problems of this type can usually be cured by tightening the ILUCGS tolerances. Tolerances as small as ILU. $\boldsymbol{T O L = 1 e - 1 3}$ and ILU.XTOL=1e-8 have occasionally been used.
- The theoretical iteration requirement for ILUCGS has been estimated as $N_{e q}^{1 / 3}$ where $N_{e q}$ is the number of equations to solve. Medici uses ILU. ITER $=\max \left(35, N_{e q} \quad\right.$), but sometimes this requirement is not enough. If ILUCGS fails to converge, increase the requirement limit.
- Avoid solving with impact ionization at low current levels. At zero bias (or close to zero bias), no current should be flowing in a device. Specifying impact ionization when solving at such a bias results in magnification of random numerical noise, with subsequent convergence difficulties. Since impact ionization is physically insignificant at low biases, turn it off until current flow is high enough to avoid convergence difficulties. Alternatively, bias steps taken will cause current to flow as soon as possible.

Grid in Medici

This section describes grid in Medici. It contains the following:

- Grid allocation
- Coordinate systems
- Maximum number of nodes
- Grid specification
- Rectangular mesh specification
- Initial mesh specification
- Regrid
- Mesh Smoothing

Grid Allocation

The correct allocation of grid is a crucial issue in device simulation. The primary goal is to achieve accurate solutions with the least amount of simulation time. Some considerations include the following:

- The number of nodes in the grid (N_{p}) has a direct influence on the simulation time. The number of arithmetic operations necessary to achieve a solution is proportional to N_{p}^{α} where α usually varies between 1.5 and 2 .
- Because the different parts of a device have very different electrical behavior, it is usually necessary to allocate fine grid in some regions and coarse grid in others.
- The accurate representation of small device geometries is important. In order to model the carrier flows correctly, the grid must be a reasonable fit to the device shape. This consideration becomes increasingly important as smaller, more nonplanar devices are simulated.

Note:

In order to maintain the simulation time within reasonable bounds, as far as possible, do not allow fine grid to spill over into regions where it is unnecessary.

For the reasons stated above, Medici supports a general irregular grid structure. This permits the analysis of arbitrarily shaped devices and allows the refinement of particular regions with minimum impact on others.

Coordinate Systems

The program also gives you a choice of the Cartesian or cylindrical coordinate systems. This choice is made on the MESH statement. Medici is a two-dimensional simulator, so regardless of the coordinate system used, simulations are performed in only two of the three space dimensions.

Cartesian Coordinates

When using the Cartesian system, simulations are performed in the $x y$-plane. The device behavior is assumed to be identical for all values of z. For this reason, terminal currents are expressed in units of Amps/micron (of depth in the z direction).

The Cartesian system is the one used by most two-dimensional simulators, and yields good results in devices such as MOSFETs where the channel width is greater than the channel length.

Cylindrical Coordinates

The cylindrical coordinate system in Medici models the radial and z-dependence. The device behavior is assumed identical for all values of the azimuthal angle. By analogy with the Cartesian system, it would be reasonable to express terminal currents in units of $\mathrm{Amps} /$ radian. Medici, however, assumes that the structure is
rotated completely around the z-axis (through an angle of 2π radians), so that the terminal currents are given in units of Amps.

When using cylindrical coordinates, the Cartesian x-coordinate becomes the cylindrical r-coordinate and the Cartesian y-coordinate becomes the cylindrical z coordinate. The cylindrical coordinate system is useful for modeling devices or problems with circular cross-sections. Below are examples where cylindrical coordinates can be used:

- Single-event upset (see Chapter 7).
- Simulation of high field breakdown at the corners of junctions.
- Simulation of other devices with radial symmetry.

Maximum Number of Nodes and Memory Use

The following three versions of the Medici program are routinely provided when the program is distributed. These versions are identified by the number of nodes that are allowed for a fully coupled two-carrier solution.

- 3,200 nodes version
- 10,000 nodes version
- 20,000 nodes version

For problems where it is possible to use 3,200 nodes or less, the 3,200 node version of Medici should be used. The 3,200 node version requires significantly less virtual memory than the other version and runs more efficiently on most computing resources.

For simulations requiring more than 3,200 nodes, the 10,000 or 20,000 node versions must be used. The virtual memory requirements for each version are summarized in Table 2-9.

Memory Requirements

Because of different simulation technique memory requirements, the actual number of grid points allowed differs from the maximum number of grid points available for creating a mesh if you solve the lattice temperature equation in a coupled manner.The various cases are summarized in Table 2-9.
Table 2-9 Maximum Nodes Available and Virtual Memory Required for Medici

Medici Version \Rightarrow	3200	10,000	20,000
Maximum nodes available for mesh	3200	10,000	20,000
Maximum nodes for 0-, 1-, or 2-carrier, reduced or all couplings	3200	10,000	20,000
Maximum nodes for 2-carrier, fully coupled with energy balance	1842	5,736	11,464
Maximum nodes for 2-carrier, fully coupled with heat equation	1842	5,736	11,464
Approximate virtual memory required (Mbytes)	46	120	262

Specifying the MAXNODES parameter on the OPTION statement provides information regarding the number of nodes available for various types of analysis.

Grid Specification

User-specification is the most difficult aspect of general grid structure. To minimize this effort, Medici provides a regridding mechanism that automatically refines an initial grid wherever key variables vary rapidly.

Grid Refining Restrictions

The grid can only be refined between solutions, not during the solution. This approach is preferred because the overhead of repeatedly recalculating grid geometry and symbolic factorizations during every solution is quite costly. The implementation used in Medici follows the proposals in [44] closely.

Initial Grid Generation

The initial grid is generated by specifying a coarse rectangular mesh using input statements. The coarse mesh is usually refined using the regrid capability until it is fine enough to accurately represent the structure. It is also possible to completely generate a mesh without using the regrid capability by varying the spacing between lines of nodes and/or by distorting the initial rectangular mesh.

Rectangular Mesh Specification

A distorted rectangular mesh can be a very effective solution mesh in some cases. Three suggested configurations are listed below:

- For a planar device or a long-channel MOSFET, a rectangular grid is the method of choice. The same set of fine grid lines that follow the channel can be diverted around the junctions to provide reasonable resolution through all active areas of the device.
- Large aspect rectangles can be used to minimize the amount of grid allocated; the resulting matrix has properties that help reduce solution time.
- A coarse rectangular grid is a suitable candidate for regridding, particularly if the device has a complicated doping profile.

Mesh Statements

Rectangular meshes are specified by a series of mesh statements, detailed in Chapter 3, "3.1 Device Structure Specification," p. 3-13. In order of appearance, the required input is as follows:

```
MESH statement
X.MESH statements
Y.MESH statements
ELIMINATE statements (optional)
SPREAD statements (optional)
```

6. BOUNDARY statements (optional)
7. TSUPREM4 statements (optional)
8. REGION statements
9. ELECTRODE statements

Note:
The order in which statements appear is important. Changing the order will change the results.

Generally, a mesh is specified by the following steps:

1. The mesh begins as a set of (nonuniformly) spaced x - and y-lines comprising a simple rectangle (X.MESH, Y.MESH).
2. Mesh lines may be terminated inside the device, and redundant nodes may be removed from the grid (ELIMINATE).
3. The rectangle can be distorted to track nonplanar geometry or match the doping profile, although strongly nonplanar structures are difficult to treat in this way (SPREAD).
4. Material regions and electrodes can be specified as a union of rectangles (possibly distorted), completing the mesh specification (REGION,
ELECTRODE).

CAUTION

When a rectangular grid is distorted, a large number of obtuse triangles are unavoidably introduced. When you regrid a rectangular grid, large aspect ratio rectangles (>2.8) can also give rise to very obtuse triangles. (See 'Mesh Smoothing," p. 2-98.)

Initial Mesh Specification

This section details the creation of the initial mesh.

Grid Spacings You have complete control over the specification of the initial rectangular grid spacings that define the distance between adjacent nodes. The statements used to set grid spacings are as follows:

- The grid spacings in the horizontal direction are established with one or more \mathbf{X}. MESH statements.
- The spacings in the vertical direction are established with one or more Y. MESH statements.

Horizontal Spacing

Vertical Spacing

Mesh Spacing Parameters

Each X.MESH statement defines a section having a width specified by the WIDTH parameter, or alternately, the ending point of the section may be defined by the LOCATION or X. MAX parameters.

Each subsequent \mathbf{X}. MESH statement generates mesh spaces starting at the right edge of the last mesh space generated by the previous \mathbf{x}. MESH statement. For the first X. MESH statement in the sequence, the left edge of the device structure may be specified using the \mathbf{X}. MIN parameter.

The order of the \mathbf{X}. MESH statements corresponds to the order of the sections in the direction of increasing horizontal coordinates from left to right across the device.

Each Y.MESH statement defines a section having a depth specified by the DEPTH parameter or, alternatively, the ending point of the section may be defined by the LOCATION or Y. MAX parameters.

Each subsequent \mathbf{Y}. MESH statement generates mesh spaces starting at the bottom edge of the last mesh space generated by the previous \mathbf{Y}. MESH statement. For the first Y.MESH statement in the sequence, the top edge of the device structure may be specified using the Y.MIN parameter.The order of the Y.MESH statements corresponds to the order of the sections in the direction of increasing vertical coordinate from top to bottom through the device.

The mesh spacings within the section are determined by one or more of the following parameters:

- H1-The spacing at the beginning of the section
- $\mathbf{H 2}$ - The spacing at the end of the section
- H3-The largest spacing in the interior of the section
- N. SPACES-The number of spaces
- NODE-The node number at the end of the section
- Ratio-The ratio between the sizes of adjacent spaces within the section

Any number of individual mesh sections can be defined as long as the maximum number of mesh points is not exceeded. Medici allows two additional mesh spacing control parameters:

- SPACING-This parameter is used to specify the local grid spacing. It behaves in the same way as setting the value of $\mathbf{H 2}$ for the present grid section and the value of H 1 for the next grid section to the value specified with SPACING.
- MIN. SPAC-This parameter specifies the minimum mesh spacing allowed.

Because mesh definition allows variations in mesh spacing, the discretization error is minimized. A constant ratio between the sizes of adjacent mesh spaces is maintained within a section. The resulting matrix also reduces solution time.

The size of the mesh spaces can change at a maximum rate with a minimum adverse effect on accuracy. With this technique it is quite possible to vary the mesh spacing many orders of magnitude within a single mesh section. For instance, with a ratio of 1.2 between the sizes of adjacent mesh spaces, the spacing size changes by almost four orders of magnitude in 50 spaces.

Specifying Mesh Within a Section

Several methods can be used to specify mesh spacing within a section. Mesh spacing sizes are uniform, monotonically increasing or decreasing, or increasing or decreasing from both ends of the section to a maximum or minimum in the interior of the section.

Uniform Mesh
Spacing

Monotonically Increasing or Decreasing Mesh Spacing

For a uniform mesh spacing, only one of the parameters H1, H2, N. SPACES, or NODE should be specified. If \mathbf{N}. SPACES is specified, the size of the mesh spaces is given by
$h(i)=\frac{\text { WIDTH }}{\text { N.SPACES }}$
Equation 2-290
where $h(i)$ is the mesh space size at index i within the section. The index i varies from 1 at the beginning of the section to \mathbf{N}. SPACES at the end of the section. If NODE is specified, the mesh spacing $h(i)$ is given by

$$
h(i)=\frac{\text { WIDTH }}{\text { NODE }-N}
$$

Equation 2-291
where N is the node number at the start of the section. If $\mathbf{H} 1$ or $\mathbf{H} 2$ is specified, the number of mesh spaces is given by
N.SPACES $=\left(\begin{array}{ll}\frac{\text { WIDTH }}{\text { H1 }} & \text { H1 specified } \\ \frac{\text { WIDTH }}{\text { H2 }} & \text { H2 specified }\end{array}\right.$

Equation 2-292

If the resulting value of \mathbf{N}. SPACES is integral, then $\mathbf{H} 1$ or $\mathbf{H} 2$ is used for the uniform size of the mesh spaces. Otherwise, N. SPACES is rounded to the nearest integer, H 1 and $\mathbf{H} 2$ are taken to be equal, and the mesh spacing size is increased or decreased from both ends of the section toward the center.

For a monotonically increasing or decreasing mesh spacing size, two parameters should be specified from the set consisting of H1, H2, N. SPACES, and RATIO. The size of the mesh spaces is given by
$h(i)=\mathrm{H} 1 \cdot \operatorname{RATIO}{ }^{i-1} \quad 1 \leq i \leq \mathbf{N} . \operatorname{SPACES}$
Equation 2-293
where the values of WIDTH, H1, H2, N. SPACES, and RATIO are related by

$$
\begin{aligned}
& \text { WIDTH }=\left\{\begin{array}{ll}
\text { H1 } \cdot \mathbf{N} \cdot \mathbf{S P A C E S} & \text { RATIO }=1 \\
\text { H1 }\left(\frac{\text { RATIO }}{\text { N.SPACES }}-1\right. \\
\text { RATIO }-1
\end{array}\right) \quad \text { otherwise } \quad \text { Equation 2-294 } \\
& \mathrm{H} 2=\mathrm{H} 1 \cdot \text { RATIO }^{\text {N.SPACES-1 }} \quad \mathrm{H} 1 \text { and RATIO specified Equation 2-295 } \\
& \mathrm{H} 1=\mathrm{H} 2 \cdot \text { RATIO }^{\text {N. SPACES-1 }} \quad \mathrm{H} 2 \text { and RATIO specified Equation 2-296 }
\end{aligned}
$$

If N. SPACES is not specified and its calculated value is not integral, an integral value is chosen for N. SPACES that yields mesh spacings as close as possible to the specified distribution.

Increasing or Decreasing Mesh Section Spacing

For a mesh spacing size that increases or decreases from both ends of the section, the parameters H 1 and H 2 should both be specified, along with one parameter from the set consisting of H3, N.SPACES, and RATIO. The size of the mesh spaces is given by
$h(i)= \begin{cases}\text { H1 } \cdot \text { RATIO }^{i-1} & i<n_{1} \\ \text { H2 } \cdot \text { RATIO }\end{cases}$
Equation 2-297
where n_{1} is the index of the minimum or maximum spacing in the interior of the mesh section. The values of WIDTH, H1, H2, H3, N. SPACES, RATIO, and n_{1} are related by

WIDTH $=\frac{\mathrm{H}^{\prime} \cdot \text { RATIO }^{n_{1}}-1}{\text { RATIO }-1}+\frac{\mathrm{H} 2 \cdot \text { RATIO }^{\left(\mathrm{N} . \operatorname{SPACES}-n_{1}\right)}-1}{\text { RATIO }-1}$ Equation 2-298
$\mathrm{H} 3=\mathrm{H} 1 \cdot \mathrm{RATIO}^{\left(n_{1}-1\right)}$
Equation 2-299
$=\mathrm{H} 2 \cdot$ RATIO $^{\left(\mathrm{N} . \operatorname{SPACES}-n_{1}\right)}$
Equation 2-300
If the \mathbf{N}. SPACES parameter is not specified and its calculated value is not integral, then an integral value is chosen for N. SPACES that yields mesh spacings as close as possible to the specified distribution.

The syntax on the X.MESH and Y. MESH statements has been set up to allow compatibility with input files generated for TMA PISCES-2B and early versions of Medici, as well as other Synopsys TCAD products. For example, early versions of TMA PISCES-2B only allowed LOCATION, NODE, and RATIO to be used. TSUPREM-4 uses LOCATION and SPACING. Both methods of grid specification are compatible with Medici.

Regrid

The regrid facility refines parts of the mesh to satisfy some criterion. Using regrid, fine mesh can be allocated only where necessary, with automatic mesh grading occurring between high and low density regions. The criteria for refinement are based on physical, not geometrical grounds, so they do not need to be tailored to fit a particular structure.

Regrid Algorithm

The regrid algorithm is best understood by following the steps below in relation to Figure 2-6:

1. The regrid algorithm searches the initial grid for triangles satisfying the refinement criterion.
2. Each triangle found is subdivided into four congruent subtriangles, and the various grid quantities (such as doping, potential, carrier concentrations, and mobility) are interpolated onto the new nodes, using linear or logarithmic interpolation as appropriate for that quantity. The new triangles are on level-1, while the initial grid is on level-0.
3. After all level-0 triangles have been examined, the same procedure is applied again to the level-1 triangles, and any new subtriangles become level-2 triangles.
4. At each level, the grid is checked for consistency and updated to avoid abrupt changes of size from one triangle to the next.

Figure 2-6 Levels of regrid in a triangular based mesh

Limiting the

 RefinementRefinement continues until no triangle satisfies the criterion, or until a specified maximum level is reached. Of necessity, grids for semiconductor problems are considerably coarser than desirable, so the maximum level is usually the key factor in determining the size of the grid.

The final grid is not generated directly from the initial grid, but rather in several steps. At each step, the maximum level may be chosen to limit the refinement. The default action sets the maximum level equal to one more than the highest level in the existing mesh. However, in some cases it is necessary to specify the maximum level. For example, when a mesh has already been refined several times, and a coarse region is to be upgraded without regridding the finer regions, the maximum level should be set below the level of the finer regions.

Interpolation If several levels of regrid are performed in immediate succession, the refinement decisions at the higher levels use interpolated data. The nonlinearity of semiconductor problems makes the use of interpolated data inadvisable; data used to refine the grid should be updated as soon as possible. Figure 2-7 illustrates the necessity for refinement.

In this case, a sharp bend in the potential contour is being refined so that all elements with steps of more than 0.1 V across them are refined. With interpolated data, the whole interval would be refined as shown by the solid line in Figure 2-7.

Figure 2-7 Interpolated Method 1 (solid) vs. Solution-Method 2 (dashed) regrid

If a new solution is performed between levels, however, the regrid can detect that the change in potential is localized, as in the dashed curve of Figure 2-7. To allow for this phenomenon, it is normal procedure to regrid one level at a time, rereading the doping statements and performing a new solution between levels.

Reading Doping Information

As mentioned in the previous section, by default Medici calculates the doping and solution information by interpolation. To provide better values for the doping at newly created nodes (if analytical profiles are being used), it is best to use the IN . FILE parameter on the REGRID statement, as illustrated in the example
below. Thus, the original analytical doping functions are used to calculate the doping at the new nodes rather than through interpolation.

```
MESH
PROFILE OUT.FILE=DOPE1....
PROFILE......
PROFILE......
PROFILE.......
REGRID IN.FILE=DOPE1
```

Refinement Criterion

The correct criterion to refine the grid in semiconductor problems is subject for debate. When solving Poisson's equation by finite-element methods, there is a natural choice in the error estimate. The grid can be refined to equidistribute the Poisson error. For on-state simulation, however, estimates for the error in the continuity equation are unreliable. In addition, there is also the problem of having three different error estimates, one from each equation.

Rather than deriving mathematically-based error estimates, physically-plausible heuristics are chosen for the refinement criteria. While not optimal, this approach gives considerable control over grid generation. Below are two main options:

- Refining where a particular variable exceeds some value
- Refining where the change in that variable across an element exceeds a given value

The variable can be any of the key quantities in the problem such as the following:

- Potential
- Electron or hole concentration
- Electron or hole quasi-Fermi potential
- Doping
- Electric field or minority carrier concentration

The value to choose depends on the size of the structure and the accuracy desired.
Ideally, no element would have a step of more than $k T / q$ in potential or quasiFermi potential across it, but in practice the refinement criterion is $10^{-} 20 \mathrm{kT} / \mathrm{q}$. Similarly, doping should not change by more than half an order of magnitude across an element, but a refinement criterion of two to three orders is more practical. In high level injection, regridding appears to be useful wherever the value of minority carrier exceeds the local doping.

Mesh Smoothing

Several procedures are available for dealing with poorly shaped elements in the mesh, especially with very obtuse elements. Although every step of grid generation can introduce obtuse elements, the following two steps in particular can cause problems.

1. Distorting a rectangular mesh unavoidably introduces a large number of very obtuse elements.
2. Refining a grid containing high aspect ratio (>2.8) elements, which causes very obtuse elements to be created in the transition region between high and low grid density.

Two main techniques available to treat these difficulties are listed below:

- Node smoothing
- Element smoothing

Node Smoothing

Node smoothing includes several iterative passes during which each node is moved to a position that improves the angles of the surrounding elements.

Node smoothing is suitable only for an initial irregular grid. Node smoothing should never be used with a refined or distorted rectangular grid. In these cases, node smoothing tends to redistribute fine grid away from the physical phenomena requiring the fine grid.

Element Smoothing

Element smoothing examines each adjoining pair of elements, and if necessary the diagonal of the quadrilateral is flipped. This has the effect of stabilizing the discretization in the following ways:

- When the two elements are of different materials, the diagonal is never redrawn.
- With elements of the same material but different region number, the element may or may not be flipped at your discretion.

Element smoothing is desirable in almost all cases, and should be performed both on the initial grid and on subsequent regrids. The only exception to this rule arises from an undesirable interaction of the following three elements:

- Regrid
- High aspect ratio elements
- Smoothing.

This interaction occurs frequently in oxide regions, since they often have very long elements. In the transition region between refined and unrefined regions, nodes are added to the sides of an unrefined element. If a thin element is modified in this way, a very obtuse angle is created. If the resulting sub-elements are smoothed, unusual patterns can result.

Usually, this is not a cause for concern since no current flows in the oxide, but the elements may look more acceptable if smoothing is omitted. There is also a provision to automatically add more points in the oxide, thus avoiding the issue entirely. See Figure 2-8.

- Figure 2-8(a) shows the vertical doping in the silicon region $(y>0)$ of a structure and the initial grid is shown in Figure 2-8(b).
- Figure 2-8(c) shows the grid after a refinement on doping without smoothing.
- Figure 2-8(d) is the same grid, with smoothing. The elements in the bulk are better shaped.
- In both Figure 2-8(c) and Figure 2-8(d), more points have been added in the oxide $(y<0)$ so the mesh maintains good angles throughout. However, the extra nodes are redundant. To avoid this, do not request extra nodes.
- In Figure 2-8(e), no points are added to the oxide and smoothing is everywhere.
The smoothing algorithm, in its efforts to stabilize the matrix, creates a mesh hole caused by the high aspect ratio grid spacing in the oxide.
- If desired, the smoothing can be turned off in the oxide. Figure 2-8(f) shows the grid after refinement, with no points added to the oxide, and no smoothing in the oxide.

Note:

The last two grids (e and f) differ only in how the nodes are connected; the nodes themselves lie in the same positions.

Figure 2-8 Grids in various states with and without smoothing

Undesirable Effects of Obtuse Elements

It is difficult to triangulate a general region without obtuse elements (though an algorithm has been developed, see [45]). Obtuse elements have the following undesirable side effects on a simulation:

- They increase inherent roughness in the solution, making contour plots more difficult to interpret.
- They can cause any solution technique to fail.

Either problem can occur whenever the sum of opposite angles in a pair of elements exceeds 180 degrees. This causes the matrix coefficient coupling neighboring nodes to change sign. By flipping the diagonal, the sum of opposite angles is made less than 180 degrees.

Figure 2-8(c) and Figure 2-8(d) show a grid refined first without flipping and then with flipping. Without flipping, the discretization is potentially unstable, and may lead to unphysical solutions or poor convergence.

The roughness that obtuse elements bring into the solution is more difficult to cure. Generally, the best that can be done is to ensure that the grid is sufficiently fine where the solution varies rapidly, and that the initial grid has well-shaped elements.

Transient Device Simulation

For transient device simulation, Medici uses the BDF1 or BDF2 formulas.
Because of the extremely rigid nature of the semiconductor device equations, strong stability requirements are placed on any proposed transient integration scheme. In mathematical terms, such a scheme needs to be both A- and L-stable [46].

The most convenient methods to use are one-step integration, so that only the solution at the most recent time step is required.

BDF1 Formula Most device simulation codes have made use of a simple first-order (implicit) backward difference formula (BDF1) [46], [47]. This means that Equations 2-2, 2-$3,2-390$, and 2-415 are discretized as

$$
\begin{array}{ll}
\frac{n_{k}-n_{k-1}}{\Delta t_{k}}=F_{n}\left(\Psi_{k}, n_{k}, p_{k}, u_{n, k}, u_{p, k}, T_{k}\right)=F_{n}(k) & \text { Equation 2-301 } \\
\frac{p_{k}-p_{k-1}}{\Delta t_{k}}=F_{p}\left(\Psi_{k}, n_{k}, p_{k}, u_{n, k}, u_{p, k}, T_{k}\right)=F_{p}(k) & \text { Equation 2-302 } \\
& \text { Equation 2-303 } \\
\frac{n_{k} u_{n, k}-n_{k-1} u_{n, k-1}}{\Delta t_{k}}=F_{u_{n}}\left(\psi_{k}, n_{k}, p_{k}, u_{n, k}, u_{p, k}, T_{k}\right)=F_{u_{n}}(k)
\end{array}
$$

$$
\frac{p_{k} u_{p, k}-p_{k-1} u_{p, k-1}}{\Delta t_{k}}=F_{u_{p}}\left(\psi_{k}, n_{k}, p_{k}, u_{n, k}, u_{p, k}, T_{k}\right)=F_{u_{p}}(k)
$$

$$
\frac{T_{k}-T_{k-1}}{\Delta t_{k}}=F_{T}\left(\Psi_{k}, n_{k}, p_{k}, u_{n, k}, u_{p, k}, T_{k}\right)=F_{T}(k)
$$

where $\Delta t_{k}=t_{k}-t_{k-1}$ and ψ_{k} denotes the potential at time t_{k}, and so on. This scheme (also known as the backward Euler method) is a one-step method and is known to be both A- and L-stable [46], [48].

The disadvantage is that it suffers from a large local truncation error (LTE) which is proportional to the size of the time steps taken. This means that the error at each time step k is $0\left(\Delta t_{k}\right)$.

104BDF2 As an alternative to BDF1, a second-order backward difference formula (BDF2) Formula could be used [46].

$$
\begin{aligned}
& \frac{1}{t_{k}-t_{k-2}}\left(\frac{2-\gamma}{1-\gamma} n_{k}-\frac{1}{\gamma(1-\gamma)} n_{k-1}+\frac{1-\gamma}{\gamma} n_{k-2}\right)=F_{n}(k) \quad \text { Equation 2-306 } \\
& \frac{1}{t_{k}-t_{k-2}}\left(\frac{2-\gamma}{1-\gamma} p_{k}-\frac{1}{\gamma(1-\gamma)} p_{k-1}+\frac{1-\gamma}{\gamma} p_{k-2}\right)=F_{p}(k) \quad \text { Equation 2-307 } \\
& \frac{1}{t_{k}-t_{k-2}}\left(\frac{2-\gamma}{1-\gamma} n_{k} u_{n, k}-\frac{1}{\gamma(1-\gamma)} n_{k-1} u_{n, k-1}+\frac{1-\gamma}{\gamma} n_{k-2} u_{n, k-2}\right)=F_{u_{n}}(k) \quad \text { Equation 2-308 } \\
& \frac{1}{t_{k}-t_{k-2}}\left(\frac{2-\gamma}{1-\gamma} p_{k} u_{p, k}-\frac{1}{\gamma(1-\gamma)} p_{k-1} u_{p, k-1}+\frac{1-\gamma}{\gamma} p_{k-2} u_{p, k-2}\right)=F_{u_{p}(k) \quad \text { Equation 2-309 }}^{\frac{1}{t_{k}-t_{k-2}}\left(\frac{2-\gamma}{1-\gamma} T_{k}-\frac{1}{\gamma(1-\gamma)} T_{k-1}+\frac{1-\gamma}{\gamma} T_{k-2}\right)=F_{T}(k) \quad \text { Equation 2-310 }}=\$ 2 .
\end{aligned}
$$

where

$$
\underline{\underline{\gamma}}=\frac{t_{k-1}-t_{k-2}}{t_{k}-t_{k-2}}
$$

Equation 2-311

Like BDF1, BDF2 is both A- and L-stable, but BDF2 requires two previous solutions at times t_{k-1} and t_{k-2}.

Time Steps Selection

Medici employs a variable order method as the default through use of the automatic time step selection (TAUTO) and (2NDORDER) time step algorithm. At a given time point, the program performs the following:

- Calculates the local truncation error (LTE) for both the BDF1 and BDF2 methods
- Calculates the new time step for both methods by matching the expected LTE with the TOL.TIME parameter
- Selects the method which yields the largest time step

The TOL. TIME parameter can be varied on the METHOD statement. Specifying a larger tolerance results in a quicker, but less accurate simulation.

Dynamic Error Tolerance

Time Step Restrictions

User Specifications

Impulse
 Response

Dynamic error tolerance option is invoked by setting TOL .TIME to zero. With this option, the error tolerance is automatically adjusted according to simulation conditions to produce accurate simulation results without user intervention.

Medici places the following restrictions on the time steps:

- The time step size is allowed to increase by a maximum factor of two.
- If the new time step is less than one half of the previous step, the previous time step is recalculated.
- If a time point fails to converge, the time step is reduced by a factor of two, and the point is recalculated.
- If the Circuit Analysis AAM is used, breakpoints are set that force Medici to calculate time points at the edges of PULSE type waveforms.

To start a transient simulation, you must specify the following:

- An initial time step
- An input bias condition (voltage/current, ramp/step)

All the numerical parameters have defaults and most are accessible. Time steps are stored for each solution. This allows a transient simulation to be continued from a saved solution file without specifying a new initial time step. See the descriptions of the METHOD and SOLVE statements in Chapter 3, "METHOD," p. 3-147, and "SOLVE," p. 3-161. Also see the example in Chapter 6 for more details.

If a voltage step or ramp (a sequence of small incremental steps) is applied directly to a semiconductor contact (not through a resistor), the resulting terminal currents include an impulse response term (delta function). This is due to the infinitely rapid change in voltage and the intrinsic capacitance of the device, which depends, in turn, on the size of the simulation space and dielectric
constants. Usually, this impulse term does not affect the solution after one or two time steps.

AC Small-Signal Analysis

In addition to DC steady state and transient analysis, Medici also allows AC small-signal analysis as a post-processing step after a DC solution.

Note:

Medici cannot perform AC analysis with the AC signal applied to electrodes with charge boundary conditions.

Note:

To perform AC analysis, the Newton method must be specified.

Basic Concepts

Starting from a DC bias condition, an input of given amplitude and frequency can be applied to a device structure from which sinusoidal terminal currents and voltages are calculated. Then using the relationship

$$
\tilde{Y}_{i j}=G_{i j}+j \omega C_{i j}=\frac{\tilde{I}_{i}}{\tilde{V}_{j}}, \quad \tilde{V}_{k}=0 \text { for } k \neq j
$$

the frequency dependent admittance matrix and then capacitance and conductance, can be calculated. By varying the frequency and examining the various device admittances, f_{T} can be directly determined.

Although charge partitioning methods can be used in programs like Medici to obtain accurate estimates of capacitance, they do have some drawbacks which can be overcome by using AC small-signal analysis.

For example, the PISCES-II program has been successfully applied to the calculation of bias dependent gate capacitances for small geometry MOSFETs [49]. Solving for a bias point $\left(V_{G}, V_{D}, V_{S}, V_{B}\right)$ and then solving again for V_{G}, V_{D}, + $\Delta V, V_{S}, V_{B}$, produces very accurate estimates of capacitance by integrating the charge on the gate electrode at both bias points.

$$
C_{i j}=C_{G D}=\frac{d Q_{G}}{d V_{D}} \approx \frac{\Delta Q_{G}}{\Delta V}
$$

Equation 2-313

The above procedure can be repeated to obtain $C_{G S}$ and $C_{G B}$. This is done by applying the potential increment to the source and bulk respectively.

This technique of charge partitioning has the following disadvantages:

- It is only rigorously correct for cases where the current into electrode i (to calculate $C_{i j}$) is strictly displacement current, such as insulator contacts like MOS gates. Therefore, capacitances such as $C_{D G}$ and $C_{S G}$ cannot be accurately estimated by this method.
- Capacitances obtained via this method are strictly quasi-static (low frequency) values.

See Laux [50].

Sinusoidal Steady-State Analysis

Using sinusoidal steady-state analysis, both of the drawbacks associated with the charge partitioning approach are eliminated. In Medici, the approach of Laux [50] has been followed. An AC sinusoidal voltage bias is applied to an electrode i so that

$$
V_{i}=V_{i 0}+\tilde{V}_{i} e^{j \omega t}
$$

where $V_{i 0}$ is the existing DC bias, \tilde{V}_{i} is the magnitude of the AC sinusoidal bias, and V_{i} is the actual bias (sum) to be simulated. Assuming that you are solving only the basic equations (Poisson and current continuity) in a single semiconductor material, Equations 2-1 through 2-3 can be rearranged to obtain

$$
\begin{array}{ll}
F_{\psi}(\psi, n, p)=\nabla^{2} \psi+q\left(p-n+N_{D}^{+}-N_{A}^{-}\right)+\rho_{F}=0 & \text { Equation 2-315 } \\
F_{n}(\psi, n, p)=\frac{1}{q} \vec{\nabla} \cdot \vec{J}_{n}-U_{n}=\frac{\partial n}{\partial t} & \text { Equation 2-316 } \\
F_{p}(\psi, n, p)=-\frac{1}{q} \vec{\nabla} \cdot \vec{J}_{p}-U_{p}=\frac{\partial p}{\partial t} & \text { Equation 2-317 }
\end{array}
$$

The AC solution to Equations 2-315 through 2-317 can be written as

$$
\begin{align*}
& \psi_{i}=\psi_{i 0}+\tilde{\psi}_{i} e^{j \omega t} \\
& n_{i}=n_{i 0}+\tilde{n}_{i} e^{j \omega t} \\
& p_{i}=p_{i 0}+\tilde{p}_{i} e^{j \omega t}
\end{align*}
$$

Equation 2-320
where $\Psi_{i}, n_{i 0}$ and $p_{i 0}$ are the DC potential and carrier concentrations at node i, while $\tilde{\psi}_{i}, \tilde{n}_{i}$ and \tilde{p}_{i} are the respective AC values, which in general are complex.

By substituting Equations 2-318 through 2-320 back into Equations 2-315 through 2-317 and expanding as a Taylor series to first-order only (the small-signal approximation), you obtain nonlinear equations of the form

$$
F(\psi, n, p)=F\left(\psi_{0}, n_{0}, p_{0}\right)+\frac{\partial F}{\partial \psi} \tilde{\psi} e^{j \omega t}+\frac{\partial F}{\partial n} \tilde{n} e^{j \omega t}+\frac{\partial F}{\partial p} \tilde{p} e^{j \omega t} \quad \text { Equation 2-321 }
$$

for each of the three PDEs. If a valid DC solution at the desired DC bias has already been computed, then $F\left(\psi_{0}, n_{0}, p_{0}\right)=0$; so the following linear system is obtained.

$$
\left[\begin{array}{ccc}
\frac{\partial F_{\psi}}{\partial \psi} & \frac{\partial F_{\psi}}{\partial n} & \frac{\partial F_{\psi}}{\partial p} \\
\frac{\partial F_{n}}{\partial \psi} & \frac{\partial F_{n}}{\partial n}+D_{1} & \frac{\partial F_{n}}{\partial p} \\
\frac{\partial F_{p}}{\partial \psi} & \frac{\partial F_{p}}{\partial n} & \frac{\partial F_{p}}{\partial p}+D_{1}
\end{array}\right]\left[\begin{array}{l}
\tilde{\psi} \\
\tilde{n} \\
\tilde{p}
\end{array}\right]=b_{1}
$$

Equation 2-322

In this equation,

- $\partial F / \partial \psi, \partial F / \partial n$ and $\partial F / \partial p$ are $N \times N$ matrices, which form the DC Jacobian.
- $\quad D_{1}$ is an $N \times N$ matrix with $-j \omega$ on the diagonal and 0 off-diagonal.

This results from the expansion of the time-dependent portion of each continuity equation.

- b_{1} is a vector of length $3 N$ which contains the AC input voltage boundary conditions.

By splitting the system (Equation 2-322) into real and imaginary parts, one obtains

$$
\left[\begin{array}{cc}
J & -D_{2} \\
D_{2} & J
\end{array}\right]\left[\begin{array}{l}
X_{R} \\
X_{I}
\end{array}\right]=b_{2}
$$

Equation 2-323

In this equation,

- J is the $3 N \times 3 N$ DC Jacobian.
- D_{2} is a $3 N \times 3 N$ diagonal matrix related to D_{1} in Equation 2-322.
- $\quad b_{2}$ is a permuted version of b_{1} in Equation 2-322.
- $\quad X_{R}$ and X_{1} refer to the real and imaginary AC solution vectors, each $3 N$ in length.

The system (Equation 2-323) is twice the size of the DC system.

Successive Over-Relaxation Method (SOR)

Successive Over-Relaxation (SOR) method is the default method. By making use of the availability of the factored J from the DC solution, it requires the least amount of computation for each solution.

Convergence is generally very good for low to moderate frequencies. As frequencies reach high values ($\approx f_{T} / 10$), more iterations are necessary. For frequencies above $f_{T} / 10$, you may have to use a relaxation parameter with a value less than 1 .

CAUTION

SOR does not converge for exceedingly high frequencies. See Laux, [50].

Bi-CGSTAB Method

To facilitate analysis at high frequency or in difficult cases, Medici allows the use of a direct method with iterative improvement or Bi-Conjugate Gradient Stabilized solver (Bi-CGSTAB) to solve Equation 2-323. If the direct method is used, a full LU factorization is performed using single precision arithmetic (instead of normal double precision). Bi-CGSTAB is then used to iteratively improve this solution. Since the single precision LU decomposition is normally quite accurate, Bi-CGSTAB will only require 2 or 3 iterations.

The direct method is used if full LU factorization (ILUCGS=FALSE) was requested on the SYMBOLIC statement. Bi-CGSTAB will be used with a partial LU factorization if an incomplete LU factorization (ILUCGS=TRUE) was requested on the SYMBOLIC statement. These methods will work at much higher frequency ranges and for certain ill conditioned problems, such as MOS capacitors, but have the disadvantage of being much slower than SOR. The highfrequency analysis mode is invoked by selecting the HI FREQ parameter on the SOLVE statement. By default, the program will try SOR first, and if this fails, will try HI. FREQ analysis.

In situations where Bi-CGSTAB is not able to converge to the required accuracy, Medici still calculates the requested AC parameters in case they might still be useful. These results should not be trusted unless the following criteria are met:

1. You can determine that the values of the relevant parameters are realistic.
2. Both the real and imaginary part of the electrode current sum up to zero.

CAUTION

If warning messages are obtained from Bi-CGSTAB during AC analysis, the results are probably in error. Statement and/or parameter specifications probably need to be changed.

AC Analysis Beyond the Basic Equations

Medici performs AC analysis as a post-processing step after a DC solution. Medici also allows AC small-signal analysis when one or more temperature equations are solved with the three basic equations. The fundamental procedure remains the same, while the size of the resulting system of equations becomes larger when there is a coupled temperature equation. It should be noted, however, that the results of AC analysis with temperature equations have not been extensively investigated, and you are advised to interpret the results with care. It has been observed that AC analysis produces more meaningful results at the electrical contacts where current level is significant with lattice temperature equation decoupled rather than coupled.

Details are documented in the SOLVE statement in Chapter 3, "SOLVE," p. 3161.

Impact Ionization Analysis

Impact ionization can be selected in Medici in the following ways:

- For efficiency and speed, impact ionization is available as a post-processing capability.
- The generated carriers (due to impact ionization) can be included selfconsistently in the solution of the device equations.

Post-Processing Method

When a post-processing impact ionization analysis is selected, Medici calculates the rate at which electron-hole pairs are generated as a result of impact ionization, and consequently, the generated impact ionization current. The generation rate is based on the electric fields and current densities within the structure for the most recent solution. In a post-processing analysis such as this, the generated carriers are not included in the solution. Therefore, this analysis will not allow you to study effects where the presence of the generated carriers will significantly alter the device behavior.

The post-processing analysis is useful for the following:

- Calculating substrate current for MOS devices
- Estimating long term device degradation

Experimental evidence shows that the number of hot electrons being injected into the oxide can be correlated to the amount of substrate current [51], [52]

- Warning that the structure may be susceptible to other problems (breakdown or latchup, for example)

This is a function of the magnitude of the generation rates

Specification A post-processing impact ionization analysis is requested by specifying the IMPACT. I parameter on the SOLVE statement. Each bias and/or time point specified on the SOLVE statement calculates the electron-hole pair generation rate due to each species at every node of the simulation mesh.

Output The output from the post-processing analysis includes the following:

- Maximum generation rate in the device structure
- Location of maximum rate within the device structure
- Magnitude of electric field and current density where rate is maximum
- Total impact ionization current obtained by integrating the total generation rate over the entire device structure

Self-Consistent Method

When impact ionization is included self-consistently in the solution of the device equations, effects in which the presence of the generated carriers have a significant impact on the device behavior can be directly simulated. Examples of this are shown below:

- Avalanche-induced breakdown of a junction
- Impact ionization-induced latchup of a structure

In cases where small voltage changes cause large changes in currents (such as near the breakdown voltage of a device), use of the continuation method (see "Continuation Method," p. 2-79) can easily trace the entire I-V characteristics.

Impact ionization in the solution is requested by specifying the IMPACT.I parameter on the MODELS statement.

Electron-Hole Generation Rate

With either the post-processing or the in-the-solution method, the generation rate for electron-hole pairs due to impact ionization can be expressed by

$$
G^{I I}=\alpha_{n, i i} \cdot \frac{\left|\vec{J}_{n}\right|}{q}+\alpha_{p, i i} \cdot \frac{\left|\vec{J}_{p}\right|}{q}
$$

where $\alpha_{n, i i}$ and $\alpha_{p, i i}$ are the electron and hole ionization coefficients, and \vec{J}_{n} and J_{p} are the electron and hole current densities. As described in Reference [53], the ionization coefficients can be expressed in terms of the local electric field according to

$$
\begin{aligned}
& \alpha_{n, i i}=\alpha_{n, i i}^{\infty}(T) \cdot \exp \left[-\left(\frac{E_{n, i i}^{c r i t}(T)}{E_{n, \|}}\right)^{\text {EXN.II }}\right] \\
& \alpha_{p, i i}=\alpha_{p, i i}^{\infty}(T) \cdot \exp \left[-\left(\frac{E_{p, i i}^{c r i t}(T)}{E_{p, \|}}\right)^{\text {EXP.II }}\right]
\end{aligned}
$$

Equation 2-325

Equation 2-326
where $E_{n, \|}$ and $E_{p, \|}$ are the electric field components in the direction of current flow. By default, the calculation of current and electric field takes an elementbased approach which assumes that they are constant within each triangle.
Alternatively, a node-based approach can be selected whereas current and field are calculated at each node. This option is selected by setting appropriate value to parameter II. NODE on the MODELS statement. The value for self-consistent impact ionization calculation with derivatives is 2 . The critical fields used in the above expressions are obtained from
$E_{n, i i}^{c r i t}(T)=\frac{E_{g}(T)}{q \lambda_{n}(T)}($ default calculation), or ECN.II if specified Equation 2-327 $E_{p, i i}^{c r i t}(T)=\frac{E_{g}(T)}{q \lambda_{p}(T)}($ default calculation $)$, or ECP.II if specified \quad Equation 2-328
where λ_{n} and λ_{p} are the optical-phonon mean free paths for electrons and holes, and are given by
$\lambda_{n}(T)=$ LAN $300 \cdot \tanh \left(\frac{\text { OP.PH.EN }}{2 k T}\right)$
Equation 2-329
$\lambda_{p}(T)=\operatorname{LAP} 300 \cdot \tanh \left(\frac{\text { OP.PH.EN }}{2 k T}\right)$
Equation 2-330

In these expressions, OP .PH.EN is the optical-phonon energy, and LAN300 and LAP300 are the phonon mean free paths for electrons and holes at 300 K . The factors $\alpha_{n, i i}^{\infty}$ and $\alpha_{p, i i}^{\infty}$ are given by

$$
\begin{array}{ll}
\alpha_{n, i i}^{\infty}(T)=\mathbf{N} . \text { IONIZA }+\mathbf{N} . \text { ION. } 1 \cdot T+\mathbf{N} . \text { ION. } 2 \cdot T^{2} & \text { Equation 2-331 } \\
\alpha_{p, i i}^{\infty}(T)=\mathbf{P} . \text { IONIZA }+ \text { P.ION. } 1 \cdot T+\mathbf{P} . \text { ION. } 2 \cdot T^{2} \quad \text { Equation 2-332 }
\end{array}
$$

The parameters used in Equations 2-324 through 2-332 can be modified from their default values on the MATERIAL statement.

The calculation can be switched to an alternative model due to Valdinoci, et al. [115] which has been reported to produce correct temperature dependence of breakdown voltage of junction diodes. It can be selected by specifying II .VALDI on the MODEL statement. The expression for the electron impact ionization rate reads

$$
\alpha_{n, i i}=\frac{E_{n, \|}}{\mathrm{a}(\mathrm{~T})+\mathrm{b}(\mathrm{~T}) \exp \left(\frac{\mathrm{d}(\mathrm{~T})}{E_{n, \|}+\mathrm{c}(\mathrm{~T})}\right)}
$$

Equation 2-333
where

$$
\begin{gathered}
\mathrm{a}(\mathrm{~T})=\text { A0N.VALD + A1N.VALD } \cdot \text { TA2N.VALD } \\
\mathrm{b}(\mathrm{~T})=\text { B0N.VALD } \cdot \exp (\text { B1N.VALD } \cdot \mathrm{T}) \quad \text { Equation } 2-334 \\
\mathrm{c}(\mathrm{~T})=\text { C0N.VALD + C1N.VALD } \cdot \mathrm{T}^{\mathrm{C} 2 \mathrm{~N} \cdot \mathrm{VALD}+\mathbf{C 3 N} \cdot V A L D} \cdot \mathrm{~T}^{2} \\
\mathrm{~d}(\mathrm{~T})=\text { D0N.VALD + D1N.VALD } \cdot \mathrm{T}+\text { D2N.VALD } \cdot \mathrm{T}^{2}
\end{gathered}
$$

Similar expressions hold for holes. The parameters are specified on the MATERIAL statement.

CAUTION

The Valdinoci model is not available with the non-local impact ionization implementation.

Non-Local Impact Ionization

To improve the accuracy of impact ionization calculations for deep submicron semiconductor devices, a non-local model has been implemented. The non-local model is based on the lucky electron model developed by Jungemann, et al. [114].

The model evaluation starts by tracking the potential drop along the current path at each point (the sources) in the device. Impact ionization generation occurs only after the potential drop has exceeded a certain threshold. There are two generation models presented in [114], the hard threshold model and the soft threshold model. With the hard threshold model, a constant energy scattering rate is used, while in soft threshold model, energy scattering rate is a function of the energy difference above the threshold. In both models, impact ionization rate also has a negative exponential dependence on the distance between the source and generation site. The characteristic length of this exponential dependence is the optical mean free path of the respective carrier.

To use the non-local impact ionization model, IMPACT . I should be specified on the MODELS statement. A new parameter, II. NLOC, is used to control whether the local or non-local model is invoked.
II. NLOC $= \begin{cases}-1 & , \text { local model (default) } \\ 0 & , \text { post-processing non-local model } \\ 1 & , \text { self-consistent non-local model, no derivatives } \\ 2 & , \text { self-consistent non-local model, derivatives included }\end{cases}$

For the hard threshold model, the threshold energy for electron and hole impact ionization is controlled by the parameters CN. IIGAP and CP. IIGAP, which can be specified on the MATERIAL statement. The default values for these parameters are 1 , which specifies that the bandgap energy is used as the threshold
$\varepsilon_{T H}= \begin{cases}\text { CN. IIGAP } \cdot E_{g} & , \text { electrons } \\ \text { CP. IIGAP } \cdot E_{g} & , \text { holes }\end{cases}$

To activate the soft threshold model, the parameters IIN. SOFT and/or IIP. SOFT should be specified for electrons and/or holes, respectively, in addition to the IMPACT.I parameter and a value of II.NLOC ≥ 0. In this case, the electron energy scattering has the following form.

$$
G(\varepsilon)=\left\{\begin{array}{r}
\text { C1N.SOFT }\left(\frac{\varepsilon}{\mathrm{eV}}-\text { E1N.SOFT }\right)^{3}, \text { E1N.SOFT }<\varepsilon<\text { E2N.SOFT } \\
\text { C2N.SOFT }\left(\frac{\varepsilon}{\mathrm{eV}}-1.572\right)^{2}, \text { E2N.SOFT } \leq \varepsilon<\text { E4N.SOFT }
\end{array}\right.
$$

The value 1.572 maintains the continuity between the two segments of the scattering rate, and will be internally adjusted by Medici as needed. Currently, the same model is applied for holes. The parameters E1P . SOFT, E2P . SOFT and E3P. SOFT use the same values as the corresponding parameters for electrons while C1P. SOFT and C2P. SOFT are scaled from their counterpart using the ratio of P. IONIZA and N. IONIZA. Pending further experimental data, softthreshold model parameters are not defined for materials other than silicon. To facilitate the calibration of the soft-threshold model, MATERIAL parameters CN. IILAM and CP. IILAM have been introduced. They can be considered as the inverse scaling factors for the "constant scattering rate" Γ described in [114].

CAUTION

It has been observed that the application of the soft-threshold model using default parameters causes the simulated breakdown voltage to increase significantly. Careful calibration is advised before this model is put into practical use.

Examining Results

The impact ionization generation rate can be plotted in the following ways:

- Along one-dimensional slices through the structure, using the PLOT . 1D statement
- Contours of the generation rate in a two-dimensional plot, using the CONTOUR statement
- Three-dimensional projection plots of the generation rate, using the PLOT. 3D statement

The impact ionization current obtained in a post-processing analysis can be plotted as a function of bias or, in the case of a transient simulation, time (PLOT .1D statement).

The total impact ionization generation rate may be printed over a specified crosssection of the device using the PRINT statement.

Gate Current Analysis

Medici enables gate current analysis as a post-processing capability. After obtaining a solution, this function calculates the amount of current collected by the gate for each bias or time point from the available physical quantities within the structure (such as electric field and current density).

Gate current analysis is selected by specifying the GATE. CUR parameter on the SOLVE statement. The analysis is performed after each solution associated with the SOLVE statements on which the GATE. CUR parameter appears.

When a gate current analysis is requested, Medici computes electron and hole gate current at each point along all semiconductor-insulator interfaces. If normal insulators are used (such as OXIDE, NITRIDE, or INSULATOR), the program follows electric field lines in the insulator to determine the final location for the injected electron and hole current. The results of this analysis are written to the standard output listing. The total gate current can then be plotted as a function of bias or, in the case of a transient simulation, of time using the PLOT.1D statement.

If the insulator is a wide band-gap semiconductor (S.OXIDE) and the GATE2 model is specified, the program injects hot carriers over the insulatorsemiconductor barrier and then solves the continuity equations within the S. OXIDE region to determine where the electrons go. Due to the time-consuming nature of the gate current model and the fact that gate currents are very small, the injected hot electrons calculated from the previous time or bias point are used in the calculation. The errors from this procedure are negligible if small time or bias steps are taken and if the hot electron current changes slowly.

To select a model for gate current analysis in Medici, model parameters must be specified on the MODELS statement. Gate current models and their parameters are described below.

Lucky-Electron Gate Current Model

The default model for performing gate current calculations in Medici is based on the work described in [52]. The principle ideas of the model are based on the lucky electron concept. This model calculates probabilities for certain scattering events to occur that result in current being injected into the gate. This model can be selected by specifying GATE1 on the MODELS statement.

The total gate current (per unit length perpendicular to the simulation plane) can be obtained by integrating the flux of carriers injected into the gate from each location in the device structure. This can be expressed by

Equation 2-336

$$
I_{g a t e}=\iint \Gamma_{n}(x, y)\left|\vec{J}_{n}(x, y)\right| d x d y+\iint \Gamma_{p}(x, y)\left|\vec{J}_{p}(x, y)\right| d x d y
$$

where

- \vec{J}_{n} and \vec{J}_{p} are the electron and hole current densities
- The factors Γ_{n} and Γ_{p} are probabilities per unit length (in the direction of current flow) that electrons or holes, respectively, in the vicinity of the point (x, y) are injected into the gate.
Γ_{n} and Γ_{p} can be expressed as the product of the probability factors for the various scattering events involved
$\Gamma_{n}=P_{\Phi_{b, n}} P_{\text {semi }, n} P_{\text {insul }, n} /$ LAMRN
Equation 2-337
$\Gamma_{p}=P_{\Phi_{b, p}} P_{\text {semi }, p} P_{\text {insul }, p} / \mathbf{L A M R P}$
Equation 2-338

Probability Factors

For an electron to be collected by the gate, it must acquire enough kinetic energy from the electric field to surmount the potential barrier in the insulator and then be re-directed toward the semiconductor-insulator interface.

The factor 1/LAMRN in Equation 2-337 represents the probability per unit length (in the direction of current flow) that an electron will be re-directed without losing a significant amount of energy. The factor $P_{\Phi_{b, n}}$ is the probability that an electron will acquire enough kinetic energy to surmount the insulator potential barrier $\Phi_{b, n}$, and retain the appropriate momentum after re-direction. This can be expressed as
$P_{\Phi_{b, n}}=.25\left(\frac{E_{n, \|} \|^{\mathrm{LAMHN}}}{\Phi_{b, n}}\right) \exp \left[-\left(\frac{\Phi_{b, n}}{E_{n, \|}^{\mathrm{LAMHN}}}\right)\right]$
where

- $E_{n, \|}$ is the electric field in the direction of current flow
- LAMHN is the hot-electron scattering mean-free-path
- $\Phi_{b, n}$ is the semiconductor-insulator potential barrier which can be expressed as

Equation 2-340

$$
\Phi_{b, n}\left(E_{\text {insul }, \perp_{s}}>0\right)=\psi_{b, n}-\operatorname{BARLN} \sqrt{E_{\text {insul }, \perp_{s}}}-\operatorname{TUNLN} E_{\text {insul }, \perp_{s}}^{2 / 3}-\Delta \psi_{\text {int }}
$$

In Equation 2-340,

- $\Psi_{b, n}$ is the semiconductor-insulator interface barrier.
- $E_{\text {insul }, \perp}$ is the electric field in the insulator ($E_{\text {insul, } \perp_{s}}>0$ indicates an aiding field for electrons).
- BARLN $\sqrt{E_{\text {insul, } \perp_{s}}}$ represents barrier lowering effects due to the image field.
- TUNLN $E_{\text {insul, } \perp_{s}}^{2 / 3}$ accounts for the possibility of tunneling.
- $\Delta \Psi_{\text {int }}$ is the potential difference between the interface and the point (x, y).

In the case $E_{\text {insul }, \perp_{8}}<0$ (a repelling field for electrons), the probability factor $P_{\Phi_{b, n}}$ is set equal to zero.
After gaining enough kinetic energy and being re-directed in the appropriate direction, the electron must not be scattered again before reaching the peak of the potential barrier in the insulator if it is to be collected by the gate.

The factor $P_{\text {semi, } n}$ in Equation 2-337 is the probability that an electron will not be scattered in the semiconductor before reaching the interface and is given by

$$
P_{\text {semi }, n}=\exp \left[-\left(d_{\text {int }} / \text { LAMHN }\right)\right]
$$

where $d_{\text {int }}$ is the distance from the point (x, y) to the interface
The factor $P_{\text {insul, } n}$ in Equation 2-337 is the probability that an electron will not be scattered in the insulator between the interface and the potential barrier peak. This can be expressed as

$$
P_{\text {insul }, n}=\exp \left[-\sqrt{\mathbf{E C N} \cdot \mathbf{G C} / E_{\text {insul }, \perp_{s}}}\right]
$$

where ECN. GC is a critical electric field for electron scattering in the insulator.

Gate Current

 ParametersThe following parameters are available on the MATERIAL statement:

- Electron gate current parameters LAMHN, LAMRN, BARLN, TUNLN, and ECN. GC
- Corresponding hole gate current parameters LAMHP, LAMRP, BARLP, TUNLP, and ECP. GC

The interface barriers $\psi_{b, n}$ and $\psi_{b, p}$ are computed from the electron affinities and energy bandgaps of the interface materials as

$$
\psi_{b, n}=\chi_{\text {semi }}-\chi_{\text {insul }}
$$

and

$$
\psi_{b, p}=\left(\chi_{i n s u l}+\frac{E_{g, \text { insul }}}{q}\right)-\left(\chi_{\text {semi }}+\frac{E_{g, \text { sem } i}}{q}\right)
$$

The electron affinities and energy bandgaps for both semiconductor and insulating materials can be specified on the MATERIAL statement.

The default values for the gate current model parameters for electrons in silicon and silicon dioxide are taken (or computed) from values given in [52]. The default parameter values are as follows:

- Hole parameters in silicon and silicon dioxide are taken to be equal to the corresponding electron parameters values.
- Other semiconductor materials are taken to be equal to the corresponding silicon parameter values.
- Other insulating materials are taken to be equal to the corresponding silicon dioxide parameter values.

Angle-Dependent Gate Current Model

The angle-dependent gate current model contains physical mechanisms unavailable in the other models. This model may be selected by specifying GATE2 on the MODELS statement. The basic equation that governs the operation of the model is as follows (only the electron portion of the expression is written)

$$
I_{g a t e}=\frac{61.6 \times 10^{-7}}{\text { LAMRN }} \int_{0}^{\pi} \iint_{d_{n}}^{J_{s}} P_{\Phi_{b, n}} P_{\text {semi,n }} P_{\text {insul, }, n} P_{\theta, n} d x d y d \theta
$$

In this model,

- direction x is taken parallel to the channel.
- y is perpendicular to the channel.
- $\quad \theta$ is the angle between the x axis and the vector V connecting the point (x, y) to a point on the interface (see Figure 2-9 on p. 2-3).
- angle θ sweeps V along the length of the channel.
- $\quad P_{\text {semi,n }}$ has the same form as in the previous models:
$P_{\text {semin },}=\exp (-|V| /$ LAMHN $)$.
- numerical constant $61.6 \mathrm{e}-7$ corresponds to the default value of LAMRN.

The generation function is derived from the Maxwell distribution, and has the following form.

$$
P_{\Phi_{b, n}}=\left(1+\frac{\Phi_{b, n}}{E_{n, \|^{\text {LAMHN }} \sin (\theta)}}\right) \exp \left[-\left(\frac{\Phi_{b, n}}{E_{n, \|^{\text {LAMHN }} \sin (\theta)}}\right)\right]
$$

The above function has a maximum value of 1 , which occurs when $\Phi_{b, n}=0$.

Insulator Probability

The form of the insulator probability function and the barrier energy depends on whether the electric field in the insulator is an "aiding" field or a "repelling" field. For an aiding field (i.e., one that sweeps electrons from the semiconductor onto the floating gate),
$P_{\text {insul }, n}=\exp \left[-\min \left(t_{\text {ins }} / 3.2 e-7, \sqrt{\text { ECN.GC } / E_{\text {insul }, ~}}\right)\right]$ Equation 2-347
$\Phi_{b, n}=\psi_{b, n}-\mathbf{B A R L N} \sqrt{E_{\text {insul, } \perp_{s}}}-\operatorname{TUNLN} E_{\text {insul, } \perp_{s}}^{2 / 3}-\Delta \psi_{\text {int }}$ Equation 2-348
In the above equation, $t_{\text {ins }}$ is the thickness of the insulator layer, and the constant $3.2 \mathrm{e}-7$ is the mean-free-path for electrons in silicon dioxide. For a repelling field in the insulator, the following equations are used.
$P_{\text {insul }, n}=\exp \left(-t_{\text {ins }} / 3.2 e-7\right)$
Equation 2-349
$\Phi_{b, n}=\psi_{b, n}-\Delta \psi_{i n t}+\Delta \psi_{i n s}$
Equation 2-350
In the above equation, $\Delta \Psi_{i n s}$ is the potential drop across the insulator. For the repelling field, this quantity is positive and serves to increase the potential barrier the electron must surmount and, therefore, reduces the gate current.

Electron The factor $P_{\theta, n}$ gives the probability that a hot electron will be scattered in the Scattering direction θ and thereby reach the interface. The following form is used and is based on the Rutherford scattering law for charged particles in a Coulomb field.

$$
P_{\theta, n}=\left[\frac{q}{\varepsilon_{s i} \tan (\alpha / 2)} d_{s} \Phi_{b, n}\right]^{2}
$$

Equation 2-351

In the above equation, α is the angle between the vector V and the electron drift velocity vector, which is directed opposite to the electric field vector E .
(See Figure 2-9.)

Figure 2-9 Definitions for modified current model d_{s} is the distance between scattering sites (assumed to be the ionized impurities).

Therefore, d_{s} is given by

$$
d_{s}=\left(N_{A}+N_{D}\right)^{-0.3333}
$$

Equation 2-352

Surface Generation

When using this model, the gate current calculations can be confined to the semiconductor-insulator interface by specifying the GATE. SUR on the MODELS statement. If this parameter is specified, then:

- $\mathrm{P}_{\theta, n}=$ for all (x, y) not at the interface
- $\mathrm{P}_{\theta, n}=1 / 2$ for all (x, y) at the interface
- $\mathrm{P}_{\text {semin } n}$ is set equal to LAMHN, and generation only occurs for nodes at the semiconductor interface

This mode is especially useful when course grids are used (grids with vertical spacings greater than LAMHN).

Non-Maxwellian Hot Carrier Generation Option

Equations 2-339 and 2-346 are similar to a Maxwellian carrier energy distribution. Recent Monte Carlo studies of the high energy tail of the distribution have shown a non-Maxwellian form to be more appropriate. In their paper [55], Fiegna et al.
developed a model based upon Monte Carlo studies with the following form.

$$
I_{\text {gate }}=-q A \int n(x) P_{i n s u l, n} \int_{\Phi_{b, n}}^{\infty} u^{1.5} \exp \left(\frac{-\chi u^{3}}{E_{n, \|}^{1.5}}\right) d u \quad d x \quad \text { Equation 2-353 }
$$

In the above equation, the integration in x is carried out at the interface along the length of the channel. Constants A and χ have the values 487 and 1.3e8, respectively.

Returning to the lucky electron model of Equation 2-336, if it is assumed that the barrier energy $\Phi_{b, n}$ and electric field $E_{n, \|}$ remain constant in the y direction (perpendicular to the interface) and that due to the high electric field, $\mathrm{J}_{n} \approx$ $q n(x) v_{s}$, Equation 2-336 can be reduced to

$$
I_{\text {gate }} \approx-q \quad v_{s} \frac{\text { LAMHN }}{\text { LAMRN }} \int n(x) \quad P_{\Phi_{b, n}} P_{\text {insul, } n} d x
$$

Equation 2-354

New non-Maxwellian models can therefore be created by replacing $P_{\Phi, n}$ in the previous models with the following expression.
$P_{\Phi, n}=A \frac{61.6 \times 10^{-7}}{\operatorname{LAMRN} v_{s}} \int_{\Phi_{b}}^{\infty} u^{1.5} \exp \left(\frac{-\chi u^{3} 9.2 e-7}{E_{n, \|}^{1.5} \text { LAMRN }}\right) d u \quad$ Equation 2-355
The two numerical constants, $61.6 \mathrm{e}-7$ and $9.2 \mathrm{e}-7$ correspond to the default values of LAMRN and LAMHN, respectively. By writing the expression this way, the model of Fiegna et al. results when the default values are used for LAMHN and LAMRN.

This form of $P_{\Phi_{b, n}}$ can be used in the gate current models described previously by specifying GATE. GEN=2 on the MODELS statement. If GATE. GEN=1 is specified (the default), the original Maxwellian expressions for $P_{\Phi b, n}$ is used.

Carrier Temperature Dependent Gate Current Models

The gate current models in Medici are, by default, based on the local electric field within the structure. When knowledge of the carrier temperature obtained from an energy balance solution is available, this information can be used to obtain more accurate predictions of gate current.

Electron
Probability

The function $P_{\Phi_{b, n}}$ gives the probability that an electron will have sufficient energy to surmount the semiconductor-insulator barrier. By default, Medici calculates this probability based on the electric field at a given point in the semiconductor.

Conversion to Local Electric Field Model

The energy balance model, on the other hand, gives the mean energy of the carrier distribution at each point in the semiconductor and thereby accounts for the history of the electrons as they travel through regions of varying electric field.

The local electric field model can easily be converted into an electron energy dependent model by using the homogenous steady state limit of the energy balance equation to convert the electron temperature T_{n} into the equivalent effective electric field $E_{n, \|}$.
$E_{n, \|}=\frac{3 k T_{n}}{2 q v_{s} \operatorname{ELE} \cdot \mathrm{TAUW}}$.
Equation 2-356

The carrier temperature-dependent forms of the gate current models described previously can be selected by specifying GATE . TEM on the MODELS statement.

Direct Tunneling

Medici enables direct tunneling current analysis using the following two different approaches:

- As a post-processing capability
- As a self-consistent model

After obtaining a solution in post-processing mode, this function calculates the amount of direct tunneling current collected by the electrodes for each bias or time point from the band edges, quasi-fermi levels, and material properties. During the transient analysis of programmable devices in post-processing mode, the amount of direct tunneling current injected into or removed from a floating gate is used to alter the amount of charge on the gate. In self-consistent mode, the direct tunneling current acts as a self-consistent boundary condition for the electron and hole currents along semiconductor/insulator interfaces.

The post-processing mode of direct tunneling analysis is selected by specifying the DT . CUR parameter on the SOLVE statement. The analysis is performed after each solution associated with the SOLVE statements on which the DT. CUR parameter appears. The self-consistent mode of direct tunneling analysis is activated by specifying the DT .CUR parameter on the MODELS statement.

Conduction band electron tunneling (CBET), valence band electron tunneling (VBET), and valence band hole tunneling (VBHT) can be selectively activated by specifying DT. CBET, DT. VBET, and DT .VBHT, respectively, on the SOLVE and MODELS statements. When a self-consistent solution with CBET is requested, the electron continuity equation must be solved. Likewise, when a self-consistent solution with VBET is requested, the hole continuity equation must be solved. In addition, if the VBET tunneling current is directed into a semiconducting region, such as a poly gate, then the electron continuity equation must be solved as well. When a self-consistent solution with VBHT is requested, the hole continuity equation must be solved.

The following four different methods are available for evaluating the direct tunneling current:

- Analytical Evaluation
- Numerical integration of WKB tunneling coefficient
- Numerical integration of Gundlach tunneling coefficient
- Numerical integration of the AiryTMT tunneling coefficient

The desired method can be specified via the DT . METH parameter on the SOLVE statement for post-processing mode, and via the DT . METH parameter on the MODELS statement for self-consistent mode.

Under some circumstances, such as in a MOSFET, the impact of the direct tunneling current on convergence is rather weak. In this case, the speed of the simulation can be increased by suppressing the contribution of direct tunneling to the jacobian. This can be done using the DT. JACOB parameter on the METHOD statement. In other cases, such as a MOSCAP under inversion, direct tunneling has a large impact on the solution, and the jacobian contribution must be included for good convergence.

When an analysis of the direct tunneling current is requested, Medici computes the net tunneling current due to electrons and/or holes tunneling from the bands of a semiconductor or electrode, through an insulator into the bands of another semiconductor or electrode (see Figure 2-10). This model is intended to be used for devices in which the dominant contribution of direct tunneling current arises from interfaces that are approximately parallel, such as in a MOS capacitor or along the bottom of a gate in a MOSFET. The location where the tunneling current is deposited is determined by locating the closest point on the opposing boundary. In post-process mode, the results of the direct tunneling analysis are written to the standard output listing and stored internally for subsequent plotting and extraction via the predefined quantity $f e(i)$. In self-consistent mode, the direct tunneling current contributes to the terminal currents.

(a)

(b)

Figure 2-10 Device structure and band diagram for direct tunneling a) Device structure showing the origination of the direct tunneling current from region 1 through region 2 into region 3 b) Band diagram for direct tunneling of electrons in the conduction band (CBET) and valence band (VBET) from region 1 to region 3 as well as the tunneling of holes from the valence band (VBHT) in region 3 to region 1.

Parameter Specification

When direct tunneling analysis is specified, Medici considers direct tunneling between all semiconductor/electrode interfaces separated by one or more insulating regions. The parameters used in the direct tunneling model are specified on the material statement. The adjustable parameters used in the tunneling model are as follows:

- ME .DT, the effective tunneling mass of electrons in the conduction band of the material or electrode
- MHH.DT and MLH.DT, the effective tunneling mass of electrons in the heavy and light hole bands, respectively, for VBET, and for holes for VBHT.
- BARR.DT, the barrier height at an electrode/insulator interface for tunneling This parameter can only be specified for electrodes. For a semiconductor/ insulator interface, the electron affinities specified by AFFINITY and the band gap (for VBET/VBHT) are used to calculate the barrier height.
- MESC.DT, MHHSC.DT, and MLHSC.DT, the density-of-states mass scale factors for electrons, heavy holes, and light holes, respectively.

CAUTION

The workfunction of all electrodes involved in direct tunneling should be explitly set using the CONTACT statement. Failure to do so will result in unreasonably high direct tunneling current due to the default workfunction value of $\mathbf{0 . 0}$.

Relationship to Fowler-Nordheim Tunneling

As shown in Figure 2-11, the injection of electrons through an insulating layer is typically separated into the following three regimes:

- CBET direct tunneling, which occurs for electrons with energies below the minimum of the insulator conduction band
- Fowler-Nordheim tunneling, which occurs for electrons with energies between the extrema of the insulator conduction band
- Thermionic emission

Electrons with energies above the barrier are injected via thermionic emission, and can be modeled using Medici's gate current model.

The direct tunneling CBET model in Medici combines both the direct tunneling regime and the Fowler-Nordheim regime. The direct tunneling model (DT . CUR) and the Fowler-Nordheim model (FN. CUR) are, therefore, mutually exclusive. Only one of them can be activated at a time. In post-processing mode, the results of the tunneling analysis for these models are stored in the predefined quantity $f e$ for plotting and extraction, while in self-consistent mode the tunneling current appears as part of the terminal currents.

Figure 2-11 Diagram of three main types of carrier injection through an insulator

Direct Tunneling Model

Medici can calculate direct tunneling from three sources: conduction band electron tunneling (CBET), valence band electron tunneling (VBET), and valence band hole tunneling (VBHT). As diagrammed in Figure 2-10, CBET is due to the tunneling of electrons from the conduction band of a semiconductor or electrode, through a thin insulating layer, into the conduction band of another semiconductor or electrode. In contrast, VBET is due to the tunneling of electrons from the valence band of a semiconductor with the generation of free holes. VBHT is due to the tunneling of holes between valence bands. The net tunneling current across the insulator is calculated using the independent electron approximation, and for CBET it is given by [109].

$$
j_{D T}=\frac{4 \pi q r_{D O S} m_{1} k_{B} T}{h^{3}} \int_{0}^{E_{b}} T C(E) \ln \left[\frac{e^{\left(E_{F n 1}-E_{c 1}-E\right) / k_{B} T}+1}{e^{\left(E_{F n 3}-E_{c 1}-E\right) / k_{B} T}+1}\right] d E
$$

where the integral is over the vertical kinetic energy, E, of the incident electrons.
With reference to Figure 2-10, $E_{F n I}, E_{c l}$, and m_{l} are the electron quasi-fermi level, the conduction band edge, and the electron effective tunneling mass, respectively in region 1 at the insulator interface. $E_{F n 3}$ and $E_{c 3}$ are the corresponding electron quasi-fermi level and conduction band edge in region 3 . The effective density-of-states mass is given by $r_{D O S} \cdot m_{1}$ where $r_{D O S}$ is the density-of-states scaling factor which is typically on the order of 1 . The endpoint of the integration is determined by the barrier height, $E_{b l}$. The electron charge is given by q, h is Planck's constant, and $k_{B} T$ is the thermal energy. $T C$ is the tunneling coefficient of an electron with energy E. For VBET, Equation 2-357 is computed for electrons in both the heavy and light hole bands with $E_{c l}$ replaced by $E_{v l}$ (the valence band in region 1); $E_{f n 1}$ replaced by $E_{f p l}$ (the hole quasi-fermi level in region 1); and tunneling masses in region 1 set by the light- and heavyhole effective masses. VBET only occurs when the valence band in region 1 is above the conduction band in region 3, with the integration in Equation 2-357 over the band edge difference. For VBHT the conduction band energies and electron quasi-fermi levels are replaced by valence band energies and hole quasifermi levels, respectively.

The method for evaluating Equation 2-357 can be specified via the DT. METH parameter on the SOLVE or MODELS statement. These different evaluation techniques are described below and provide the capability to trade speed for accuracy. Note that methods 1,2 , and 3 assume tunneling occurs through a single insulator region. Method 4, however, is a generalized method that can calculate tunneling through multiple insulator regions.

CAUTION

To calculate direct tunneling through a dielectric stack, DT.METH=4 must be used.

Direct Tunneling
 Method 1:
 Analytical
 Evaluation

Setting DT . METH=1 causes Equation 2-357 to be evaluated analytically based on a WKB calculation of the tunneling coefficient through a trapezoidal barrier and a step-function approximation for the carrier occupancy. This is the fastest method of evaluation and leads to the following modified Fowler-Nordheim equation for the tunneling current in the direct tunneling regime [110]

Equation 2-358

$$
j_{D T}=\frac{\mathbf{A} \cdot \mathbf{F N}\left(V_{\text {ins }} / t_{\text {ins }}\right)^{2}}{\left[1-\left(1-V_{i n s} / \tilde{\phi}_{1}\right)^{1 / 2}\right]^{2}} \exp \left[-\frac{\mathbf{B} \cdot \mathbf{F N}}{\left(V_{\text {ins }} / t_{i n s}\right)}\left(1-\left(1-V_{i n s} / \tilde{\phi}_{1}\right)^{3 / 2}\right)\right]
$$

where A. FN and B. FN are the Fowler-Nordheim parameters available on the MATERIAL statement. The effective barrier height, $\tilde{\phi}_{1}$ is given by $\tilde{\phi}_{1}=E_{c 1}+E_{b 1}-E_{F n 1}$. The potential drop across the insulator layer of thickness $t_{\text {ins }}$ is given by $V_{\text {ins }}$. Equation 2-358 is only valid in the direct tunneling regime (i.e. for $V_{i n s}<\tilde{\phi}_{1}$. For $V_{i n s}>\tilde{\phi}_{1}$). Tunneling occurs via Fowler-Nordheim injection so that $V_{\text {ins }} / \tilde{\phi}_{1}$ is clamped at unity, and the standard Fowler-Nordheim current equation is recovered. Note that this method produces a non-zero current in equilibrium and cannot be used in self-consistent mode.

Direct Tunneling Method 2: Numerical Integration of WKB Tunneling Coefficient

Setting DT . METH=2 causes the integral in Equation 2-357 to be evaluated numerically using a WKB calculation of the tunneling coefficient through a trapezoidal barrier. The WKB tunneling coefficient is given by

Equation 2-359

$$
\begin{aligned}
T C(E)=\exp \left(-\frac{4}{3}\left(\frac{8 \pi^{2} m_{2}}{h^{2}}\right)^{1 / 2}\left(\frac{t_{i n s}}{q V_{i n s}}\right)\right. & {\left[\left(E_{b 1}-E-q \frac{V_{i n s}}{t_{i n s}} b\right)^{3 / 2}\right.} \\
& \left.\left.-\left(E_{b 1}-E-q \frac{V_{i n s}}{t_{i n s}} a\right)^{3 / 2}\right]\right)
\end{aligned}
$$

where

- $E_{b l}$ is the barrier height on the incident side.
- m_{2} is the effective tunneling mass of the carrier in the insulator.
- $\quad a$ and b are the classical turning points.

The effective tunneling mass of the electron in the insulator is specified via the ME.DT parameter on the MATERIAL statement, while the tunneling masses of the light and heavy holes are set via the MHH.DT and MLH.DT. The density-of-states mass scaling factor, $r_{\text {DOS }}$, can be set using the MESC.DT, MLHSC.DT, and MHHSC.DT parameters in region 1 for electrons, heavy holes, and light holes, respectively. When tunneling from the conduction band of a semiconductor, the barrier height, $E_{b l}$, is determined from the electron affinities of the semiconductor and insulator, which can be specified on the material statement. For VBET, $E_{b 1}$ is calculated similarly with the addition of the band gap. For VBHT, $E_{b 1}$ is determined by the electron affinity and bandgap of the semiconductor and the bandgap of the insulating layer. When tunneling from an electrode, the barrier height is set by the BARR.DT parameter on the MATERIAL statement. While the numerical evaluation of the integral in Equation 2-357 is slower than the analytical expression used in method 1 , the result is much more accurate.

Direct Tunneling Method 3: Numerical Integration of Gundlach Tunneling Coefficient

Setting DT . METH=3 causes the integral in Equation 2-357 to be evaluated numerically using the Gundlach formula for the exact tunneling coefficient of a trapezoidal barrier [111]

$$
T C(E)=\frac{2}{1+g}
$$

Equation 2-360
where
Equation 2-361

$$
\begin{aligned}
& g(E)=\frac{\pi^{2}}{2}\left[\frac{m_{3} k_{1}}{m_{1} k_{3}}\left(A i_{0} B i_{d}^{\prime}-B i_{0} A i_{d}^{\prime}\right)^{2}+\frac{m_{1} k_{3}}{m_{3} k_{1}}\left(B i_{0}^{\prime} A i_{d}-A i_{0}^{\prime} B i_{d}\right)^{2}\right. \\
& \left.+\frac{m_{2}^{2} k_{1} k_{3}}{m_{1} m_{3} \kappa^{2}}\left(A i_{0} B i_{d}-B i_{0} A i_{d}\right)^{2}+\frac{m_{1} m_{3} \kappa^{2}}{m_{2}^{2} k_{1} k_{3}}\left(A i_{0}^{\prime} B i_{d}^{\prime}-B i_{0}^{\prime} A i_{d}^{\prime}\right)^{2}\right]
\end{aligned}
$$

$A i$ and $B i$ are the Airy functions. The Airy functions are evaluated as

$$
\begin{aligned}
& A i_{0}=A i\left(\frac{E_{b 1}-E}{\varsigma}\right) \\
& A i_{d}=A i\left(\frac{E_{b 1}-q V_{i n s}-E}{\varsigma}\right)
\end{aligned}
$$

Equation 2-362
where

$$
\varsigma=\left(4 \pi^{2} h^{2} q^{2} V_{i n s}^{2} /\left(2 m_{2} t_{i n s}^{2}\right)\right)^{1 / 3} .
$$

Equation 2-363
The wavevectors of the electrons in the two semiconductor/electrode regions are given by k_{1} and k_{3}, and κ is given by
$\kappa=\left(8 \pi^{2} q m_{2} V_{\text {ins }} /\left(h t_{\text {ins }}\right)\right)^{1 / 3}$
Equation 2-364
For CBET, the effective tunneling mass of electrons in each of the three regions, m_{1}, m_{2}, and m_{3}, can be specified using the ME. DT parameter on the MATERIAL statement. For VBET, the effective tunneling mass of electrons in the heavy and light bands in region 1 can be set using MHH.DT and MLH.DT, respectively, on the material statement. For VBHT, the tunneling masses of the holes in all three regions can be set using MHH.DT and MLH.DT. The density-of-states mass scaling factor, $r_{D O S}$, can be set using the MESC.DT, MLHSC.DT, and MHHSC.DT parameters in region 1 for electrons, heavy holes, and light holes, respectively.As in method 2, the barrier height for electrodes can be specified using the BARR.DT parameter on the MATERIAL statement. Method 3 is the most accurate, but slowest, method for evaluating the tunneling current. However, as the number of nodes involved in tunneling is usually quite small, the time for the post-processing calculation of the direct tunneling current is typically small compared to the overall solution time.

Direct Tunneling Method 4: Numerical Integration of AiryTMT Tunneling Coefficient

Tunneling through multiple insulator regions can be calculated by setting DT . METH=4. This causes the integral in Equation 2-357 to be evaluated numerically using the Airy Transmission Matrix Technique or AiryTMT [112]. This method is a generalization of the Gundlach method and exactly calculates the tunneling coefficient through multiple trapezoidal barriers. A typical example is shown in Figure 2-12. Tunneling begins in the source region (silicon in this example) and ends in the destination region (polysilicon in this example). The potential barrier is automatically discretized at the intersections of the tunneling path with the region boundaries. A linear variation in potential between the discretized points is assumed. Tunneling through the potential barrier is treated as a scattering problem in which an incident plane wave from the source region with amplitude I gives rise to a reflected wave R and a transmitted wave T.

Figure 2-12 Example of tunneling through an oxide-nitride-oxide dielectric stack. The potential barrier along the tunneling path is shown on the right.

In the AiryTMT method, the tunneling coefficient is calculated as
$T C(E)=\frac{m_{0}}{m_{\mathrm{N}+1}} \frac{k_{N+1}}{k_{0}} \frac{|T|^{2}}{|I|^{2}}$
Equation 2-365
where m_{0} and m_{N+l} are the tunneling masses in the source and destination regions, respectively, and k_{0} and k_{N+l} are the wavevectors of the carrier in the source and destination region, respectively. T is determined by propagating the incident and reflected waves across the barrier using the transfer matrix M :

$$
\left[\begin{array}{l}
T \\
0
\end{array}\right]=M\left[\begin{array}{l}
I \\
R
\end{array}\right]
$$

where

$$
M=\prod^{N+1} M_{i}^{-1}\left(x_{i-1}\right) M_{i-1}\left(x_{i-1}\right)
$$

$M_{i}(x)$ is the transfer matrix for the i th barrier segment evaluated at $x . M_{i}$ is given by:

$$
M_{i}(x)=\left[\begin{array}{cc}
A i\left(u_{i}(x)\right) & B i\left(u_{i}(x)\right) \\
\frac{r_{i}}{m_{i}} A i^{\prime}\left(u_{i}(x)\right) & \frac{r_{i}}{m_{i}} B i^{\prime}\left(u_{i}(x)\right)
\end{array}\right]
$$

where u_{i} is a scaled coordinate given by:
$u_{i}(x)=r_{i}\left[x-x_{i-1}+\frac{U_{i-1}-E}{F_{i}}\right]$
Equation 2-369
and U_{i-1} is the potential energy barrier at coordinate x_{i-1}, F_{i} is the electric field in the segment between x_{i-l} and x_{i}, E is the carrier energy, and r_{i} is given by
$\left(2 m_{i} F_{i} / \overline{\mathrm{h}}^{2}\right)^{1 / 3}$.

The tunneling masses of electrons and holes can be set in each of the interior insulator regions using the ME.DT, MHH .DT, and MLH. DT parameters on the MATERIAL statement. The DOS scaling factors can be set for the source material using the MESC.DT, MLHSC.DT, and MHHSC.DT parameters on the MATERIAL statement.

Ionization Integrals

This section describes the following:

- Analysis of the avalanche breakdown of reversed biased junctions using the IONIZATI parameter on the EXTRACT statement
- Calculation of the electron and hole ionization integrals along potential gradient paths in a device structure using the E.LINE statement

Avalanche breakdown is analyzed by determining where and at what bias the ionization integrals exceed unity (corresponding to infinite carrier multiplication). Potential gradient paths and specified physical quantities, such as electric field or carrier concentration along the paths, may also be plotted.

Calculations

An ionization calculation begins by locating the potential gradient path that passes through a particular starting point within the semiconductor region of the device structure. The gradient path is followed in both directions away from the starting point until either the electric field becomes negligible or the path intersects the boundary of the semiconductor.

For this path, ionization integrals for electrons $\left(\mathrm{I}_{n}\right)$ and holes $\left(\mathrm{I}_{p}\right)$ are calculated as

$$
\begin{align*}
& \mathrm{I}_{n}=\int \alpha_{n, i i} \exp \left[-\int^{w}\left(\alpha_{n, i i}-\alpha_{p, i i}\right) d v\right] d w \\
& \mathrm{I}_{p}=\int \alpha_{p, i i} \exp \left[-\int^{w}\left(\alpha_{p, i i}-\alpha_{n, i i}\right) d v\right] d w
\end{align*}
$$

Equation 2-371
where

- $\quad v$ and w are distances along the gradient path.
- $\alpha_{n, i i}$ and $\alpha_{p, i i}$ are given by Equations 2-325 and 2-326, respectively.

In the expression for $\mathrm{I}_{n}\left(\mathrm{I}_{p}\right)$, the lower bounds for both integrals occur at the end of the gradient path where the potential is a minimum (maximum). The upper bound for the outer integral occurs at the end of the gradient path where the potential is a maximum (minimum).

Specification

To analyze the avalanche breakdown of reverse biased junctions, specify the IONIZATI parameter on the EXTRACT statement.

The electron and hole ionization integrals are calculated along gradient paths. These integrals are initiated at all nodes of the simulation mesh that lie within the rectangular region defined by the parameters X.MIN, X. MAX, Y.MIN, and \mathbf{Y}. MAX. Each calculated ionization integral is associated with one or more electrodes connected by material of the same doping type to the region where the potential gradient path terminates.

If a gradient path terminates in an isolated region with no contacting electrode, the ionization integral is associated with a special identifier named "floating". The maximum electron and hole ionization integrals associated with each electrode are calculated as

$$
A_{n}=\max \left(\mathrm{I}_{n}\right)
$$

Equation 2-372
$A_{p}=\max \left(\mathrm{I}_{p}\right)$
Equation 2-373
where the maximizations are performed over all integrals associated with each electrode. The peak electric field and its location along the maximum ionization path is also determined.

Avalanche breakdown of a reverse biased junction is indicated by values of A_{n} and A_{p}. These values exceed unity for electrodes that contact the doped region on either side of the junction.

The avalanche breakdown voltage for a junction can be determined by solving Poisson's equation for a series of reverse bias junctions expected to range from below to above the breakdown voltage. The avalanche breakdown voltage is the bias for which A_{n} and A_{p} equal unity.

Electric Field Lines

The E.LINE statement is used for the following:

- To calculate electron and hole ionization integrals along potential gradient paths
Starting locations for the gradient paths are specified with the X.START and y. StART parameters. As with the above analysis, the peak electric field and its location along the path are determined.
- As part of a one- or two-dimensional plot sequence

When used as part of a two-dimensional plot sequence, the potential gradient paths are plotted on the two-dimensional device cross-section. When used as part of a one-dimensional plot sequence, various physical quantities are plotted versus distance along the gradient path.

Band-to-Band Tunneling

The phenomenon of a valence band electron tunneling through the forbidden energy gap to the conduction band (leaving behind a hole) is known as band-toband tunneling. Band-to-band tunneling has the following characteristics:

- It results in the generation of electron-hole pairs and occurs in regions of high electric field where the local band bending causes the tunneling probability to become significant.
- It is the effect used in the operation of some devices, such as Zener diodes.
- It accounts for the generation of leakage currents in many submicron devices, and should be included in simulations where leakage is a concern.

The carriers generated because of band-to-band tunneling can be included selfconsistently in the solution of device equations by specifying the parameter ВТВт on the MODELS statement. Band-to-band tunneling generation is computed in all the semiconductor regions where the current-continuity equations are solved.

The model used by Medici has the form of Kane's model [56].
$G^{B B}=\mathbf{A} \cdot \mathbf{B T B T} \frac{E^{2}}{E_{g}^{1 / 2}} \cdot \exp \left(-\mathbf{B} \cdot \boldsymbol{B T B T} \frac{E_{g}^{3 / 2}}{E}\right)$
Equation 2-374

In this expression, E is the magnitude of the electric field and E_{g} is the energy bandgap. A search along the direction opposite to the electric field is performed to determine whether there is an electric potential increase of at least E_{g} for the band-to-band tunneling to occur. \bar{q}

The parameters \mathbf{A}. BTBT and $\mathbf{B . B T B T}$ can be used as constants in the model. Their default values are shown in Table 2-10. These values can be modified using the MATERIAL statement.

Following the MODELS statement, parameters were recently added to improve the model implementation. The parameter BT. MODEL specifies the method for calculating E. The local field is used with the default value of 1 . The average field

Table 2-10 Default Values for Band-to-Band Tunneling Parameters

Symbol	Default	Units
A. BTBT	3.5×10^{21}	$\mathrm{e} \mathrm{V}^{1 / 2} / \mathrm{cm}-\mathrm{s}-V^{2}$
B. BTBT	22.5×10^{6}	$\mathrm{~V} / \mathrm{cm}-(\mathrm{e} \mathrm{V})^{3 / 2}$
BT . MODEL	1	None
BT . LOCAL	1	None
BT . QUAD	False	None
BT . ATOL	1.0×10^{16}	pairs $/ \mathrm{cm}^{3}$
BT . RTOL	0.3	NONE
BT . TINY	5.0×10^{-4}	microns

along the tunneling path is used when BT . MODEL is 2 . When BT. MODEL is 3, the average tunneling field is used in pre-exponential, while a path integral in the form of Equation (3) on page 521 of [8] is used in the exponential. The locality of band-to-band tunneling generation is specified using parameter BT . LOCAL. With the default value of 1 , both electrons and holes are generated locally. When BT . LOCAL is set to 0 , electrons are generated at the end of the tunneling path, as implied by tunneling physics. By setting the parameter BT . QUAD, a recursive refinement procedure is used to improve the accuracy of band-to-band tunneling calculation. When the refinement criteria are met, a triangle is divided into four congruent triangles and this process is repeated as necessary. The following three parameters are used for controlling the recursive refinement:

- Parameter $\mathbf{B T}$. $\mathbf{A T O L}$ specifies the threshold generation rate above which refinement is considered.
- Parameter BT. RTOL specifies the relative change in the $\log 10$ of the generation rate above which refinement is carried out.
- Parameter BT. TINY specifies the minimum size above which a triangle is considered for refinement.

The total band-to-band tunneling generation rate at each node in the device can be determined by specifying the BB. GENER parameter on the PRINT statement.

When BT. LOCAL is set to 0 , the values generated are the larger of electron and hole generation rates.

One-dimensional line plots and two-dimensional contour plots of the band-toband tunneling generation rate can be obtained by specifying the BB. GENER parameter on the PLOT .1D and CONTOUR statements, respectively.

Energy Balance Equations

Local carrier heating in high and spatial, rapidly varying electric fields is modeled using a self-consistent solution of the drift-diffusion and carrier energy balance equations.

The solution of the hydrodynamic model is initiated by specifying the parameters ELE.TEMP and HOL. TEMP on the SYMBOLIC statement. Both stationary and transient solutions are possible.

Two solution methods are available:

- The block-iterative algorithm alternately solves first the drift-diffusion equations and then one or two energy-balance equations.
- The other method solves the fully-coupled hydrodynamic system; it is initiated by invoking COUP .ELE or COUP .HOL on the SYMBOLIC statement.

Note:

Only one of these statements, COUP .ELE, COUP . HOL, or COUP. Currently, only one of COUP. ELE, COUP. HOL and COUP .LAT can be specified at one time (see the SYMBOLIC statement for explanations of COUP . LAT).

While the coupled method is generally faster and more robust than the uncoupled method, it is prone to divergence in cases where there are bad initial guesses.

CAUTION

It is strongly recommended that you use the uncoupled method for the first two bias points. This allows for better initial guesses on subsequent biases as a result of the projection method (see "Initial Guesses," p. 2-74).

Implemented Differential Equations

The implemented hydrodynamic set of equations includes the standard driftdiffusion set of equations

$$
\vec{\nabla} \cdot \varepsilon \vec{\nabla} \psi=-q\left(p-n+N_{D}^{+}-N_{\bar{A}}^{-}\right)-\rho_{s}
$$

$$
\begin{align*}
& \frac{\partial n}{\partial t}=+\frac{1}{q} \vec{\nabla} \cdot \overrightarrow{J_{n}}-U_{n} \\
& \frac{\partial p}{\partial t}=-\frac{1}{q} \vec{\nabla} \cdot \overrightarrow{J_{p}}-U_{p}
\end{align*}
$$

Equation 2-377
using generalized expressions for the electron and hole current densities

$$
\begin{align*}
& \overrightarrow{J_{n}}=q \mu_{n}\left(u_{n}\right)\left[n \vec{E}+\vec{\nabla}\left(u_{n} n\right)\right] \\
& \overrightarrow{J_{p}}=q \mu_{p}\left(u_{p}\right)\left[p \vec{E}-\vec{\nabla}\left(u_{p} p\right)\right]
\end{align*}
$$

Equation 2-379
An alternative form of the current density expressions can be used when solving the hydrodynamic set of equations by specifying ET . MODEL on the MODELS statement [57], [58], [59]

$$
\begin{align*}
& \overrightarrow{J_{n}}=q \mu_{n} n \vec{E}+q \mu_{n} \vec{\nabla}\left(u_{n} n\right)+n u_{n} \frac{\partial \mu_{n}\left(u_{n}\right)}{\partial u_{n}} \vec{\nabla} u_{n} \\
& \overrightarrow{J_{p}}=q \mu_{p} p \vec{E}-q \mu_{p} \vec{\nabla}\left(u_{p} p\right)-p u_{p} \frac{\partial \mu_{p}\left(u_{p}\right)}{\partial u_{p}} \vec{\nabla} u_{p}
\end{align*}
$$

Equation 2-381

The above set of equations, referred to as the Energy Transport Model, has been used to some advantage in small bipolar devices for reducing spurious velocity overshoot effects.

In addition, the hydrodynamic model includes the following electron and hole energy balance equations [60], [61], [62], [63], including transient effects and carrier cooling due to impact ionization.

Equation 2-382

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{S}_{n}=\frac{1}{q} \overrightarrow{J_{n}} \cdot \vec{E}-\frac{3}{2}\left[n \frac{u_{n}-u_{0}}{\text { ELE } \cdot \mathbf{T A U W}}+\frac{\partial\left(n u_{n}\right)}{\partial t}\right]-\frac{1}{q} E_{g} G_{n}^{I I}+H_{n}^{R} \\
& \vec{\nabla} \cdot \overrightarrow{S_{p}}=\frac{1}{q} \overrightarrow{J_{p}} \cdot \vec{E}-\frac{3}{2}\left[p \frac{u_{p}-u_{0}}{\text { HOL.TAUW }}+\frac{\partial\left(p u_{p}\right)}{\partial t}\right]-\frac{1}{q} E_{g} G_{p}^{I I}+H_{p}^{R} \\
& \overrightarrow{S_{n}}=-\frac{5}{2} u_{n}\left[\frac{\vec{J}_{n}}{q}+\text { ELE } \cdot \mathbf{C Q} \mu_{n} n \vec{\nabla} u_{n}\right]
\end{aligned}
$$

Equation 2-383

$$
\begin{aligned}
& \vec{S}_{p}=+\frac{5}{2} u_{p}\left[\frac{\overrightarrow{J_{p}}}{q}-\text { HOL.CQ } \mu_{p} p \vec{\nabla} u_{p}\right] \quad \text { Equation 2-385 } \\
& H_{n}^{R}=U_{\text {Auger }}^{n}\left\lceil\frac{E_{g}}{q}+\frac{3}{2} u_{p}\right\rceil-\frac{3}{2}\left[\text { SRHG } \cdot U_{S R H} u_{n L}+U_{\text {Auger }}^{p} u_{n}\right] \\
& H_{p}^{R}=U_{\text {Auger }}^{p}\left\lceil\frac{E_{g}}{q}+\frac{3}{2} u_{n}\right\rceil-\frac{3}{2}\left[\mathrm{SRHG} \cdot U_{S R H} u_{p L}+U_{\text {Auger }}^{n} u_{p}\right]
\end{aligned}
$$

where

$$
u_{n L}=\left\{\begin{array}{l}
u_{n} \text { if } U_{S R H}>0 \\
u_{0} \text { otherwise }
\end{array}, u_{p L}=\left\{\begin{array}{l}
u_{p} \text { if } U_{S R H}>0 \\
u_{0} \text { otherwise }
\end{array}\right.\right.
$$

Equation 2-388

In Equations 2-382 through 2-385,

- $\quad \overrightarrow{s_{n}}$ and $\overrightarrow{S_{p}}$ represent the electron and hole energy flow densities.
- u_{n}, u_{p}, and u_{0} represent the electron, hole, and lattice thermal voltages $k T_{n} / q, k T_{p} / q$, and $k T_{0} / q$, respectively.

The value of SRHG in Equations 2-387 and 2-387 can be 1 or 0 according to whether the value of flag EB. SRH.G is TRUE or FALSE, respectively. The default for EB. SRH.G is TRUE when the energy balance is fully coupled and FALSE otherwise.

This flag, along with the switch implemented in Equation 2-388, stabilizes the system of equations in difficult cases. EB. SRH.G is accessible on the MODELS statement. However, it cannot be set to TRUE when the more sensitive nonfully coupled method is used to solve EB.

When only one energy balance equation is solved, the unavailable carrier thermal voltage is replaced with the lattice thermal voltage in Equations 2-387 through 2388.

Compound Semiconductor EB Model

The electron and hole energy balance equations above are most appropriate for carrier transport in silicon. A different energy balance model suited for compound-semiconductors, such as GaAs, can be activated by specifying the

COMP . ET parameter on the MODELS statement. As described in [69] and [70], the equations are

Equation 2-389

$$
\begin{aligned}
& \frac{1}{q}\left[\frac{5}{2} \vec{J}_{n} \cdot \vec{\nabla} u_{n}+u_{n} \vec{\nabla} \cdot \vec{J}_{n}\right]+\text { ELE } \cdot \mathbf{C Q} \vec{\nabla} \cdot\left(u_{n} \mu_{n} n \vec{\nabla} u_{n}\right)+\frac{1}{q} \vec{J}_{n} \cdot \vec{E} \\
& \quad=\frac{3}{2}\left[n \frac{u_{n}-u_{0}}{\tau_{w n}}+\frac{\partial\left(n u_{n}\right)}{\partial t}\right]+\frac{E_{g} G_{n}^{I I}}{q}-H_{n}^{R}
\end{aligned}
$$

Equation 2-390

$$
\begin{aligned}
& -\frac{1}{q}\left[\frac{5}{2} \overrightarrow{J_{p}} \cdot \vec{\nabla} u_{p}+u_{p} \vec{\nabla} \cdot \vec{J}_{p}\right]+\text { HOL . CQ } \vec{\nabla} \cdot\left(u_{p} \mu_{p} p \vec{\nabla} u_{p}\right)+\frac{1}{q} \vec{J}_{p} \cdot \vec{E} \\
& =\frac{3}{2}\left[p \frac{u_{p}-u_{0}}{\tau_{w p}}+\frac{\partial\left(p u_{p}\right)}{\partial t}\right]+\frac{E_{g} G_{p}^{I I}}{q}-H_{p}^{R}
\end{aligned}
$$

where $\tau_{w n}$ and $\tau_{w p}$ are the energy relaxation times for electrons and holes respectively. By default, $\tau_{w n}=$ ELE.TAUW and $\tau_{w p}=$ HOL.TAUW. An electron temperature-dependent model can be activated, however, by invoking TMPTAUW on the MODELS statement. For more information about this model, refer to "Energy Relaxation Times," p. 2-137.

COMP .ET is ignored in noncompound-semiconductor regions.

Boundary Conditions

Listed below are implemented boundary conditions for the energy balance equation:

- Dirichlet boundary conditions at contacts
$u_{n}=u_{0} \quad u_{p}=u_{0}$
Equation 2-391
- Homogeneous Neumann boundary conditions on all other boundaries (∇_{\perp} denotes the derivative normal to the boundary)
$\vec{\nabla}_{\perp} u_{n}=0 \quad \vec{\nabla}_{\perp} u_{p}=0$
Equation 2-392
These boundary conditions physically correspond to thermal equilibrium at contacts and to zero energy flow across insulating boundaries.

Physical Models

The solution of the energy balance equations allows the carrier temperature distribution inside a device to be determined for both electrons and holes. The knowledge of carrier temperature makes it possible to more accurately model
certain types of phenomena such as mobility and impact ionization. This section describes the carrier temperature models available in Medici.

Carrier TemperatureBased Mobility

The mobility model is based on the effective field approach. The effective field is the uniform electric field value that causes the carriers in a homogenous sample to attain the same temperature as at the current node in the device. Effective electric fields for electrons and holes $E_{e f f, n}$, and $E_{e f f, p}$ are calculated by solving locally the following homogenous carrier temperature equations

$$
\begin{aligned}
\mu_{n}\left(E_{e f f, n}\right) E_{e f f, n}^{2} & =\frac{3}{2} \frac{u_{n}-u_{0}}{\tau_{w n}\left(u_{n}\right)} \\
\mu_{p}\left(E_{e f f, p}\right) E_{e f f, p}^{2} & =\frac{3}{2} \frac{u_{p}-u_{0}}{\tau_{w p}\left(u_{p}\right)}
\end{aligned}
$$

Equation 2-393

Equation 2-394
which are simply Equations 2-382 and 2-383 (on p. 2-133) stripped of the spatially varying terms.

The default model assumes the velocity is saturated throughout the device, and, therefore, the $\dot{\mu} E_{e f f}$ terms in the above equations are replaced with VSAT. This makes solving the equations straightforward. To turn this model on, invoke TMPMOB on the MODELS statement.

The carrier energy relaxation terms are also assumed to be constant in the default model. Introducing the effective field values obtained from Equations 2-393 and 2-394 into the field-dependent model, one obtains

Equation 2-395
$\mu_{n}\left(u_{n}\right)=\frac{\mu_{S, n}}{\left\{1+\left[\alpha_{n}\left(u_{n}-u_{0}\right)\right]^{\text {BETAN }}\right\}^{1 / \mathrm{BETAN}}}, \quad \alpha_{n}=\frac{3 \mu_{S, n}}{2 \text { VSATN }^{2} \text { ELE . TAUW }}$
Equation 2-396

$$
\mu_{p}\left(u_{p}\right)=\frac{\mu_{S, p}}{\left\{1+\left[\alpha_{p}\left(u_{p}-u_{0}\right)\right]^{\text {BETAP }}\right\}^{1 / \mathrm{BETAP}}}, \quad \alpha_{p}=\frac{3 \mu_{S, p}}{2 \text { VSATP }^{2} \mathrm{HOL} . \mathrm{TAUW}}
$$

Alternatively, you may choose to activate the HPMOB model on the MODELS statement. In this case, Equations 2-188 and 2-189 on p. 2-44 are used instead of Equations 2-180 and 2-181 on p. 2-42.

An exact solution to the transcendental Equations 2-393 and 2-394 is always calculated in compound semiconductor regions by using the Newton-Raphson method and Equations 2-180 and 2-181 (on p. 2-42). In order to use the exact solution in silicon-like materials, you have to specify the EF . TMP parameter on the MODELS statement. The effective field thus obtained is inserted in the selected
high field mobility model (Equations 2-180 and 2-181 on p. 2-42, or Equations 2188 and 2-189 on p. 2-44, if HPMOB stated; in the case of compound semiconductors, Equations 2-183 and 2-184 on p. 2-42). The energy relaxation time constants $\tau_{w n}$ and $\tau_{w p}$ are discussed in "Energy Relaxation Times," p. 2-137.

Solving the homogeneous energy-balance equations exactly leads to results consistent with drift-diffusion. Energy-balance and drift diffusion generate quasiidentical results for devices where the electric field does not vary significantly within the length of one carrier mean-free path.

In previous versions of Medici, negative values of the derivative of the mobility in compound-semiconductor regions were automatically discarded from the Jacobian matrix. Asserting ND. MOB on the MODELS statement now allows Medici to keep those terms.

Note:

It is recommended that ND. MOB be used with compound semi-conductors in order to accelerate convergence.

The temperature-dependent mobility model is enabled by the parameter TMPMOB on the MODELS statement. Alternatively, a local electric field-dependent mobility model can be used by specifying FLDMOB. Only one of the parameters TMPMOB and FLDMOB can be specified.

Note:

Carrier temperature-dependent versions of the mobility models HPMOB , LUCMOB, or IALMOB can be used by specifying TMPMOB in addition to one of these model flags.

Energy
 Relaxation Times

Monte Carlo simulations show [70], [71], [72] that the energy relaxation time in compound-semiconductors varies over a wide range. The default values chosen by Medici are

$$
\tau_{w n}=\text { ELE } \cdot \mathbf{T A U W} \quad \tau_{w p}=\text { HOL. TAUW }
$$

and the ELE. TAUW and HOL. TAUW defaults can be changed on the MATERIAL statement.

Carrier temperature-dependent models can be activated on the MODELS statement. Specifying TMPTAUWN (synonymous to the old TMPTAUW) will enable a model for the electron relaxation time, and TMPTAUWP will enable a model for the hole relaxation time.

The empirical model used for electrons in III-V compounds is

$$
\tau_{w n}=\mathbf{W T N} 1+(\mathbf{W T N} 0-\mathbf{W T N} 1) \cdot r^{2} \cdot \exp (2 \cdot(1-r)) \quad \text { Equation 2-398 }
$$

where

$$
r=\frac{T_{n}-T}{\text { TNL }}
$$

Equation 2-399

For electrons in non-III-V materials and for holes in all materials, the models used are those suggested in [73] and [99]

Equation 2-400
$\tau_{w n}= \begin{cases}\operatorname{WTN} 0+\mathrm{WTN} 1 \cdot \xi_{n}+\mathbf{W T N} 2 \cdot \xi_{n}^{2}+\mathrm{WTN} 3 \cdot \xi_{n}^{3}+\mathrm{WTN} 4 \cdot \xi_{n}^{4}+\mathrm{WTN} 5 \cdot \xi_{n}^{5} & T_{n}<\operatorname{TNL} \\ \mathrm{WTNL} & T_{n}>\operatorname{TNL}\end{cases}$
Equation 2-401
$\tau_{w p}= \begin{cases}\mathrm{WTPO}+\mathrm{WTP} 1 \cdot \xi_{p}+\mathrm{WTP2} \cdot \xi_{p}^{2}+\mathrm{WTP} 3 \cdot \xi_{p}^{3}+\mathrm{WTP4} \cdot \xi_{p}^{4}+\mathrm{WTP5} \cdot \xi_{p}^{5} & T_{p}<\text { TPL } \\ \mathrm{WTPL} & T_{p}>\text { TPL }\end{cases}$
where

$$
\begin{aligned}
& \xi_{n}=\frac{T_{n}-T}{300}+1 \\
& \xi_{p}=\frac{T_{p}-T}{300}+1
\end{aligned}
$$

Equation 2-402
and all coefficients in a bold font can be accessed on the MATERIAL statement.

Impact lonization

Impact ionization is derived from the classical local electric field-dependent Chynoweth law and the homogeneous case temperature-field relation

$$
G_{n}^{I I}\left(u_{n}\right)=\frac{\mathbf{N} \cdot \operatorname{IONIZA}}{q}\left|\vec{J}_{n}\right| \exp \left[-\left(\frac{u_{c r i t}}{u_{n}-u_{0}}\right)^{\mathrm{EXN} \cdot \mathrm{II}}\right]
$$

Equation 2-403
with

$$
u_{\text {crit }}=\frac{2 \text { VSATN } \cdot \text { ELE } \cdot T A U W}{3} \cdot \mathbf{E C N} \cdot \mathbf{I I}
$$

Equation 2-404

No new-fitting parameters are required when impact ionization is selected (the IMPACT . I parameter on the MODELS statement). By default, Medici uses the local electric field-dependent impact ionization model described in "Impact Ionization Analysis," p. 2-108. To use the temperature-dependent model, the parameter II.TEMP on the MODELS statement should also be specified.
Expressions for holes are defined in an analogous manner. This formulation is consistent with the simplified effective field calculation introduced in "Carrier Temperature-Based Mobility," p. 2-136.

To calculate physically-correct effective fields (and to obtain results consistent with drift-diffusion), the homogeneous energy balance equation

Equation 2-405

$$
\mu_{n}\left(E_{e f f, n}\right) E_{e f f, n}^{2}=\frac{3}{2} \frac{u_{n}-u_{0}}{\tau_{w n}\left(u_{n}\right)}+E_{g} \cdot \mu_{n}\left(E_{e f f, n}\right) E_{e f f, n} \alpha_{n, i i}\left(E_{e f f, n}\right)
$$

Equation 2-406

$$
\mu_{p}\left(E_{e f f, p}\right) E_{e f f, p}^{2}=\frac{3}{2} \frac{u_{p}-u_{0}}{\tau_{w p}\left(u_{n}\right)}+E_{g} \cdot \mu_{p}\left(E_{e f f, p}\right) E_{e f f, p} \alpha_{p, i i}\left(E_{e f f, p}\right)
$$

which are Equations 2-393 and 2-394 on p. 2-136 plus impact ionization cooling terms, must be solved exactly. The impact ionization coefficients are those given in Equations 2-325 and 2-326 on p. 2-110.

If TMPMOB and II. TEMP are specified, the effective fields obtained are used to calculate both the carrier mobilities and the impact ionization coefficients. In order to activate this model, the EFI. TMP parameter must be specified on the MODELS statement.

Note:

The only effect of enabling EFI.TMP is to add the cooling term to the homogeneous energy balance equations without precluding the choice of the impact ionization model itself. The field-dependent impact ionization model is compatible with EFI . TMP.

Thermally Enhanced Diffusion Current

In some cases, it may be desirable to obtain an approximate energy balance solution by switching off the thermal diffusion term in the current density definition Equations 2-378 and 2-379 on p. 2-133 (momentum balance equation). This can be accomplished by specifying ^TMPDIFF on the MODELS statement. When ^TMPDIFF is specified, the following expressions are used instead of Equations 2-378 and 2-379.

$$
\begin{align*}
& \vec{J}_{n}=q \mu_{n}\left(u_{n}\right)\left[n \vec{E}+\vec{\nabla}\left(u_{0} n\right)\right] \\
& \overrightarrow{J_{p}}=q \mu_{p}\left(u_{p}\right)\left[p \vec{E}-\vec{\nabla}\left(u_{0} p\right)\right]
\end{align*}
$$

Equation 2-408
Specifying ^TMPDIFF significantly decreases the CPU time required to obtain a solution.

Energy Balance PostProcessing Analysis

A post-processing mode for energy balance is available by specifying EB. POST on the SYMBOLIC statement. Post-processing energy balance removes all dependence of the carrier concentrations on the electron (or hole) temperature. This results in some loss of accuracy but, generally, in much faster simulation times. The EB. POST option does the following:

- If temperature-dependent impact ionization is enabled (II.TEMP=true), temperature-dependent impact ionization is disabled in the continuity equation assembly, but left enabled during the energy balance assembly. This is important because impact ionization has a strong cooling effect on the carrier temperatures.
- If TMPMOB is enabled, TMPMOB is switched off and FLDMOB is enabled (and a warning is given). The results of a simulation with FLDMOB are much closer to the desired simulation (i.e.,with $\mathbf{T M P M O B}^{\text {) }}$ than a simulation with no mobility model.
- TMPDIFF is turned off, and a warning is given.

Plotting Simulation Results

To plot the electron or hole temperature distribution, the parameters ELE.TEMP and HOL . TEMP on the PLOT .1D, CONTOUR, and PLOT . 3D statements can be used. Temperature is plotted in units of Kelvin (K).

To plot electron and hole mean velocity ($v_{n}=-J_{n} /(q n),\left(v_{p}=+J_{p} /(q p)\right)$, the parameters ELE. VEL and HOL. VEL on the PLOT.1D, CONTOUR, and PLOT. 3D statements can be used. Carrier mean velocity is plotted in units of $\mathrm{cm} /$ s.

Decoupled Solution

A decoupled approach (Figure 2-13) is chosen by default for the self-consistent solution of the hydrodynamic model. The algorithm consists of a solution of the drift-diffusion Equations 2-375 through 2-377 starting on p. 2-132 for the classical variables ψ, n, and p. This is followed by a solution of the energy balance Equations 2-382 through 2-385 on p. 2-133 for the electron and hole thermal voltages u_{n} and u_{p}. The new temperature distributions are used to re-evaluate ψ, n, and p. This procedure is repeated until the maximum updates of the electron and hole temperature normalized by the lattice temperature u_{0} fall below the tolerance EXT . TOLE. The default value for EXT . TOLE is 0.01 . It can be modified from this value on the METHOD statement.

The maximum number of energy balance iterations and the maximum number of block iterations are specified using the parameters \mathbf{N}. MAXEB and \mathbf{N}. MAXBL on the METHOD statement (default values are \mathbf{N}. MAXEB=10 and \mathbf{N}. MAXBL=25). In case of nonconvergence of either the drift-diffusion solution or energy balance solution, the applied bias voltage is reduced, and the solution process is repeated.

Figure 2-13 Solution strategy

Coupled Solution

The drift-diffusion equations (Equations 2-375 through 2-377 on p. 2-133) can be solved simultaneously with one of the carrier temperature equations by specifying COUP . ELE for electrons (Equations 2-382, 2-384 starting on p. 2-133) or COUP . HOL for holes (Equations 2-383, 2-385 or 2-390) on the SYMBOLIC statement.

The convergence of the carrier temperature updates is controlled, as in the uncoupled method, using etx. Tole. The tolerance on the right-hand-side of the energy balance equation is controlled with ETR.TOLE, which is set by default to $1.0 \times 10^{-18} \mathrm{~A} /$ micron and can be altered using the METHOD statement.

At the moment, only one of COUP .ELE, COUP. HOL and COUP. LAT can be used at a time. However, while one equation is solved using the coupled method, either or both can be solved using the uncoupled method.

As mentioned at the beginning of this section, it is recommended to use the uncoupled method for the first two solutions (or bias points) and then switch to the coupled method.

Regional Specification of Semiconductor Parameters

Medici allows different semiconductor material parameters to be specified for different regions of the device structure. This capability provides an approximate method of treating structures that contain more than one semiconductor material or that have semiconductor properties that vary with location.

For example, a polysilicon emitter in a bipolar structure could be approximated by adjusting mobility and lifetime in the appropriate region of a silicon device. As a further example, there is experimental evidence that carrier ionization rates are lower at the surface in silicon devices than they are in the bulk [64].

This behavior could be incorporated into a simulation by specifying a set of impact parameters for the surface of a device that are different than the set of parameters used in the bulk.

All parameters that appear on the MATERIAL and MOBILITY statement (see Chapter 3, "MATERIAL," p. 3-278 and "MOBILITY," p. 3-306) may be given different values in different regions. The REGION parameters on these statements are used to select the appropriate region number.

Programmable Device Advanced Application Module

This section describes the capabilities and use of the Programmable Device Advanced Application Module (PD-AAM) that is an option for use with the Medici program. The PD-AAM provides Medici with the ability to fully model the electrical characteristics of nonvolatile memory devices. The PD-AAM can simulate transient write and erase operations, as well as the effects of stored charge on device performance. The PD-AAM is particularly applicable for analyzing the floating gate structures found in EPROMs, EEPROMs, and flash EEPROMs.

The main features described in this section include the following:

- Charge boundary conditions for simulating floating gate structures
- Implementation of the Fowler-Nordheim (FN) tunneling models to allow simulation of charging and discharging of floating gates
- Enhancements to the gate current model for simulating the charging of floating gates using hot carrier injection

Charge Boundary Condition

The charge boundary condition for a floating region is implemented as a floating electrode with a distributed boundary condition over all nodes of the floating electrode. For each floating electrode specified, a value of the net charge is used in the boundary condition. This net charge is either specified (for steady state) or generated by the tunneling and injection models in transient analysis and automatically placed on the floating electrodes. The charge boundary condition is specified as

$$
\oint \vec{D} \cdot d \vec{S}=Q
$$

where Q is the total charge on the floating electrode.
The above equation is applied to each floating electrode, with the integration over the entire surface of the electrode. The equation forces the potential on the floating electrode to be adjusted to produce the correct total charge on the electrode.

The charge boundary condition is added as an extra equation in the Jacobian matrix of the Newton iteration. Because of this, it is necessary that the Newton method be specified on the SYMBOLIC statement if a floating region is present in the device. Either a one- or two-carrier solution may be performed.

Note:

Medici cannot perform AC analysis with floating regions. The Newton method must be specified when using charge boundary conditions.

Fowler-Nordheim Tunneling

Fowler-Nordheim tunneling is requested by specifying the FN. CUR parameter on the MODELS or SOLVE statement. When FN. CUR is specified on the MODELS statement, Fowler-Nordheim currents are calculated self-consistently with other equations. Otherwise, Fowler-Nordheim currents are calculated in the postprocessing mode. Fowler-Nordheim tunneling can be used in both steady-state and transient simulations, as shown below:

- During steady-state simulations, Medici calculates the total tunneling current flowing to each electrode and semiconductor region in the structure.
- During transient simulations, the incremental charge obtained from integrating the tunneling current over time is immediately placed on the appropriate electrodes.

Either simulation obtains a self-consistent solution, allowing accurate analysis of programming characteristics. Note that the direct tunneling model can also be used to analyze the amount charge flowing to or from electrodes. See "Direct Tunneling Model," p. 2-123 for more information on the direct tunneling model.

Tunneling Model

The Fowler-Nordheim tunneling model used in the Medici program gives the tunneling current density as

$$
J_{F N}=\mathbf{A} \cdot \mathbf{F N} \cdot E_{\text {insul }}^{2} \cdot \exp \left(-\mathbf{B} \cdot \mathbf{F N} / E_{\text {insul }}\right)
$$

Equation 2-410
where $E_{\text {insul }}$ is the electric field in the insulator and A.FN and B.FN are model parameters that can be specified on the MATERIAL statement. The parameters
A. FN and B.FN can be given separate values for the following:

- Tunneling that initiates in semiconductor regions
- Tunneling that initiates at floating electrodes

Use the REGION and ELECTROD parameters, respectively, on the MATERIAL statement. The default values (for all semiconductor regions and electrodes) are
$\mathbf{A} . \mathbf{F N}=6.32 \times 10^{-7} \mathrm{~A} / \mathrm{V}^{2} \quad \mathbf{B} . \mathbf{F N}=2.21 \times 18^{8} \mathrm{~V} / \mathrm{cm} \quad$ Equation 2-411

After each solution is obtained for steady-state or transient simulations, the following occurs:

1. Each semiconductor-insulator or electrode-insulator interface is divided into segments by the mesh.
2. For each such segment, the FN current is calculated.
3. The model then tracks the electric field in the insulator by following the electric field vectors through the insulator starting from each interface segment.

The tracking process determines where the tunneling current is likely to end up. The process assumes that the electrons that tunnel into the insulator follow the electric field. The tunneling current may end up on an electrode, or it may end up on a semiconductor region connected to an electrode.
4. The program totals these components, and the results are written to the standard output file.
5. During transient analysis, the total current flowing into each floating electrode is multiplied by the time step to calculate the charge added to each electrode during the current time step. The new value of charge is then used as the boundary condition for the next time step. This process allows accurate simulation of charging and discharging transients.

Hot Carrier Injection

The hot carrier injection (gate current) models available for use with the PD-AAM are described in "Gate Current Analysis," p. 2-113. These models can be used in both steady-state and transient analysis modes. Request gate current analysis by specifying the GATE . CUR parameter on the SOLVE statement.

The model calculates the hot carrier injection current density at each segment of each semiconductor-insulator interface as described in "Gate Current Analysis," p. 2-113. Then, analogous to the FN tunneling model, the injected current is
tracked through the insulator to determine the regions or electrodes where this current ends up.

During transient simulations, the current due to hot carrier injection is treated in the same manner as described previously for the FN tunneling current. The current that flows into each floating electrode is multiplied by the time step to determine the charge added to each electrode. The new value of charge is then used as the boundary condition for the next time step.

Specifying Structure (Electrodes and Charges)

Floating electrodes are defined by specifying charge boundary conditions for each existing electrode of interest. The CHARGE parameter on the CONTACT statement is used for this purpose. The actual charge to be applied to the electrode is specified on the SOLVE statement in a manner analogous to specifying currents when current boundary conditions are used. All charge is specified in units of $\mathrm{C} /$ $\mu \mathrm{m}$, unless cylindrical coordinates are specified, in which case charge is in units of Coulombs.

When a structure is read from TSUPREM-4, or if a previously created TMA PISCES-2B or Medici structure is read, floating silicon (or polysilicon) regions are easily converted to electrodes using the REGION parameter on the ELECTRODE statement. In the example below, region 3 is converted to a floating electrode named 5. A one-carrier solution is then performed with $10{ }^{15} \mathrm{C} / \mu \mathrm{m}$ of charge placed on the newly created floating electrode.

ELECTRODE	NAME=5	REGION=3	
CONTACT	NAME=5	CHARGE	
SYMBOLIC	NEWTON	CARRIERS=1	ELECTRONS
SOLVE	$Q(5)=1 E-15$		

Graphical Output

The calculated currents and charge at each electrode for both FN tunneling and hot carrier injection are saved in I-V log files for post-processing analysis. These quantities can be plotted as a function of time or bias using the PLOT.1D statement. The quantities of interest should be specified using the X.AXIS and/or Y. AXIS parameters where the available choices include the following.

$F E<n a m e>$	FN tunneling current into Electrode <name>.
$H E<n a m e>$	Hot carrier injection current into Electrode <name>.
$Q E<n a m e>$	The total charge on Electrode <name>.

Use the EXTRACT statement to give new names to any of these quantities and define their functions. The new names appear on the plot axis labels. See the description of the EXTRACT statement in Chapter 3, "EXTRACT," p. 3-180.

The following quantities can be requested on both the PLOT . 1D and CONTOUR statements.

G.GAMN	Probability that an electron will be injected into the insulator
G.GAMP	Probability that a hole will be injected into the insulator
G.GAMT	Sum of G.GAMN and G.GAMP
G.IN	Hot electron current density injected into the insulator
G.IP	Hot hole current density injected into the insulator
G.IT	Sum of G.IN and G.IP

Circuit Analysis Advanced Application Module

This section describes the capabilities and use of the Circuit Analysis Advanced Application Module (CA-AAM) optionally available for use with the Medici program.

The CA-AAM provides you with the ability to embed multiple numerical device simulations within a single SPICE-like circuit simulation. Applicable to a variety of design and development problems, the CA-AAM allows semiconductor device performance to be predicted under realistic circuit operating conditions. In addition, circuits can be analyzed precisely by rigorously simulating critical device elements. The CA-AAM makes the accuracy of analog circuit simulation no longer limited by the quality of compact device models, and device analysis no longer dependent on user-estimated operating conditions.

The full set of linear and nonlinear SPICE elements is supported, including: resistors, capacitors, inductors, transformers, dependent and independent voltage and current sources, diodes, bipolar transistors, and MOSFET models.

Numerical Method Used in the CA-AAM

In the CA-AAM, the Kirchhoff equations describing the circuit and the semiconductor equations describing the devices (Poisson, continuity, energy balance, and lattice temperature) are solved as a coupled set [65]. Kirchhoff equations are formulated in the usual way, with modified nodal analysis being used for the voltage sources and the inductors.

The electron, hole, and displacement currents from the numerical model are added to the current at the circuit nodes connected to a numerical model. This is done in the same way as the lumped element boundary condition.

Construction of Circuit and Device Equations

The following example (see Figure 2-14) illustrates how the circuit and device equations are constructed. Elements G1 and G2 are voltage-controlled, while H1 is current-controlled.

The equation at node $V 2$ is a simple Kirchhoff current equation.

$$
0=G 2(V 2)+G 1(V 2-V 1)+I 1
$$

To accommodate the current-controlled source $H 1$, a loop equation is needed.

$$
0=H 1(I 1)+V 1-V 2
$$

Finally, the equation at $V 1$ contains circuit and device quantities.
Equation 2-414

$$
0=G 1(V 1-V 2)-I 1+h 1 \cdot J_{c a}+h 2 \cdot J_{c b}+h 3 \cdot J_{c d}+h 4 \cdot J_{c e}
$$

The terms J_{x} in Equation 2-414 are the current densities flowing along the indicated mesh line. In general, note the following:

- Each J_{x} is the sum of the electron, hole, and displacement current densities.
- Each J_{x} is in turn dependent upon the potential, electron, and hole concentrations, the electron and hole carrier temperatures, and the lattice temperature at each of the nodes on the element.

Therefore, current $J_{c b}$ is dependent upon device variables at nodes a, b, c, and d.
The dotted lines in Figure 2-10 represent the perpendicular bisectors of the sides of the triangles. These form the integration volume that surrounds the electrode.

Figure 2-14 Connection of device and circuit

Multiple Device Matrix Description

Since the only coupling between the numerical devices occurs through the circuit, the Jacobian matrix that results from a circuit containing multiple devices has a bordered-block structure (see Figure 2-15).

In Figure 2-15 the portions of the matrix marked with a 0 contain all zeros and remain zero throughout the Gaussian elimination process. Matrix portions 1 and 2 are nearly identical to the original Jacobian matrices of the devices (without any circuit). Matrix c is the matrix of the circuit and matrices a and b couple the circuit to the devices. While matrices a and b have one dimension equal to the dimension of the entire system (the sum of all the device and circuit nodes), the smaller dimension is equal to the number of device terminals. In addition a and b are sparse.

An initial assessment suggests that this type of matrix leads to a N^{2} dependence of the CPU time and memory requirements on the number of devices (N). However, as devices are added, the band width of the matrix does not increase, and the dependence of CPU time and memory is linearly dependent on the number of devices.

Note:

Convergence of a circuit containing several devices is usually as good as convergence of a single device.

Figure 2-15 Circuit with two devices and Jacobian matrix

Lattice Temperature Advanced Application Module

This section describes the capabilities and use of the Lattice Temperature Advanced Application Module (LT-AAM) optionally available for use with the Medici program.

The LT-AAM module provides the ability to perform nonisothermal electrical analysis. By simultaneously solving the electrical and thermal equations, LTAAM is particularly applicable to the analysis of power devices and submicron technologies where heat generation [66] and dissipation is a concern.

Heat Equation Model

The increase in lattice temperature in a device due to current flow and recombination of carriers is included self-consistently in the solution of the device equations.

To use LT-AAM, specify the parameter LAT . TEMP on the SYMBOLIC statement. In this case, Medici solves the lattice heat equation in addition to Poisson's equation and the electron and hole current-continuity equations.

Heat Flow Equation

To compute the spatially-dependent lattice temperature, the heat flow equation is used
$\rho c \frac{\partial T}{\partial t}=H+\vec{\nabla}(\lambda(T) \vec{\nabla} T)$
Equation 2-415
where

- $\rho=$ the mass density of the material $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$.
- $c=$ the specific heat of the material $(\mathrm{J} / \mathrm{g}-\mathrm{K})$.
- $H=$ the heat generation term $\left(\mathrm{W} / \mathrm{cm}^{3}\right)$.
- $\lambda=$ the thermal conductivity of the material (W/cm-K).

The heat generation in the semiconductor is modeled using

$$
H=H_{n}+H_{p}+H_{U}
$$

where

- $H_{n}=$ lattice heating due to electron transport.
- $H_{p}=$ lattice heating due to hole transport.
- $H_{U}=$ lattice heating due to carrier recombination/generation.

Overriding Default Modules

These terms have different expressions according to whether the energy balance equations are solved. The various possibilities are summarized in Equations 2-417 through 2-421.

The automatic choice of models based on the availability of solutions to the energy balance equations can be overridden by asserting EBLT. HT on the MODELS statement (default for EbLT . HT is TRUE) The override forces Medici to proceed as though T_{n}, T_{p} were not available.

$$
H_{n}=\left\{\begin{array}{l}
\frac{3 k}{2} \cdot \frac{T_{n}-T}{\tau_{w n}} \cdot n \tag{1}\\
\overrightarrow{J_{n}} \cdot \overrightarrow{E_{n}}
\end{array}\right.
$$

Equation 2-417

In Equation 2-417, equation (1) is used when T_{n} is calculated and equation (2) when it is not.

$$
H_{p}=\left\{\begin{array}{l}
\frac{3 k}{2} \cdot \frac{T_{p}-T}{\tau_{w p}} \cdot p \tag{1}\\
\overrightarrow{J_{p}} \cdot \overrightarrow{E_{p}}
\end{array}\right.
$$

Equation 2-418

In Equation 2-418, equation (1) is used when T_{p} is calculated and equation (2) when it is not

$$
H_{R}=\left\{\begin{array}{l}
U_{S R H}\left[E_{g}+\frac{3 k}{2}\left(T_{n}^{L}+T_{p}^{L}\right)\right] \tag{1}\\
U_{S R H}\left[E_{g}+\frac{3 k}{2} T_{n, p}^{L}\right]+U_{\text {Auger }}^{p, n}\left[E_{g}+\frac{3 k}{2} T_{n, p}\right]-\frac{3 k}{2} \cdot U_{\text {Auger }}^{p, n} T \\
{\left[U_{S R H}+U_{\text {Auger }}^{n}+U_{\text {Auger }}^{p}\right] \cdot\left(E_{g}+\text { LTFACT } \cdot 3 k T\right)}
\end{array}\right.
$$

$$
T_{n}^{L}=\left\{\begin{array}{l}
T_{n} \text { if } U_{S R H}>0 \\
T \text { otherwise }
\end{array}, T_{p}^{L}=\left\{\begin{array}{l}
T_{p} \text { if } U_{S R H}>0 \\
T \text { otherwise }
\end{array}\right.\right.
$$

Equation 2-420

In Equation 2-419, equation (1) is used when T_{n}, T_{p} are both calculated, equation (2) is used when only one of T_{n}, T_{p} is calculated, and equation (3) is used in the DDE case. The switch implemented in Equation 2-420 prevents the solver from diverging when $U_{S R H}<0$.

The coefficient LTFACT (Equation 2-303) can take on one of two possible values (1 or 0) according to whether the value of the flag $3 \mathrm{KT} . \operatorname{LT}$ is TRUE or FALSE, respectively. The default value of this flag is TRUE and can be modified on the MODELS statement.

$$
H_{U}=H_{R}-\left(E_{g}+3 k T\right) G_{I I}
$$

Electric Field Terms

In the bulk of the semiconductor, the electric field terms $\overrightarrow{E_{n}}, \overrightarrow{E_{p}}$ are given by Equations 2-435 and 2-436. At the device contacts, however, electrons (holes) must move from the conduction (valence) band to the Fermi level to exit the device. Therefore, at the contacts, the electric field terms are given by

$$
\overrightarrow{E_{n}}=-\vec{\nabla}\left(E_{c}-E_{F n}\right) \quad \overrightarrow{E_{p}}=-\vec{\nabla}\left(E_{v}-E_{F p}\right)
$$

Equation 2-422

Note:
Note that these electric fields are used only in Equations 2-417 through 2-421 and not in the current density relations.

When recombination with the tunneling model is enabled (R.TUNNEL on the MODELS statement), Equation 2-423 is used irrespective of the availability of carrier temperatures.

$$
\begin{aligned}
& H_{U}=U_{S R H}\left(E_{g}-\frac{\int_{0}^{\Delta E_{n}}\left(E \frac{d \Gamma_{n}}{d E}\right) d E}{1+\Gamma_{n}}-\frac{\int_{0}^{\Delta E_{p}}\left(E \frac{d \Gamma_{p}}{d E}\right) d E}{1+\Gamma_{p}}\right) \quad \text { Equation 2-423 } \\
&+\left(U_{\text {Auger }}-G^{I I}\right) E_{g}
\end{aligned}
$$

Poisson's Equation

In Medici, Poisson's equation is usually solved for the intrinsic Fermi potential defined by the expression

$$
-q \psi=E_{c}-\frac{E_{g}}{2}-\frac{k T}{2} \operatorname{In}\left(\frac{N_{c}}{N_{v}}\right)
$$

However, when the lattice temperature is not spatially-constant, the intrinsic Fermi potential is no longer, in most cases, a solution to Poisson's equation. In this case, Poisson's equation is written as [12]

$$
\vec{\nabla} \cdot \varepsilon \vec{\nabla}(\psi-\theta)=-q\left(p-n+N_{D}^{+}-N_{A}^{-}\right)-\rho_{s}
$$

where θ is the band structure parameter for the material and is given by
$\theta=\chi+\frac{E_{g}}{2 q}+\frac{k T}{2 q} \ln \left(\frac{N_{c}}{N_{v}}\right)$
Equation 2-426

Current Density Equations

If EBLT . HT is disabled (the default), Equations 2-378 and/or 2-379 starting on p. 2-133 are used for the calculation of current density for the carrier(s) for which carrier temperatures are available. Otherwise, Equations 2-427 and/or 2-428 are used as suggested in [53]. The mobility derivative term in Equations 2-377 and 2378 is still subject to the value of ET. MODEL.

$$
\vec{J}_{n}=q n \mu_{n} \vec{E}_{n}+k \mu_{n}(T \vec{\nabla} n+n \vec{\nabla} T)
$$

$$
\vec{J}_{p}=q p \mu_{p} \vec{E}_{p}-k \mu_{p}(T \vec{\nabla} p+p \vec{\nabla} T)
$$

Numeric Methods

This section details the parameters and statements specified in the various methods of solving the heat equations.

Parameters and Statements

Specifying the following:

- LAT . TEMP on the Symbolic statement causes Medici to solve the lattice heat equation. The default solves the heat equation in a decoupled manner from the other device equations, regardless of whether GUMMEL or NEWTON is specified.
- CARRIERS $=1$ or CARRIERS $=2$ on the SYMBOLIC statement causes Poisson's equation and one or both of the current-continuity equations to be solved along with the heat equation.
- GUMMEL on the SYMbOLIC statement causes Poisson's equation and the current-continuity equations to be solved in a decoupled manner.
- NEWTON on the SYMBOLIC statement causes Poisson's equation and the current-continuity equations to be solved in a completely coupled manner.
- COUP . LAT on the SYMBOLIC statement causes Poisson's equation, the current-continuity equations, and the heat equation to be solved in a completely coupled manner.
The completely coupled method provides the fastest and most stable convergence. It also imposes increased memory requirements during the solution process, which limits the maximum number of mesh nodes used in comparison to those used in a decoupled method.
- LTX. TOLE (default $=1 \mathrm{e}-5$) and LTR. TOLE (default $=1 \mathrm{e}-11 \mathrm{~W} / \mu \mathrm{m})$ on the METHOD statement specifies the error tolerances of the heat equation.
These values represent the relative update tolerance for temperature and the RHS tolerance for the heat equation, respectively.

Decoupled Block

 Iterative MethodIn most cases, NEWTON should be specified when LAT . TEMP is specified. In this case, the method used to solve the set of equations is a decoupled block iterative approach. The steps used in this method are as follows:

1. The program performs a coupled solution of Poisson's equation and the cur-rent-continuity equations to obtain ψ, n, and p at each node.
2. The heat equation is solved to obtain the temperature, T, at each node.

The program usually requires several iterations through these two sets of equations before global convergence is obtained.

Optimizing Convergence

When the heat equation is solved in a decoupled manner with the other device equations, convergence speed increases. To solve the equation in this manner, specify the factors by which the update and RHS tolerances of Poisson's equation and the continuity equations are increased for the intermediate iterations. The values of these factors are specified with the parameters LTX.FACT and LTR. FACT on the METHOD statement. Global convergence with the unaltered error tolerances is still required after the heat equation tolerances are satisfied.

Thermal Electrodes

Specify locations in the device structure where lattice temperature is to remain fixed by defining thermal electrodes.

Thermal electrodes are defined in exactly the same manner as electrical electrodes using the ELECTRODE statement, except that the parameter THERMAL must be added. For example, to define an electrode named "Sink" as a thermal electrode along the bottom of a structure, the following statement could be used:

ELECTRODE NAME=Sink BOTTOM THERMAL

At least one thermal electrode is required in a simulation when the lattice heat equation is being solved.

The temperatures to use at thermal electrodes are specified using the \boldsymbol{T} (name) parameters on the SOLVE statement, where name represents the electrode name. For example, to specify that the thermal electrode created in the example above should be set to 400 K during a solution, the following statement is used.

$$
\text { SOLVE } \quad T(\text { Sink })=400
$$

If a temperature for a thermal electrode is not specified on a SOLVE statement, the previously specified temperature for that thermal electrode is used. If no previous temperature is specified, the temperature specified on the MODELS statement to initialize the lattice temperature in the structure is used.

Homogeneous Neumann boundary conditions are used at all boundaries not contacted by a thermal electrode.

Thermal Lumped Elements

Lumped thermal resistances and capacitances can be connected to thermal electrodes in much the same way that lumped electrical elements can be connected to electrical electrodes. To specify thermal resistances and capacitances, the parameters R. THERMA and C.THERMA on the CONTACT statement can be used.

Physical Models

The mass density, specific heat, and thermal conductivity of a material used in Equation 2-415 are given by the following expressions.
$\rho=$ DENSITY
Equation 2-429
Equation 2-430
$c=\mathbf{A} \cdot \mathbf{S P} \cdot \mathrm{HEA}+\mathbf{B} \cdot \mathbf{S P} \cdot \mathrm{HEA} \cdot T+\mathbf{C} \cdot \mathbf{S P} \cdot \mathrm{HEA} \cdot T^{2}+\mathrm{D} \cdot \mathrm{SP} \cdot \mathrm{HEA} \cdot T^{-2}$

+ F.SP. HEA $\cdot T^{3}+$ G.SP. HEA $\cdot T^{4}$
$\lambda=\left[\mathbf{A} \cdot \mathbf{T H} \cdot \mathbf{C O N}+\mathbf{B} \cdot \mathbf{T H} \cdot \mathbf{C O N} \cdot T+\mathbf{C} \cdot \mathbf{T H} \cdot \mathbf{C O N} \cdot T^{2} \quad\right.$ Equation 2-431
$\left.+\mathrm{D} . \mathrm{TH} . \mathrm{CON} \cdot T^{\mathrm{E} . \text { THON.CON }}\right]^{-1}$
The parameters used in the above expressions can all be specified on the MATERIAL statement.

Heterojunction Device Advanced Application Module

This section describes the capabilities and use of the Heterojunction Device Advanced Application Module (HD-AAM) optionally available for use with the Medici program. Traditional means of increasing device speed include decreasing the device size, which can cause premature device breakdown, or modifying the dopants, which decreases current gain and emitter efficiency. Using the HD-AAM makes it possible to design faster devices without these negative side effects. Implementation of the HD-AAM includes the following:

- Band alignment at heterojunctions
- Velocity overshoot
- Virtual nodes
- Thermionic emission and tunneling currents through heterojunctions
- Graded (position dependent mole-fraction) and abrupt heterojunctions

Both abrupt and graded heterojunction devices are allowed. In the case of abrupt heterojunctions, the use of virtual nodes is recommended (see the Virtual Nodes section). Supported semiconductor materials include the following:

- Si, GaAs, Ge, $\mathrm{Si}_{1-x} \mathrm{Ge}_{x}, \mathrm{Al}_{x} \mathrm{Ga}_{1-x} \mathrm{As}, \mathrm{In}_{1-x} \mathrm{Ga}_{x} \mathrm{As}, \mathrm{A}_{x} \mathrm{In}_{1-x} \mathrm{As}, \mathrm{GaAs}_{x} \mathrm{P}_{1-x}$, $\mathrm{In}_{x} \mathrm{Ga}_{1-x} \mathrm{P}$, and $\operatorname{InAs}_{1-x} \mathrm{P}_{x}$
- Arbitrary materials defined by the user

Typical applications include the following:

- The simulation and design of devices such as $\mathrm{Si} / \mathrm{SiGe}$ and $\mathrm{AlGaAs} / \mathrm{GaAs}$ Heterojunction Bipolar Transistors (HBTs)
- High Electron Mobility Transistor (HEMT) structures such as the GaAs/ AlGaAs/InGaAs HEMT analyzed in Chapter 14, "High Electron Mobility Transistor Simulation," p. 14-8.

The HD-AAM may be combined with the other AAMs to provide an extremely powerful tool for analyzing the behavior of a wide variety of heterojunction devices and circuits. Listed below are some possibilities:

- Accurate analysis of deep submicron HBTs, by including solutions of the energy balance equation in the analysis when using the HD-AAM
- Understanding the behavior of heterojunction power devices that experience significant lattice heating by combining the HD-AAM with the LT-AAM
- Analysis of the behavior of a circuit containing one or more high speed heterojunction devices using the CA-AAM with the HD-AAM

Material Parameters

The parameters available for describing the properties of the heterojunction are the same parameters available for describing the properties of the materials that meet at the heterojunction. Some of these include the following:

- Energy bandgap parameters (EG300, EGALPH, and EGBETA)
- Electron affinity (AFFINITY)
- Densities of state (NC300 and NV300)
- Various parameters for describing recombination, mobility or other qualities.

Figure 2-16 Band diagram with two different materials forming a heterojunction

Band Diagram

Figure 2-16 shows a band diagram under equilibrium conditions for a typical heterojunction involving two materials. It also identifies some of the physical parameters for the materials. In the figure,

- χ is the electron affinity.
- E_{g} is the energy bandgap.
- θ is the band structure parameter given by [12].

$$
\theta=\chi+\frac{E_{g}}{2 q}+\frac{k T}{2 q} \ln \left(\frac{N_{c}}{N_{v}}\right)
$$

Equation 2-432

Materials For compound materials such as $\mathrm{Si}_{1-\mathrm{x}} \mathrm{Ge}_{\mathrm{x}}$ and $\mathrm{Al}_{\mathrm{x}} \mathrm{Ga}_{1-\mathrm{x}} \mathrm{As}$, the mole fraction, x, can be specified by using the \mathbf{X}. MOLE and related parameters on the REGION statement that is used to define the material region. The mole fraction can either be constant or linearly graded in the region.

For example, to describe an HBT consisting of $\mathrm{Al}_{0.3} \mathrm{Ga}_{0.7} \mathrm{As}$ as the emitter on top of a GaAs substrate with a 0.03 micron transition region from AlGaAs to GaAs, the following statements could be used.

```
REGION NAME=1 ALGAAS Y.MIN=0.00 Y.MAX=0.42 X.MOLE=0.3
REGION NAME=2 ALGAAS Y.MIN=0.42 Y.MAX=0.45 X.MOLE=0.3
+ X.END=0.0 Y.LINEAR
REGION NAME=3 GAAS Y.MIN=0.45 Y.MAX=1.2
```


Device Equations for Heterojunctions

The intrinsic Fermi potential (usually referred to as "potential" in Medici) is in general not a solution to Poisson's equation when solving for structures that contain heterojunctions. The vacuum level, however, is a solution to Poisson's equation. The intrinsic Fermi potential and the vacuum level are related by

$$
\psi_{\text {vacuum }}=\psi-\theta
$$

Equation 2-433
where

- ψ is the intrinsic Fermi potential.
- θ is the band structure parameter given by Equation 2-432.

Note that if the band structure parameter is spatially-constant, then ψ will be a solution to Poisson's equation. However, this is seldom the case in structures containing heterojunctions due to differences in bandgap, electron affinity, and densities of states in adjacent materials.

For this reason, Poisson's equation must be written in the following form.

$$
\vec{\nabla} \cdot \varepsilon \vec{\nabla}(\psi-\theta)=-q\left(p-n+N_{D}^{+}-N_{A}^{-}\right)-\rho_{s}
$$

Note that this is the same form of Poisson's equation that is given in the description of the Lattice Temperature AAM. In structures exhibiting a spatial dependence on lattice temperature, θ is usually not constant due to temperature dependencies of bandgap, electron affinity, and densities of states.

The form of the continuity equation, remains unchanged for heterojunctions, except that the electric field terms E_{n} and E_{p} in the transport equations must account for gradients in conduction and valence band edges [81].
Note that $E_{c}=-q\left(\Psi_{\text {vacuum }}+X\right)$.

$$
\begin{align*}
& \vec{E}_{n}=\frac{\vec{\nabla} E_{c}}{q}-\frac{k T}{q} \vec{\nabla}\left(\ln \left(N_{c}\right)-\ln \left(T^{3 / 2}\right)\right) \\
& \vec{E}_{p}=\frac{\vec{\nabla} E_{v}}{q}+\frac{k T}{q} \vec{\nabla}\left(\ln \left(N_{v}\right)-\ln \left(T^{3 / 2}\right)\right)
\end{align*}
$$

Equation 2-436

Models for Compound Materials

This section briefly describes various mole fraction dependent models available for compound materials such as $\mathrm{Si}_{1-\mathrm{x}} \mathrm{Ge}_{\mathrm{x}}$.

Permittivity

Density of States

The dependence of conduction and valence band density of states on mole fraction is given by the expressions

$$
\begin{array}{ll}
N_{C}(x, T)=N_{C}(T) \cdot\left[1+\mathbf{N C . O}\left(\exp \left(\frac{-\mathbf{N C} \cdot \mathbf{E} x}{k T}\right)-1\right)\right] \quad \text { Equation 2-438 } \\
N_{V}(x, T)=N_{V}(T) \cdot\left[1+\mathbf{N V} . \mathbf{o}\left(\exp \left(\frac{-\mathbf{N V} \cdot \mathbf{E} x}{k T}\right)-1\right)\right] \quad \text { Equation 2-439 }
\end{array}
$$

where the parameters NC. $\mathbf{O}, \mathbf{N C . E}$, NV. \mathbf{O} and $\mathbf{N V} . \mathbf{E}$ can be specified on the MATERIAL statement and $N_{C}(T)$ and $N_{V}(T)$ are described in "Bandgap and Effective Density of States," p. 2-11.

Energy Bandgap Choices

The selection of an energy bandgap model to use with a specific material or in a specific region of the device structure is made by specifying EG. MODEL=<n> on choice.

EG. MODEL=1 is the default used for all noncompound materials. This choice calculates a temperature dependent bandgap as described in "Bandgap and Effective Density of States," p. 2-11. For compound materials, a model specific to the material is used. Available choices for EG. MODEL are given below.

Energy Bandgap and Electron Affinity

Selecting EG.MODEL=0 on the MATERIAL statement invokes a mole fraction dependent energy bandgap given by

$$
E_{g}(x, 300)=\mathbf{E G} 300+\mathbf{E G} . \mathbf{X 1} \cdot x+\mathbf{E G} . \mathbf{X} \mathbf{2} \cdot x^{2}
$$

Equation 2-440
The electron affinity is given by
$\operatorname{affinity}(x)=\mathbf{A F F I N I T Y}+\mathbf{A F} \cdot \mathbf{X 1} \cdot x+\mathbf{A F} \cdot \mathbf{X 2} \cdot x^{2}$
Equation 2-441
The parameters in these expressions are specified on the MATERIAL statement.

Lattice TemperatureDependent Energy Bandgap

Selecting EG.MODEL=1 on the MATERIAL statement invokes the temperaturedependent energy bandgap model described in "Bandgap and Effective Density of States," p. 2-11. The expression is repeated here for completeness. This is the default for noncompound materials.

Equation 2-442

$$
E_{g}(x, T)=E_{g}(x, 300)+\text { EGALPH }\left[\frac{300^{2}}{300+\text { EGBETA }}-\frac{T^{2}}{T+\text { EGBETA }}\right]
$$

Although this is the default for noncompound materials, because of the mole fraction dependence built in to $E_{g}(x, 300)$, it can be used for compound materials such as $\mathrm{Si}_{1-\mathrm{x}}, \mathrm{Ge}_{\mathrm{x}}$ as well, with the appropriate selection of parameters. For example, a model for $\mathrm{Si}_{1-\mathrm{x}} \mathrm{Ge}_{\mathrm{x}}$ such as
$E_{g}^{S i G e}(x, T)=E_{g}^{S i}(T)-0.74 x$
Equation 2-443
simply requires the specification of EG. $\mathbf{X 1}=-0.74$ on the MATERIAL statement.

Strained Energy Bandgap Model

Selecting EG.MODEL=2 on the MATERIAL statement invokes an energy bandgap model for strained $\mathrm{Si}_{1-\mathrm{x}} \mathrm{Ge}_{\mathrm{x}}$ (piecewise linear approximation to the lower curve of the strain split data shown in Figure 2 of [67]). If the HD-AAM is enabled, this is the default for all regions that were specified as SIGE with REGION statements.

The data shown in [67] is for $\mathrm{T}=90 \mathrm{~K}$. A conversion to the actual temperature is accomplished using the expressions given in "Bandgap and Effective Density of States," p. 2-11 after calculating the mole fraction dependence, as shown below.

Equation 2-444

$$
E_{g}(x)=\left\{\begin{array}{lll}
E_{g}(90)-4.0\left(E_{g}(90)-0.950\right) & x & , x \leq 0.25 \\
0.950-0.66666 & (x-0.25) & , 0.25<x \leq 0.40 \\
0.850-0.57500 & (x-0.40) & , 0.40<x \leq 0.60 \\
0.735-0.43333 & (x-0.60) & , 0.60<x \leq 0.75 \\
0.670 & , x>0.75
\end{array}\right.
$$

Unstrained Energy Bandgap Model

Selecting EG.MODEL=3 on the MATERIAL statement invokes an energy bandgap model for unstrained $\mathrm{Si}_{1-\mathrm{x}} \mathrm{Ge}_{\mathrm{x}}$ (piecewise linear approximation to the unstrained bulk data shown in Figure 2 of [67]). The temperature and mole fraction dependence can be expressed as

$$
E_{g}^{S i G e}(x, T)=(1-f(x)) \quad E_{g}^{S i}(T)+f(x) E_{g}^{G e}(T)
$$

Equation 2-445
where the temperature dependence of $E_{g}^{S i}$ and $E_{g}^{G e}$ is calculated using the expressions given in "Bandgap and Effective Density of States," p. 2-11. The mole fraction dependence is given by

Equation 2-446
$f(x)=\left\{\begin{array}{ll}0.9375 x & , x \leq 0.40 \\ 0.375-0.108696 & (x-0.40) \\ 0.425-4.107143 & (x-0.86)\end{array}, \quad x>0.86<x \leq 0.86\right.$

Models Specific
Compound Semiconductors

Selecting EG. MODEL=4 on the MATERIAL statement invokes mole-fraction dependent bandgap and electron affinity models specific to III-V compound semiconductors.

If the HD-AAM is enabled, this is the default for all regions that were specified as ALGAAS, INGAAS, ALINAS, GAASP, INGAP, or INASP with REGION statements.

The energies at the bottom of three energy bands (Γ, X, L) are modeled as functions of the mole-fraction and lattice temperature. The energies are referenced to the top of the highest valence-band and are evaluated at every node of the mesh. The bottoms of the three bands are calculated as

Equation 2-447

$$
\begin{aligned}
& E_{\Gamma}(x, T)=\mathbf{E G} 300+\mathbf{E G} \cdot \mathbf{X 0}+\mathbf{E G} \cdot \mathbf{X} 1 \cdot x+\mathbf{E G} \cdot \mathbf{X} 2 \cdot x^{2}+\mathbf{E G} \cdot \mathbf{X} 3 \cdot x^{3}+\mathbf{E G} \cdot \mathbf{X} 4 \cdot x^{4} \\
& +\left[\frac{300^{2}}{300+\text { EGBETA}}-\frac{T^{2}}{T+\text { EGBETA }}\right] \cdot(\mathbf{E G A L P H}+\mathbf{E G G A M M} \cdot x)
\end{aligned}
$$

Equation 2-448

$$
\begin{aligned}
& E_{X}(x, T)=\mathbf{E G} 300+\mathbf{E G} \cdot \mathbf{X} 5+\mathbf{E G} \cdot \mathbf{X} 6 \cdot x+\mathbf{E G} \cdot \mathbf{X} 7 \cdot x^{2}+\mathbf{E G} \cdot \mathbf{X 8} \cdot x^{3}+\mathbf{E G X} 9 \cdot x^{4} \\
& +\left[\frac{300^{2}}{300+\mathbf{E G B E X}}-\frac{T^{2}}{T+\mathbf{E G B E X}}\right] \cdot(\mathbf{E G A L X}+\mathbf{E G G A X} \cdot x)
\end{aligned}
$$

Equation 2-449

$$
\begin{aligned}
& E_{L}(x, T)=\mathbf{E G} 300+\mathbf{E G} \cdot \mathbf{X 1 0}+\mathbf{E G} \cdot \mathbf{X 1 1} \cdot x+\mathbf{E G} . \mathbf{X 1 2} \cdot x^{2}+\mathbf{E G} \cdot \mathbf{X 1 3} \cdot x^{3}+\mathbf{E G} \cdot \mathbf{X 1 4} \cdot x^{4} \\
& +\left[\frac{300^{2}}{300+\mathbf{E G B E L}}-\frac{T^{2}}{T+\mathbf{E G B E L}}\right] \cdot(\mathbf{E G A L L}+\mathbf{E G G A L} \cdot x)
\end{aligned}
$$

Figure 2-17 Energy bands for AIGaAs and InGaAs
The gap energy is then defined as the minimum of the three previously defined energies.

$$
E_{g a p}(x, T)=\min \left(E_{\Gamma}(x, T), E_{X}(x, T), E_{L}(x, T)\right)
$$

Equation 2-450
The mole fraction dependence of the three energy bands and the gap for the particular cases of $\mathrm{Al}_{x} \mathrm{Ga}_{1-x} \mathrm{As}$ and $\mathrm{In}_{1-x} \mathrm{Ga}_{x} \mathrm{As}$ are shown in Figure 2-17.

The electron affinity is modeled as

Equation 2-451

$$
\chi(x)=\mathbf{A F F I N I T Y}+ \begin{cases} & \text { Equatic } \\ \mathbf{A F} \cdot \mathbf{X 0}+\mathbf{A F} \cdot \mathbf{X 1} \cdot x+\mathbf{A F} \cdot \mathbf{X 2} \cdot x^{2} & , x \leq \mathbf{A F} \cdot \mathbf{X I} \\ \mathbf{A F} \cdot \mathbf{X} 3+\mathbf{A F} \cdot \mathbf{X 4} \cdot x+\mathbf{A F} \cdot \mathbf{X} 5 \cdot x^{2} & , x>\mathbf{A F} \cdot \mathbf{X L}\end{cases}
$$

Selecting EG. MODEL=5 on the MATERIAL statement invokes the same mole fraction-dependent and temperature-dependent bandgap model as described above for $\mathbf{E G}$. MODEL=4. In this case, however, the electron affinity is modeled as

$$
\begin{align*}
\chi(x, T)= & \text { AFFINITY }-\Delta E_{g a p}(x, T) \\
& +x \cdot\left[\mathbf{X 1} \cdot \operatorname{AFFIN}-\operatorname{AFFINITY}+\Delta E_{g a p}(1,300)\right]
\end{align*}
$$

where Affinity is the electron affinity at $x=0$ and $T=300 \mathrm{~K}$, AFFIN1 is the electron affinity at $\mathrm{x}=1$ and $\mathrm{T}=300 \mathrm{~K}$, and
$\Delta E_{g a p}(x, T)=E_{g a p}(x, T)-E_{g a p}(0,300)$
Equation 2-453
and where
$E_{\text {gap }}(0,300)=\mathbf{E G} 300+\min (\mathbf{E G} . \mathbf{x 0}, \mathbf{E G} . \mathbf{x} 5, \mathbf{E G} . \mathbf{x 1 0}) \quad$ Equation 2-454
This model is based on the linear dependence of the valence band offset on the mole fraction. This model provides for temperature dependence of the electron affinity and for temperature-dependent crossovers.

Carrier mass, carrier density of states, and Richardson's Constant models specific to compound semiconductors will be enabled if the value of the EM. MODEL model selection parameter appearing on the MATERIAL statement is 1(default for all III-V materials). The electron mass accounts for the contributions of electron masses from all three bands ($m r_{\Gamma}{ }^{e}, m r_{X}{ }^{e}, m r_{L}{ }^{e}$)

Equation 2-455
$m r_{\Gamma}{ }^{e} x, T=\left[(\operatorname{MEG}+\mathbf{M E G} . \mathbf{X 1} \cdot x)^{3 / 2} \cdot \exp \left[\frac{E_{g a p}(x, T)-E_{\Gamma}(x, T)}{k \cdot T}\right]\right]^{2 / 3}$
Equation 2-456
$m r_{X}^{e}(x, T)=\left[(\mathbf{M E X}+\operatorname{MEX} \cdot \mathbf{x 1} \cdot x)^{3 / 2} \cdot \exp \left[\frac{E_{g a p}(x, T)-E_{X}(x, T)}{k \cdot T}\right]\right]^{2 / 3}$
Equation 2-457
$m r_{L}^{e}(x, T)=\left[(\operatorname{MEL}+\operatorname{MEL} \cdot \mathbf{X 1} \cdot x)^{3 / 2} \cdot \exp \left[\frac{E_{g a p}(x, T)-E_{L}(x, T)}{k \cdot T}\right]\right]^{2 / 3}$
by defining $m^{e}(x, T)$ as

$$
m^{e}(x, T)=\left[m r_{\Gamma}^{e}(x, T)^{3 / 2}+m r_{X}^{e}(x, T)^{3 / 2}+m r_{L}^{e}(x, T)^{3 / 2}\right]^{2 / 3} \text { Equation 2-458 }
$$

The hole mass model accounts for light and heavy holes.
$m^{h}(x)=\left[(\operatorname{MHO}+\mathbf{M H O} . \mathbf{X 1} \cdot x)^{3 / 2}+(\text { MLO }+ \text { MLO } \mathbf{X 1} \cdot x)^{3 / 2}\right]^{2 / 3}$ Equation 2-459
If EM. MODEL is set to $0, m^{e}(x, T)$ and $m^{h}(x)$ will be assigned the constant values EL . EMAS and HO. EMAS.

If EM. MODEL is 1, the conduction band and valence band densities of states N_{c} and N_{v}, respectively, are expressed as

$$
\begin{align*}
& N_{C}(x, T)=2 \cdot\left[\frac{2 \cdot \pi \cdot m^{e}(x, T) \cdot k \cdot T}{h^{2}}\right]^{3 / 2} \\
& N_{v}(x, T)=2 \cdot\left[\frac{2 \cdot \pi \cdot m^{h}(x) \cdot k \cdot T}{h^{2}}\right]^{3 / 2}
\end{align*}
$$

Equation 2-461

If EM. MODEL is set to 0,

$$
\begin{aligned}
& N_{c}(T)=\operatorname{NC} 300 \cdot\left[\frac{T}{300}\right]^{3 / 2} \\
& N_{v}(T)=\operatorname{Nv} 300 \cdot\left[\frac{T}{300}\right]^{3 / 2}
\end{aligned}
$$

Equation 2-462

Equation 2-463

The electron and hole Richardson's Constants $\left(A_{e}{ }^{*}\right.$ and $A_{h}{ }^{*}$, respectively) are calculated as

$$
\begin{align*}
& A_{e}^{*}(x, T)=\frac{4 \cdot \pi \cdot e \cdot k^{2}}{h^{3}} \cdot m^{e}(x, T) \\
& A_{h^{*}}^{*}(x)=\frac{4 \cdot \pi \cdot e \cdot k^{2}}{h^{3}} \cdot m^{h}(x)
\end{align*}
$$

Equation 2-465
whereas, if EM.MODEL is set to $0, A_{e}$ and A_{h} are set to ARICHN and ARICHP, respectively. A_{e} and A_{h} appear in the calculation of thermionic emission and tunneling currents that flow across heterojunctions.

Mobility Models Specific to III-V Compound Semiconductors

The low-field and high-field mobility model parameters appearing in all the equations below have been fitted to data obtained from recent publications for $\mathrm{A}_{x} \mathrm{Ga}_{1-x} \mathrm{As}, \mathrm{In}_{1-x} \mathrm{Ga}_{x} \mathrm{As}, \mathrm{A}_{\mathrm{X}} \operatorname{In}_{1-x} \mathrm{As}, \mathrm{GaAs}_{x} \mathrm{P}_{1-x}, \mathrm{In}_{x} \mathrm{Ga}_{1-x} \mathrm{P}$, and $\operatorname{InAs}_{1-x} \mathrm{P}_{x}$. Their values can be modified on the MOBILITY statement on a region by region basis.

In all the equations below, the mole fraction and lattice temperature are represented by x and T, respectively.

Low-Field Mobility Model

A modified version of the ANALYTIC model that is mole fraction-dependent is used for electrons

$$
\begin{aligned}
& \mu_{0_{n}}(x, T)=\mu_{n}^{\min }(x)+ \\
& \frac{\left[\mu_{n}^{\max }(x) \cdot\left(\frac{T}{300}\right)^{\text {NUN }}-\mu_{n}^{\min }(x)\right]}{\left[1+\left(\frac{T}{300}\right)^{\mathbf{X I N}} \cdot\left[\left(\frac{N_{\text {total }}}{\text { NREFN }}\right)^{\text {ALPHAN }}+\left(\frac{N_{\text {total }}}{\text { NREFN } 2}\right)^{3}\right]\right]}
\end{aligned}
$$

where $N_{\text {total }}(x)$ is the local total impurity concentration and $\mu_{n}^{\text {min }}(x)$ and $\mu_{n}^{\max }(x)$ are defined as
$\mu_{n}^{\min }(x)=\mathbf{M U N} \cdot \operatorname{MIN}\left(1+\operatorname{MIN} . \mathbf{X 1} \cdot x+\operatorname{MIN} . \mathbf{X} \mathbf{2} \cdot x^{2}\right) \quad$ Equation 2-467
$\mu_{n}^{\max }(x)=$ MUN $\cdot \operatorname{MAX}\left(1+\operatorname{MAN} \cdot \mathbf{X 1} \cdot x+\operatorname{MAN} \cdot \mathbf{X 2} \cdot x^{2}\right) \quad$ Equation 2-468
This model is enabled by stating the ANALYTIC flag on the MODELS statement. The theoretical data from [12] and [13] was used to fit the coefficients appearing in the equations above. Note that the temperature dependence for ternary compounds is disabled for now, i.e., NUN $=0$ and $\mathbf{X I N}=0$. No new data is available for holes at this time.

Figure 2-18 InGaAs low-field mobility as a function of mole fraction and doping

High-Field Mobility Model

If the value of the FLDMOB model switch, accessible on the MOBILITY statement, is 2 , (default for III-V materials), a modified version of the III-V specific mobility degradation model is used for electrons

$$
\mu_{n}\left(x, T, E_{\|, n}\right)=\frac{\mu_{n 0}(x, T)+\frac{v_{n}^{s a t}(x)}{E_{\|, n}} \cdot\left(\frac{E_{\|, n}}{E_{0}(x)}\right)^{4}}{1+\left(\frac{E_{\|, n}}{E_{0}(x)}\right)^{4}}
$$

Equation 2-469
where

$$
\begin{aligned}
& v_{n}^{s a t}(x)=\operatorname{VSATN}\left(1+\operatorname{VSN} \cdot \mathbf{X 1} \cdot x+\operatorname{vSN} \cdot \mathbf{X 2} \cdot x^{2}\right) \\
& E_{0}(x)=\mathbf{E} \mathbf{0} \cdot \mathbf{N}\left(1+\mathbf{E N} \cdot \mathbf{X 1} \cdot x+\mathbf{E N} \cdot \mathbf{X} \mathbf{2} \cdot x^{2}\right)
\end{aligned}
$$

Equation 2-470

Equation 2-471

Default coefficient values for the new model described above are only available for electrons so far. This model is designated to be used when the FLDMOB flag is true in the MODELS statement. This model is also be used if an energy balance simulation is performed and TMPMOB is stated on the MODELS statement.In that case an electron temperature-dependent effective field, $E_{\text {eff, } n}\left(T_{n}\right)$, will be calculated and used in $\mu_{n}\left(x, T, E_{e f f, n}\left(T_{n}\right)\right)$.

The values of the default coefficients were obtained by best-fitting the above equations to the data from [14].

Figure 2-19
Field-dependent electron velocity in AIGaAs for $\mathrm{N}_{\mathrm{d}}=10^{17} \mathrm{~cm}^{-3}$

Virtual Nodes

An abrupt heterojunction is formed by contact between two or more different materials. Medici automatically places nodes on heterojunctions. All material properties and system variables, such as potential or carrier concentrations, at such nodes are multivalued. Carrier transport across the heterojunction is governed by thermionic emission and tunneling, unlike transport in continuous media, which is governed by drift and (carrier and/or temperature) diffusion.

To correctly model the phenomena taking place at abrupt heterojunction nodes, a separate data structure associated with the node has to be created for each material as depicted in Figure 2-20. These data structures are referred to as virtual nodes, which are created by Medici if the VIRTUAL flag is stated on the MESH statement or the SYMBOLIC statement. Each such node has the properties of the material in which it is located. However, its system variable values may differ from those of other virtual nodes at the same physical location. This allows for discontinuous potentials, such as Fermi levels.

Every two virtual nodes belonging to regions sharing a side are connected by a side through which the heterojunction current flows (V_S1, V_S2, ... in Figure 220). When three or more semiconductor materials meet at a node not completely surrounded by semiconductor regions, two or more couples of adjacent virtual nodes are left with no semiconductor surfaces in common. Such nodes are connected by ghost virtual sides, with zero cross sections through which no current can flow.

Figure 2-20 Generation of virtual nodes at an abrupt heterojunction mesh node with four different materials in contact

No virtual node may be part of the same element as a contact node. If such a situation occurs, an additional nonvirtual, noncontact node is added between the two nodes.

Once the virtual nodes are present, the mesh may not be changed. Therefore, if the mesh is to be built gradually using, for example, REGRID statements, the

VIRTUAL flag should only be stated on the first SYMBOLIC statement occurring after mesh completion.

Poisson
Equation and Band Alignment

All virtual nodes sharing one mesh node are forced to the same vacuum level (the vacuum level is continuous across heterojunctions). In each group of virtual nodes, one virtual node is arbitrarily chosen and designated as the base virtual node. The Poisson equation is assembled only at base nodes. Contributions from nonheterojunction nodes connected to heterojunction nonbase nodes are inserted into the base node equation. The potential equation at nonbase nodes forces their vacuum level to be that of the base node.

In general, the current flowing through the virtual sides has two components: the thermionic emission current and the tunneling current. The diagram in Figure 221 shows the various current components flowing through the junction in the case of electron transport. The electrons from Material 1 with energies lower than the conduction band in Material 2 can only cross into Material 2 through tunneling. The remaining population flows through thermionic emission. The current flowing from Material 2 to Material 1 only has a thermionic emission component (no tunneling) because those electrons do not see a conduction band barrier. The hole current is treated similarly.

The default heterojunction current model (HJSC2 flag on MODELS statement, true by default) forces the Fermi levels to the same value on all sides of the heterojunction. This model is compatible with the old implementation of the HDAAM which forced the Fermi levels to be continuous at heterojunctions.

Figure 2-21 Electron current components at an abrupt heterojunction. The curve drawn with a thick line represents the electron energy density in material 1

Thermionic Emission Current Model

The thermionic emission electron current flowing through a virtual side has two components [88]. In the case depicted in Figure 2-21, where electrons see a barrier when crossing from Material 1 to Material 2, $E_{c_{2}}>E_{c_{1}}$, the two expressions are

$$
\begin{array}{ll}
J_{n(1,2)}=\operatorname{ARICHN}_{1} \cdot T_{1}^{2} \cdot \exp \left(\left(E_{F n 1}-E_{c 2}\right) /\left(k \cdot T_{1}\right)\right) & \text { Equation 2-472 } \\
J_{n(2,1)}=\operatorname{ARICHN}_{1} \cdot T_{2}^{2} \cdot \exp \left(\left(E_{F n_{2}}-E_{c 2}\right) /\left(k \cdot T_{2}\right)\right) & \text { Equation 2-473 }
\end{array}
$$

where the 1 and 2 designate Material 1 and Material 2, respectively. In this case, electrons which move from Material 2 to Material 1 acquire a velocity which is related to the barrier height, $E_{c 2}-E_{c 1}$, and their effective mass in Material 1. Similarly in this case, electrons which move from Material 1 to Material 2 require a velocity which is related to the barrier height, $E_{c_{2}}-E_{c 1}$, and their effective mass in Material 1. For these reasons, the the conduction band edge in Material 2, $E_{c 2}$, and the Richardson constant of Material 1, ARICHN $_{1}$, are used.

Expressions in the case where $E_{c 1}>E_{c 2}$ are obtained from Equations 2-472 and 2-473 by symmetry. In this case, the Richardson constant of Material 2, $\operatorname{ARICHN}_{2}$, and the conduction band edge in Material $1, E_{c_{1}}$, are used.

Note that in equilibrium, when $E_{F n 1}=E_{F n 2}$ and $T_{1}=T_{2}$, the total electron thermionic current is zero: $J_{n, \text { tot }}=J_{n(1,2)}-J_{n(2,1)}=0$.

Similar expressions to those in Equations 2-472 and 2-473 are used for the hole current.

To turn this model on, assert HJTEM on the MODELS statement, which will automatically turn off HJSC2. The HJTEM model must be specified after virtual nodes are turned on with the VIRTUAL flag.

ARICHN is the Richardson constant for electrons (ARICHP for holes). They can be set on the MATERIAL statement.

Tunneling Current Model

There can be a nonzero tunneling current component only if the overall flow of the thermionic emission current is against the barrier. The tunneling current is obtained by multiplying the thermionic emission current by a factor $\Gamma_{\text {tunn }}$.

$$
J_{\text {tunn }}=\Gamma_{\text {tunn }} \cdot J_{\text {therm }}
$$

In the case of electrons, if you assume the band configuration is that depicted in Figure 2-21 and the thermionic emission current flows from Material 1 to Material 2, $J_{\text {therm }}=J_{n(1,2)}-J_{n(2,1)}$ and $\Gamma_{\text {tunn }}$ is expressed as [89]

$$
\Gamma_{\text {tunn }}=1+\int^{\left(E_{c 2}-E_{c 1}\right) /\left(k \cdot T_{1}\right)} \exp \left(\xi-\left(\xi / \xi_{0}\right)^{3 / 2}\right) d \xi \quad \text { Equation 2-475 }
$$

and

$$
\xi_{0}=\frac{1}{k \cdot T_{1}} \cdot\left(\frac{3 \cdot \frac{h}{(2 \cdot \pi)} \cdot q \cdot E_{\perp}}{4 \cdot\left(2 \cdot m_{1}^{*}\right)^{1 / 2}}\right)^{2 / 3}
$$

where E_{\perp} is the field component inside Material 2 (the barrier) perpendicular to the heterojunction. Note that if E_{\perp} is not an accelerating field for the carrier under consideration, there is no tunneling. Holes are treated similarly.

To turn this model on, assert HJTUN on the MODELS statement. Note that HJTEM is expected to be on. The HJTUN model must be specified after virtual nodes are turned on with the VIRTUAL flag.

Trapped Charge Advanced Application Module

The Trapped Charge Advanced Application Module (TC-AAM) allows detailed analysis of semiconductor devices containing traps, such as thin-film transistors (TFT), bipolar junction transistors (BJT), and power MOSFETs. The TC-AAM allows simulation of important carrier trapping and de-trapping mechanisms within semiconductor materials. These effects are important in a wide variety of cases such as the simulation of deep trap levels, deep donor/acceptor states, and the creation of "lifetime profiles." The following four trap possibilities are allowed:

- Neutral hole traps
- Neutral electron traps
- Donor states
- Acceptor states

Analysis with Trapped Charge

For the analysis of traps, the energy gap is divided in up to 50 discrete energy levels $E_{t_{i}}$. The recombination and trapping processes are then analyzed at each level.

Recombination For recombination, the Shockley-Read-Hall model is used. For example, the recombination rate for electron traps is

$$
U=\sum_{i} \frac{p n-n_{i e}^{2}}{\tau_{p_{i}}\left(n+n_{t_{i}}\right)+\tau_{n_{i}}\left(p+p_{t_{i}}\right)}
$$

where $n_{t_{i}}=n_{i e} \exp \left(E_{t_{i}} / k T\right) /$ DGEN and $p_{t_{i}}=n_{i e} \exp \left(-E_{t_{i}} / k T\right)$ DGEN.

The minority carrier lifetimes for electrons and holes $\tau_{n_{i}}$ and $\tau_{p_{i}}$ are defined separately as a function of bandgap energy as well as position (x, y). Their values are calculated from the parameters TAUN and TAUP on the TRAPS statement. The effects of recombination including tunneling are also included separately for each energy level (see "Recombination Including Tunneling," p. 2-5). The parameter DGEN accounts for degeneracy effects. The trap energy level, $E_{t_{i}}$, is specified relative to the intrinsic Fermi level.

Modeling

Trapping is also modeled using Shockley-Read-Hall. For fast traps, which instantaneously reach equilibrium, the following expression gives the trap occupation function for electron traps.

$$
f_{i}=\frac{\tau_{p_{i}} n+\tau_{n_{i}} p_{t_{i}}}{\tau_{p_{i}}\left(n+n_{t_{i}}\right)+\tau_{n_{i}}\left(p+p_{t_{i}}\right)}
$$

Note that f has a maximum value of 1 , indicating a completely full trap. The Poisson equation is then modified to include the number of electrons that are trapped.

$$
\varepsilon \nabla^{2} \psi=-q\left(p-n+N_{D}^{+}-N_{A}^{-}-\sum N_{t_{i}} f_{i}\right)-\rho_{s}
$$

$N_{t_{i}}$ is the total number of traps (in $\# / \mathrm{cm}^{3} / \mathrm{eV}$) for the i th energy level. $N_{t_{i}}$ is calculated from the N. TOTAL parameter on the TRAPS statement and is also a function of energy and position. $N_{t_{j}}$ is positive for electron traps and negative for hole traps. If the trap state is specified as CHARGED (as in the case of a donor state) then the following form of the Poisson equation is used.

$$
\varepsilon \nabla^{2} \psi=-q\left(p-n+N_{D}^{+}-N_{A}^{-}-\sum N_{t_{i}}\left(f_{i}-1\right)\right)-\rho_{s}
$$

When time dependent traps are modeled during transient analysis, the traps require some time to come into equilibrium with the semiconductor (it takes time for the traps to capture or emit electrons). Under these conditions it is necessary to solve an additional differential equation for each trap level. For electron traps this rate equation is

$$
\frac{\partial\left(f_{i} N_{t_{i}}\right)}{\partial t}=\frac{\left(1-f_{i}\right) n-f_{i} n_{t_{i}}}{\tau_{n_{i}}}-\frac{f_{i} p-\left(1-f_{i}\right) p_{t_{i}}}{\tau_{p_{i}}}
$$

Medici uses a special numerical method to self consistently solve the above equations for each electron trap level at each mesh point. For hole traps, the corresponding SRH recombination rate, fast-trap hole occupancy, and trap rate equation are shown in the following equations.

$$
U=\sum_{i} \frac{p n-n_{i e}^{2}}{\tau_{p_{i}}\left(n+n_{t_{i}}\right)+\tau_{n_{i}}\left(p+p_{t_{i}}\right)}
$$

$$
\begin{align*}
& f_{i}=\frac{\tau_{n_{i}} p+\tau_{p_{i}} n_{t_{i}}}{\tau_{p_{i}}\left(n+n_{t_{i}}\right)+\tau_{n_{i}}\left(p+p_{t_{i}}\right)} \\
& \frac{\partial\left(f_{i} N_{t_{i}}\right)}{\partial t}=\frac{f_{i} n-\left(1-f_{i}\right) n_{t_{i}}}{\tau_{n_{i}}}-\frac{\left(1-f_{i}\right) p-f_{i} p_{t_{i}}}{\tau_{p_{i}}}
\end{align*}
$$

Equation 2-484
where $\quad n_{t_{i}}=n_{i e} \exp \left(E_{t_{i}} / k T\right)$ DGEN and $p_{t_{i}}=n_{i e} \exp \left(-E_{t_{i}} / k T\right) /$ DGEN
The net charge of the traps can best be understood by examining Figure 2-22. A careful examination of the trap occupation equation shows that for electrons, if the trap level is below the electron Fermi level, the trap state is filled (contains a bound electron). Likewise for holes, a trap state above the hole Fermi level is filled (contains a bound hole).

Electron Trap If the Charged electron trap is filled by an electron, then the negative charge of

 the electron cancels the positive charge of the trap, and the net charge of the trap becomes zero.Hole Trap If a hole trap level is specified as Charged, then an empty trap has a negative charge (like an acceptor state). If the CHARGED hole trap is filled by a hole, then the positive charge of the hole cancels the negative charge of the trap, and the net charge of the trap becomes zero.

Figure 2-22 Trap net charge possibilities

Transient Simulation Trap States

Any trap states created during a transient simulation by changing the value of \mathbf{N}. TOTAL are initially empty states because charge must be conserved.

If there are initially 10^{14} traps that are 50% filled ($\mathrm{f}=0.5, \mathrm{~N}$. тOTAL=1e14), and the trap density is increased to $10{ }^{15}$ traps, then immediately after there will be $10{ }^{15}$ traps that are 5% filled (\mathbf{N}. TOTAL $=1 \mathrm{e} 15, \mathrm{f}=0.05$).

Note:
The total trapped charge (which is $f^{*} \mathrm{~N}$. TOTAL) does not change in this 2 situation.

Optical Device Advanced Application Module

This section describes the capabilities and the use of the Optical Device Advanced Application Module (OD-AAM) optionally available for use with the Medici program. The OD-AAM provides an advanced treatment of photogeneration associated with radiation incident on image sensors and other optical devices. The OD-AAM includes the following features:

- Ray tracing models the propagation of light inside and outside the device
- Various light absorption mechanisms are accounted for, such as band-to-band transitions, band-tail absorption, and free carrier absorption
- Black-body spectral radiation can be used to describe the external light source or the user may provide a spectral file containing the spectral distribution
- Calculation of transmission through a stack of material layers including interference

A wide variety of materials can be used with the OD-AAM including silicon, amorphous silicon, gallium arsenide, aluminum gallium arsenide, germanium, silicon germanium, indium phosphide, indium arsenide, and diamond. To analyze results, post-processing capabilities allow plotting of ray tracing results through the device structure, internal and external collection efficiency, and transmittance and reflectance.

Transmittance and Reflectance Calculation

The relationship between the angles of incidence, reflection and transmission at the interface between two media is established by the Fresnel formulae for the transverse electric (TE) and the transverse magnetic (TM) components of the incident radiation.

Simple Interface For the simple interface as shown in Figure 2-23 on p. 2-5,

$$
\theta_{1}=\theta_{r}
$$

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \quad \text { Equation 2-486 }
$$

For the TM wave,

$$
r_{T M}=\frac{n_{2} \cos \theta_{1}-n_{1} \cos \theta_{2}}{n_{2} \cos \theta_{1}+n_{1} \cos \theta_{2}}
$$

$$
t_{T M}=\frac{2 n_{1} \cos \theta_{1}}{n_{2} \cos \theta_{1}+n_{1} \cos \theta_{2}}
$$

For the TE wave,

$$
\begin{aligned}
& r_{T E}=\frac{n_{1} \cos \theta_{1}-n_{2} \cos \theta_{2}}{n_{1} \cos \theta_{1}+n_{2} \cos \theta_{2}} \\
& t_{T E}=\frac{2 n_{1} \cos \theta_{1}}{n_{1} \cos \theta_{1}+n_{2} \cos \theta_{2}}
\end{aligned}
$$

where

- θ_{1} is the angle of the incident ray
- θ_{2} is the angle of the refracted ray (transmitted ray)
- θ_{r} is the angle of the reflected ray
- $\quad r_{T M}$ and $t_{T M}$ are the reflection coefficient and the transmission coefficient of the TM wave, respectively
- $\quad r_{T E}$ and $t_{T E}$ are the reflection coefficient and the transmission coefficient of the TE wave, respectively
- n_{1}, n_{2} are the complex refractive indices of material 1 and material 2 , respectively

Figure 2-23 Reflection and transmission of a ray

Transmission Through Planar Optical Layers

For a stack of N material layers as shown in Figure 2-24, the reflection and transmission coefficients are expressed in terms of the characteristic matrices of the stratified media. The matrix of the i-th material [74] is, for the TE wave,

$$
M_{i}=\left[\begin{array}{ll}
\cos \left(k d_{i} p_{i}\right) & \left(\frac{-j}{p_{i}}\right) \sin \left(k d_{i} p_{i}\right) \\
-j p_{i} \sin \left(k d_{i} p_{i}\right) & \cos \left(k d_{i} p_{i}\right)
\end{array}\right]
$$

for $i=(2,3, \ldots, N-1)$
where

- $p_{i}=n_{i} \cos \theta_{i}$
- $k=\frac{2 \pi}{\lambda}$
- n_{i} is the complex refractive index of the i-th material
- d_{i} is the thickness of the i-th material
- λ is the wavelength of incident wave
- $\quad \theta_{i}$ is the angle in the i-th material

Figure 2-24 A stack of N material layers separated by parallel interfaces For the TM wave, p_{i} is replaced by $q_{i}=\frac{\cos \theta_{i}}{n_{i}}$ and the same expressions hold.
The generalization to the case of a succession of media, which is a stack of N material layers is
$M=M_{2} \times M_{3} \times \ldots \times M_{n-1}=\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]$
Equation 2-492

Then the reflection and transmission coefficients for the TE wave are

$$
\begin{align*}
& r_{T E}=\frac{\left(m_{11}+m_{12} p_{n}\right) p_{1}-\left(m_{21}+m_{22} p_{n}\right)}{\left(m_{11}+m_{12} p_{n}\right) p_{1}+\left(m_{21}+m_{22} p_{n}\right)} \\
& t_{T E}=\frac{2 p_{1}}{\left(m_{11}+m_{12} p_{n}\right) p_{1}+\left(m_{21}+m_{22} p_{n}\right)}
\end{align*}
$$

Equation 2-494

For the TM wave, the same equations hold, except that p_{i} is replaced by q_{i}. It is assumed that all layers are parallel and the magnetic permeabilities are unity. Then for both simple and multilayered structures, the reflectance and transmittance for the radiation is

$$
\begin{aligned}
& R_{o p t}=A^{2} r_{T M}^{2}+B^{2} r_{T E}^{2} \\
& T=\frac{\operatorname{Re}\left(n_{N} \cos \theta_{N}\right)}{n_{1} \cos \theta_{1}}\left(A^{2} t_{T M}^{2}+B^{2} t_{T E}^{2}\right)
\end{aligned}
$$

Equation 2-495

Equation 2-496
where A^{2} and B^{2} are the polarization factors [75]

$$
\begin{aligned}
& A^{2}=\frac{\cos ^{2} \psi_{o p t}+\tan ^{2} \chi_{o p t} \sin ^{2} \psi_{o p t}}{1+\tan ^{2} \chi_{o p t}} \\
& B^{2}=\frac{\sin ^{2} \psi_{o p t}+\tan ^{2} \chi_{o p t} \cos ^{2} \psi_{o p t}}{1+\tan ^{2} \chi_{o p t}}
\end{aligned}
$$

Equation 2-497

Equation 2-498
where

$$
\begin{aligned}
& \Psi_{\text {opt }} \quad \begin{array}{l}
\text { is the angle made by the major axis of the polarization ellipsis of } \\
\text { the incident wave and the horizontal axis }
\end{array}
\end{aligned}
$$

$\tan \chi_{o p t}$ is the ratio between the lengths of the elliptical axes
Their expressions are as follows

$$
\begin{align*}
& \tan \psi_{o p t}=\tan \left(2 \phi_{o p t}\right) \cos \delta_{o p t} \\
& \sin \chi_{o p t}=\tan \left(2 \phi_{o p t}\right) \sin \delta_{o p t}
\end{align*}
$$

Equation 2-500
where $\phi_{o p t}$ is the linear polarization angle between the E vector of the incident ray and the incident plane, and $\delta_{o p t}$ is the phase difference between the TM and the TE components.

Photogeneration Model

By exposing a semiconductor device structure to light or other radiation, it is possible to generate electron-hole pairs inside the device. These photogenerated carriers are created when an electron from the valence band is excited into the conduction by the absorption of a photon with energy greater than the bandgap energy. This absorption process causes the intensity of the radiation inside the device to decrease exponentially with distance according to the expression

$$
I_{o p t}(x, \lambda)=I_{o p t_{0}}(\lambda) e^{-\alpha_{o p t}(\lambda) x}
$$

Equation 2-501
where

- $I_{o p t_{0}}(\lambda)$ is the intensity at the starting point inside the device
- $\alpha_{o p t}(\lambda)$ is the absorption coefficient for a particular wavelength λ of the incident radiation.

In practice, the incident radiation may consist of a spectrum of wavelengths.
If $G_{o p t}(x, \lambda)$ represents the carrier generation rate at a distance x, then the number of carriers generated in the distance x to $x+\Delta x$ (per cm ${ }^{2}$ per second) is given by

$$
G_{o p t}(x, \lambda) \Delta x=- \text { QUAN.EFF } \cdot \frac{I_{o p t}(x+\Delta x, \lambda)-I_{o p t}(x, \lambda)}{(h c / \lambda)} \text { Equation 2-502 }
$$

where $(h c / \lambda)$ is the energy of the absorbed photon and the parameter QUAN . EFF is the quantum efficiency (number of generated electron-hole pairs per absorbed photon). The parameter QUAN . EFF can be specified on the PHOTOGEN statement, with a default value of 1.0 . In the limit as $\Delta x \rightarrow 0$, it can be written

Equation 2-503

$$
\begin{aligned}
G_{o p t}(x, \lambda) & =\text { QUAN. EFF } \cdot\left(\frac{\lambda}{h c}\right) \frac{d I(x, \lambda)}{d x} \\
& =\text { QUAN.EFF } \cdot\left(\frac{\lambda}{h c}\right) I_{o p t_{0}}(\lambda) \alpha_{o p t}(\lambda) e^{-\alpha_{o p t}(\lambda) x}
\end{aligned}
$$

The total generation rate at a point is calculated by integrating over the wavelength spectrum of the incident radiation.

$$
G_{o p t}(x)=\int G_{o p t}(x, \lambda) d \lambda
$$

From the above expressions, it is clear that to describe the photogeneration occurring within the device structure it is necessary to do the following:

1. Describe the properties of the incident radiation.
2. Provide information regarding the absorption coefficient $\alpha_{o p t}(\lambda)$.

Parameters associated with the incident radiation, such as wavelength, wavelength spectrum or intensity, are specified on the PHOTOGEN statement. The choices regarding the absorption coefficient are given in the following section.

Absorption Models

By default, the program obtains the absorption coefficient from the imaginary part of the complex index of refraction for the material. The complex index of refraction for a material can be expressed as
$\hat{n}=\eta-i k$
Equation 2-505
where η is the normal refractive index for the material and the absorption coefficient is related to k by

$$
\alpha_{o p t}=\frac{4 \pi k}{\lambda}
$$

Equation 2-506

Wavelength Dependent Empirical Tables

The Optical Device AAM provides wavelength dependent empirical tables for the complex index of refraction for a variety of materials [76]. You can provide your own data for both the real index of refraction and the imaginary index of refraction or the absorption coefficient itself by specifying the appropriate parameters on the MATERIAL statement.

Absorption Mechanisms

The following physical models describing various absorption mechanisms are available in the program:

- Band-to-band absorption $\left(\alpha_{b b}\right)$
- Band-tail absorption $\left(\alpha_{b t}\right)$
- Free-carrier absorption $\left(\alpha_{f c}\right)$

For band-to-band absorption, both direct and indirect transitions can be modeled, as well as absorption in amorphous materials.

$$
\alpha_{o p t}=\alpha_{b b}+\alpha_{b t}+\alpha_{f c}
$$

Equation 2-507

$$
\alpha_{b b}=\left\{\begin{array}{ll}
\text { from table } & \text { if } \mathbf{B T B T} . \mathbf{A B}=\text { False } \\
\alpha_{\text {dir }}+\alpha_{\text {indir }} & \text { for crystalline materials if } \mathbf{B T B T} \cdot \mathbf{A B}=\text { True } \\
\alpha_{\text {amorp }} & \text { for amorphous material if } \mathbf{B T B T} . \mathbf{A B}=\text { True }
\end{array} \quad\right. \text { Equation 2-508 }
$$

Models that describe these mechanisms are given in the following sections. Parameters associated with these models can be specified on the MATERIAL statement.

Fundamental Absorption (Band-to-Band Transitions)

A general expression for the absorption coefficient due to band-to-band transitions can be given by

$$
\begin{aligned}
& \alpha_{b b}=\sum \alpha_{b b_{i}}=\sum \frac{A_{i}}{\eta}\left(\gamma_{1} x_{1_{i}}^{\mathrm{EXP} \cdot \mathrm{BB}_{i}}+\gamma_{2_{i}} x_{2_{i}}^{\mathrm{EXP} \cdot \mathrm{BB}_{i}}\right) \\
& x_{1_{i}}=h V+\mathbf{E . P H O N O N} \\
& i
\end{aligned} E_{g, o p t} \quad \begin{aligned}
& x_{2_{i}}=h V-\mathbf{E . P H O N O N} \\
& i
\end{aligned} E_{g, o p t} \quad l
$$

Equation 2-509

Equation 2-510

Equation 2-511
where the summation is over all relevant transitions:

- $\quad \eta$ is the real part of refractive index
- EXP . $\mathbf{B B}_{i}$ is an exponent characteristic of the transition type
- $\quad h \nu$ is the photon energy $(\mathrm{eV})=1.24 / \lambda($ microns $)$
- E. . $\mathbf{P H O N O N}_{i}$ is the phonon energy (eV) for indirect transitions (equal to zero for direct transitions)
- $E_{g, \text { opt }}$ is the optical energy gap (described in "Optical Energy Gap," p. 2179).

The expressions for $A_{i}, \gamma_{1_{i}}, \gamma_{2}$ in Equation 2-509 depend on the type of transition and the type of material under consideration.

Direct Transitions For a direct transition, E. PHONON $_{i}=0$ and

$$
A_{i}=\frac{\mathrm{B}^{-\mathrm{BB}_{i}}}{h \mathrm{v}} \quad \gamma_{1_{i}}=\frac{1-f\left(x_{1_{i}}\right)}{2} \quad \gamma_{2_{i}}=\frac{1-f\left(x_{2_{i}}\right)}{2} \quad \text { Equation 2-512 }
$$

where $\mathbf{B} . \mathbf{B B}_{i}$ is a parameter that can be induced by quantum mechanical treatment [77], [78] and $f(x)$ is the electron distribution function.

Indirect Indirect transitions are characterized by a nonzero value for the phonon energy Transitions and

$$
\begin{align*}
& A_{i}=\frac{\mathrm{B}^{\mathrm{BB}} \mathrm{BB}_{i} \times \mathbf{E 1} \cdot \mathrm{BB}_{i}}{h v\left(\mathrm{E} 1 \cdot \mathrm{BB}_{i}-h v\right)^{2}} \\
& \gamma_{1_{i}}=\frac{1-f\left(x_{1_{i}}\right)}{\exp \left(\frac{\text { E.PHONON }_{i}}{k T}\right)-1}
\end{align*}
$$

Equation 2-514

$$
\left.\gamma_{2_{i}}=\frac{1-f\left(x_{2_{i}}\right)}{1-\exp \left(-\frac{\text { E.PRONON }}{i}\right.} \mathbf{k T}\right)
$$

where

- $\quad \mathbf{E 1 .} \mathbf{B B}_{i}$ is the energy gap for a transition to a (virtual) intermediate state
- E. PHONON ${ }_{i}$ is the phonon energy
- $\mathbf{B .} \mathbf{B B}_{i}$ is a parameter obtainable from quantum mechanical calculations [77], [78].

Amorphous Materials

For amorphous materials, the phonon energy is also set to zero, and
Equation 2-516

$$
A_{i}=\frac{\mathrm{B}^{\mathrm{BB}}{ }_{i}^{2}}{h v} \eta \quad \gamma_{1_{i}}=\frac{1-f\left(x_{1_{i}}\right)}{2} \quad \gamma_{2_{i}}=\frac{1-f\left(x_{2_{i}}\right)}{2}
$$

where $\mathbf{B .} \mathrm{BB}_{i}$ can be induced by quantum mechanical treatment [77], [78].
Band-Tail Absorption

Band-tail absorption has significance when the material is highly doped or amorphous. For direct transitions, you can expect no absorption at energies smaller than the energy gap and a steeply rising absorption at the band edge. However, in practice, due to band-tail transitions, an exponentially increasing absorption edge occurs. This behavior is known as Urbach's rule [79]. The contribution to the absorption coefficient by this mechanism is
$\alpha_{b t}=K_{b t} \exp \left(\frac{h \nu-\mathbf{E} 1 . \mathbf{B T}}{\mathbf{E} \cdot \mathrm{URBACH}}\right)$
Equation 2-517
where

- E. URBACH is the Urbach energy (eV)
- E1. $\mathbf{B T}$ is the optical energy gap (also called the Tauc gap)
- $K_{b t}$ is the band-to-band absorption coefficient at the optical band edge

In amorphous materials, the Urbach energy is a function of the temperature and the structural disorder and can be calculated from the expression
E.URBACH $=\frac{\mathbf{E 1 . B T}-E_{g, o p t}}{\mathbf{G} \cdot \mathbf{B T}}$
where G.BT is a fitting parameter [80].

Free Carrier Absorption

The free carriers make transitions to higher energy states within the same valley by absorbing photons and reducing the light intensity, resulting in a decrease of the EHP generation rate. This effect is accounted for with the following expressions

$$
\alpha_{f c}=\frac{q^{3}}{\eta c \varepsilon_{0} \omega^{2} m_{0}^{2}}\left[\frac{n}{\mathbf{E L . E M A S}{ }^{2} \cdot \mu_{n}}+\frac{p}{\text { HO.EMAS }^{2} \cdot \mu p}\right]
$$

$$
\eta^{2}=\varepsilon_{r}-\frac{q^{2}}{\varepsilon_{0} \omega^{2} m_{0}}\left[\frac{n}{\text { EL. EMAS }}+\frac{p}{\text { HO. EMAS }}\right]
$$

where

- $\quad c$ is the free space speed of light
- $\quad \eta$ is the real part of the refractive index
- ε_{0} is the free space permittivity
- ε_{r} is the relative permittivity
- EL. EMAS is the electron effective mass ratio to free electron mass
- HO. MAS is the hole effective mass ratio to free electron mass
- μ_{n} is the electron energy-dependent mobility
- μ_{p} is the hole energy-dependent mobility
- m_{0} is the free electron mass
- ω is the radial frequency of the photon

Optical Energy

 GapIf the incident photon energy is high enough to excite electrons from the valence band to the conduction band, electron-hole pairs are generated in the crystal. The critical photon energy for this generation mechanism is called the optical energy gap which is approximately equal to the electric energy gap. In order to obtain a more precise value, the following expression may be used:

$$
E_{g, o p t}=E_{g, o p t}(T)+u\left(E_{F_{n}}-E_{c}-4 k T\right)\left(1+\frac{\text { EL. EMAS }}{\text { HO. EMAS }}\right)
$$

Equation 2-521

Where EL. EMAS and HO. EMAS are the effective electron and hole mass at the band edge respectively and the first term in RHS is the temperature-dependent optical gap.

Equation 2-522

$$
E_{g, o p t}(T)=\mathbf{E G O} 300+\operatorname{EGOALPH}\left(\frac{300^{2}}{300+\mathbf{E G O B E T A}}\right)-\frac{T^{2}}{T+\text { EGOBETA }}
$$

The second term in Equation 2-521 takes into account the widening of the optical gap by degeneracy

$$
u\left(E_{F_{n}}-E_{c}-4 k T\right)= \begin{cases}E_{F_{n}}-E_{c}-4 k T & \text { for } E_{F_{n}}-E_{c}-4 k T>0 \\ 0 & \text { for } E_{F_{n}}-E_{c}-4 k T \leq 0\end{cases}
$$

where $E_{F_{n}}$ is the electron quasi-Fermi energy and k is Boltzmann's constant.
The carrier concentration affects the absorption coefficient through electric or optical band-gap changing and band-tail absorption.

Anisotropic Material Advanced Application Module

Medici can account for the anisotropic nature of some semiconductor materials, such as silicon carbide, with the use of the optionally available Anisotropic Material AAM (AM-AAM). This AAM allows most physical models to be treated anisotropically by introducing tensors for various physical quantities such as the dielectric permittivity, carrier mobilities, impact ionization coefficients, and thermal conductivity.

Permittivity Tensor

To enable the AAM, use the ANISOTROPIC statement. The components specified should be normalized by the corresponding isotropic quantity. For example, the permittivity tensor can be expressed as

$$
\begin{array}{r}
\stackrel{\varepsilon}{\underline{\varepsilon}}=\left(\begin{array}{ccc}
\varepsilon_{x x} & 0 & 0 \\
0 & \varepsilon_{y y} & 0 \\
0 & 0 & \varepsilon_{z z}
\end{array}\right)=\varepsilon_{m a t} \cdot\left(\begin{array}{ccc}
\left(\frac{\varepsilon_{x x}}{\varepsilon_{m a t}}\right) & 0 & 0 \\
0 & \left(\frac{\varepsilon_{y y}}{\varepsilon_{m a t}}\right) & 0 \\
0 & 0 & \left(\frac{\varepsilon_{z z}}{\varepsilon_{m a t}}\right)
\end{array}\right) \\
=\varepsilon_{m a t} \cdot\left(\begin{array}{ccc}
\operatorname{PERM}(1) & 0 & 0 \\
0 & \operatorname{PERM}(2) & 0 \\
0 & 0 & \text { PERM(3) }
\end{array}\right)
\end{array}
$$

where $\varepsilon_{m a t}$ is the permittivity that is used by the program if the material is isotropic (that is, if $\operatorname{PERM}(1)=\operatorname{PERM}(2)=\operatorname{PERM}(3)=1$). The value of $\varepsilon_{\text {mat }}$ can be specified for each material using the PERMITTI parameter on the MATERIAL statement.

Additional Capabilities

The AM-AAM also provides for anisotropic electron mobility, hole mobility, electron impact ionization coefficient, hole impact ionization coefficient, and thermal conductivity:

Equation 2-525

$$
\stackrel{\mu_{n}}{=}\left(\begin{array}{ccc}
\mu_{n_{x x}} & 0 & 0 \\
0 & \mu_{n_{y y}} & 0 \\
0 & 0 & \mu_{n_{z z}}
\end{array}\right)=\mu_{n_{\text {mat }}} \cdot\left(\begin{array}{ccc}
\mathbf{M U} \cdot \mathbf{N}(1) & 0 & 0 \\
0 & \mathbf{M U} \cdot \mathbf{N}(2) & 0 \\
0 & 0 & \mathbf{M U} \cdot \mathbf{N}(3)
\end{array}\right)
$$

Equation 2-526

Equation 2-527

$$
\stackrel{\alpha_{n}}{=}=\left(\begin{array}{ccc}
\alpha_{n_{x x}} & 0 & 0 \\
0 & \alpha_{n_{y y}} & 0 \\
0 & 0 & \alpha_{n_{z z}}
\end{array}\right)=\alpha_{n_{\text {mat }}} \cdot\left(\begin{array}{ccc}
\text { II .N(1) } & 0 & 0 \\
0 & \text { II.N(2) } & 0 \\
0 & 0 & \text { II.N(3) }
\end{array}\right)
$$

Equation 2-528

$$
\stackrel{\alpha_{p}}{=}=\left(\begin{array}{ccc}
\alpha_{p_{x x}} & 0 & 0 \\
0 & \alpha_{p_{y y}} & 0 \\
0 & 0 & \alpha_{p_{z z}}
\end{array}\right)=\alpha_{p_{p_{\text {mat }}}} \cdot\left(\begin{array}{ccc}
\operatorname{II} \cdot \mathrm{P}(1) & 0 & 0 \\
0 & \operatorname{II} . \mathrm{P}(2) & 0 \\
0 & 0 & \operatorname{II} \cdot \mathrm{P}(3)
\end{array}\right)
$$

Equation 2-529

$$
\stackrel{\kappa}{=}=\left(\begin{array}{ccc}
x_{x x} & 0 & 0 \\
0 & x_{y y} & 0 \\
0 & 0 & x_{z z}
\end{array}\right)=\kappa_{m a t} \cdot\left(\begin{array}{ccc}
\mathrm{TH} \cdot \operatorname{CoND}(1) & 0 & 0 \\
0 & \mathrm{TH} \cdot \operatorname{CoND}(2) & 0 \\
0 & 0 & \mathrm{TH} \cdot \operatorname{COND}(3)
\end{array}\right)
$$

The specific models or parameters used to describe $\mu_{n_{\text {mat }}}, \mu_{p_{\text {mat }}}, \alpha_{n_{\text {mat }}}, \alpha_{p_{\text {mat }}}$, and $\kappa_{\text {mat }}$ can be specified on the MODELS, MATERIAL, and MOBILITY statements.

Thermal Diffusion

The program accounts for anisotropic carrier thermal diffusion coefficients through the carrier mobility. That is, in the current density relations,

$$
\begin{aligned}
& \overrightarrow{J_{n}}=q n \mu_{n} \vec{E}+q\left(\frac{k_{B} T}{q}\right) \mu_{n} \vec{\nabla} n+q n D_{n}^{T} \vec{\nabla} T \\
& \overrightarrow{J_{p}}=q n \mu_{p} \vec{E}-q\left(\frac{k_{B} T}{q}\right) \mu_{p} \vec{\nabla} p-q p D_{p}^{T} \vec{\nabla} T
\end{aligned}
$$

the thermal diffusion terms are assumed to be proportional to mobility and are given by
$D_{n}^{T}=\mathrm{DN} \cdot \mathrm{LAT}\left(\frac{k_{B}}{q}\right) \mu_{n}$
$D_{p}^{T}=\mathrm{DP} \cdot \mathbf{L A T}\left(\frac{k_{B}}{q}\right) \mu_{p}$
Equation 2-533

The factors DN .LAT and DP. LAT have been provided as user-adjustable parameters and, can be specified on the MATERIAL statement. The default values for these parameters are 1 .

Advanced Band Structure

The advanced structure model is described by the following set of equations for electrons and holes. These parameters allow for nonparabolicity and multiple bands in the calculation of the density of states [81].

The array parameters ALPHJ. N, MJ. N, EJ.N, ALPHJ.P, MJ.P, and EJ.P take on different values for each value of the summation index i. Up to five values may be specified for each array.

Equation 2-534

$$
N_{c}=N_{c} \text { ALPHO.N }+\sum_{j}\left(\mathbf{M J . N}\left(1+\text { ALPHJ.N } \frac{15 k_{b} T}{4 q}\right) \exp \left(\frac{\text { EJ.N } q}{k_{b} T}\right)\right)
$$

$$
N_{v}=N_{v} \text { ALPHO.P }+\sum_{j}\left(\operatorname{MJ} \cdot \mathbf{P}\left(1+\text { ALPHJ.P } \frac{15 k_{b} T}{4 q}\right) \exp \left(\frac{\text { EJ.P } q}{k_{b} T}\right)\right)
$$

Notes on Usage

The ANISOTROP IC statement is specified before the first SOLVE statement where it is desired to account for the anisotropic nature of the material. The specified parameters remain in effect until the following events occur:

- They are changed by you on another ANISOTROP IC statement
- A LOAD statement reads in a saved solution that may contain different values for the anisotropic parameters
- A MESH statement initializes all parameters to their default values

Symbol Definitions

The following is a list of symbols encountered in this chapter, together with their definitions and units. The ordering is alphabetical.

Symbol	Definition	Units
A_{i}	Semiconductor area associated with node i	cm
A_{n}	Maximum ionization integral for electrons	none
A_{p}	Maximum ionization integral for holes	none
b_{1}	Vector of length 3N used in AC small-signal analysis description	
b_{2}	Vector of length 3N used in AC small-signal analysis description	
B	Bernoulli function	none
c	Specific heat for a material	$\mathrm{J} / \mathrm{q}-\mathrm{K}$
C	Capacitance	$\mathrm{F} / \mu \mathrm{m}$
$C_{G B}$	Capacitance component between gate and substrate	$\mathrm{F} / \mu \mathrm{m}$
$C_{G D}$	Capacitance component between gate and drain	$\mathrm{F} / \mu \mathrm{m}$
$C_{G S}$	Capacitance component between gate and source	$\mathrm{F} / \mu \mathrm{m}$
$C_{i j}$	Capacitance matrix component	$\mathrm{F} / \mu \mathrm{m}$
$d_{i j}$	Distance between nodes i and j	cm
$d_{3 p}$	Distance between node 3 and point p	cm
$d_{c, i}$	Contact length associated with node i	$\mathrm{~cm}{ }^{2} / \mu \mathrm{m}$
d_{i}	Interface length associated with node i	cm
$d_{i n t}$	Distance between the point (x, y) and the interface	cm
\vec{D}	Electric displacement vector	$\mathrm{C} / \mathrm{cm}^{2}$
D_{1}	N $\times \mathrm{N}$ matrix used in small-signal analysis description	
D_{2}	$3 N \times 3 \mathrm{~N}$ matrix used in small-signal analysis description	
D_{n}	Electron diffusivity	$\mathrm{cm} / \mathrm{s} / \mathrm{s}$
D_{p}	Hole diffusivity	$\mathrm{V} / \mathrm{cm}^{2} / \mathrm{cm}^{2}$
\vec{E}	Magnitude of electric field	Electric field vector

Symbol	Definition	Units	
$E_{\\|}$	Parallel component of electric field	V/cm	
$E_{\\|_{i j}}$	Electric field parallel to the side between nodes i and j	V/cm	
$E_{\\|, \mathrm{n}}$	Parallel component of electric field for electrons	V / cm	
$E_{\\|, \mathrm{p}}$	Parallel component of electric field for holes	V / cm	
E_{\perp}	Perpendicular component of electric field	V / cm	
$E_{\perp i j}$	Electric field perpendicular to the side between nodes i and j	V / cm	
$E_{\perp, n}$	Perpendicular component of electric field for electrons	V / cm	
$E_{\perp, p}$	Perpendicular component of electric field for holes	V / cm	
E_{A}	Acceptor energy level	eV	
E_{C}	Conduction band energy level	eV	
E_{D}	Donor energy level	eV	
$E_{e f_{\perp}, n}$	Perpendicular component of interface effective electric field for electrons	V / cm	
$E_{\text {eff }}, p$	Perpendicular component of interface effective electric field for holes	V/cm	
$\vec{E}_{e f f, n}$	Interface effective electric field for electrons	V/cm	
Eeff, p	Interface effective electric field for holes	V/cm	
$E_{e f f, n}$	Bulk effective electric field for electrons	V/cm	
$E_{e f f, p}$	Bulk effective electric field for holes	V/cm	
$E_{F n}$	Electron Fermi energy level	eV	
$E_{F p}$	Hole Fermi energy level	eV	
E_{g}	Bandgap energy	eV	
$E_{g, \text { insul }}$	Insulator bandgap energy	eV	
$E_{g, \text { semi }}$	Semiconductor bandgap energy	eV	
E_{i}	Intrinsic Fermi energy level	eV	
$E_{\text {insul }}$	Magnitude of insulator electric field	V/cm	
$\underset{\rightarrow}{E_{i n s u l,} \perp_{s}}$	Insulator electric field perpendicular to the interface	V/cm	
E_{n}	Electric field vector in electron transport equation	V/cm	

Symbol	Definition	Units
\vec{E}_{p}	Electric field vector in hole transport equation	V/cm
$\vec{E}_{\text {semi }}$	Semiconductor electric field	V/cm
$E_{s e m i, \perp_{s}}$	Semiconductor electric field perpendicular to the interface	V/cm
E_{t}	Trap energy level	eV
E_{V}	Valence band energy level	eV
f_{T}	Cut off frequency	Hz
$\mathrm{F}_{1 / 2}$	Fermi-Dirac integral of order one-half	none
$\mathbf{F}_{1 / 2}^{-1}$	Inverse Fermi-Dirac integral of order one-half	none
$\mathbf{F}_{-1 / 2}$	Fermi-Dirac integral of order minus one-half	none
F_{n}	Right-hand-side of the electron current-continuity equation	\#/cm ${ }^{3}$-s
F_{p}	Right-hand-side of the hole current-continuity equation	\#/cm ${ }^{3}$-s
F_{ψ}	Right-hand-side of Poisson's equation	$\mathrm{C} / \mathrm{cm}^{3}$
g_{B}	Screening term in carrier-carrier scattering mobility model	none
$G_{i j}$	Conductance matrix component	$\mathrm{S} / \mu \mathrm{m}$
$G^{B B}$	Generation rate due to band-to-band tunneling	\#/cm ${ }^{3}$-s
$G^{I I}$	Total generation rate due to impact ionization	\#/cm ${ }^{3}$-s
$G_{n}^{I I}$	Generation rate due to electron impact ionization	\#/cm ${ }^{3}$-s
$G_{p}^{I I}$	Generation rate due to hole impact ionization	\#/cm ${ }^{3}$-s
h	Planck's constant (6.626×10^{-27})	erg-s
H	Heat generation term	W/cm ${ }^{3}$
I	Current	A/ $/ \mathrm{m}$
I_{d}	Drain current	A/ $/ \mathrm{m}$
$I_{\text {disp, } i}$	Displacement current at node i	A/ $\mu \mathrm{m}$
$I_{\text {gate }}$	Gate current	$\mathrm{A} / \mu \mathrm{m}$
\tilde{I}_{i}	Phasor terminal current at electrode i	$\mathrm{A} / \mu \mathrm{m}$
I_{l}	Current through inductor	A/ $/ \mathrm{m}$

Symbol	Definition	Units	
$I_{n, i}$	Electron current at node i	A/ $/ \mathrm{m}$	
$I_{p, i}$	Hole current at node i	$\mathrm{A} / \mu \mathrm{m}$	
$I_{\text {source }}$	Specified terminal current	A/ $\mu \mathrm{m}$	
τ_{n}	Ionization integral for electrons	none	
τ_{p}	Ionization integral for holes	none	
j	Imaginary unit	none	
J	$3 \mathrm{~N} \times 3 \mathrm{~N}$ DC Jacobian matrix		
\vec{J}	Current density	$\mathrm{C} / \mathrm{cm}^{2}$-s	
\vec{J}_{n}	Electron current density	$\mathrm{C} / \mathrm{cm}^{2}-\mathrm{s}$	
$J_{n_{i j}}$	Scharfetter-Gummel electron current density between nodes i and j	$\mathrm{C} / \mathrm{cm}^{2}$-s	
$\overrightarrow{J_{p}}$	Hole current density	$\mathrm{C} / \mathrm{cm}^{2 /-\mathrm{s}}$	
$J_{p_{i j}}$	Scharfetter-Gummel current density for holes between nodes i and j	$\mathrm{C} / \mathrm{cm}^{2}$-s	
$\overrightarrow{J_{s n}}$	Surface electron current density	$\mathrm{C} / \mathrm{cm}^{2}$-s	
$\overrightarrow{J_{s p}}$	Surface hole current density	$\mathrm{C} / \mathrm{cm}^{2}$-s	
k	Boltzmann's constant (8.617×10^{-5})	eV/K	
L	Inductance	$\mathrm{H}-\mu \mathrm{m}$	
m_{0}	Electron rest mass	g	
$m_{d e}$	Density of states effective mass for electrons	g	
$m_{d h}$	Density of states effective mass for holes	g	
m_{e}	Effective electron mass	g	
m_{h}	Effective hole mass	g	
M_{C}	Number of equivalent minima in the conduction band	none	
M_{V}	Number of equivalent minima in the valence band	none	
n	Electron concentration	\#/cm ${ }^{3}$	
n	AC component of electron concentration	\#/cm ${ }^{3}$	
$\hat{n}_{\\|}$	Unit vector parallel to interface	none	
\hat{n}_{\perp}	Unit vector normal to interface	none	

Symbol	Definition	Units
n_{0}	Initial electron concentration	\#/cm ${ }^{3}$
$n_{\text {eq }}$	Equilibrium electron concentration	\#/cm ${ }^{3}$
$n_{e q_{e f f}}$	Effective equilibrium electron concentration	\#/cm ${ }^{3}$
n_{i}	Electron concentration at node i	\#/cm ${ }^{3}$
n_{i}	Intrinsic carrier concentration	\#/cm ${ }^{3}$
\tilde{n}_{i}	AC component of electron concentration at node i	\#/cm ${ }^{3}$
$n_{i 0}$	DC component of electron concentration at node i	\#/cm ${ }^{3}$
$n_{i e}$	Effective intrinsic carrier concentration	\#/cm ${ }^{3}$
n_{k}	Electron concentration at time t_{k}	\#/cm ${ }^{3}$
n_{k-1}	Electron concentration at time t_{k-1}	\#/cm ${ }^{3}$
n_{k-2}	Electron concentration at time t_{k-2}	\#/cm ${ }^{3}$
n_{s}	Surface electron concentration	\#/cm ${ }^{3}$
$n_{S_{\text {eff }}}$	Effective surface electron concentration	\#/cm ${ }^{3}$
N	Net impurity concentration	\#/cm ${ }^{3}$
N_{b}	Number of grid points associated with an electrode	none
$N_{i n v}$	Inversion layer density	\#/cm ${ }^{2}$
N_{p}	Number of grid points	none
$N_{\text {total }}$	Total impurity concentration	\#/cm ${ }^{3}$
N_{A}	Net compensated acceptor impurity concentration	\#/cm ${ }^{3}$
$N_{\text {A }}^{-}$	Ionized acceptor impurity concentration	\#/cm ${ }^{3}$
$N_{\text {A, total }}$	Total acceptor impurity concentration	\#/cm ${ }^{3}$
N_{B}	Bulk impurity concentration	\#/cm ${ }^{3}$
N_{C}	Effective conduction band density of states	\#/cm ${ }^{3}$
N_{D}	Net compensated donor impurity concentration	\#/cm ${ }^{3}$
N_{D}^{+}	Ionized donor impurity concentration	\#/cm ${ }^{3}$
$N_{\text {D, total }}$	Total donor impurity concentration	\#/cm ${ }^{3}$
N_{T}	Total impurity concentration	\#/cm ${ }^{3}$
N_{V}	Effective valence band density of states	\#/cm ${ }^{3}$

Symbol	Definition	Units
p	Hole concentration	\#/cm ${ }^{3}$
\tilde{p}	AC component of hole concentration	\#/cm ${ }^{3}$
p_{0}	Initial hole concentration	\#/cm ${ }^{3}$
$p_{e q}$	Equilibrium hole concentration	\#/cm ${ }^{3}$
$p_{\text {eq eff }}$	Effective equilibrium hole concentration	\#/cm ${ }^{3}$
p_{i}	Hole concentration at node i	\#/cm ${ }^{3}$
\tilde{p}_{i}	AC component of hole concentration at node i	\#/cm ${ }^{3}$
$p_{i 0}$	DC component of hole concentration at node i	\#/cm ${ }^{3}$
p_{k}	Hole concentration at time t_{k}	\#/cm ${ }^{3}$
p_{k-1}	Hole concentration at time t_{k-1}	\#/cm ${ }^{3}$
p_{k-2}	Hole concentration at time t_{k-2}	\#/cm ${ }^{3}$
p_{s}	Surface hole concentration	\#/cm ${ }^{3}$
$p_{s_{\text {eff }}}$	Effective surface hole concentration	\#/cm ${ }^{3}$
$P_{\text {insul, } n}$	Probability that an electron will not be scattered in the insulator	none
$P_{\text {insul, } p}$	Probability that a hole will not be scattered in the insulator	none
$P_{\text {semi, } n}$	Probability that an electron will not be scattered in the semiconductor	none
$P_{\text {semi,p }}$	Probability that a hole will not be scattered in the semiconductor	none
$P_{\Phi_{b, n}}$	Probability that an electron acquires energy to surmount barrier $\Phi_{b, n}$	none
$P_{\Phi_{b, p}}$	Probability that a hole acquires energy to surmount barrier $\Phi_{b, p}$	none
q	Electronic charge (1.602×10^{-19})	C
Q_{G}	Gate charge	$\mathrm{C} / \mu \mathrm{m}$
r	Radial coordinate used with cylindrical coordinates.	$\mu \mathrm{m}$
R	Resistance	$\Omega-\mu \mathrm{m}$
R_{i}	Resistance at node i	$\Omega-\mu \mathrm{m}$

Symbol	Definition	Units
$\overrightarrow{S_{n}}$	Electron energy flow density (scaled)	W/cm ${ }^{2-} \mathrm{C}$
$\overrightarrow{S_{p}}$	Hole energy flow density (scaled)	W/cm ${ }^{2}-\mathrm{C}$
t	Time	s
t_{k}	Time after time step k	s
t_{k-1}	Time after time step $k-1$	s
t_{k-2}	Time after time step $k-2$	s
T	Temperature	K
T_{n}	Electron temperature	K
T_{p}	Hole temperature	K
u_{0}	Thermal voltage for lattice $k T_{0} / q$	V
u_{n}	Thermal voltage for electrons $k T_{n} / q$	V
u_{p}	Thermal voltage for holes $k T_{p} / q$	V
$u_{\text {crit }}$	Critical thermal voltage	V
U	Net recombination rate	\#/cm ${ }^{3}$-s
U_{n}	Net electron recombination rate	\#/cm ${ }^{3}$-s
U_{p}	Net hole recombination rate	\#/cm ${ }^{3}$-s
$U_{\text {Auger }}$	Auger recombination rate	\#/cm ${ }^{3}$-s
$U_{b t b t}$	Recombination rate due to band-to-band tunneling	$\# / \mathrm{cm}^{3}$-s
$U_{\text {RTUN }}$	Recombination rate including tunneling	\#/cm ${ }^{3}$-s
$U_{\text {SRH }}$	Shockley-Read-Hall recombination rate	\#/cm ${ }^{3}$-s
$U_{S R H}^{*}$	SRH recombination rate including field-dependent lifetimes	\#/cm ${ }^{3}$-s
$\overrightarrow{v_{n}}$	Electron mean velocity	cm / s
$\overrightarrow{v_{p}}$	Hole mean velocity	cm/s
$v_{n}^{\text {sat }}$	Electron saturation velocity	cm/s
$v_{p}^{\text {sat }}$	Hole saturation velocity	cm / s
$v_{s n}$	Surface recombination velocity for electrons	cm / s
$v_{s p}$	Surface recombination velocity for holes	cm / s

Symbol	Definition	Units
V	Voltage	V
$V_{\text {applied }}$	Applied voltage	V
V_{B}	Substrate voltage	V
$V_{d s}$	Drain to source voltage	V
V_{D}	Drain voltage	V
$V_{g s}$	Gate to source voltage	V
V_{G}	Gate voltage	V
V_{i}	AC sinusoidal voltage at electrode i	V
\tilde{V}_{i}	AC component of V_{i}	V
$V_{i 0}$	DC component of V_{i}	V
\tilde{V}_{j}	Phasor terminal voltage at electrode j	V
V_{k}	Phasor terminal voltage at electrode k	V
V_{S}	Source voltage	V
x	Horizontal distance coordinate	$\mu \mathrm{m}$
X_{l}	Imaginary AC solution vector of length 3 N	
X_{R}	Real AC solution vector of length 3N	
y	Vertical distance coordinate	$\mu \mathrm{m}$
$Y_{i j}$	Admittance matrix component	$\mathrm{S} / \mu \mathrm{m}$
z	Distance coordinate used with cylindrical coordinates	$\mu \mathrm{m}$
a_{n}	Electron mobility exponent	none
a_{n}	Electron mobility factor	V^{-1}
$\alpha_{n, i i}$	Electron ionization coefficient	cm^{-1}
a_{p}	Hole mobility exponent	none
a_{p}	Hole mobility factor	V^{-1}
$\alpha_{p, i i}$	Hole ionization coefficient	cm^{-1}
γ	Ratio of 1st part of time step to total time step	none
γ_{n}	Fermi-Dirac degeneracy factor for electrons	none
γ_{p}	Fermi-Dirac degeneracy factor for holes	none

Symbol	Definition	Units
Γ_{n}	Electron field-effect function	none
Γ_{n}	Probability per unit length for electron injection into the gate	cm^{-1}
Γ_{p}	Hole field-effect function	none
Γ_{p}	Probability per unit length for hole injection into the gate	cm^{-1}
Δ_{12}	Potential difference between nodes 1 and 2 scaled by $k T / q$	none
Δn	Update to electron concentration	\#/um
Δp	Update to hole concentration	\#/um
$\Delta \psi$	Update to potential	V
ΔQ_{G}	Incremental gate charge	$\mathrm{C} / \mu \mathrm{m}$
Δt_{k}	Size of time step k	s
Δt_{k+1}	Size of time step $k+1$	s
ΔV	Incremental voltage	V
$\Delta \phi_{b}$	Change in barrier height due to barrier lowering	V
$\Delta \psi_{i n t}$	Potential difference between the point (x, y) and the interface	V
ε	Dielectric permittivity	F / cm
ε_{1}	Dielectric permittivity in material 1	F/cm
ε_{2}	Dielectric permittivity in material 2	F / cm
$\varepsilon_{\text {insul }}$	Insulator dielectric permittivity	F / cm
$\varepsilon_{\text {sem } i}$	Semiconductor dielectric permittivity	F/cm
η_{n}	Conduction band to electron Fermi level energy difference, scaled	none
η_{p}	Valence band to hole Fermi level energy difference, scaled	none
θ	Intrinsic work function	V
λ	Thermal conductivity	W/cm-K
λ_{n}	Optical phonon mean free path for electrons	cm

Symbol	Definition	Units
λ_{p}	Optical phonon mean free path for holes	cm
$\mu_{0 n}$	Low field electron mobility	$\mathrm{cm}^{2} / \mathrm{V}$-s
$\mu_{0 p}$	Low field hole mobility	$\mathrm{cm}^{2} / \mathrm{V}$-s
$\mu_{a c, n}$	Electron mobility accounting for acoustic phonon scattering	$\mathrm{cm}^{2} / \mathrm{V}$-s
$\mu_{a c, p}$	Hole mobility accounting for acoustic phonon scattering	$\mathrm{cm}^{2} / \mathrm{V}$-s
$\mu_{b, n}$	Electron bulk mobility	$\mathrm{cm}^{2} / \mathrm{V}$-s
$\mu_{b, p}$	Hole bulk mobility	$\mathrm{cm}^{2} / \mathrm{V}$-s
$\mu_{e f f, n}$	Effective surface mobility for electrons	$\mathrm{cm}^{2} / \mathrm{V}$-s
$\mu_{\text {eff, } p}$	Effective surface mobility for holes	$\mathrm{cm}^{2} / \mathrm{V}$-s
μ_{n}	Electron mobility	$\mathrm{cm}^{2} / \mathrm{V}$-s
$\mu_{n_{i j}}$	Electron mobility between nodes i and j	$\mathrm{cm}^{2} / \mathrm{V}$-s
$\mu_{n, p}^{C}$	Electron or hole mobility including carrier-carrier scattering effects	$\mathrm{cm}^{2} / \mathrm{V}$-s
$\mu_{n, p}^{I}$	Electron or hole mobility including ionized impurity scattering effects	$\mathrm{cm}^{2} / \mathrm{V}$-s
$\mu_{n, p}^{L}$	Electron or hole mobility including lattice scattering effects	$\mathrm{cm}^{2} / \mathrm{V}$-s
μ_{p}	Hole mobility	$\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$
$\mu_{p_{i j}}$	Hole mobility between nodes i and j	$\mathrm{cm}^{2} / \mathrm{V}$-s
$\mu_{s r, n}$	Electron mobility accounting for surface roughness	$\mathrm{cm}^{2} / \mathrm{V}$-s
$\mu_{s r, p}$	Hole mobility accounting for surface roughness	$\mathrm{cm}^{2} / \mathrm{V}$-s
$\mu_{S, n}$	Electron mobility including surface scattering effects	$\mathrm{cm}^{2} / \mathrm{V}$-s
$\mu_{S, p}$	Hole mobility including surface scattering effects	$\mathrm{cm}^{2} / \mathrm{V}$-s
π	Numeric constant (3.14159265)	none
ρ	Mass density for a material	$\mathrm{g} / \mathrm{cm}^{3}$
ρ_{F}	Fixed interface charge concentration	$\mathrm{C} / \mathrm{cm}^{3}$
$\sigma_{a, n}$	Electron acceptor interface trap charge density	$\mathrm{C} / \mathrm{cm}^{2}$
$\sigma_{a, p}$	Hole acceptor interface trap charge density	$\mathrm{C} / \mathrm{cm}^{2}$

Symbol	\quad Definition	Units
$\sigma_{d, n}$	Electron donor interface trap charge density	$\mathrm{C} / \mathrm{cm}^{2}$
$\sigma_{d, p}$	Hole donor interface trap charge density	$\mathrm{C} / \mathrm{cm}^{2}$
σ_{f}	Fixed surface charge density	$\mathrm{C} / \mathrm{cm}^{2}$
σ_{s}	Surface charge density	$\mathrm{C} / \mathrm{cm}^{2}$
τ_{i}	Relative local truncation error for node i	none
τ_{n}	Electron lifetime	s
τ_{p}	Hole lifetime	s
$\tau_{n}^{e f f}$	Effective electron lifetime	s
$\tau_{p}^{e f f}$	Effective hole lifetime	s
$\tau_{w n}$	Electron energy relaxation time	s
$\tau_{w p}$	Hole energy relaxation time	s
ϕ	Semiconductor contact voltage	V
$\phi_{b n}$	Barrier height for electrons	V
$\phi_{b p}$	Barrier height for holes	V
ϕ_{k}	Potential at time t_{k}	V
ϕ_{n}	Electron quasi-Fermi potential	V
ϕ_{p}	Hole quasi-Fermi potential	V
$\Phi_{b, n}$	Semiconductor-insulator potential barrier for electrons	V
$\Phi_{b, p}$	Semiconductor-insulator potential barrier for holes	V
χ	Electron affinity	V
$\psi_{i 0}$	DC component of potential at node i	V
$\psi_{s s u l}$	Insulator electron affinity	Semiconductor electron affinity
Ψ_{i}	Potential	V
$\tilde{\psi}$	AC component of potential	V
ψ_{0}	Initial potential	V
ψ_{i}	Potential at node i (or in material i)	

Symbol	Definition	Units
$\Psi_{\text {intrinsic }}$	Intrinsic Fermi potential	V
Ψ_{p}	Potential at point p	V
Ψ_{s}	Surface potential	V
$\Psi_{S_{e f f}}$	Effective surface potential	V
$\Psi_{b, n}$	Semiconductor-insulator interface barrier for electrons	V
$\Psi_{b, p}$	Semiconductor-insulator interface barrier for holes	V
ω	Radial frequency	s^{-1}

References

[1] A. S. Grove, Physics and Technology of Semiconductor Devices (New York: John Wiley \& Sons, 1967).
[2] D. J. Roulston, N. D. Arora, and S. G. Chamberlain, "Modeling and Measurement of Minority-Carrier Lifetime Versus Doping in Diffused Layers of n ${ }^{+}$-p Silicon Diodes," IEEE Trans. Electron Devices, Vol. ED-29, pp. 284-291, Feb. 1982.
[3] G. Paasch and H. Ubensee, "A Modified Local Density Approximation: Electron Density in Inversion Layers," Phys. Stat. Sol. B, Vol. 113, pp. 165-178 (1982).
[4] M. Ieong, R. Logan, and J. Slinkman, "Efficient Quantum Correction Model for Multi-dimensional CMOS Simulations," SISPAD 1998 Proceedings, pp. 129-132 (1998).
[5] G. A. M. Hurkx, D. B. M. Klaassen, and M. P. G. Knuvers, "A New Recombination Model for Device Simulation Including Tunneling," IEEE Trans. Electron Devices, Vol. ED-39, pp. 331-338, Feb. 1992.
[6] M.K. Ieong, P.M. Solomon, S.E. Laux, H.-S. P. Wong, and D. Chidambarrao, "Comparison of Raised and Schottky Source/Drain MOSFETs Using a Novel Tunneling Contact Model," Proceedings of IEDM 1998, 733 (1998).
[7] K. Matsuzawa, K. Uchida, and A. Hishiyama, "A Unified Simulation of Schottky and Ohmic Contacts," IEEE Trans. Elec. Devices, 47, 103 (2000)
[8] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: John Wiley \& Sons, 1981).
[9] J. W. Slotboom, "The pn Product in Silicon," Solid-State Electronics, 20, pp. 279-283, 1977.
[10] S.C.Jain and D.J.Roulston, "A simple expression for bandgap narrowing (BGN) in heavily-doped Si, Ge, and $\mathrm{Ge}(\mathrm{x}) \mathrm{Si}(1-\mathrm{x})$ strained layers", Solid-State Electronics, Vol. 34, pp. 453-465, 1991.
[11] C.Persson, U. Lindefelt and B.E. Sernelius, "Band gap narrowing in n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si", Journal of Applied Physics, Vol. 86, No. 8, pp. 4419-4427, 1999.
[12] Zhiping Yu and R. W. Dutton, SEDAN III - A Generalized Electronic Material Device Analysis Program, Stanford Electronics Laboratory Technical Report, Stanford University, July 1985.
[13] W. B. Joyce and R. W. Dixon, "Analytic Approximation for the Fermi Energy of an Ideal Fermi Gas," Appl. Phys. Lett., Vol. 31, pp. 354-356, 1977.
[14] R. C. Jaeger and F. H. Gaensslen, "Simulation of Impurity Freezeout through Numerical Solution of Poisson's Equation and Application to MOS Device Behavior," IEEE Trans. Electron Devices, Vol. ED-27, pp. 914-920, May 1980.
[15] M.R. Shaheed, C.M. Maziar, "A Physically Based Model for Carrier Freeze-out in Si- and SiGe-Base Bipolar Transistors Suitable for Implementation in Device Simulators," 1994 Bipolar/BiCMOS Circuits \& Technology Meeting, pp. 191-194.
[16] S. Selberherr, "MOS Device Modeling at 77K," IEEE Trans. Electron Devices, Vol. 36, No. 8, pp. 1464-1474, Aug. 1989.
[17] D. M. Caughey and R. E. Thomas, "Carrier Mobilities in Silicon Empirically Related to Doping and Field," Proc. IEEE, Vol. 55, pp. 2192-2193, 1967.
[18] S. Selberherr, "Process and Device Modeling for VLSI," Microelectron. Reliab., Vol. 24, No. 2, pp. 225-257, 1984.
[19] N. D. Arora, J. R. Hauser, and D. J. Roulston, "Electron and Hole Mobilities in Silicon as a Function of Concentration and Temperature," IEEE Trans. Electron Devices, Vol. ED-29, pp. 292-295, Feb. 1982.
[20] J. M. Dorkel and Ph. Leturcq, "Carrier Mobilities in Silicon Semi-Empirically Related to Temperature, Doping, and Injection Level," Solid-State Electronics, 24, pp. 821-825, 1981.
[21] D. B. M. Klaassen, "A Unified Mobility Model for Device Simulation I," Solid-State Electronics, Vol. 35, pp. 953-959, 1992.
[22] D. B. M. Klaassen, "A Unified Mobility Model for Device Simulation II," Solid-State Electronics, Vol. 35, pp. 961-967, 1992.
[23] G. Masetti, M. Severi, and S. Solmi, "Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus-, and Boron-Doped Silicon," IEEE Trans. Electron Devices, Vol. ED-30, pp. 746-769, July 1983.
[24] D. B. M. Klaassen, J. W. Slotboom and H. C. de Graaff, "Unified Apparent Bandgap Narrowing in n- and p-type Silicon," Solid-State Electronics, 35, pp. 125-129, 1992.
[25] J. T. Watt, "Improved Surface Mobility Models in PISCES," presented at Computer-Aided Design of IC Fabrication Processes, Stanford University, Aug. 6, 1987.
[26] J. T. Watt, "Surface Mobility Modeling," presented at Computer-Aided Design of IC Fabrication Processes, Stanford University, Aug. 3, 1988.
[27] K. Yamaguchi, "Field-Dependent Mobility Model for Two-Dimensional Numerical Analysis of MOSFET's," IEEE Trans. Electron Devices, Vol. ED-26, pp. 1068-1074, July 1979.
[28] K. Yamaguchi, "A Mobility Model for Carriers in the MOS Inversion Layer," IEEE Trans. Electron Devices, Vol. ED-30, pp. 658-663, June 1983.
[29] C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, "A Physically Based Mobility Model for Numerical Simulation of Nonplanar Devices," IEEE Trans. Computer-Aided Design, Vol. 7, No.11, pp.1164-1170, Nov. 1988.
[30] J. J. Barnes, R. J. Lomax, and G. I. Haddad, "Finite-Element Simulation of GaAs MESFET's with Lateral Doping Profiles and Sub-Micron Gates," IEEE Trans. Electron Devices, Vol. ED-23, pp. 1042-1048, Sept. 1976.
[31] M. A. Littlejohn, J. R. Hauser, and T. H. Glisson, "Velocity-Field Characteristics of GaAs with ${ }_{6}{ }^{c}-L_{6}^{c}-X_{6}^{c}$ Conduction Band Ordering," J. Appl. Phys., Vol. 48, No. 11, pp. 4587-4590, Nov. 1977.
[32] D. L. Scharfetter and H. K. Gummel, "Large-Signal Analysis of a Silicon Read Diode Oscillator," IEEE Trans. Electron Devices, Vol. ED-16, pp. 64-77, Jan. 1969.
[33] S. E. Laux and R. G. Byrnes, "Semiconductor Device Simulation Using Generalized Mobility Models," IBM J. Res. Dev., Vol. 29, No. 3, pp. 289-301, May 1985.
[34] C. R. Crowell and S. M. Sze, "Current Transport in Metal-Semiconductor Barriers," Solid-State Electronics, 9, pp. 1035-1048, 1966.
[35] J. M. Andrews and M. P. Lepselter, "Reverse Current-Voltage Characteristics of Metal-Silicide Schottky Diodes," Solid-State Electronics, 13, pp. 10111023, 1970.
[36] E. Sangiorgi, C. S. Rafferty, M. R. Pinto, and R. W. Dutton, "Non-Planar Schottky Device Analysis and Applications," Proceedings International Conference on Simulation of Semiconductor Devices and Processes, Swansea, U.K., July 1984.
[37] C. S. Rafferty, M. R. Pinto, and R. W. Dutton, "Iterative Methods in Semiconductor Device Simulation," IEEE Trans. Electron Devices, Vol. ED-32, pp. 2018-2027, Oct. 1985.
[38] M. R. Pinto and R. W. Dutton, "Accurate Trigger Condition Analysis for CMOS Latch-Up," IEEE Electron Device Lett., Vol. EDL-6, Feb. 1985.
[39] R. S. Varga, Matrix Iterative Analysis (Engelwood Cliffs, NJ: PrenticeHall, 1962).
[40] C. H. Price, "Two Dimensional Numerical Simulation of Semiconductor Devices," Doctoral dissertation, Stanford University, 1982.
[41] D. J. Rose and R. E. Bank, Global Approximate Newton Methods, Numerische Mathematik, 37, pp. 279-295, 1981.
[42] B. A. Carré, Computer Journal, 4, p. 73, 1961.
[43] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, Department of Computer Science Technical Report 112, Yale University, 1977.
[44] R. E. Bank and A. H. Sherman, "A Refinement Algorithm and Dynamic Data Structure for Finite Element Meshes," University of Texas at Austin Technical Report CS TR-159/CNA TR-166, Oct. 1980.
[45] B. S. Baker, E. H. Grosse, and C. S. Rafferty. "Non-Obtuse Triangulation of General Polygons," to be published.
[46] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood Cliffs, NJ: Prentice-Hall, 1971).
[47] A. De Mari, "An Accurate Numerical One-Dimensional Solution of the p n Junction Under Arbitrary Transient Conditions," Solid-State Electronics, 11, pp. 1021-1053, 1968.
[48] J. Lambert, Computational Methods in Ordinary Differential Equations (New York: John Wiley and Sons, 1973).
[49] H. Iwai, M. R. Pinto, C. S. Rafferty, J. E. Oristian, and R. W. Dutton, "Velocity Saturation Effect on Short Channel MOS Transistor Capacitance," IEEE Electron Device Lett., Vol. EDL-6, March 1985.
[50] S. E. Laux, "Techniques for Small-Signal Analysis of Semiconductor Devices," IEEE Trans. Electron Devices, Vol. ED-32, pp. 2028-2037, Oct. 1985.
[51] S. Tam, P. Ko, C. Hu, and R. S. Muller, "Correlation between Substrate and Gate Currents in MOSFETs," IEEE Trans. Electron Devices, Vol. ED-29, pp. 1740-1744, Nov. 1982.
[52] S. Tam, P. Ko and C. Hu, "Lucky-Electron Model of Channel Hot-Electron Injection in MOSFETs," IEEE Trans. Electron Devices, Vol. ED-31, pp. 11161125, Sept. 1984.
[53] S. Selberherr, Analysis and Simulation of Semiconductor Devices (WienNew York: Springer-Verlag, 1984).
[54] R. VanOverstraeten and H. Deman, "Measurement of the Ionization Rates in Diffused Silicon p-n Junctions," Solid-State Electronics, 13, pp. 583-608, 1970.
[55] C. Fiegna, F. Venturi, M. Melanotte, E. Sangiorgi, and B. Ricco, "Simple and Efficient Modeling of EPROM Writing," IEEE Trans. Electron Devices, Vol. ED-38, pp. 603-610, March 1991.
[56] E. O. Kane, "Zener Tunneling in Semiconductors," J. Phys. Chem. Solids, Vol. 12, pp. 181-188, 1959.
[57] D. Chen, E. C. Kan, U. Ravaioli, Z. Yu, and R. W. Dutton, "A Self-Consistent Discretization Scheme for Current and Energy Transport Equations," SISDEP'91, Zurich, Switzerland, Sept. 1991.
[58] D. Chen, E. C. Kan, U. Ravaioli, C-W. Shu, and R. W. Dutton, "An Detonation Improved Energy Transport Model Including Nonparabolocity and NonMaxwellian Distribution Effects," IEEE Electron Device Lett., Vol. EDL-13, Jan. 1992.E.
[59] D. Chen, E. Sangiorgi, M. R. Pinto, E. C. Kan, U. Ravaioli, and R.W. Dutton, "Analysis of the Spurious Velocity Overshoot in Hydrodynamic Simulations," NUPAD-IV, Seattle, WA, 1992.
[60] A. Forghieri, R. Guerreri, P. Ciampolini, A. Gnudi, M. Rudan, and G. Baccarani, "A New Discretization Strategy of the Semiconductor Equations Com-
prising Momentum and Energy Balance," IEEE Trans. Computer-Aided Design, Vol. 7, No. 2, Feb. 1988.
[61] B. Meinerzhagen and W. L. Eng1, "The Influence of the Thermal Equilibrium Approximation on the Accuracy of Classical Two-Dimensional Numerical Modeling of Silicon Submicrometer MOS Transistors," IEEE Trans. Electron Devices, Vol. 35, No.5, pp. 689-697, May 1988.
[62] V. Axelrad, "A General Purpose Device Simulator Including Carrier Energy Balance Based on PISCES-2B," International Workshop on VLSI Process and Device Modeling, Oiso, Japan, May 1991.
[63] V. Axelrad, G. Rollins, S. Motzny, and M. Jaczynski, "Implementation and Applications of the Hydrodynamic Model in a General Purpose Device Simulator," SISDEP'91, Zurich, Switzerland, Sept. 1991.
[64] J. W. Slotboom, G. Streutker, G. J. T. Davids and P. B. Hartog, "Surface Impact Ionization in Silicon Devices," IEDM Tech. Dig., pp. 494-497, 1987.
[65] J. G. Rollins and J. Choma Jr., "Mixed-Mode PISCES-SPICE Coupled Circuit and Device Solver," IEEE Trans. Computer-Aided Design, Vol. 7, No. 8, pp. 862-867, Aug. 1988.
[66] R. Klein, G. Lecarval, J. Gautier, B. Yachou, S. Motzny, and G. Rollins, "Implementation of the Heat Equation in a General-Purpose Device Simulator PISCES-2B," submitted for publication.
[67] S. S. Iyer, G. L. Patton, J. M. C. Stork, B. S. Meyerson, and D. L. Harame, "Heterojunction Bipolar Transistors Using Si-Ge Alloys," IEEE Trans. Electron Devices, Vol. 36, pp. 2043-2064, Oct. 1989.
[68] M. Shur, Physics of Semiconductor Devices (Englewood Cliffs, NJ: Prentice Hall, 1990).
[69] C. M. Snowden and D. Loret."Two-Dimensional Hot-Electron Models for Short-Gate-Length GaAs MESFET's," IEEE Trans. Electron Devices, Vol. ED34, No. 2, pp. 212-223, Feb. 1987.
[70] Y-k. Feng and A. Hintz, "Simulation of Submicrometer GaAs MESFET's Using a Full Dynamic Transport Model," IEEE Trans. Electron Devices, Vol. 35, No. 9, pp. 1419-1431, Sept. 1988.
[71] M. V. Fischetti, "Monte Carlo Simulation of Transport in Technologically Significant Semiconductors of the Diamond and Zinc-Blende Structures-Part I: Homogeneous Transport," IEEE Trans. Electron Devices, Vol. 38, pp. 634-649, March 1991.
[72] P. A. Sandborn, J. R. East and G. Haddad, "Quasi-Two-Dimensional Modeling of GaAs MESFET's," IEEE Trans. Electron Devices, Vol. ED-34, No. 5, pp. 985-991, May 1987.
[73] V. Agostinelli, T. Bordelon, W. Wang, C. Yeap, and A. Tasch, "An EnergyDependent Two-Dimensional Substrate Current Model for the Simulation of Submicron MOSFET's," IEDL, Vol. 13, No. 11, pp. 554-556, 1992.
[74] M. Born and E. Wolf, Principles of Optics (New York: Pergamon, 1980).
[75] M. C. Vecchi, M. Rudan, and G. Soncini, "Numerical Simulation of Optical Devices," IEEE Trans. on Comp. Design, Vol. 12, pp.1557-1569, Oct. 1993.
[76] E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
[77] C. M. Wolfe, et al., Physical Properties of Semiconductors (Englewood Cliffs, NJ: Prentice-Hall, 1989).
[78] B. K. Ridley, Quantum Process in Semiconductors (Oxford, England: Oxford Press, 1989).
[79] F. Urbach, Phys. Rev., 140, A2059, 1965.
[80] G. D. Cody, Phys. Rev. Lett., Vol. 47, No. 20, pp. 1480, 1981.
[81] U. Lindefelt, "Current-Density Relations for Nonisothermal Modeling of Degenerate Heterostructure Devices," J. Appl. Phys., pp. 958-966, Jan. 1994.
[82] U. Lindefelt, "Equations for Electrical and Electrothermal Simulation of Anisotropic Semiconductors," J. Appl. Phys., pp. 4162-4167, Oct. 1994.
[83] E. Velmre, et al., Proceedings of Simulation of Semiconductor Devices and Processes, Vienna, Austria, pp. 433-440, Sept. 1993.
[84] U. Lindefelt, "Heat Generation in Semicomductors," J. Appl. Phys., pp. 942-957, Jan. 1994.
[85] H. Shin, A. F. Tasch, C. M. Mazier, and S. K. Banerjee, "A New Approach to Verify and Derive a Transverse-Field-Dependent Mobility Model for Electrons in MOS Inversion Layers," IEEE Trans. Electron Devices, Vol. 36 pp. 1117-1123, June 1989.
[86] V. M. Agostinelli, H. Shin, and A. F. Tasch, "A Comprehensive Model for Inversion Layer Hole Mobility for Simulation for Submicrometer MOSFET's," Vol. 38, pp. 151-159, Jan. 1991.
[87] S. A. Mujtaba, R. W. Dutton, and D. L. Scharfetter, "Semi-Empirical Local NMOS Mobility Model for 2-D Device Simulation Incorporating Screened Minority Impurity Scattering," International Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits: NUPAD V, Honolulu, Hawaii, USA, June 5-6, 1994.
[88] K. Hess and G. J. Iafrate, "Modern Aspects of Heterojunction Transport Theory," Heterojunction Band Discontinuities, Edited by F. Capasso and G. Margaritondo (Amsterdam: Elsevier Science Publications), pp. 469, 1987.
[89] S. Luryi, "Hot Electron Injunction and Resonant Tunneling Heterojunction Devices," Heterojunction Band Discontinuities, Edited by F. Capasso and G. Margaritondo (Amsterdam: Elsevier Science Publications), pp. 526, 1987.
[90] M. J. van Dort, P. H. Woerlee, and A. J. Walker, "A Simple Model for Quantization Effects in Heavily-Doped Silicon MOSFET's at Inversion Conditions," Solid-State Electronics, 37, pp. 411-414, 1994.
[91] P. Vande Voorde, P. B. Griffin, Z. Yu, S.-Y. Oh, and R. W. Dutton, "Accurate Doping Profile Determination Using TED/QM Models Extensible to Sub-Quarter Micron nMOSFETs," IEDM Tech. Dig., pp. 811-814, 1996.
[92] J.S. Blakemore, "Semiconducting and Other Major Properties of GaAs," Journal of Applied Physics, 53(10), October 1982.
[93] M. Shur, Physics of Semiconductor Devices, pp 41, Prentice Hall 1990.
[94] M. Shur, Physics of Semiconductor Devices, Appendixes 8-12, Prentice Hall 1990.
[95] V. W. L. Chin, "Calculation of Carrier Concentrations and Fermi Energies in Intrinsic and Donor-Doped $\operatorname{In}_{1-X} G a_{X} A s$," Solid-State Electronics, 34(11), pp. 1187-1190, 1991.
[96] Landolt-Bornstein, "Numerical Data and Functional Relationships in Science and Technology," 17e. Springer-Verlag, Berlin, 1982.
[97] V. W. L. Chin, T. L. Tansley, "Alloy Scattering and Lattice Strain Effects on the Electron Mobility in $I n_{1-X} G a_{X} A s$ ", Solid-State Electronics, 34(10), pp. 1055-1063, 1991.
$[98]$ J. R. Hauser, M. A. Littlejohn, T. H. Glisson, "Velocity-Field Relationship of InAs-InP Alloys Including the Effects of Alloy Scattering," Applied Physics Letters, 28(8), pp. 458-461, 1976.
[99] Choh-Fei Yeap, "UT-MINIMOS: A Hierarchical Transport Model Based Simulator for Deep Submicron Silicon Devices," the University of Texas at Austin, 1995.
[100] K.M. Cham, S-Y Oh, D. Chin, J.L. Moll, Computer-Aided Design and VLSI Device Development, 100, (Hingham, Massachhetts, Kluwer Academic Publishers, 1986).
[101] P. Vande Voorde, Private Communication, 1991.
[102] M.N. Darwish, J.L. Lentz, M.R. Pinto, P.M. Zeitzoff, T.J. Krutsick, and H.H. Vuong, "An Improved Electron and Hole Mobility Model for General Purpose Device Simulation," IEEE Trans. on Electron Devices, Vol. 44, No. 9, pp. 1529-1538, Sept., 1997.
[103] S.A. Mujtaba, "Advanced Mobility Models for Design and Simulation of Deep Submicrometer MOSFETs", Technical Report No. ICL 96-053, Stanford University (1995)
[104] J.L. Egley and D. Chidambarrao, "Strain Effects on Device Characteristics: Implementation in Drift-Diffusion Simulators," Solid-State Electronics, 36(12), pp. 1653-1664, 1993.
[105] G.L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors, Wiley, New York (1974).
[106] G. Ottaviani, L. Reggiani, C. Canali, F. Nava, and A. Alberigi-Quaranta, "Hole drift velocity in silicon," Phys. Rev B, pp. 3318-3329 (1975).
[107] M. Shirahata, H. Kusano, N. Kotani, S. Kusanoki, and Y. Akasaka, "A Mobility Model Including the Screening Effect in MOS Inversion Layer," IEEE Transactions on Computer-Aided Design, pp. 1114-1119 (1992).
[108] S. Hareland, M. Manassian, W.-. Shih, S. Jallepalli, H. Wang, G. Chindalore, A. Tasch C. Maziar, "Computationally Efficient Models for Quantization Effects in MOS Electron and Hole Accumulation Layers MOS", IEEE Transaction on Electron Devices, pp. 1487-1492, July 1998.
[109] W. Harrison, "Tunneling from an independent-particle point of view," Phys. Rev., (1961).
[110] J. Shiely, "Simulation of Tunneling in MOS Devices," Ph.D. Dissertation, Duke University, 1999.
[111] K.H. Gundlach, Solid State Electron. 949 (1966).
[112] W.W. Lui and M. Fukuma, "Exact solution of the Schrodinger equation across an arbitrary one-dimensional piecewise-linear potential barrier," J. Appl. Phys 60, pp. 1555-1559 (1986).
[113] M.V. Fischetti and S.E. Laux, "Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys," Journal of Applied Physics, pp. 2234-2252, Aug. 1996.
[114] C.Jungemann, R.Thoma and W.L.Engl, "A Soft Threshold Lucky Electron Model for Efficient and Accurate Numerical Device Simulation,"Solid-State Electronics, Vol. 39, No. 7, pp.1079-1086, 1996.
[115] M. Valdinoci, D. Ventura, M.C. Vecchi, M. Rudan, G. Baccarani, F. Illien, A. Stricker and L. Zullino, "Impact-ionization in silicon at large operating temperature," International Conference on Simulation of Semiconductor Processes and Devices, Sept. 6-8, 1999.
[116] K. Varahramayan and E. J. Verrt, "A Model for Specific Contact Resistance Applicable for Titanium Silicide-Silicon Contacts," Solid-State Electronics, Vol. 39, No. 11, pp.1601-1607, 1996.
[117] J. Kedzierski, P. Xuan, E.H. Anderson, J. Bokor, T. King, C. Hu, "Complementary silicide source/drain thin-body MOSFETs for the 20nm gate length regime," IEDM Tech. Dig., pp. 57-60, 2000.

Input Statement Descriptions

Introduction

The Medici program is directed via input statements. These statements may appear in a command input file or may be entered interactively from the terminal.

This chapter describes the statements recognized by Medici. The first section gives the general format of the input and defines the syntax used in the detailed documentation contained in the following sections. At the end of this chapter is a summary of the input statements.

Note:

Examples used as illustrations in this manual are not intended for use with actual simulations. They are presented as guidelines only.

Input Statements

This section describes the input statements and includes format, input limits, and syntax.

Format

Medici input statements are specified in a free format, and have the following characteristics:

- Each statement consists of a statement name followed by a list of parameter names and values.
- A statement may occupy more than one line by using continuation lines.
- An input line is a continuation line if the first nonblank character is a plus (+) (not available during interactive input mode) or if the last nonblank character of the previous input line was a plus (+).

Note:

Statements may only be broken for continuation between parameter specifications.

- Only the first 80 characters (including blanks) of each line are processed. If the first 80 characters of a line are all blank, the line is ignored.
- Nonprinting characters such as backspace, horizontal tabulation, line feed, form feed, and carriage return are converted to blanks.

Input Limits

The input to Medici may consist of the following, at most:

- 1000 input statements
- 2000 input lines (including blank lines)
- 60,000 characters used to specify the input statements

These limits apply to the complete input, including statements entered interactively and through CALL statements.

Syntax

Valid statement and parameter names are those defined by the Medici keyfiles described in the Introduction. Each name consists of one to eight consecutive nonblank characters. Names may be abbreviated by omitting characters from the end, provided that the abbreviation is unambiguous.

Appending It is permissible to append extra characters to a name. For example, I.P and I. PRINTALL are both acceptable statement names, but I. is not because it is ambiguous (it could be I.PRINT or I.SAVE), and I. PALL is not because it does not match a valid statement name.

Statements with Parameters

Every statement begins with a statement name, which may be followed by parameter names with associated values. Some parameters must be assigned values; in this case the value is separated from the parameter name by an equals character ($=$).

Parameter name/value pairs are separated from the statement name and from each other by blanks. Blanks are permitted anywhere, except within a name or a value.

Statements Some statements, such as the BATCH, RETURN, and STOP statements, have no without
Parameters associated parameters. In this case the first input line of the statement consists of the statement name followed by a character value, while each continuation line contains only a character value.

The character value on each input line may be either a single character expression (see "Character Expressions," p. 3-9) or an arbitrary character string in which the first nonblank character is not a quote (") or a commercial at (@).

Parameters

Parameters in Medici may be one of the following four types:

- Logical
- Numerical
- Array
- Character

The syntax for specifying the value of a parameter depends on its type.

Logical

Logical parameters have specific values which are assigned by various methods.

True or False
Value

A logical parameter has a value of "true" or "false". The value is "true" if the parameter name appears by itself. The value is "false" if the parameter name is preceded by a $N O T$ character (^, !, or \#).

A logical parameter may also be assigned a logical value by following the parameter name with an equals character (=) and the logical value. Blanks on either side of the equals character are ignored.

The logical value may be specified with any valid numerical expression (see "Numerical Expressions," p. 3-5). The logical value is negated if the parameter name is preceded by a $N O T$ character ($\wedge,!$, or \#).

Numerical

A numerical parameter is assigned a numerical value by following the parameter name with an equals character (=) and the numerical value. Blanks on either side of the equals character are ignored. The numerical value may be specified with any valid numerical expression.

Array

The value of an array-type parameter consists of a list of one or more numerical values.

Format The general form of an array specification is

$$
\operatorname{PARM}(i)=\left(\left\langle V_{1}\right\rangle,\left\langle V_{2}\right\rangle, \ldots,\left\langle V_{n}\right\rangle\right)
$$

where $\left\langle V_{1}\right\rangle,\left\langle V_{2}\right\rangle$, and $\left\langle V_{n}\right\rangle$ are numerical values. The numerical values are enclosed in parentheses and separated by commas and/or blanks. If only one list value is specified, the parentheses may be omitted.

The index i specifies that the first value in the list should be assigned to element number i of the array; subsequent list values are assigned to subsequent array elements.

Each array specification must be contained on a single input line. To specify large arrays, increment the starting array index as shown in the following example:

```
\(\operatorname{PARM}(01)=\left(\left\langle V_{01}\right\rangle,\left\langle V_{02}\right\rangle, \ldots,\left\langle V_{10}\right\rangle\right)+\)
\(\operatorname{PARM}(11)=\left(\left\langle V_{11}\right\rangle,\left\langle V_{12}\right\rangle, \ldots,\left\langle V_{20}\right\rangle\right)+\)
PARM (21) \(=\left(\left\langle V_{21}\right\rangle,\left\langle V_{22}\right\rangle, \ldots,\left\langle V_{30}\right\rangle\right)+\)
\(\operatorname{PARM}(31)=(\ldots\)
```

The index i and its enclosing parentheses may be omitted, in which case the assignment of list values starts with the first element of the array. The index i and the numerical list values may be specified with any valid numerical expressions.

A pair of commas (possibly separated by one or more blanks) in the value list denotes a null list value and leaves the corresponding array element unspecified.

Character

Character parameters have specific values which are assigned by various methods.

Value A character parameter assumes the character value it is assigned by following the parameter name with an equals character ($=$) and the character value. Blanks on either side of the equals character are ignored. The character value may be specified with any valid character expression (see "Character Expressions," p. 3$9)$.

Length The length of a character value may not exceed 80 characters.

Numerical Expressions

Numerical expressions may be used to specify the indices for array parameters and the values of logical, numerical, and array parameters. Blanks are not allowed in numerical expressions because blanks are used to separate parameter names and values.

Components and Use

Numerical expressions may contain the components listed in the following sections.

Numerical Values Numerical values may be used as arguments to arithmetic operators, relational operators, numerical functions, and logical functions. Numerical constants may be specified with any valid FORTRAN integer, fixed point, or floating point decimal number representation.

As an example, the following are equivalent valid numerical constants:

```
. }
0.5
0.005E+2
+05D-1
```

Logical Values Logical values may be used as arguments to logical operators and logical functions. The following logical constants are available:

true values false values

true false
$t \quad f$
yes no
$\mathrm{y} \quad \mathrm{n}$

Assigned Names

Character Character expressions may be used as arguments to relational operators and Expressions

Assigned names may be used in place of numerical or logical values as long as the assigned names are of type numerical or logical (see "ASSIGN," p. 3-433). logical functions. Character expressions may also be used as arguments to conversion functions as long as the values of the expressions represent valid numerical or logical values.

Delimiters The following delimiters establish precedence and separate function arguments:
() parentheses for delimiting groups
; semicolons for delimiting multiple arguments in functions

Arithmetic The following arithmetic operators operate on a pair of numerical values and Operators return a numerical value:

```
x+y addition
x-y subtraction
x*y multiplication
x/y division ()
x** y exponentiation ()
```

Relational The following relational operators operate on a pair of numerical or character Operators values and return a logical value:

$$
\begin{array}{ll}
x<y & \text { less than } \\
x<=y & \text { less than or equal to } \\
x=y & \text { equal to } \\
x \wedge=y & \text { not equal to } \\
x>y & \text { greater than } \\
x>=y & \text { greater than or equal to }
\end{array}
$$

Logical Operators

The following logical operators operate on a single logical value or on a pair of logical values and return a logical value:

```
^ x logical negation (not)
x&y logical and
x|y logical or
```

Numerical Functions

The following numerical functions operate on numerical values and return a numerical value:

$\exp (x)$	exponential
$\log (x)$	natural (base $e) \operatorname{logarithm}(x>0)$
$\log 10(x)$	common (base 10) logarithm $(x>0)$
$\operatorname{erf}(x)$	error function
$\operatorname{erfc}(x)$	complementary error function

```
sqrt(x) square root (x\geq0)
sin}(x)\quad\mathrm{ sine ( }x\mathrm{ in radians)
cos(x) cosine (x in radians)
tan (x) tangent (x in radians)
asin(x) arcsine ( }|x|\leq1;-\pi/2\leq\operatorname{asin}(x)\leq\pi/2
acos(x) arccosine ( }|x|\leq1;0\leq\operatorname{acos}(x)\leq\pi
atan(x) arctangent ( }-\pi/2\leq\operatorname{atan}(x)\leq\pi/2
atan2(x;y) arctangent (atan(x/y);y\not=0 if }x=0;-\pi<\operatorname{atan2(x;y)\leq\pi)
sinh(x) hyperbolic sine
cosh (x) hyperbolic cosine
tanh (x) hyperbolic tangent
abs (x) absolute value
int (x) truncation
nint (x) nearest whole number (int(x+.5) if x\leq0; int(x-.5) if
    x<0)
mod (x;y) remaindering (x-\operatorname{int}(x/y)\cdoty;y\not=0)
sign (x;y) transfer of sign ( |x| if y\geq0;-|x| if y<0)
dim(x;y) positive difference (x-y if }x>y;0\mathrm{ if }x\leqy
min}(x;y;\ldots) choosing smallest value (maximum of 80 arguments
max (x;y;\ldots) choosing largest value (maximum of 80 arguments)
```

Logical Functions

The following logical functions operate on a logical, numerical, or character value and return a logical value:
ltype (x) true if x is a logical value; false otherwise.
ntype (x) true if x is a numerical value; false otherwise.

Ctype (x) true if x is a character value; false otherwise.

Conversion Functions

The following conversion functions operate on a character value and return a logical or numerical value:
lval (x) convert the character value x to the equivalent logical value.
nval (x) convert the character value x to the equivalent numerical value.

Component Precedence

The components of numerical expressions are evaluated according to the following precedence order:

1. Groups delimited by parentheses are evaluated from inner to outer.
2. Functions are evaluated from left to right.
3. Exponentiation operators are evaluated from right to left.
4. Multiplication and division arithmetic operators are evaluated from left to right.
5. Addition and subtraction operators are evaluated from left to right.
6. Relational operators are evaluated from left to right.
7. Logical negation operators are evaluated from left to right.
8. Logical and operators are evaluated from left to right.
9. Logical or operators are evaluated from left to right.

Note:

Conversion occurs between logical and numerical values in some situations. Logical values are converted from true to 1.0 and from false to 0.0 when they appear as arguments to arithmetic operators, relational operators, and numerical functions. Numerical values are converted from nonzero to true and from zero to false when they appear as arguments to logical operators.

Examples of Numerical Expressions

The following table shows some examples of numerical expressions:

Expression	Value
($2+$ sqrt (5)) * (4/2** 3)	2.12
@VAL1* (@VAL2+1.E12)	2.2 E 13 (for $V A L 1=2, V A L 2=1 \mathrm{E} 13)$
2*3/4*5	7.5
2*3+4+exp (6/5)	13.32
$2<5$	true
"aa">"ab"	false
^(2<5) \|"aa">"ab"	false
($2<5$) \&true	true
$1+1$	(***invalid***-contains blanks)

In the above examples, VAL1 and VAL2 are assigned names, discussed with the description of the ASSIGN statement (see "Controlling Program Execution," p. 3398).

Character Expressions

Character expressions may be used to specify the values of character parameters and the contents of statements, such as the BATCH, RETURN, and STOP statements, which have no associated parameters.

They may also appear in numerical expressions (see "Numerical Expressions," p. 3-5) as arguments to relational operators, logical functions, and conversion functions.

Syntax

Character expressions may be either nonblank character strings or concatenations of any combination of character strings enclosed in quotes (") and assigned names. Blanks are only allowed in character expressions within quoted character strings. Character expressions may not be continued from one input line to the next.

Length

The length of a character expression may not exceed 80 characters after replacement of assigned names and removal of quotes around quoted character strings.

Character Expression Examples

The following table shows some examples of character expressions:

Expression	Value
string	string
"this string"	this string
"this"" string"	this string
@VAL1" string"	this string (for VALl="this")
@VAL1@VAL2	this string (for VALl="this", VAL2="string")
this string	(***invalid***—contains blanks and is not
	enclosed in quotes)
'this string'	$(* * * i n v a l i d * * * — c o n t a i n s ~ b l a n k s ~ a n d ~ i s ~ n o t ~$
	enclosed in quotes)

Statement Description Format

The description of each statement in this manual consists of a formatted list of the parameters associated with the statement. This list indicates whether the parameter is optional, and gives valid combinations of parameters. This is followed by a parameter definition table.

Parameter Definition Table

The parameter definition table includes the following:

- Parameter name
- Parameter type
- The parameter's function, and synonyms (if any) which can be used instead of the standard parameter name
- The default value that Medici uses for the parameter in the absence of a userspecified value
- Physical units (if any) for a numerical or array parameter

Parameter Type

The parameter type is specified as one of the following:

- logical - logical parameter
- number - numerical parameter
- array - array parameter
- char - character parameter

Example

The following is an example of the statement description format used in this manual.

```
X.MESH
    { LOCATION=<n> | ( {WIDTH=<n> | X.MAX=<n>} [X.MIN=<n>] ) }
    [ {NODE=<n> | N.SPACES=<n>} ]
    [ {SPACING=<n> | H2=<n>} ] [H1=<n>] [H3=<n>]
    [RATIO=<n>] [MIN.SPAC=<n>] [SUMMARY]
```

Parameter	Type	Definition	Default
LOCATION	number	The x location where a node is to be placed.	none
WIDTH	number	The width of the grid section.	none
X. MAX	number	The x location of the right edge of the grid section. synonyms \mathbf{X}. RIGHT	none

Syntax of Parameter Lists

The following special characters are used in the formatted parameter list that appears at the beginning of each statement description:

- Angle brackets < >
- Square brackets []
- Braces \{ \}
- Vertical bar
- Parentheses ()

Note:

The special characters, < >, [], |, \{ \}, and (), indicate parameter types, optional groups, alternate choices, and group hierarchy. They should not form part of the actual input to Medici (ie., special characters are not typed in). Only the information enclosed in the special characters is typed into command strings.

Value Types < >
A lower case letter in angle brackets represents a value of a given type. The following types of values are represented:
<n >-numerical value
<a> - array value
<c> - character value
For example,
PARM1 $=$ < $\mathrm{n}>$
indicates that the PARM1 parameter is assigned a numerical value.

Defining Groups Braces, parentheses, square brackets, and vertical bars are used to define groups \{ \}, [], (), | of parameters or groups of groups. For example,
\{(PARM1 [PARM2 [PARM3]] PARM4) PARM5\}
is a valid group, composed of the subgroups (PARM1 [PARM2 [PARM3]] PARM4) and PARM5.

The first subgroup may further be subdivided into the subgroups PARM1, [PARM2 [PARM3]], and PARM4, and so on.

Optional Groups Square brackets enclose groups that are optional. For example,

```
STMT1 [PARM1] [ PARM2 PARM3 ] [ PARM4 [PARM5] ]
```

indicates that in the STMT1 statement, the parameter PARM1 is optional. The group [PARM2 PARM3] is optional, but if PARM2 is specified, PARM3 must also be specified.

The group [PARM4 [PARM5]] is optional, but PARM5 may be specified only if PARM4 is specified.

List of Groups \{\}, When one of a list of groups must be selected, the groups are enclosed in braces and separated by vertical bars. For example,

```
STMT2 {PARM1 | PARM2 | ( PARM3 PARM4 )}
```

indicates that the STMT2 statement requires that one of the three groups PARM1, PARM2, or (PARM3 PARM4) be specified.

3.1 Device Structure Specification

The following statements specify the device structure used by Medici:
Statement Definition Page
MESH Initiates the mesh generation. 3-15
\mathbf{X}.MESH \quad Specifies the placement of grid lines perpendicular to the x -axis. 3-32
Y.MESH Specifies the placement of grid lines perpendicular to the y-axis. 3-35
ABC.MESH Specifies the spacing parameters for ABC meshing. 3-38
ELIMINATE Eliminates nodes along grid lines. 3-51
SPREAD Adjusts the vertical position of nodes along horizontal grid lines. 3-53
BOUNDARY Modifies a simulation mesh to conform to boundary interfaces read 3-56 from a file.
TSUPREM4 Defines the regions and profiles in a Medici rectangular grid 3-68 structure by importing a TSUPREM-4 structure saved in Medici format.
REGION Specifies the location of material regions in the structure. 3-71
ELECTRODE Specifies the location of electrodes in the structure. 3-77
RENAME Changes the name of an electrode or region. 3-82
PROFILE Specifies impurity profiles for the structure. 3-83
REGRID Refines the simulation mesh. 3-95
STITCH Appends the generated structure to the simulation mesh. 3-103

Rectangular Mesh Specification

A rectangular mesh can be a very effective solution mesh. Some alternatives for mesh creation include:

- For planar devices, long-channel MOSFETs, and large structures used to simulate some power devices, a rectangular grid is the method of choice. Large aspect rectangles minimize the amount of grid allocated. Certain properties of the resulting matrix can be exploited to reduce solution time.
- For other structures, especially those with complicated doping profiles, start with a coarse rectangular mesh and use regridding.

Mesh Statements

Rectangular meshes are specified by a sequence of mesh statements, detailed in Chapter 2, "Grid in Medici," p. 2-88. The required input order is:

- MESH statement
- X.MESH statements
- Y.MESH statements
- ELIMINATE statements (optional)
- SPREAD statements (optional)
- BOUNDARY statements (optional)
- TSUPREM4 statements (optional)
- REGION statements
- ELECTRODE statements

Note:

The order in which statements appear is mandatory. Changing the order will change the results.

Generally, a mesh is specified by the following steps:

1. The mesh begins as a set of (nonuniform) spaced x - and y-lines comprising a simple rectangle.
2. The rectangle can then be distorted to track non-planar geometry or match the doping profile, although strongly non-planar structures are difficult to treat in this way.
3. Mesh lines may be terminated inside the device, and redundant nodes removed from the grid.
4. Material regions and electrodes can then be specified as a union of (possibly distorted) rectangles, completing the mesh specification.

CAUTION

When a rectangular grid is distorted, a large number of obtuse triangles are unavoidably introduced. When you regrid a rectangular grid, large aspect ratio rectangles (>2.8) can also give rise to very obtuse triangles. See "Mesh Smoothing," p. 2-98 for more information.

```
                                    The MESH statement initiates the mesh generation or reads a previously generated
                                    mesh.
MESH
    Initial Mesh Generation
    { ( [ {RECTANGU | CYLINDRI} ] [DIAG.FLI] )
Mesh File Input
    | ( IN.FILE=<C> [QT.FILES=<C>] [PROFILE]
            [ { ASCII.IN
                ( TSUPREM4 [ ELEC.BOT [Y.TOLER=<n>] ] [POLY.ELE]
                [X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
                        [FLIP.Y] [SCALE.Y=<n>]
            )
            | ( TIF [ ELEC.BOT [Y.TOLER=<n>] [POLY.ELE] ] )
            }
            ]
Automatic Boundary Conforming Mesh Generation
            [ { ( ABC [GRIDTOP] [VOIDELEC] [RFN.CRNR] [JUNC.ABC]
                [CRITICAL=<n>] [SPACING=<n>]
                [N.SEMICO=<n>] [N.INSULA=<n>] [N.CONDUC=<n>]
                [NORMGROW=<n>] [LATERAL=<n>] [ELIMINAT]
            )
Old Automatic Boundary Conforming Mesh Generation
            | ( ABC.OLD [SPACING=<n>] [RATIO=<n>] [ANGLE=<n>]
                [MAX.SPAC=<n>] [CORNER=<n>] [LAYERS=<n>]
                [ATTEMPTS=<n>] [RELAX=<n>] [ELIMINAT]
                [EXTERNAL=<n>] [OPTIMIZE] [JUNC.ABC]
                [N.SEMICO=<n>] [N.INSULA=<n>] [N.CONDUC=<n>]
                [N.SILICO=<n>] [N.POLYSI=<n>] [N.OXIDE=<n>]
                [N.NITRID=<n>] [N.OXYNIT=<n>] [N.SAPPHI=<n>]
                [N.BPSG=<n>] [N.INAS=<n>] [N.GAAS=<n>]
                [N.ALGAAS=<n>] [N.HGCDTE=<n>] [N.S.OXID=<n>]
                [N.SIC=<n>] [N.INGAAS=<n>] [N.INP=<n>]
                [N.GERMAN=<n>] [N.DIAMON=<n>] [N.ZNSE=<n>]
                [N.ZNTE=<n>] [N.A-SILI=<n>] [N.SIGE=<n>]
            )
(MESH statement continued on next page)
```

```
(MESH statement continued from the previous page)
Quadtree Mesh Generator
            ( QUADTREE [X.SPACIN=<n>] [Y.SPACIN=<n>]
                    [CRITICAL=<n>] [ARC.ANGL=<n>] [ARC.LENG=<n>]
                        )
            }
            ]
        )
    }
Mesh Adjustments
    [PERIODIC [PBC.TOL=<n>] ] [ORDER] [ADJUST] [VIRTUAL]
    [CENTROID] [ WIDTH=<n> N.SPACES=<n> [X.SPLIT=<n>] ]
    [OBTUSE.A=<n>] [Z.WIDTH=<n>]
Mesh File Output
    [ OUT.FILE=<C> [ASCII.OU] [NO.TTINF] ] [SMOOTH.K=<n>]
```


Parameter Type

Definition
Default
Units
Initial Mesh Generation

RECTANGU	logical	Specifies that the simulation mesh uses rectangular coordinates.	true
CYLINDRI	logical	Specifies that the simulation mesh uses cylindrical coordinates. If this parameter is specified, the horizontal axis represents the radial direction and the vertical axis represents the z-direction.	false
DIAG.FLI	logical	Specifies that the direction of diagonals is changed about the horizontal cen- ter of the grid. If this parameter is false, all diagonals are in the same direc- tion.	true

Mesh File Input

IN.FILE	char	The identifier for the file containing a previously generated mesh. Unless ASCII.IN or TSUPREM4 is specified, this file is in binary format. Synonym: INFILE	none
QT.FILES	char	For a quadtree mesh, specifies the basename for the two quadtree support files. synonym: QTFILES	none
PROFILE	logical	Specifies that impurity profiles are input from the data file.	
ASCII.IN	logical	Specifies that the input mesh is stored in a formatted file.	true
TSUPREM4	logical	Specifies that the input mesh was generated by TSUPREM-4 or by an external grid editor.	false

Parameter	Type	Definition	Default	Units
POLY.ELE	logical	Specifies that regions defined as polysilicon in the data file are treated as electrodes.	true	
X.MIN	number	The minimum x coordinate read in from the data file. All nodes and elements with x coordinates less than the value specified by \mathbf{X}.MIN are eliminated from the structure. This parameter is valid only if TSUPREM4 is specified.	The minimum x location in the structure.	microns
X.MAX	number	The maximum x coordinate read in from the data file. All nodes and elements with x coordinates greater than the value specified by \mathbf{X}. MAX are eliminated from the structure. This parameter is valid only if TSUPREM4 is specified.	The maximum y location in the structure.	microns
Y.MIN	number	The minimum y coordinate read in from the data file. All nodes and elements with y coordinates less than the value specified by \mathbf{Y}.MIN are eliminated from the structure. This parameter is valid only if TSUPREM4 is specified.	The minimum y location in the structure.	microns
Y.MAX	number	The maximum y coordinate read in from the data file. All nodes and elements with y coordinates greater than the value specified by \mathbf{Y}. MAX are eliminated from the structure. This parameter is valid only if TSUPREM4 is specified.	The maximum y location in the structure.	microns
FLIP.y	logical	Specifies that the direction of the vertical coordinate is reversed when the file is read. This parameter is valid only if TSUPREM4 is specified.	false	
SCALE. y	number	The scale factor to multiply all coordinate values by when reading the mesh file. This parameter is valid only if TSUPREM4 is specified.	none	none
TIF	logical	Specifies that the file to be read in is in the TIF (Technology Interchange Format).	false	
New Automatic Boundary Conforming Mesh Generator				
ABC	logical	Specifies that the device structure imported from the input file is remeshed using the new automatic boundary conforming mesh generator.	false	
GRIDTOP	logical	Grid the top boundary of the device.	true	
VOIDELEC	logical	Mesh volume electrodes without introducing any interior nodes.	false	
RFN.CRNR	logical	Automatically refine the grid spacing on region boundaries near corners where two or more regions meet.	true	
JUNC. ABC	logical	Specifies that the mesh should conform to junctions in addition to boundaries.	false	none
CRITICAL	number	Maximum allowed deviation of the region boundaries in the new mesh from those in the original mesh.	$.001 *$ minimum of device width and device height	microns
SPACING	number	Desired grid spacing along the boundaries and interfaces. The actual mesh spacing along the boundaries and interfaces may be smaller in order to satisfy the CRITICAL parameter.	$\begin{aligned} & \text { (device width) / } \\ & 50 \end{aligned}$	microns
N. SEMICO	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for all semiconductor regions.	0.1	none
N. INSULA	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for all insulator regions.	1.0	none
N. CONDUC	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for all conductor regions.	. 2	none

Parameter	Type	Definition	Default	Units
NORMGROW	number	Multiplication factor for the grid spacing normal to the region boundary. The element size grows in the normal direction from the region boundary toward the inside of the region. Each next grid spacing in the direction toward the inside of the region is larger than the previous spacing by the specified factor. If the factor is one, the mesh spacing is uniform throughout the region. The factor should be larger than one to obtain a coarser mesh away from the region boundaries. synonym: RATIO	1.2	none
LATERAL	number	Target lateral spacing during region meshing. This parameter is used to indicate the desired lateral spacing during the interior meshing of the regions. The actual lateral spacing obtained during meshing will be refined or unrefined as necessary in order to stay close to the specified value. Refinement or unrefinement of the lateral spacing will only occur, however, if non-obtuse elements can be produced. Very large values of lateral lead to unrefinement whenever non-obtuse elements can be produced. This is equivalent to using the ELIMINAT parameter.	maximum of device width and device height	microns
ELIMINAT	logical	Minimizes the number of nodes in the mesh by eliminating interior nodes without creating obtuse elements. synonym: COARSEN	true	
Old Automatic Boundary Conforming Mesh Generation				
ABC. OLD	logical	Specifies that the device structure imported from the input file is remeshed using the automatic boundary conforming mesh generator.	false	
SPACING	number	Desired grid spacing along the boundaries and interfaces. The actual mesh spacing along the boundaries and interfaces can be smaller due to surface curvature. synonym: STEP	$\begin{aligned} & \text { (device width) / } \\ & 50 \end{aligned}$	microns
RATIO	number	Multiplication factor for the grid spacing normal to the region boundary. The element size grows in the normal direction from the region boundary toward the inside of the region. Each next grid spacing in the direction toward the inside of the region is larger than the previous spacing by the specified factor. If the factor is one, the mesh spacing is uniform throughout the region. The factor should be larger than one to obtain a coarser mesh away from the region boundaries. synonym: FACTOR	1.2	none
ANGLE	number	Threshold angle for geometry smoothing. Allows unwanted small zig-zag type geometry features in the imported structure to be removed if deviation from a straight line is less than the specified threshold angle for any pair of adjacent edges along the region's boundary.	30	degrees
Relax	number	Relaxation factor for mesh refinement near curved boundaries. The mesh along curved region boundaries and interfaces is automatically refined to avoid obtuse elements. A RELAX factor value of less than one guarantees no obtuse elements near the boundaries, but the mesh is harder to generate. On the contrary, a RELAX factor value larger than one allows some obtuse elements near the boundaries, but the mesh is easier to generate. synonym: LOOSE	1	none
MAX. SPAC	number	Maximum allowed grid spacing in the normal direction to the region boundaries. synonym: MAX.STEP	50	microns
ELIMINAT	logical	Minimizes the number of nodes in the mesh by eliminating interior nodes without creating obtuse elements. synonym: COARSEN	true	

Parameter	Type	Definition	Default	Units
CORNER	number	Corner smoothing factor for the interior boundary conforming grid lines. If this factor is zero, the interior grid lines adjacent to the region's boundary maintain the boundary shape. If it is nonzero, then each subsequent grid line adjacent to the boundary is smoother than the previous one (the curvature of the "corner" is reduced). The corner smoothing factor should be larger or equal to zero and smaller than one.	0.9	none
LAYERS	number	Number of allowed mesh "layers" of the boundary conforming type before switching to the unstructured Delaunay mesh in the region's interior.	500	none
ATTEMPTS	number	Number of allowed attempts to mesh the device when the meshing fails for the specified set of meshing parameters. Each subsequent attempt "relaxes" the meshing parameters.	4	none
EXTERNAL	number	Ratio of lateral spacing along external boundaries of the structure to the lateral spacing along internal boundaries (which is specified by the parameter SPACING). It is recommended that the value of the ratio is larger than one and less than ten in order to create a good mesh with minimum nodes on external boundaries.	4.0	none
OPTIMIZE	logical	Optimizes mesh quality by flipping all mesh edges whenever it improves quality of the adjacent triangles.	true	none
JUNC. ABC	logical	Specifies that the mesh should conform to junctions in addition to boundaries.	false	none
N. SEMICO	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for all semiconductor regions.	0.1	none
N. INSULA	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for all insulator regions.	0.1	none
N. CONDUC	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for all conductor regions. synonyms: n.ELECTR, N.ALUMIN, N.TERMIN, N.METAL	0.2	none
N.SILICO	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for silicon.	0.1	none
N. POLYSI	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for polysilicon.	0.2	none
N. OXIDE	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for oxide. synonym: N.SIO2	100	none
N.NITRID	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for nitride. synonym: N. SI3N4	100	none
N. OXYNIT	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for oxynitride.	100	none
N. SAPPHI	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for sapphire.	100	none
N. BPSG	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for BPSG.	100	none
N. INAS	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for InAs.	0.1	none
N. GAAS	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for GaAs.	0.1	none
N. ALGAAS	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for AlGaAs.	0.1	none
N.SIGE	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for SiGe .	0.1	none

Parameter	Type	Definition	Default	Units
N. HGCDTE	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for HgCdTe .	0.1	none
N. INGAAS	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for InGaAs.	0.1	none
N.SIC	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for SiC.	0.1	none
N.S.oxid	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for oxide when it is simulated as a wide band gap semiconductor.	0.1	none
N. GERMAN	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for Ge .	0.1	none
N. INP	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for InP.	0.1	none
N. DIAMON	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for diamond.	0.1	none
N. ZNSE	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for ZnSe .	0.1	none
N. ZNTE	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for ZnTe .	0.1	none
N.A-SILI	number	Mesh aspect ratio (normal spacing/lateral spacing) at boundaries for amorphous silicon.	0.1	none
Quadtree Mesh Generator				
QUADTREE	logical	Specifies that the device structure imported from the input file is remeshed using the Quadtree mesh generator.	false	
X.SPACIN	number	The desired initial mesh spacing in the x-direction in the new Quadtree mesh.	device width/4	microns
Y.SPACIN	number	The desired initial mesh spacing in the y-direction in the new Quadtree mesh.	device height/4	microns
CRITICAL	number	Specifies the smallest feature size that should be resolved by the Quadtree mesh generator.	5.0e-4	microns
ARC.ANGL	number	The boundary cutoff angle for sharp corner detection.	0.53	radians
ARC.LENG	number	The boundary arclength for sharp corner detection.	20.0e-3	microns
Mesh Adjustments				
PERIODIC	logical	Specifies that periodic boundary conditions are used in the horizontal direction. If this parameter is false, then reflection symmetry boundary conditions are used at the left and right edges of the device structure.	false	
PBC. TOL	number	The tolerance allowed between left and right edge nodes when determining whether a structure is valid for periodic boundary conditions.	0.1	fraction of local grid spacing
ORDER	logical	Specifies that the mesh nodes and mesh elements are ordered from left to right and from top to bottom.	True for structures created by Medici or if PERIODIC is specified; otherwise, false.	
ADJUST	logical	Specifies that the triangle diagonals are flipped whenever it improves (smooths) the shape of regions and electrode.	false	

Parameter	Type	Definition	Default	Units
VIRTUAL	logical	Generates virtual nodes at heterojunctions.	false	
CENTROID	logical	Specifies that, when an element produces a zero coupling term along an interface, a centroidal type discretization will be applied to the element. Use of this parameter normally results in a more stable discretization with reduced sensitivity to the mesh. A few cases have been observed where it is better not to use the centroids. These cases occur when Fowler-Nordheim or Band-to-Band currents are large, such as in some EEPROM devices.	true	
WIDTH	number	The width of a grid section that is inserted into the completed simulation structure at the x coordinate location specified with \mathbf{X}.SPLIT. This parameter is particularly useful for varying the size of simulation structures that already exist and are read in using the IN FILE parameter.	none	microns
N. SPACES	number	The number of grid spaces to use in the grid section that is inserted into the completed simulation structure.	none	none
X.SPLIT	number	The x coordinate location where an additional grid section is inserted into the completed simulation structure.	The midpoint of the structure.	microns
OBTUSE.A	number	The threshold angle that is considered obtuse. All elements with angles larger than the specified threshold angle will be reported as obtuse on the mesh statistics print-out and shown as obtuse on the plot. This parameter does not affect the way the elements are treated for the carrier continuity equations, where obtuse elements are those with negative coupling coefficients.	93	degrees
Z.WIDTH	number	The width of the device in the z-direction. If specified, all quantities such as terminal currents that are normally reported in units of Amps/micron will be multiplied by Z. WIDTH and will be reported in units of Amps instead.	none	microns
Mesh Output File				
OUT.FILE	char	The identifier for the output file to store the generated mesh. synonym: OUTFILE	none	none
ASCII.OU	logical	Specifies that the output mesh is stored in a formatted file. If this parameter is not specified, the output mesh is stored in a binary file.	false	
NO. TTINF	logical	Specifies that no triangle tree information is written to the output mesh.	false	
SMOOTH.K	number	Specifies a method for mesh smoothing. SмOOTH. $\mathbf{K}=1$ indicates triangular smoothing is used, maintaining all region boundaries fixed. SMOOTH.K=2 indicates triangular smoothing is used, maintaining only material boundaries. SMOOTH. $\mathbf{K}=3$ indicates that node averaging is used.	none	none

Description

Abstract

A MESH statement can be used to either initiate the generation of a device structure or to read a previously-generated device structure from a data file. It is possible to include several MESH statements in a single input file in order to perform simulations for multiple device structures. Whenever a MESH statement is encountered in an input file, Medici performs an initialization that allows a completely new simulation to be started.

To further illustrate the MESH statement, refer to input file mdexl in Chapter 4, "Simulation of Gate Characteristics," p. 4-11.

Generating an Initial Mesh

This section describes how the MESH statement is used to generate an initial simulation structure.

Cartesian and Cylindrical Coordinates

When using the MESH statement to initiate the generation of a structure, you my choose between the following coordinates:

- Cartesian
- Cylindrical

The default is to use Cartesian coordinates (RECTANGU). In this case, simulations are be performed in an $x y$-plane with the x -axis going from left to right and the y axis going from top to bottom.

If cylindrical coordinates are chosen (CYLINDRI), the simulations are performed in an rz-plane. In this case, the Cartesian x-axis becomes the cylindrical r-axis and the Cartesian y axis becomes the cylindrical z -axis.

Statement Generating an initial simulation structure requires the specification of several Specification statements in the proper order. Statement specification should be as follows:

1. Specify the MESH statement.
2. Specify the \mathbf{X}.MESH and \mathbf{Y}. MESH statements.

These statements are used to define the initial placement of nodes.
3. You may now a choose between the following three sets of optional statements which can be used to modify the node placement:
a. ELIMINATE statements may be used to eliminate unnecessary nodes, and SPREAD statements may be used to distort the initial mesh.
b. A BOUNDARY statement may be used to modify the initial mesh to conform to arbitrary boundaries.
c. TSUPREM4 statements may be used to define regions and profiles from the results of a TSUPREM-4 simulation.
4. Define the following for the structure:
a. Material regions using the REGION statement
b. Electrode placement using the ELECTRODE statement
c. Impurity profiles using the PROFILE statement
5. The generated mesh can be saved for a future simulation, using the OUT . FILE parameter on the MESH statement or the SAVE statement.
6. The initial mesh can be refined further, if desired, using the REGRID statement. In this case, the refined mesh should be saved using the OUT . FILE parameter on the REGRID statement or by using a SAVE statement following the regrid.

Mesh Smoothing

The SPREAD statement has a tendency to create triangles with very obtuse angles which may lead to unphysical solutions or poor convergence. If the SPREAD statement is to be used in the mesh generation sequence, the SMOOTH.K parameter should be specified on the MESH statement.

SMOOTH. $\mathbf{K}=1$ or 2 indicates triangle smoothing is used. Each adjoining pair of triangles is examined, and the diagonal of the quadrilateral is flipped if it improves the quality of the triangles. When two elements are of different materials, the diagonal is never flipped.

With elements of the same material but different region number, the diagonals are not flipped if SMOOTH . $\mathbf{K}=1$ and may be flipped if $\mathbf{S M O O T H} \mathbf{~ K} \mathbf{K}=2$. SMOOTH . K=3 indicates node smoothing, which repositions nodes in order to improve the angles of the triangles surrounding it.

Note:

Node smoothing is not recommended for a refined or distorted mesh since it tends to redistribute fine grid away from areas where the physical properties of the structure require it.

Periodic Boundary Conditions

Periodic boundary conditions in the horizontal direction are imposed if the parameter PERIODIC is specified. In this case, the left and right edges of the simulation region should be identical in terms of number of nodes, vertical location of nodes, doping, and electrode specifications.

If a different number of nodes exist on the left and right edges (defined as the minimum and maximum horizontal coordinates) or if the corresponding nodes are located at different vertical locations, an error message is issued. To ensure that the same doping is used on the left and right edges, the program automatically copies the doping from the left edge to the right edge.

Finally, if an electrode contacts one edge of the structure, but not the other, the program automatically converts the corresponding nodes on the other edge into electrode nodes, as well.

Note:

Periodic boundary conditions are not allowed in structures that are used in circuits when using the CA-AAM.

Automatic Boundary Conforming Mesh Generation

If a structure is read in from a TSUPREM-4, TIF, or Medici file using the IN.FILE parameter, a new mesh for the structure can be generated using the ABC parameter on the MESH statement.

If you specify the $\mathbf{A B C}$ parameter, the previous mesh from the imported structure is discarded, and a new mesh is created using the automatic boundary conforming meshing algorithm. To provide better spacing control and improved robustness, a new version of the $\mathbf{A B C}$ mesh generator has been developed. You can still access the old version using the ABC. OLD parameter.

Algorithm

If a mesh is generated using X.MESH and Y.MESH statements, grid lines are aligned with the cartesian X and Y axes. Manual specification of the mesh spacings is required throughout the mesh. In some cases, the original geometry is distorted by shifting the location of the region boundaries to the nearest mesh nodes.

The automatic boundary conforming (ABC) meshing algorithm creates grid lines that conform to the region boundaries. The ABC algorithm also conserves the shape of the original regions and may be used without specifying meshing parameters. However, the ABC algorithm may fail to generate a mesh for a region with extremely complicated geometry.

The ABC mesh generator creates "layers" of grid that conform to the boundaries (both internal and external) of the original structure. The lateral grid spacing at the boundaries along these layers can be specified on a global basis with the SPACING parameter. In the new ABC mesh generator, non-uniform lateral spacing along the boundaries can be specified on a region-by-region basis using the ABC. MESH statement. The actual spacing along the boundaries may be smaller than the specified spacing in locations where the boundary is curved.

The normal grid spacing at the boundaries (thickness of the first grid layer) is specified as a ratio of the desired normal spacing to the value of the SPACING parameter using the N. SEMICO, N. INSULA, and N. CONDUC parameters for semiconductors, insulators, and conductors, respectively. The old version of ABC also allows specification of normal spacing ratios for other materials. The new version allows a more precise specification of normal spacing on a material or region basis and also allows the specification of non-uniform normal spacings through the ABC. MESH statement. The normal grid spacing away from the boundary increases toward the region's interior by a factor of RATIO or NORMGROW for each subsequent grid layer. The boundary conformal grid layers are created for materials that have values of the normal grid spacing much less than 1.0. For materials with the values of the normal grid spacing that are comparable or larger than 1.0, an unstructured mesh is often generated.

New Automatic Boundary Conforming Mesh Generator

The new version of the ABC mesh generator uses the same basic algorithm as the original ABC mesh generator. Layers of mesh elements are constructed to conform to the region boundaries according to spacing parameters provided by the user. The new version has been made more robust and, in particular, is capable of handling jagged boundaries and regions with multiple embedded regions. In addition, you can now specify spacing parameters on a local basis via the ABC.MESH statement. The MESH statement in conjunction with the ABC parameter and other associated parameters is used to initiate the ABC meshing process and to specify global meshing properties. For details on the new ABC mesh generator, please see the description of the ABC. MESH statement on p. 3-42.

Spacing Parameters

The MESH statement in conjunction with the ABC parameter is used to specify global values of spacing parameters used for all regions and region boundaries. Some of the parameters used by the original ABC mesh generator are also used by the new ABC mesh generator. Many of the original parameters, however, are not applicable to the new ABC mesh generator, and a number of new parameters have been created to support additional functionality.

Gridding Region Boundaries

The ABC meshing of a device begins by re-gridding the boundaries between regions according to the spacing parameters specified by you. One key feature of this re-gridding process is how closely the newly gridded boundaries match the original boundaries. The deviation between an original and new boundary is controlled by using the CRITICAL parameter, which is an indication of the critical feature size that should be maintained. During boundary re-gridding, the new boundaries are guaranteed to deviate from the original boundaries by no more than the specified CRITICAL value. Specifying a small, but non-zero, value of CRITICAL allows the new boundaries to closely track the original boundaries while at the same time allows redundant nodes that are very close to each other to be eliminated. By default, CRITICAL is set at $1 / 1000$ of the minimum of the device width and the device height.

The grid spacing used during the re-gridding of the region boundaries is specified on a global basis using the SPACING parameter, which by default is set at $1 / 50$ of the device width. This produces a uniform spacing except along highly curved boundaries which are refined to satisfy the CRITICAL spacing parameter. More detailed control of the boundary gridding is obtained with the ABC .MESH statement which allows the specification of non-uniform gridding on a local basis.

All boundaries that are re-gridded generate layers during the meshing of the region interior. Boundary re-gridding is performed for all interior boundaries, and by default, the top boundary of the device. In some applications, however, it is desirable to leave the top ungridded and propagate mesh layers from the interior up to the top. Specify this by using the GRIDTOP parameter. The sides and bottom of the device are never gridded.

Gridding Region Interiors

The grid spacing into the regions, i.e. the normal spacing, beginning at the region boundaries is specified for general semiconductors, conductors, and insulators by using the ratio parameters N. SEMICO, N. CONDUC, and N. INSULA. These parameters specify the aspect ratio (normal spacing/boundary lateral spacing) of the elements near the region boundaries. The actual normal spacing that is used is given by the value of the SPACING parameter times the aspect ratio. By default, the semiconductor aspect ratio is set at 0.1 , the conductor ratio at 0.2 , and the insulator ratio at 1.0. The growth of the normal spacing into the region as layers are created is controlled by the NORMGROW, or RATIO, parameter which is set by default to 1.2.

During meshing of the regions, the lateral spacing is controlled using the LATERAL and ELIMINA parameters. The LATERAL parameter acts like a target value. Whenever the lateral spacing during meshing falls below LATERAL, the lateral spacing is unrefined. Likewise, if the lateral spacing during meshing rises above LATERAL, then the lateral spacing is refined. Refinement or unrefinement is only performed, however, if non-obtuse elements can be produced. Setting a very large value of LATERAL, or using the ELIMIN parameter, causes the mesh generator to unrefine the lateral spacing whenever non-obtuse elements are produced. By default, LATERAL is set at the maximum of the device width and device height.

Automatic Refinement Near Corners

To improve the mesh quality near corners where different regions meet, an automatic refinement algorithm has been developed to reconcile the different mesh spacings that often occur in corners. The RFN. CRNR causes the new ABC mesh generator to refine the lateral spacing along region boundaries to better match the normal spacing at the boundaries. For this to work effectively, however, it is necessary that the normal spacings in the different regions that meet at a corner be approximately the same.

Junctions

As in the original ABC mesh generator, use the JUNC . ABC parameter to conform grid lines to metallurgical junctions in addition to region boundaries. The position of the junction is determined from a logarithmic interpolation of the original doping profile.

Electrodes The new ABC meshing generator correctly handles flat electrodes, including maintaining the original endpoints of the electrodes during the re-gridding of the region boundaries. Region electrodes can be voided using the VOIDELEC parameter which causes the region to be meshed without introducing any new nodes in the interior of the region. Both flat and volume electrodes from the original structure are maintained in the ABC-created mesh and do not need to be re-specified using the ELECTRODE statement.

Old Automatic Boundary Conforming Mesh Generator

The old ABC mesh generator uses the MESH statement to specify spacing parameters on a material-by-material basis. The SPACING parameter specifies a uniform lateral spacing along the region boundaries. The aspect ratio parameters such as N.SILICO can be used to specify the normal spacing at the region boundaries.

Lateral and Normal Mesh Spacings

Unstructured Delaunay Mesh

Selecting Aspect Ratios

As an example, suppose that a 0.25 micron MOSFET were meshed with the default set of parameter values. The structure width (the size of the simulation structure in the horizontal direction) for such a device is usually about one micron. By default, the spacing in silicon along the channel is $1 / 50$ of the structure width (about 0.02 microns or $200 \AA$). The spacing in silicon in the normal direction to the oxide/silicon interface is a product of $200 \AA$ and the mesh aspect ratio, defined for silicon by the parameter N.SILICO, which is 0.1 by default. For this example, 200 * $0.1=20 \AA$. Inside the silicon region from the oxide/silicon interface, each subsequent step size is larger than the previous one by the multiplication factor, defined by the parameter RATIO, which is 1.2 by default. In this example, the grid spacings in the channel in the vertical direction are $20 \AA, 24$ $\AA, 29 \AA, 35 \AA, 41 \AA, 50 \AA, \ldots$.

For regions with complex geometry, the grid layers are constructed along the entire boundary. For regions with straight left, right, and bottom sides, the grid layers are constructed from the top boundary only. Layer after layer, the boundary conforming elements are generated until the entire region volume is meshed.

If it is not possible to mesh an entire region with a boundary conforming mesh, an unstructured Delaunay mesh generator is used for the residual subregion in the center of the region.

By default, the mesh aspect ratio (the ratio of the normal to lateral mesh spacings at the region boundary) is 0.1 for semiconductors and conductors, and 100 for insulators. This means that the elements along the boundaries of semiconductors and conductors are stretched, making the element aspect ratio about 10 . The insulator aspect ratio of 100 usually requires that the unstructured Delaunay mesh generator be used for the entire region.

The aspect ratios specified for the neighbor regions should be either similar to each other or very different, for example, 0.1 and $0.1,0.2$ and 0.2 , or 0.1 and 100 . When using the ABC algorithm, it is easier to generate non-obtuse elements when the aspect ratios in the neighbor regions are similar. If a large aspect ratio is specified for a region, the ABC algorithm is forced to mesh the entire region with the unstructured Delaunay mesh.

Automatic Failure Handling

If there are thin sections in a region, where too many nodes are placed in front of too few nodes, the Delaunay mesh generator may fail to mesh the region or a residual subregion. If such a failure occurs, the boundary conforming meshing algorithm automatically relaxes the meshing parameters to allow the Delaunay generator to mesh the region. The algorithm then attempts to generate the mesh until it is successful or reaches the allowed number of attempts. By default, the allowed number is four, which can be modified using the ATTEMPTS parameter.

Usually, even along the curved boundaries, the boundary conforming meshing algorithm generates non-obtuse elements. Some obtuse elements may occur at sharp corners or in the center of the region. Statistics often show an increase in the number of obtuse elements when the ABC algorithm is used compared to the conventional mesh. However, most obtuse angles are of the order of only 90.00001 to 91 degrees and do not reduce the mesh quality.

Junction Conforming Mesh

If JUNC. ABC is specified the mesh generator will try to conform grid lines to metallurgical junctions that occur within the structure in addition to boundaries. The junction is determined by using linear interpolation from the doping at the nodes of the mesh that is read in. If this junction is very jagged, the ABC meshing algorithm may fail in its attempt to place a conforming grid around it. Boundary smoothing, which is invoked for values of ANGLE greater than zero, may help in this regard.

Terminal
Handling

In the current version of the boundary conforming mesh generator, volume-less terminals are not supported. Only volume terminals are imported into simulation structures from the input file when the ABC parameter is specified. Electrodes can be also specified explicitly using the ELECTRODE statement.

Polysilicon is converted to electrode when reading an input file if POLY.ELE parameter is specified on the MESH statement. In such a case, the aspect ratio for polysilicon should be specified using the N. ELECTR parameter instead of the N. POLYSI parameter.

Large Geometry Features

If the simulation structure contains large geometry features, such as deep trenches, the simulation domain boundaries (the extreme left, right, and bottom edges of the structure) must be far enough from the feature to allow the ABC algorithm to mesh the entire device.

Quadtree Mesh Generation

If a structure is read in from a TSUPREM-4, TIF, or Medici file using the IN FIILE parameter, a new mesh for the structure can be generated using the quadtree option by specifying the QUADTREE parameter on the MESH statement.

If you specify the QUADTREE parameter, the previous mesh from the imported structure is discarded and a new mesh is created using the quadtree meshing algorithm.

Algorithm

The quadtree meshing algorithm generates high quality mesh elements that conform to the region boundaries and allow for anisotropic refinement. The quadtree algorithm recursively refines the mesh in order to accurately conform to the region boundaries and to meet user-specified mesh spacing requirements. During the initial quadtree mesh construction on the MESH statement, the mesh spacing may be controlled using two parameters: X.SPACIN and Y.SPACIN which specify the mesh spacing in the x and y directions, respectively. These spacings should be set fairly coarse. Once the initial mesh is generated, coarse sections of the mesh can be selectively refined using the REGRID statement. The CRITICAL parameter specifies the smallest feature in the structure that should be considered by the mesh generator.

Boundary Fidelity

The Quadtree mesh generator always attempts to accurately reproduce the region boudaries from the original mesh. However, it is not always possible, nor even desirable, for there to be a Quadtree mesh node at the location of every node on the original region boundaries. For example, if a region boundary contains many short edges to represent a smooth curve, it would be undesirable to have every node on the original boundary to appear in the mesh. To do so would require a very small element size. On the other hand, undesirable geometry changes will occur if boundary nodes that correspond to important points such as triple points or sharp corners are not included in the Quadtree mesh.

Two parameters are provided to control which nodes from the original region boundaries are included in the Quadtree mesh. The ARC. LENG and ARC. ANGL work together to identify sharp corners on the region boundaries. A node is considered a sharp corner if the summed angle between it and any node within ARC. LENG along the boundary exceeds ARC. ANGL. Any variation in the boundary on a length scale less than ARC. LENG is ignored. This approach allows for small, unwanted oscillations in a region boundary to be smoothed out in the final Quadtree mesh.

Immediate Regridding

The quadtree mesh generated from the MESH statement will contain a fairly coarse mesh. To support the common case of doping regridding, it is possible to specify REGRID statements immediately after the MESH statement. This will cause mesh refinement to be done during the initial mesh construction saving time and improving the doping interpolation. See the statement, "REGRID," p. 3-95 for more details. If an immediate doping regrid is not performed, then a doping file should be created using the PROFILE statement to ensure that the best possible doping profile is used during subsequent regrids.

Quadtree Files

The quadtree mesh used by Medici is generated and refined using an external mesh generator. This mesh generator makes use of two support files in addition to the primary mesh file used by Medici. Medici usually manages these additional
files automatically, however, you should be aware of them in case the primary mesh file is moved or deleted. These additional files are a tree file describing the element hierarchy and a TDF file used to hold additional structure information. During a SAVE statement, these support files are by default renamed to be consistent with the primary mesh file. For example, if a Quadtree mesh is saved to a file called device.tif, then the support files will be named device.tree and device.tdf. However, this automatic naming procedure may be overridden during reading and saving by using the QT.FILES parameter. QT.FILES is used to set the basename of the support files. For example, if QT.FILES=myfiles, then the support files that will be used are myfiles.tree and myfiles.tdf. These support files are needed if subsequent regrids are performed.

CAUTION

- If the Quadtree support files are moved after creation of the primary mesh file, the QT . FILES parameter should be used to specify names of the support files.
- The Quadtree mesh generator currently supports devices with less than 21 regions.
- The Quadtree mesh generator currently requires that all contiguous regions have unique names.

Previously Generated Meshes

This section describes how to read in previously generated meshes, and contains the following:

- Reading a previously generated mesh
- Restrictions and Limitations
- Compatibility

Read a previously generated two- or three-dimensional mesh by using the INFILE parameter.

Restrictions and Limitations

When a previously generated mesh is read, no additional processing is allowed using the X.MESH, Y.MESH, ELIMINATE, SPREAD, and BOUNDARY statements.

You may alter a previously read mesh in the following ways:

- Additional electrodes may be added to the structure using ELECTRODE statements.
- Regions may be redefined or modified using REGION statements
- Impurity profiles may be added using PROFILE statements.
- Additional grid refinement may be done by using the REGRID statement.
- Region shape can be smoothed by using the ADJUST parameter.

TSUPREM-4 A structure generated by TSUPREM-4 for input into Medici can be read by specifying the parameter TSUPREM4 and using IN.FILE to identify the file where the structure is stored.

In addition to reading the mesh which was created by TSUPREM-4, the net and total impurity concentration at each node is read. By default, the entire structure is read. It may be truncated by specifying one or more of the parameters \mathbf{X}. MIN, X. MAX, Y.MIN, or Y.MAX.

An electrode may be added to the bottom of the structure (which is determined by the maximum y coordinate of the structure read in) by specifying ELEC. Вот.

Other Programs and TIF

A structure generated by other programs for input into Medici can be read by specifying the parameter TIF and using IN.FILE to identify the file where the structure is stored. In addition to reading the mesh, the doping at each node is read.

A TIF file generated by Medici with the solution information saved in the TIF file, serves as an initial guess for further simulations. An electrode may be added to the bottom of the structure (which is determined by the maximum y coordinate of the structure read in) by specifying ELEC. BOT. The saved solution may also be used for plotting.

A Quadtree mesh saved in a TIF file or Medici mesh file may be read back into Medici using the MESH statement. Anisotropic regrids may be performed using the REGRID statement.

Smoothing Region Shape

This section describes how to improve the way the region and electrode shape is handled by using the ADJUST parameter.

The ADJUST parameter may be used when the mesh is generated using the \mathbf{X}. MESH and Y. MESH statements.

If an ADJUST parameter is provided with a MESH statement, then the triangle diagonals at the region interfaces are flipped whenever it smooths the interface shape. A piece-wise linear region shape interpolation is used instead of the default staircase interpolation.

This parameter is especially useful if the region/electrode shape is non-rectangular (polygonal or circular). It is not recommended if strictly rectangular region/ electrode shape is desired, because it smooths both "convex" and "concave" corners of the rectangular region/ electrode.

X.MESH

The \mathbf{x}.MESH statement specifies the placement of nodes in the x direction.

X.MESH

```
{ LOCATION=<n> | ( {WIDTH=<n> | X.MAX=<n>} [X.MIN=<n>] ) }
[ {NODE=<n> | N.SPACES=<n>} ]
[ {SPACING=<n> | H2=<n>} ] [H1=<n>] [H3=<n>]
[RATIO=<n>] [MIN.SPAC=<n>] [SUMMARY]
```

Parameter	Type	Definition	Default	Units
LOCATION	number	The x location where a node is to be placed. wIDTH	number The width of the grid section.	none

Description

If an initial mesh is being generated, X.MESH and Y.MESH statements should immediately follow the MESH statement.

See Also... To further illustrate the X.MESH statement, refer to input file mdexl in Chapter 4, "Dimensions and Properties," p. 4-3.

Node Placement

Although the parameters on the \mathbf{X}.MESH statement can be used in a variety of ways for specifying the horizontal placement of nodes, the three most common methods are described here. Any reasonable combination of the following three methods is also acceptable.

NODE, LOCATION, and RATIO

This is the only method that was available in early versions of TMA PISCES-2B for specifying the node placement. In this method, each X.MESH statement places the node at the location specified with LOCATION. Additional nodes are added automatically between the explicitly specified ones. The RATIO parameter can be used to vary the spacing between adjacent nodes.

The problem with this method is that it is difficult to specify a mesh with smooth grid spacing transitions between adjacent grid sections when the RATIO parameter is used.

Example: The following statements creates a 1-micron grid section with a uniform grid spacing of 0.1 microns:

X.MESH	NODE=1	LOCATION=0.0
X.MESH	NODE=11	LOCATION $=1.0$

LOCATION and SPACING

This is the method that is used for setting up the initial grid in TSUPREM-4. In this method, each X.MESH statement places a node at the location specified with LOCATION. The local grid spacing at that location is given by SPACING.

Additional nodes are added automatically so that the grid spacing varies geometrically between the SPACING values at the user-specified locations. This method guarantees a smooth grid spacing transition between adjacent grid sections.

Example: The following statements create a 1 micron grid section with a grid spacing of 0.1 microns at $x=0$ and a grid spacing of 0.01 at $x=1$:

```
X.MESH LOCATION=0.0 SPACING=0.1
X.MESH LOCATION=1.0 SPACING=0.01 SUMMARY
```

The grid summary generated by the SUMMARY parameter shows that 25 grid spaces are used and that the ratio between adjacent grid spaces is 0.9081 .

WIDTH, This is the most versatile of the node placement methods. It allows the WIDTH of
N. SPACES, H1, H2, H3, and RATIO
a grid section to be specified along with various combinations of the number of grid spaces (N. SPACES), grid spacings (H1, H2, and H3), and grid spacing ratio (RATIO).

The grid spacing sizes within a grid section varies in one of three manners, depending on which parameters are specified. In all cases, a single ratio is maintained between the sizes of adjacent grid spaces throughout the section.

- The specification of the WIDTH parameter and one parameter from the set H1, H2, and N. SPACES results in a uniform grid spacing within the grid section.
- The specification of the WIDTH parameter and any two parameters from the set H1, H2, N. SPACES, and RATIO results in grid spacing sizes which change monotonically between the ends of the grid section.
- The specification of the H1, H2, and WIDTH parameters and one parameter from the set H3, N.SPACES, and RATIO results in grid spacing sizes that increase (or decrease) from both ends of the grid section to a maximum (or minimum) in the interior of the section.

Examples The following X.MESH statement sets up a uniform grid distribution with 10 spaces to span the 1 micron width of the grid section:
X.MESH WIDTH=1 $\mathrm{N}=10$

This X.MESH statement causes the grid spacing to be 0.01 microns at the left edge of the section and to increase by a ratio of 1.2 between adjacent spaces:

```
X.MESH WIDTH=1 H1=0.01 RATIO=1.2 SUMMARY
```

The grid summary generated by the SUMMARY parameter shows that 17 spaces are used and that the grid spacing at the right end of the section is 0.17 microns.

The following X.MESH statement specifies that the spacing at both ends of the section is to be 0.01 microns and that the maximum spacing in the interior of the section is to be 0.1 microns:

```
X.MESH WIDTH=1 H1=0.01 H2=0.01 H3=0.1 SUMMARY
```

The grid summary generated by the SUMMARY parameter shows that 26 spaces are required and that the left edge of the 0.1 micron space occurs at 0.4355 microns from the left edge of the grid section.

Y.MESH

The following Y.MESH statement specifies the placement of nodes in the y direction.
Y.MESH

```
{ LOCATION=<n> | ( {DEPTH=<n> | Y.MAX=<n>} [Y.MIN=<n>] ) }
[ {NODE=<n> | N.SPACES=<n>} ]
[ {SPACING=<n> | H2=<n>} ] [H1=<n>] [H3=<n>]
[RATIO=<n>] [MIN.SPAC=<n>] [SUMMARY]
```

Parameter	Type	Definition	Default	Units
LOCATION	number	The y location where a node is to be placed.	none	microns
DEPTH	number	The depth of the grid section. synonym: WIDTH	none	microns
Y. MAX	number	The y location of the bottom edge of the grid section. synonym: ч.воттом	none	microns
Y.MIN	number	The y location of the top edge of the grid section. synonym: Y.TOP	The bottom edge of the previous grid section.	microns
NODE	number	The y node number at the location specified by LOCATION or at the bottom edge of a grid section. There can be at most 2000 nodes in the y direction. Nodes are assigned consecutively, beginning with the first and ending with the last. synonym: N	none	none
N. SPACES	number	The number of grid spaces in the grid section.	none	none
SPACING	number	The size of the y grid space at the location specified with LOCATION or at the bottom edge of the grid section.	none	microns
H2	number	The size of the y grid space at the bottom edge of the grid section.	none	microns
H1	number	The size of the y grid space at the top edge of the grid section.	none	microns
H3	number	The size of the minimum or maximum grid spacing in the interior of the grid section.	none	microns
RATIO	number	The ratio between the sizes of adjacent grid spaces in the grid section. RATIO should usually lie between 0.667 and 1.5 .	1.0	none
MIN. SPAC	number	The size of the minimum allowed grid spacing in this grid section.	1.0e-4	microns
SUMMARY	logical	Specifies that summary information describing the grid section is sent to the standard output.	false	

Description

If an initial mesh is being generated, X.MESH and Y.MESH statements should immediately follow the MESH statement.

See Also... To further illustrate the \mathbf{Y}. MESH statement, refer to the input file mdexl in Chapter 4, "Dimensions and Properties," p. 4-3.

Node Placement

Although the parameters on the Y.MESH statement can be used in a variety of ways for specifying the vertical placement of nodes, the three most common methods are described here. Any reasonable combination of the following three methods is also acceptable.

NODE, This is the only method that was available in early versions of TMA PISCES-2B for specifying the node placement. In this method, each Y.MESH statement places RATIO the NODEth node at the location specified with LOCATION. Additional nodes are added automatically between the explicitly specified ones. The RATIO parameter can be used to vary the spacing between adjacent nodes.

The problem with this method is that it is difficult to specify a mesh with smooth grid spacing transitions between adjacent grid sections when the RATIO parameter is used.

Example: The following statements create a 1 micron grid section with a uniform grid spacing of 0.1 microns:

```
Y.MESH NODE=1 LOCATION=0.0
Y.MESH NODE=11 LOCATION=1.0
```

LOCATION and SPACING

This is the method that is used for setting up the initial grid in TSUPREM-4. In this method, each Y.MESH statement places a node at the location specified with LOCATION. The local grid spacing at that location is given by SPACING.

Additional nodes are added automatically so that the grid spacing varies geometrically between the SPACING values at the user-specified locations. This method guarantees a smooth grid spacing transition between adjacent grid sections.

Example: The following statements create a 1-micron grid section with a grid spacing of 0.1 microns at $y=0$ and a grid spacing of 0.01 at $y=1$:
Y.MESH LOCATION=0.0 SPACING=0.1
Y.MESH LOCATION=1.0 SPACING=0.01 SUMMARY

The grid summary generated by the SUMMARY parameter shows that 25 grid spaces are used and that the ratio between adjacent grid spaces is 0.9081 .

DEPTH,

N. SPACES, H1,

 H2, H3, and RATIOThis is the most versatile of the methods allowing the DEPTH of a grid section to be specified along with various combinations of the number of grid spaces
(N.SPACES), grid spacings (H1, H2, and H3), and grid spacing ratio (RATIO).

The grid spacing sizes within a grid section varies in one of three ways, depending on which parameters are specified. In all cases, a single ratio is maintained between the sizes of adjacent grid spaces throughout the section.

- The specification of the DEPTH parameter and one parameter from the set H1, H2, and N.SPACES results in a uniform grid spacing within the grid section.
- The specification of the DEPTH parameter and any two parameters from the set H1, H2, N. SPACES, and RATIO results in grid spacing sizes which change monotonically between the ends of the grid section.
- The specification of the H1, H2, and DEPTH parameters and one parameter from the set H3, N. SPACES, and RATIO results in grid spacing sizes that increase (or decrease) from both ends of the grid section to a maximum (or minimum) in the interior of the section.

Examples The following Y.MESH statement sets up a uniform grid distribution with 10

 spaces to span the 1 micron depth of the grid section:
Y.MESH DEPTH=1 $N=10$

This Y.MESH statement causes the grid spacing to be 0.01 microns at the top edge of the section and to increase by a ratio of 1.2 between adjacent spaces, as shown below:
Y.MESH DEPTH=1 H1=0.01 RATIO=1.2 SUMMARY

The grid summary generated by the SUMMARY parameter shows that 17 spaces are used and that the grid spacing at the bottom end of the section is 0.17 microns.

The following Y.MESH statement specifies that the spacing at both ends of the section is to be 0.01 microns and that the maximum spacing in the interior of the section is to be 0.1 microns:

```
Y.MESH DEPTH=1 H1=0.01 H2=0.01 H3=0.1 SUMMARY
```

The grid summary generated by the SUMMARY parameter shows that 26 spaces are required and that the top edge of the 0.1 micron space occurs at 0.4355 microns from the top edge of the grid section.

ABC.MESH

The ABC. MESH statement specifies local spacing parameters for the new Automatic Boundary Conforming (ABC) mesh generator.

ABC. MESH

Local Spacing Control
\{ ([X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
\{ (ALIGN REGION1=<c> REGION2=<c> REGION3=<c> REGION4=<c>)
| ([\{ REGION=<c> | (BOUNDARY REGION1=<c> REGION2=<c>)
| \{ SILICON | GAAS | POLYSILI | GERMANIU | SIC | SIGE ALGAAS | A-SILICO | DIAMOND | HGCDTE | INAS | INGAAS | INP | S.OXIDE | ZNSE | ZNTE | ALINAS | GAASP | INGAP | INASP | OXIDE | NITRIDE | SAPPHIRE | OXYNITRI \}
\}
]
[CRITICAL=<n>] [$\mathrm{H} 1=<\mathrm{n}>$] [$\mathrm{H} 2=<\mathrm{n}>$]
[\{GRDRIGHT | GRDLEFT | GRDUP | GRDDOWN | GRDCNTR\}]
[NEIGHBOR=<C>] [\{NORMAL=<n> | (NORMAL1=<n> NORMAL2=<n>)\}]
[NORMGROW=<n>] [LATERAL=<n>]
)
\}
)
Automatic MOSFET Meshing
(MOSFET
[N.CHANN $=<n>$] [N. JUNC= $<n>$] [N.GATEOX $=<n>$] [N.POLY $=<n>$]
[MAX.CHAN]=<n> [MAX.SD=<n>] [SI.NFACT=<n>] [GATE.NFA=<n>]
[RATIO $=<n>$]
)
\}

Parameter	Type	Definition	Default	Units
X.MIN	number	The minimum x-coordinate of the spacing box. The spacing parameters are only applicable to areas of the device with x coordinates greater than or equal to X.MIN.	The minimum x location in the structure	microns
X.MAX	number	The maximum x-coordinate of the spacing box. The spacing parameters are only applicable to areas of the device with x coordinates less than or equal to \mathbf{X}. MAX.	The maximum x location in the structure	microns
Y.MIN	number	The minimum y-coordinate of the spacing box. The spacing parameters are only applicable to areas of the device with y coordinates greater than or equal to Y.MIN.	The minimum y location in the structure	microns
Y.MAX	number	The maximum y-coordinate of the spacing box. The spacing parameters are only applicable to areas of the device with y coordinates less than or equal to \mathbf{Y}. MAX.	The maximum y location in the structure	microns
REGION	char	The name of the region to which the spacing parameters should be applied.		

Parameter	Type	Definition	Defaul
boundary	logical	Specifies that the spacing parameters should be applied to the boundary between REGION1 and REGION2.	false
ALIGN	logical	Specifies that the nodes on the boundary between REGION1 and REGION2 should be projected onto the boundary between REGION3 and REGION4 to facilitate node alignment.	false
REGION1	char	In conjunction with BOUNDARY, the name of one of the regions on the boundary to which the spacing parameters should be applied. In conjunction with ALIGN, the name of one of the regions on the source boundary for node alignment.	
REGION2	char	In conjunction with BOUNDARY, the name of one of the regions on the boundary to which the spacing parameters should be applied. In conjunction with ALIGN, the name of one of the regions on the source boundary for node alignment.	
Region 3	char	In conjunction with ALIGN, the name of one of the regions on the destination boundary for node alignment.	
REGION4	char	In conjunction with ALIGN, the name of one of the regions on the destination boundary for node alignment.	
SILIICON	logical	Specifies that the spacing parameters should be applied to all regions of material silicon.	false
GAAS	logical	Specifies that the spacing parameters should be applied to all regions of material GaAs.	false
POLYSILI	logical	Specifies that the spacing parameters should be applied to all regions of material polysilicon.	false
germaniu	logical	Specifies that the spacing parameters should be applied to all regions of material germanium.	false
SIC	logical	Specifies that the spacing parameters should be applied to all regions of material SiC.	false
Sige	logical	Specifies that the spacing parameters should be applied to all regions of material SiGe.	false
ALGAAS	logical	Specifies that the spacing parameters should be applied to all regions of material AlGaAs.	false
A-SILICO	logical	Specifies that the spacing parameters should be applied to all regions of material amorphous silicon.	false
DIAMOND	logical	Specifies that the spacing parameters should be applied to all regions of material diamond.	false
HGCDTE	logical	Specifies that the spacing parameters should be applied to all regions of material HgCdTe .	false
INAS	logical	Specifies that the spacing parameters should be applied to all regions of material InAs.	false
INGAAS	logical	Specifies that the spacing parameters should be applied to all regions of material InGaAs.	false

Parameter	Type	Definition	Default	Units
INP	logical	Specifies that the spacing parameters should be applied to all regions of material InP.	false	
S.OXIDE	logical	Specifies that the spacing parameters should be applied to all regions of material oxide when it is simulated as a wide band gap semiconductor.	false	
zNSE	logical	Specifies that the spacing parameters should be applied to all regions of material ZnSe .	false	
zNTE	logical	Specifies that the spacing parameters should be applied to all regions of material amorphous ZnTe .	false	
ALINAS	logical	Specifies that the spacing parameters should be applied to all regions of material AlInAs.	false	
GAASP	logical	Specifies that the spacing parameters should be applied to all regions of material GaAsP.	false	
INGAP	logical	Specifies that the spacing parameters should be applied to all regions of material InGaP.	false	
INASP	logical	Specifies that the spacing parameters should be applied to all regions of material InAsP.	false	
OXIDE	logical	Specifies that the spacing parameters should be applied to all regions of material oxide.	false	
NITRIDE	logical	Specifies that the spacing parameters should be applied to all regions of material nitride.	false	
SAPPHIRE	logical	Specifies that the spacing parameters should be applied to all regions of material sapphire.	false	
OXYNITRIDE	logical	Specifies that the spacing parameters should be applied to all regions of material oxynitride.	false	
CRITICAL	number	Specifies the critical feature size that should be maintained during re-gridding of the region boundaries. The new region boundaries are guaranteed to deviate from the original boundaries by less than CRITICAL.	CRITICAL value from the mesh statement.	microns
H1	number	Desired initial grid spacing on the region boundary.	SPACING value from the mesh statement.	microns
н2	number	Desired final grid spacing on the region boundary.	SPACING value from the mesh statement.	microns
GRDRIGHT	logical	Specifies that gridding along region boundaries should proceed from left to right.	false	
GRDLEFT	logical	Specifies that gridding along region boundaries should proceed from right to left.	false	
GRDUP	logical	Specifies that gridding along region boundaries should proceed from down to up.	false	
GRDDOWN	logical	Specifies that gridding along region boundaries should proceed from up to down.	false	
GRDCNTR	logical	Specifies that gridding along region boundaries should proceed from the center of the boundary out toward the ends.	true	

Parameter	Type	Definition	Default	Units
NEIGHBOR	char	In conjunction with REGION, specifies a particular boundary of REGION by giving the name of the neighboring region on the opposite side of the boundary. Used to specify the following parameters at a particular boundary of a particular region: NORMAL, NORMAL1, NORMAL2, NORMGROW.		
NORMAL	number	Specifies a uniform normal spacing along the region boundary.	Determined from the SPACING and n. SEMICO, N.CONDUC, and N. INSULA parameters on the mesh statement.	microns
NORMAL1	number	Specifies the normal spacing at the beginning of the region boundary.		microns
NORMAL2	number	Specifies the normal spacing at the end of the region boundary.		microns
NORMGROW	number	Specifies the growth factor of the normal spacing into the interior of the region.	NORMGROW value from the Mesh statement.	
LAtERAL	number	Specifies a target value for the lateral spacing during gridding of the interior of the region.	Lateral value from the mesh statement.	microns
Automatic MOSFET Meshing				
MOSFET	logical	Specifies that automatic meshing for symmetric MOSFET's should be used.	false	
n. CHANN	number	Specifies the normal spacing in the channel at the siliconoxide interface.	4.0e-4	microns
N. JUNC	number	Specifies the maximum normal spacing at metallurgical junctions.	40.0e-4	microns
N. GATEOX	number	Specifies the normal spacing in the oxide below the gate.	tox/2	microns
n. Poly	number	Specifies the normal spacing at the bottom of the polysilicon gate.	4.0e-4	microns
MAX. CHAN	number	Specifies the maximum lateral spacing along the top of the channel.	0.5	microns
MAX. SD	number	Specifies the maximum lateral spacing along the boundaries of the source and drain regions.	$\begin{aligned} & \text { (SD junction length)/ } \\ & 10 \end{aligned}$	microns
SI. NFACT	number	Specifies the growth factor along the boundaries of the silicon regions for the normal spacing.	20.0	1/ microns
GATE. NFA	number	Specifies the growth factor along the gate boundaries for the normal spacing.	30.0	1/ microns
RAtio	number	Specifies the gridding ratio for the lateral spacing. Also used to set the NORMGROW.	1.35	

Description

ABC.MESH statements should immediately follow a MESH statement when using the new ABC mesh generator. The ABC. MESH statement is used to create a "Spacing Box" in which spacing parameters can be specified on a local basis.

Spacing Boxes

Spacing boxes allow local control of the meshing parameters for both region boundaries and region interiors. Spacing boxes work by following an override convention for parameter specification that is similar to other Medici statements. The value of a parameter is used until overridden by a later specification of the parameter in an ABC. MESH statement. The spacing boxes specified by the ABC. MESH statement are thought of as a stacked layer of boxes with the first ABC.MESH statement specifying the box on the bottom. Subsequent ABC. MESH statements place boxes on top of each other with the last ABC.MESH statement specifying the top-most box. The value of a parameter is found by searching the list of spacing boxes from the top to the bottom of the stack. The parameter value is determined by the first spacing box that contains a valid specification of the parameter. In the event no spacing box provides a valid specification for a parameter, either the global value specified in the MESH statement is used, or the default value listed in the parameter table is used.

The extent of a spacing box is constrained by using the \mathbf{X}. MIN, X.MAX, Y.MIN, and \mathbf{Y}.MAX parameters to specify the horizontal and vertical limits of the spacing box. The parameters specified in such a box will only be valid within the specified limits. Further restriction of the parameter specification is made by specifying a particular region, region boundary, or material to which the parameters are applied by using the REGION, BOUNDARY, REGION1, REGION2, and logical material parameters. This restriction is used in conjunction with the bounding box and override convention to determine the value of a parameter at a particular point in the mesh. The stacking of spacing boxes by sequential ABC.MESH statements in conjunction with specifying the extent of the boxes and specifying the region(s) or region boundary(s) to which the spacing boxes apply are used to buildup a detailed mesh specification in a piecewise fashion. Examples of this are provided below.

Gridding Region Boundaries

The ABC algorithm breaks the meshing of a device into two distinct stages: gridding of the boundaries between regions and then the meshing of the interior of regions. The new version of the ABC mesh generator gives greater control over the accuracy of the newly created region boundaries and the spacing of grid points along the boundaries. The parameters involved in gridding the region boundaries are CRITICAL, H1, H2, GRDRIGHT, GRDLEFT, GRDUP, GRDDOWN, and GRDCNTR.

These parameters can be specified for all boundaries of a particular region by using the REGION parameter, for all boundaries of a certain material type by using the logical material parameters, or for a particular boundary between two regions by specifying BOUNDARY in conjunction with REGION1 and REGION2.

One key feature of this re-gridding process is how closely the newly gridded boundaries match the original boundaries. Control the deviation between an original and new boundary by using the CRITICAL parameter, which is an indication of the critical feature size that should always be maintained. During boundary re-gridding, the new boundaries are guaranteed to deviate from the original boundaries by no more than the specified CRITICAL value. Specifying a small, but non- zero, value of CRITICAL allows the new boundaries to closely track the original boundaries while at the same time allows redundant nodes that are very close to each other to be eliminated.

Region boundaries can now be gridded with non-uniform spacing using the spacing parameters called H 1 and H 2 , similar to the H 1 and H 2 parameters in the \mathbf{X}. MESH and Y. MESH statements. Use H1 to set the initial spacing along the boundary, and use $\mathbf{H} 2$ to set the final spacing. The intermediate grid spacings are calculated using a constant ratio between adjacent grid spaces, which is similar to the operation of the X.MESH and Y.MESH statements. Except in special circumstances, the initial and final spacings are guaranteed to be H1 and H2, respectively.

Figure 3-1 Examples of different gridding directions

As shown in Figure 3-1, the direction of the gridding along the boundary is controlled by setting one of direction parameters, GRDRIGHT, GRDLEFT, GRDUP, GRDDOWN, and GRDCNTR. For example, using GRDRIGHT along a boundary causes H1 to be used as the left-most spacing, and H2 to be used as the right-most spacing. Boundaries can be gridded symmetrically using GRDCNTR which causes H 1 to be used as the grid spacing in the center of the region boundary and H 2 as the grid spacing at both ends of the boundary. During gridding, the actual grid direction that is used is determined by finding the specified grid direction at the center of the boundary.

Alignment

To obtain a good quality mesh in a region that is very thin, it is often necessary to align the nodes on the boundaries. As shown in Figure 3-2, a common example of this occurs in the gate oxide of a MOSFET. Misaligned nodes on the silicon-oxide and gate-oxide interfaces can result in mesh elements of poor quality. The ALIGN parameter can be used to align the nodes on two different boundaries.

Figure 3-2 Example of node alignment across a thin gate oxide
With ALIGN specified, the REGION1 and REGION2 parameters are used to specify the source boundary that will provide the nodes for alignment. The REGION3 and REGION4 parameters are used to specify the destination boundary to which these nodes are projected. As shown in Figure 3-2, node alignment is achieved by projecting a node on the source boundary along a line perpendicular to the source boundary and finding the intersection with the destination boundary. Using the region names shown in Figure 3-2, this node alignment would be specified using the following ABC. MESH statement:

```
ABC.MESH ALIGN REGION1=silicon REGION2=oxide
+ REGION3=gate REGION4=oxide
```

The bounding box parameters can be used to restrict the area over which alignment occurs.

Figure 3-3
Gridding region boundaries using the new ABC mesh generator

Example

Consider the device shown in Figure 3-3. The original structure consisted of a single silicon region named Silicon 1 and an oxide region named Oxide 1. The figure shows the resulting junction and region boundaries after the following set of statements is processed. The single silicon region is broken into two regions with the same name as a result of the JUNC. ABC parameter.

```
1... MESH IN.FILE=device.tif TIF ABC JUNC.ABC
+ ^GRIDTOP ^RFN.CRNR
2... ABC.MESH BOUNDARY REGION1=Silicon1 REGION2=Silicon1
    GRDLEFT H1=0.01 H2=0.1
3... ABC.MESH BOUNDARY REGION1=Silicon1 REGION2=Oxide1
+ X.MIN=1.0 GRDRIGHT H1=0.01 H2=0.1
4... ABC.MESH BOUNDARY REGION1=Silicon1 REGION2=Oxide1
    X.MAX=1.0 GRDLEFT H1=0.01 H2=0.1
```

The mesh statement in line 1 initializes the new ABC mesh generator and uses JUNC. ABC to cause the mesh to conform to junctions in addition to region boundaries. In this example, both the gridding of the top of the structure and automatic corner refinement are turned off. The automatic corner refinement is turned off so that complete control over the spacing is obtained. Line 2 uses a spacing box to specify the parameters for gridding the junction boundary. The junction is identified by specifying the two identically named silicon regions on either side of the junction. The grid is produced from right to left with an initial spacing $0.01 \mu \mathrm{~m}$ and a final spacing $0.1 \mu \mathrm{~m}$. The spacing parameters for the boundary between the two silicon regions and the oxide region are specified using two ABC . MESH statements. Line 3 specifies the spacing parameters for the right part of the boundary by using X.MIN to restrict the parameters to the right side of the junction. Likewise, Line 4 specifies the spacing parameters for the left part of the boundary.

Gridding Region Interiors

Control region gridding by specifying the desired normal spacing away from the boundaries and target values of lateral spacing within the interior of the region. The parameters used for gridding the interior of a region are NEIGHBOR, NORMAL, NORMAL1, NORMAL2, NORMGROW, and LATERAL. Specify these parameters in conjunction with the REGION parameter or one of the logical material parameters. If the REGION parameter is used, the spacing parameters are used for all regions with the given name. If a logical material parameter such as SILICO is used, then the spacing parameters are used for all regions of that material type.

Currently, Medici only allows the normal spacing to be specified at the start of the gridding process along the region boundaries. Specify normal spacing parameters for a particular boundary of a region by using the REGION parameter to specify the desired region and the NEIGHBOR parameter to specify the region on the other side of the boundary. Specify uniform normal spacing along a boundary by using the NORMAL parameter.

Figure 3-4 Specification of non-uniform normal spacing
As shown in Figure 3-4, specify non-uniform spacing by using the NORMAL1 and NORMAL2 parameters in conjunction with one of the gridding directions. Similar to the specification of $\mathbf{H 1}$ and H 2 for boundary gridding, NORMAL1 specifies the initial normal spacing along the boundary, and NORMAL2 specifies the final normal spacing along the boundary. The normal spacing of intermediate points along the boundary is calculated using a constant ratio between adjacent points.

The growth of the normal spacing into the region is controlled by the NORMGROW parameter. The normal spacing used in each subsequent layer is larger than the previous one by the multiplication factor given by NORMGROW. Control the lateral spacing within region by using the LATERAL parameter. This parameter acts like a target value. If the lateral spacing produced during gridding is less than twice LATERAL, then the lateral spacing is unrefined in order to bring the spacing up to the desired value. Likewise, if the lateral spacing produced during gridding is more than twice LATERAL, then the lateral spacing is refined in order to bring the spacing down to the desired value. Refinement and unrefinement are only performed, however, if a non-obtuse adjustment triangle can be produced.

The activity of the LATERAL parameter is deactivated by specifying a negative value. A common use of LATERAL is to coarsen the mesh away from the boundaries by specifying a very large value. This causes the lateral spacing to be unrefined whenever non-obtuse elements are produced.

Figure 3-5 Gridding region interiors using the new ABC mesh generator

Continuing with the example started in Figure 3-3, Figure 3-5 shows the result of using the following additional ABC.MESH statements to specify parameters for gridding the interior of the regions.

```
5... ABC.MESH OXIDE NORMAL=0.1
6... ABC.MESH REGION=Silicon1 NORMAL=0.01
7... ABC.MESH REGION=Silicon1 NEIGHBOR=Silicon1 X.MIN=0.5
+ NORMAL1=0.01 NORMAL2=0.03 GRDLEFT
8... ABC.MESH REGION=Silicon1 NEIGHBOR=Silicon1 X.MAX=0.5
+ NORMAL1=0.03 NORMAL2=0.03 GRDLEFT
```

Line 5 uses an ABC. MESH statement to specify that a uniform normal spacing of $0.1 \mu \mathrm{~m}$ should be used in all regions of material type oxide; i.e. the region Oxide 1 . Likewise, line 6 specifies that all regions with name Silicon1 should be gridded with a uniform normal spacing at the boundary of $0.01 \mu \mathrm{~m}$. These two statements produce the uniform normal spacing mesh shown on the left of Figure 3-5. Line 7 and 8 are used to produced the non-uniform normal spacing mesh shown on the right of Figure $3-5$. These two statements override the normal spacing specified in line 6 for points on the junction. Line 7 specifies a non-uniform normal spacing along the junction with an initial spacing of $0.01 \mu \mathrm{~m}$ and a final spacing of $0.03 \mu \mathrm{~m}$ at the end of the bounding box at $x=0.5 \mu \mathrm{~m}$. The normal spacing increases from right to left along the junction since GRDLEFT is specified. The specification in line 6 is overridden by line 8 for points to the left of $0.5 \mu \mathrm{~m}$, producing a uniform normal spacing of $0.03 \mu \mathrm{~m}$ along the bottom of the junction.

Automatic MOSFET Meshing

In order to facilitate the use of the new ABC mesher for one of the most popular applications, a symmetrical MOSFET, an automatic meshing algorithm has been developed. This algorithm, activated with the MOSFET parameter on the ABC.MESH statement, identifies the key active regions of a symmetrical MOSFET. The mesh spacing in these key regions can be easily controlled through a small set of parameters. In addition, you can also specify how quickly the mesh should coarsen away from the key device areas in order to reduce the node count. Additional ABC. MESH statements can be used in conjunction with automatic meshing to further control the mesh. Note that the JUNC . ABC parameter must be specified on the MESH statement to enable meshing around junctions. If the automatic meshing algorithm is unable to identify the primary regions and boundaries of the device, meshing will continue without the automatic analysis.

Figure 3-6 Illustration of the gridding scheme used by the automatic meshing algorithm for symmetric MOSFETs

The normal spacing parameters used to parameterize the mesh in the silicon regions are shown in Figure 3-6. A uniform normal spacing of \mathbf{N}. CHANN is used at the top of the channel, increasing to a maximum of \mathbf{N}. JUNC along the boundaries of the source and drain. The rate at which the normal spacing increases along these boundaries is governed by SI . NFACT. The lateral spacing at the source and drain junction points is set to N. CHANN to obtain good mesh quality there. The lateral spacing is then increased away from the junction points: outward toward the sides and inward above the channel. The rate at which the lateral spacing increases is governed by RATIO. The maximum allowed lateral spacing on the boundaries of the source and drain regions is set by MAX. SD, while the maximum allowed lateral spacing above the channel is set by
MAX CHANN.

The gridding scheme near the bottom of the gate on the drain side is shown in Figure 3-7. The nodes on the bottom of the gate are aligned to the nodes on the top of the silicon regions. The lateral spacing along the sides of the gate is coarsened away from the bottom of the gate. The normal spacing is set to a uniform value of $\mathbf{N} . \operatorname{POLY}$ along the bottom of the gate, and is then increased along the sides of the gate. The rate at which the normal spacing increases is set by GATE. NFACT. A uniform normal spacing of \mathbf{N}. GATEOX is used in the oxide under the gate.

Figure 3-7 A blow-up of the automatic MOSFET gridding scheme around the drain junction point

The listing below shows an example of using the automatic meshing capability. A channel spacing of $6 \AA$ is specified along with a $10 \AA$ spacing at the bottom of the polysilicon region. The rate at which the normal spacing along the sides of the gate increases is set to $40 \mu \mathrm{~m}^{-1}$ to decrease the node count. An example of a MOSFET gridded using this specification is shown in Figure 3-8.

```
ABC.MESH
MOSFET N.CHANN=6E-4
+ N.POLY=10E-4 GATE.NFA=40
```


Figure 3-8 An example of a symmetric MOSFET automatically meshed

ELIMINATE

The ELIMINATE statement eliminates mesh points along planes in a rectangular grid over a specified volume.

ELIMINATE

\{ROWS | COLUMNS \}
$[\{X . M I N=<n>\mid I X . M I N=<n>\}]\left[\begin{array}{ll|l}\text { [} & \text { IX.MAX=<n> } & \text { IX.MAX=<n>\} }]\end{array}\right.$
[\{Y.MIN=<n> | IY.MIN=<n>\}] [\{Y.MAX=<n> | IY.MAX=<n>\}]

Parameter	Type	Definition	Default	Units
ROWS	logical	Specifies that horizontal lines of nodes are eliminated. synonym: X.DIREC	false	
COLUMNS	logical	Specifies that vertical lines of nodes are eliminated. synonym: Y.DIREC	false	
X.MIN	number	The minimum x location of the rectangular volume in which nodes are eliminated.	The minimum x location for the device structure.	microns
IX.MIN	number	The minimum x node index of the rectangular volume in which nodes are eliminated. synonym: Ix.LOW	1	none
X.MAX	number	The maximum x location of the rectangular volume in which nodes are eliminated.	The maximum x location for the device structure.	microns
IX. MAX	number	The maximum x node index of the rectangular volume in which nodes are eliminated. synonym: IX.HIGH	The maximum x node index for the device structure.	none
Y.MIN	number	The minimum y location of the rectangular volume in which nodes are eliminated.	The minimum y location for the device structure.	microns
IY.MIN	number	The minimum y node index of the rectangular volume in which nodes are eliminated. synonym: IY.LOW	1	none
Y.MAX	number	The maximum y location of the rectangular volume in which nodes are eliminated.	The maximum y location for the device structure.	microns
IY.MAX	number	The maximum y node index of the rectangular volume in which nodes are eliminated. synonym: IY. HIGH	The maximum y node index for the device structure.	none

Description

The eliminate statement is useful for eliminating nodes in regions of the device structure where the grid is more dense than necessary.

Points along every second line in the chosen direction within the chosen range are removed. Successive eliminations of the same range remove points along every fourth line, eighth line, and so on.

Multiple eliminations over the same region using both ROWS and COLUMNS are allowed.

See Also... To further illustrate the Eliminate statemen, refer to input file mdexl Chapter 4, "Triangular Grid," p. 4-4.

Restrictions

Do not use the ELIMINATE statement with the following:

- A distorted mesh, which must precede any SPREAD statements that may be present
- A mesh which has undergone a REGRID operation
- A mesh read in from TSUPREM-4

The SPREAD statement provides a way to adjust the y position of nodes along grid lines parallel to the x -axis in a rectangular mesh to follow surface and junction contours.

SPREAD

```
{LEFT | RIGHT} WIDTH=<n> UPPER=<n> LOWER=<n> [ENCROACH=<n>]
{Y.LOWER=<n> | FIX.LOWE | ( THICKNES=<n> [VOL.RAT=<n>] )}
[GRADING=<n>] [ MIDDLE=<n> Y.MIDDLE=<n> [GR1=<n>] [GR2=<n>] ]
```

Parameter	Type	Definition	Default	Units
LEFT	logical	Specifies that the left side of the grid is distorted.	false	
RIGHT	logical	Specifies that the right side of the grid is distorted.	false	
WIDTH	number	The width of the distorted region measured from the LEFT or RIGHT edge of the structure. If LEFT is specified, the middle of the transition region between distorted and undistorted grid regions lies at the horizontal coordinate minimum (x)+WIDTH. If RIGHT is specified, the middle of the transition region between distorted and undistorted grid regions lies at the horizontal coordinate maximum(x)WIDTH.	none	microns
UPPER	number	The index of the upper y-grid line of the distorted region.	none	none
LOWER	number	The index of the lower y-grid line of the distorted region.	none	none
ENCROACH	number	The factor which defines the abruptness of the transition between distorted and undistorted grid. The transition region becomes more abrupt with smaller ENCROACH factors. Depending on the characteristics of the undistorted grid, very bad triangles (long, thin, and obtuse) may result if ENCROACH is set too low. The minimum allowed value is 0.1.	1.0	none
Y. LOWER	number	The vertical location in the distorted region where the line specified by LOWER is moved. The grid line specified by UPPER does not move if this parameter is specified.	none	microns
FIX.LOWE	logical	Specifies that the line specified by LOWER is fixed during the spread.	false	
THICKNES	number	The thickness of the distorted region. Specifying thicknes usually causes the positions of both the UPPER and LOWER grid lines to move.	none	microns
VOL. RAT	number	The ratio of the displacement of the lower grid line to the net change in thickness. If VOL. RAT is 0 , the location of the lower grid line does not move. If VOL. RAT is 1 , the upper grid line does not move.	0.44	none

Parameter	Type	Definition	Default	Units
GRADING	number	The vertical grid spacing ratio in the distorted region between the y-grid lines specified with UPPER and LOWER (if MID- DLE is not specified). The spacing grows or shrinks by GRADING in each interval between lines. GRADING should usually lie between 0.667 and 1.5.	1.0	none
MIDDLE	number	The index of a y-grid line which lies between the y-grid lines specified with UPPER and LOWER.	none	none
Y.MIDDLE	number	The vertical location in the distorted region where the line specified by MIDDLE is moved.	none	microns
GR1	number	The vertical grid spacing ratio in the distorted region between the y-grid lines specified with UPPER and MIDDLE. The spacing grows or shrinks by GR1 in each interval between lines. GR1 should usually lie between 0.667 and 1.5.	1.0	none

Description

SPREAD is useful in reducing the amount of grid nodes for some specific problems, most notably MOSFETs. With the SPREAD statement, it is possible to redistribute existing grid lines to increase the node density in critical areas, for example at junctions. SPREAD can also be used to create a nonplanar surface topography in the device structure.

See Also... To further illustrate the SPREAD statement, refer to input file mdexl in Chapter 4, "Initiating and Smoothing," p. 4-3.

Examples

Figure 3-9 illustrates the use of the SPREAD statement for six different cases. For each case, the initial grid is spatially uniform and consists of 11 horizontal and 11 vertical grid lines. In each case, the left side of the grid is distorted, with the middle of the transition region between distorted and undistorted mesh occurring at approximately $\mathrm{x}=5$ microns.

Cases (a) through (c) all specify VOL . RAT $=0.5$, so that the displacement of the grid lines specified with UPPER and LOWER are equal and opposite. Case (a) decreases the thickness of the region between the UPPER and LOWER grid lines to 1 micron while (b) increases the thickness to 7 microns. Case (c) is identical to (b) except the third grid line is placed at $\mathrm{y}=3$ microns in the distorted region.

Case (d) specifies VOL. RAT=0, which causes the grid line specified with LOWER to remain at its original location. The thickness is increased to 7 microns. In case (e), the grid line specified by LOWER is moved to $y=7$ microns in the distorted region and the line specified by UPPER remains fixed. Case (f) is identical to case (e), except that GRADING is specified to vary the spacing between grid lines in the distorted region.

Figure 3-9 Six different spread statements on an initially uniform mesh
(a) SPREAD LEFT WID=5. UP=1 LOW=5 THICK=1. VOL.RAT=0.5
(b) SPREAD LEFT WID=5. UP=1 LOW=5 THICK=7. VOL.RAT=0.5
(C) SPREAD LEFT WID=5. UP=1 LOW=5 THICK=7. VOL.RAT=0.5
$+\quad$ MID=3 Y.MID=3.0
(d) SPREAD LEFT WID=5. UP=1 LOW=5 THICK=7. VOL.RAT=0.0
(e) SPREAD LEFT WID=5. UP=1 LOW=5 Y.LOW=7.
(f) SPREAD LEFT WID=5. UP=1 LOW=5 Y.LOW=7. GRADING=. 67

BOUNDARY

After the specification of an initial mesh, the BOUNDARY statement reads boundary information representing material interfaces from a file and adapts the mesh to the boundaries. The resulting grid closely conforms to the boundary information and can accurately represent highly nonplanar structures.

BOUNDARY

```
IN.FILE=<C> [ASCII.IN] [ {2D.PROC | TSUPREM4} ]
[ OUT.FILE=<C> [ASCII.OU] ]
[X.SCALE=<n>] [Y.SCALE=<n>] [X.OFFSET=<n>] [Y.OFFSET=<n>]
[X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
[X.TOLER=<n>] [Y.TOLER=<n>] [X.AVERAG] [Y.AVERAG]
[ SHARP [ANGLE.CR=<n>] ] [ ASPECT [LOW.ASPE=<n>] [HIGH.ASP=<n>] ]
```

Parameter	Type	Definition	Default	Units
IN.FILE	char	The identifier of the input data file containing the boundaries to be read. synonym: INFILE	none	
ASCII. In	logical	Specifies that the input data file is formatted.	False if 2D. PROC is specified, else true.	
2D. PROC	logical	Specifies that the input data file was generated in the Synopsys TCAD standard file format. If neither 2D. PROC nor TSUPREM4 is specified, boundaries are read from a simple boundary file.	false	
TSUPREM4	logical	Specifies that the input data file was generated by TSUPREM-4 for Medici. If neither 2D. PROC nor TSUPREM4 is specified, boundaries are read from a simple boundary file. synonym: TS4	false	
OUT.FILE	char	The identifier of the output data file containing the boundaries to be written. synonym: outrile	none	
ASCII. OU	logical	Specifies that the output data file is formatted.	true	
X. SCALE	number	The factor by which boundary x coordinates are multiplied.	1.0	none
Y. SCALE	number	The factor by which boundary y coordinates are multiplied.	1.0	none
X. OFFSET	number	The distance by which boundary x coordinates are offset.	0.0	microns
Y. Offset	number	The distance by which boundary y coordinates are offset.	0.0	microns
X.MIN	number	The minimum allowed boundary x coordinate. Coordinates less than X.MIN are clipped to X.MIN.	The minimum x coordinate of the user-specified grid.	microns
X.MAX	number	The maximum allowed boundary x coordinate. Coordinates greater than X.MAX are clipped to X.MAX.	The maximum x coordinate of the user-specified grid.	microns

Parameter	Type	Definition	Default	Units
Y.MIn	number	The minimum allowed boundary y coordinate. Coordinates less than \mathbf{Y}.MIN are clipped to \mathbf{Y}.MIN.	The minimum y coordinate of the user-specified grid.	microns
Y. MAX	number	The maximum allowed boundary y coordinate. Coordinates greater than Y.MAX are clipped to \mathbf{Y}.MAX.	The maximum y coordinate of the user-specified grid.	microns
X.toler	number	Before initiation of the boundary matching iterations, the minimum horizontal distance allowed between a grid line and a key point.	1% of the total width of the grid.	microns
Y.toler	number	Before initiation of the boundary matching iterations, the minimum vertical distance allowed between a grid line and a key point.	1% of the total height of the grid.	microns
X. Averag	logical	Specifies that the locations of vertical grid lines are averaged where possible to equidistribute the spacings between adjacent lines.	false	
Y. AVERAG	logical	Specifies that the locations of horizontal grid lines are averaged where possible to equidistribute the spacings between adjacent lines.	false	
SHARP	logical	Specifies that key points are to be allocated at boundary nodes that form the vertices of angles greater than ANGLE.CR.	false	
angle.cr	number	The critical angle associated with the SHARP parameter.	45	degrees
ASPECT	logical	Specifies that rectangular grid elements are to be subdivided either vertically or horizontally if the ratio of their height to width is greater than HIGH. ASP or less than LOW. ASPE. Elements are subdivided so that the aspect ratios of the child elements are closer to 1 than that of their parents.	false	
LOW. ASPE	number	The low limit for aspect-ratio-based rectangular grid element subdivision. Elements whose ratio of height to width is less than LOW . ASPE are subdivided vertically. It is an error to set LOW . ASPE greater than 0.625 .	0.5	none
HIGH.ASP	number	The high limit for aspect-ratio-based rectangular grid element subdivision. Elements whose ratio of height to width is greater than HIGH. ASP are subdivided horizontally. It is an error to set HIGH. ASP less than 1.6.	2.0	none

Description

The BOUNDARY statement allows sequences of Cartesian coordinate locations ("boundaries") representing essentially arbitrary material interfaces to be read from a file. These are then combined with a coarse Medici grid specification to generate a triangular grid. This grid contains a very low percentage of obtuse triangles, such that the boundaries coincide almost exactly with triangle sides.

The concept behind this capability was abstracted from a paper by Ciampolini et al., "Adaptive Mesh Generation Preserving the Quality of the Initial Grid," IEEE Transactions on Computer-Aided Design, Vol. 8, No. 5, May 1989.

The BOUNDARY statement was implemented primarily to afford the user a method of creating grids for applications in which device topography or structure is critical. Additionally, it can serve as a unidirectional interface between the Synopsys TCAD process simulators, Taurus-Lithography and TSUPREM-4, and Medici.

See Also... To further illustrate the BOUNDARY statement, refer to Chapter 10, "Medici Simulation of Electric Field Distribution," p. 10-25.

Input and Boundaries

Input to the grid generator consists of a set of boundaries plus an initial Medici mesh specification via the MESH, X.MESH, and Y.MESH statements. An analysis of the boundaries is performed to extract geometrical data such as the locations of boundary endpoints, kinks, and intersections. The mesh lines are manipulated slightly to take these locations into account, and are then used to form a terminating-line rectangular grid.

The boundaries are then matched to the grid and elements are subdivided iteratively until the grid can resolve the boundaries. Finally, the rectangular grid is converted to a standard Medici triangular grid.

Statement Ordering

To use the BOUNDARY statement, structure specification statements must occur in the following order:

MESH, X.MESH, Y.MESH, BOUNDARY, REGION, ELECTRODE, PROFILE.

Restrictions ELImINATE and SPREAD statements are not allowed in conjunction with the BOUNDARY statement.

File I/O

Reading boundaries from a file is accomplished by specifying IN.FILE, ASCII. IN (optional), and at most one of 2D. PROC and TSUPREM4. For example, the following statement

BOUNDARY IN.FILE=test.inb ASCII.IN
reads boundaries from a formatted simple boundary file called test.inb. The file must contain the following information:

1. One integer: $N B$
$N B$ is the number of boundaries contained in this file.
2. $N B$ integers: $N_{1}, N_{2}, \ldots, N_{N B}$

Each N_{i} is the number of points or nodes in boundary i.
3. $2\left(N_{1}+N_{2}+\ldots+N_{N B}\right)$ reals: $x_{1}^{1}, y_{1}^{1}, \ldots, x_{N_{N B}}^{N B}, x_{N_{N B}}^{N B}$

Each superscript indicates the boundary to which each coordinate belongs, and each subscript indicates the node number to which each coordinate belongs. The first real of each pair is an x coordinate (in microns) of a boundary node; the second is a y coordinate (in microns).
4. One 20-character string describing the date at which the file was written.

Termination, Overlap, and Intersect Examples

This section details some of the properties of the BOUNDARY statement using files as examples.

Termination The following file describes a set of three boundaries containing 6, 2, and 2 nodes, respectively.

3	
$6 \quad 2 \quad 2$	
0.625000	-0.100000
0.625000	-0.046000
0.750000	-0.025000
2.250000	-0.025000
2.375000	-0.046000
2.375000	-0.100000
0.500000	-0.100000
0.500000	0.033000
2.500000	-0.100000
2.500000	0.033000
$121-A u g-90$	00.59 .57

Boundaries must partition the simulation space. Thus, every boundary string must terminate on a boundary (a boundary's endpoints may lie on itself). Boundaries may terminate at grid edges, which are considered implicit boundaries.

Overlap There are several restrictions to be aware of when creating a simple boundary file. The first is that boundaries that overlap (i.e., contain sections in common) must overlap at exactly the same points.

For example, the boundary file at left causes errors, while the file in the middle does not. It is actually preferable that boundaries not overlap at all. Superior to either of the other files is the one at right.
$\left.\begin{array}{lllllll}2 & & 2 & & 3 & & \\ 6 & & & 6 & 6 & 2 & 2\end{array}\right]$

Intersect Furthermore, it is preferable for boundaries which intersect to intersect explicitly at exactly the same point. The boundary file at right is preferable to the one at left.

2		2	
22		33	
0.000000	1.000000	0.000000	1.000000
1.000000	0.000000	0.500000	0.500000
		1.000000	0.000000
0.000000	0.000000		
1.000000	1.000000	0.000000	0.000000
, 1-Sep-90	14:24:33 '	0.500000	0.500000
		1.000000	1.000000
		, 1-Sep-90	24:40

Compatibility

This section details using the BOUNDARY statement with files written by Synopsys TCAD products other than Medici, and other programs.

Synopsys TCAD
The following Medici statement reads boundaries from a file STRINGS written in the Synopsys TCAD standard file format by Taurus-Lithography:

BOUNDARY 2D.PROC IN.FILE=STRINGS

The file must have been written with the Taurus-Lithography statement below:

```
SAVEFILE STRUCTURE FILE=STRINGS
```

The following Medici statement reads boundaries from a file STRUCT.MD written by TSUPREM-4:

```
BOUNDARY TSUPREMA4 IN.FILE=STRUCT.MD OUT.FILE=struct.oub
+ ASCII.OU
```

The file must have been written with the TSUPREM-4 statement below:

```
STRUCTURE MEDICI OUT.FILE=STRUCT.MD
```

Most regions are assigned automatically when gridding a boundary file written by TSUPREM-4; reading in a file written by Taurus-Lithography, however, currently requires the user to assign regions to the resulting grid. In either case, electrodes must be assigned by you.

Process
Simulator Data Files

To write out boundaries read from process simulator data files in a form which can be edited, use the OUT.FILE and ASCII. OU parameters. The last BOUNDARY statement example above writes the simple boundary file struct.oub. Since the simple boundary file input and output formats are identical, the file struct.oub may be edited as required and then read again.

Transformation and Truncating

After boundaries are read, they are transformed (scaled and translated) in that order. That is, if x and y are the coordinates of a boundary node, then the sequence of operations performed on x and y is:
$x=(x \cdot \mathbf{X} . \operatorname{SCALE})+\mathbf{X . O F F S E T}$
Equation 3-1
$y=(y \cdot \mathbf{Y} . \operatorname{SCALE})+\mathbf{Y}$. OFFSET
Equation 3-2
The boundaries are then truncated to fit within the rectangle defined by $\mathbf{X} . \mathbf{M I N}$, X. MAX, Y.MIN, and Y. MAX.

Boundary Analysis

After having been transformed and truncated, the boundaries are analyzed in order to extract significant geometric information, such as the locations of:

- Aspect ratio
- Kinks
- Intersections

Kinks Kinks in a boundary are defined to occur when the SHARP parameter is specified and three successive boundary nodes form an angle greater than ANGLE.CR degrees (see Figure 3-10). These locations, known as "key points," are then used in two ways.

Figure 3-10 Kink Definition

- Any vertical grid line less than \mathbf{X}. TOLER microns from a key point is snapped to that key point. Similarly, if the distance between any horizontal grid line and any key point is less than Y.TOLER, that line is also snapped to that key point.
This process helps ensure that the initial rectangular mesh subdivisions do not create rectangles with extreme aspect ratios.
- Initial subdivisions of the mesh are performed at the key points.

Every element that contains a key point is subdivided at that key point (see Figure 3-11).

Figure 3-11 Subdivision performed on a rectangle grid element

Boundary Matching
 (Intersections)

Boundary matching computes the points of intersection between the boundaries and the rectangular grid elements. This iterative process causes subdivision of elements until every element can be triangulated using certain simple triangulation schemes. In addition, an element is subdivided whenever the ASPECT parameter is specified and the height-to-width ratio of that element exceeds LOW.ASPE or HIGH.ASP.

Aspect-RatioBased
Subdivision
In general, grids conditioned with aspect-ratio-based subdivision have more smoothly-varying element sizes than grids without; they have, in addition, a smaller percentage of obtuse triangles. Setting LOW. ASPE to 0.5 or greater and HIGH.ASP to 2.0 or less results in grids with the fewest obtuse triangles, but the tighter the aspect-ratio subdivision bounds, the more elements are created during generation of the grid.

Troubleshooting

As the BOUNDARY statement is still experimental, problems may occur during boundary analysis or matching. This section offers a cross-section of potential problems and hints on attacking them.

Unsuccessful Termination, Subdivision Error

SYMPTOM: Boundary matching does not terminate successfully, and at least one message of the form:

```
Warning during subdivision of rectangular element 1393.
Attempted subdivision near (x,y) = ( 2.9087, -1.3521)(microns)
which would have caused the resulting elements to be smaller than
the allowed minimum size. Turning subdivision for this element off
```

occurs, followed by an error message of the form:
Error number 885 detected in line number 45
Unable to refine the rectangular grid of 1510 elements further because the elements are becoming too small.

DIAGNOSIS AND POSSIBLE SOLUTIONS

Examine the differences in the number of grid points between successive boundary matching iterations. If these differences are decreasing monotonically to zero, then the original grid may have been too fine. Medici does not allow rectangular grid elements with any dimension less than 0.01 Angstrom.

If the differences just before the occurrence of the error message are large (on the order of 10% of the total number of grid points), or the differences are not decreasing monotonically to zero, then there may be certain grid features which are attracting large numbers of element subdivisions.

For example, if an element is subdivided into elements with extreme aspect ratios and ASPECT has been specified, grid consistency requires that these elements be subdivided multiple times (see Figure 3-12).

Figure 3-12 Effect of grid consistency requirements on elements with extreme aspect ratios

If the ASPECT and SHARP parameters are on, it is helpful to loosen their tolerances (i.e., decrease LOW. ASPE, increase HIGH.ASP, or increase ANGLE.CR) or to turn them off, at least temporarily, in order to isolate the problems.

Other aids include varying the number and placement of grid lines, and as a last resort, simplifying the boundaries contained in the boundary file to retain essential features while eliminating unnecessary details.

Unassigned

 ElementsSYMPTOM: Error messages are received of the form, as shown below:

```
Elements extending through the ranges below were not assigned a region
number.
xmin = 0.0000; xmax = 13.0000
ymin = -1.0000; ymax = 1.0000
Error number 199 detected in line number 45
Some elements have not been assigned a region number.
```

DIAGNOSIS AND POSSIBLE SOLUTIONS: A REGION statement contained an error or was omitted, causing a set of contiguous elements bounded by the rectangle defined by xmin, xmax, ymin, and ymax not to be assigned region numbers. Identify a point (x, y) within this set of elements and insert into the input file a REGION statement of the form, as shown below:

REGION NUM=<n> $\mathbf{X}=\langle x\rangle \mathbf{Y}=\langle y\rangle$ <material>

Overwriting Region

SYMPTOM: A warning message is received of the form.
Warning: Overwriting region $\langle r l\rangle$ with region $\langle r 2\rangle$.
DIAGNOSIS AND POSSIBLE SOLUTIONS: The point (specified with the parameters X and Y) associated with region $\langle r 2\rangle$ was contained within region $\langle r 1\rangle$. If region $\langle r l\rangle$ is not to be identified as region $\langle r 2\rangle$, use different point specifications for the region statements associated with regions $\langle r l\rangle$ and $\langle r 2\rangle$.

It is also possible that the boundaries may have been inconsistent (e.g., not all boundary endpoints terminated on some other boundary node), resulting in "spilling" of one region onto another.

Gridlines SYMPTOM: The final grid looks as if some initially specified grid lines had been Removed removed.

DIAGNOSIS AND POSSIBLE SOLUTIONS: X. TOLER and Y. TOLER may be too large for the specified grid. It may be necessary to set \mathbf{X}. TOLER and Y. TOLER smaller than the minimum grid line spacing.

Examples

This section details several different uses of the boundary statement using example files and illustrations.

TSUPREM-4 LOCOS Process

The following example illustrates the use of the boundary statement to read boundaries from a TSUPREM-4 simulation of a LOCOS process (see Figure 313). The following is a partial output listing:

```
                                    Statements input from file mds4bnd
1... TITLE MEDICI File Boundary Matching
2... COMMENT TSUPREM-4 ==> MEDICI: LOCOS process + doping
3... COMMENT Plot TSUPREM-4 grid for reference.
4... MESH TSUPREM IN.FILE=S4LOCOS
5... PLOT.2D GRID TITLE="T-SUPREM4 LOCOS Grid" FILL
    ...+ X.MIN=-1.5 X.MAX=0 Y.MIN=-0.5 Y.MAX=0.5
6... COMMENT Now create an initial mesh and read in boundaries.
7... MESH
8... X.MESH X.MIN=-1.5 WIDTH=1.5 N.SPACES=14
9... Y.MESH Y.MIN=-0.5 WIDTH=1.0 N.SPACES=9
10... COMMENT Boundaries.
11... BOUNDARY TSUPREM4 IN.FILE=S4LOCOS OUT.FILE=MDS4OUT
    ... + SHARP ASPECT
12... COMMENT Regions: Most regions have been assigned automatically.
    ... + Region 10 = deposited oxide
13... REGION NUM=10 X=-0.5 Y=-0.3 OXIDE
14... COMMENT Electrodes: 1 = substrate
15... ELECTROD NUM=1 PERIMETER Y.MIN=0.5
16... COMMENT Profiles.
17... PROFILE TSUPREM4 IN.FILE=S4LOCOS
18... COMMENT Plot of MEDICI grid.
19... PLOT.2D GRID TITLE="MEDICI LOCOS Grid" FILL
Rectangular grid element size tolerances (microns):
    xtol = 0.0150; ytol = 0.0100
Read TSUPREM-4 file from S4LOCOS
Boundaries extracted from TSUPREM4 file: S4LOCOS
Boundary limits (microns):
```


Initial Grid Lines
 This example uses a uniform mesh with a relatively small number of initial grid

 lines since this simulation places no particular requirements on the grid itself.
Partitioning the

 MeshExtraction, Conformity, and Subdivision

Since the boundaries and the mesh edges must partition the mesh, you must know where to place the mesh limits in the X.MESH and Y.MESH statements. If you performed the original TSUPREM-4 simulation, then the knowledge is already available; otherwise, the BOUNDARY statement may be used to read the boundaries first and print the extents of the boundaries or write a formatted simple boundary file for perusal before allocating the final mesh.

The boundary statement reads the TSUPREM-4 file S4LOCOS and extracts from it a set of boundaries. This file is the same file used by Medici in the MESH statement to read in TSUPREM-4 grids, and to read in doping profiles. The extracted boundaries are written immediately to the formatted simple boundary file MDS4OUT for the user to peruse or edit.

The SHARP parameter was specified to ensure that the resulting grid conforms as closely as possible to the boundaries of the original TSUPREM-4 grid. Aspect-ratio-based subdivision was turned on to reduce the number of obtuse triangles.

Regions The BOUNDARY statement interface to TSUPREM-4 assigns most regions automatically, but as can be seen from the original TSUPREM-4 grid, there is no mesh above the nitride layer. Consequently, the BOUNDARY statement requires the user to specify the material type of the elements in the grid above the nitride. Region specification is easy because the user only need pick a point within a region.

The addition of a substrate electrode satisfies the Medici requirement that there be at least one electrode in any simulation. This electrode was defined by specifying all nodes on the grid perimeter and at or below $\mathrm{y}=0.5$.

T-SUPREM4 LOCOS Grid

Figure 3-13 Comparison of a TSUPREM-4 grid and one possible Medici counterpart

TSUPREM4

The TSUPREM4 statement provides a means for defining the regions and profiles in a Medici rectangular grid structure by importing a TSUPREM-4 structure saved in MEDICI format.

```
TSUPREM4
IN.FILE=<C>
[X.LEFT=<n>] [X.RIGHT=<n>] [Y.TOP=<n>] [Y.BOT=<n>]
[X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
[X.OFFSET=<n>] [Y.OFFSET=<n>] [X.INTERF=<n>]
[IMPURITY] [FLIP] [SYMMETRI]
```

Parameter	Type	Definition	Default	Units
IN. FILE	char	The name of the file containing the TSUPREM-4 structure saved in Medici format.	none	
X.LEFT	number	The minimum x coordinate in the Medici mesh that will receive structure and profile information from the TSUPREM-4 file.	The minimum x location in the Medici mesh.	microns
X.RIGHT	number	The maximum x coordinate in the Medici mesh that will receive structure and profile information from the TSUPREM-4 file.	The maximum x location in the Medici mesh.	microns
Y. TOP	number	The minimum y coordinate in the Medici mesh that will receive structure and profile information from the TSUPREM-4 file.	The minimum y location in the Medici mesh.	microns
צ. вот	number	The maximum y coordinate in the Medici mesh that will receive structure and profile information from the TSUPREM-4 file.	The maximum y location in the Medici mesh.	microns
X.MIN	number	The minimum x coordinate in the TSUPREM-4 structure that will be used when importing structure and profile information.	The minimum x location in the TSUPREM-4 structure.	microns
X.MAX	number	The maximum x coordinate in the TSUPREM-4 structure that will be used when importing structure and profile information.	The maximum x location in the TSUPREM-4 structure.	microns
Y.MIN	number	The minimum y coordinate in the TSUPREM-4 structure that will be used when importing structure and profile information.	The minimum y location in the TSUPREM-4 structure.	microns
Y.MAX	number	The maximum y coordinate in the TSUPREM-4 structure that will be used when importing structure and profile information.	The maximum y location in the TSUPREM-4 structure.	microns
X.offset	number	The horizontal offset of \mathbf{x}. MIN relative to \mathbf{X}. LEFT.	0.0	microns

Parameter	Type	Definition	Default	Units
y offet	number	The vertical offset of \mathbf{Y}. MIN relative to \mathbf{Y}. TOP. However, if \mathbf{X}. INTERF is specified then the insulator-semiconductor interface will be aligned with the location $\mathrm{y}=0$ in Medici. In this case, Y. OFFSET represents an additional vertical offset of the TSUPREM-4 structure after this alignment takes place.	0.0	microns
X. INTERF	number	The TSUPREM-4 horizontal location that will be used to find the insulator-semiconductor interface. The interface at this location will be aligned with $\mathrm{y}=0$ in the Medici mesh.	none	microns
IMPURITY	logical	Specifies that the TSUPREM-4 impurity profiles are read.	true	
FLIP	logical	Specifies that the TSUPREM-4 coordinates are flipped.	false	
SYMmetri	logical	Specifies that the TSUPREM-4 structure is used to create a Medici structure that is symmetric about the horizontal midpoint of the Medici mesh.	false	

Description

This statement can be used to read the results of a TSUPREM-4 simulation onto a Medici mesh. Both the topography and profile information from TSUPREM-4 will be used. The elements in the Medici mesh will be assigned a material type based on the corresponding TSUPREM-4 material at this location.

The parameters X.LEFT, X. RIGHT, Y. TOP, and \mathbf{Y}. BOT define the portion of the Medici mesh to receive structure information from the TSUPREM-4 file. The parameters \mathbf{X}.MIN, X. MAX, Y.MIN, and \mathbf{Y}. MAX define the portion of the TSUPREM-4 structure that contributes to the Medici structure.

Examples

Some examples illustrating the use of the TSUPREM4 statement are shown in Figures 3-14 and 3-15. Figure 3-14 shows a simple TSUPREM-4 structure and a Medici mesh prior to importing the TSUPREM-4 structure. Figure 3-15 shows Medici structures that were obtained from importing the TSUPREM-4 structure in two different ways. In both cases, the X. INTERF parameter has been used to align the semiconductor/insulator interface in TSUPREM-4 (found at $x=0$) with the location $\mathrm{y}=0$ in Medici. The figure on the right was generated by additionally specifying the SYMM parameter.

Figure 3-14 Simple TSUPREM-4 structure saved in Medici format and the original Medici mesh prior to importing the structure

mesh
x.mesh width=4 n.spaces=40
$y . m e s h \quad$ depth=1 h1=0.1 h2=0.01 y.min=-1
y.mesh depth=3 h1=0.01 h2=0.5

```
tsuprem4 in.file=simple1.med
```

tsuprem4 in.file=simple1.med

+ x.interf=0.0
+ x.interf=0.0
electr name=bottom y.min=2.9
electr name=bottom y.min=2.9
plot.2d grid fill scale
plot.2d grid fill scale
+ title="Medici: mesh2"

```
+ title="Medici: mesh2"
```


mesh

x.mesh width=4 n.spaces=40

 y.mesh depth=1 h1=0.1 h2=0.01 y.min=-1 $y . m e s h \quad$ depth $=3 \mathrm{~h} 1=0.01 \mathrm{~h} 2=0.5$
tsuprem4 in.file=simplel.med

$+$
$+$
x.interf=0.0 symm
name=bottom y.min=2.9 grid fill scale
title="Medici: mesh3"

Figure 3-15 Two examples of Medici structures after importing the TSUPREM-4 structure

REGION

The REGION statement defines the location of materials in a rectangular mesh.

```
REGION
    NAME=<C>
    Semiconductor Materials
    { ( { SILICON | GAAS | POLYSILI | GERMANIU | SIC | SEMICOND
            | SIGE | ALGAAS | A-SILICO | DIAMOND | HGCDTE | INAS | INGAAS |
            }
    Semiconductor Material Parameters
                [X.MOLE=<n>]
                [ {X.END=<n> | X.SLOPE=<n>} {X.LINEAR | Y.LINEAR} ]
        )
    Insulator Materials
        OXIDE | NITRIDE | SAPPHIRE | OXYNITRI | INSULATO
}
    Location
{ ( [ {X.MIN=<n> | IX.MIN=<n>} ] [ {X.MAX=<n> | IX.MAX=<n>} ]
            [ {Y.MIN=<n> | IY.MIN=<n>} ] [ {Y.MAX=<n> | IY.MAX=<n>} ]
            [ { (ROTATE R.INNER=<n> R.OUTER=<n> X.CENTER=<n> Y.CENTER=<n> )
                (POLYGON X.POLY=<a> Y.POLY=<a> )
            }
            ]
        )
        ( X=<n> Y=<n> )
        CONVERT
}
[VOID]
```

Parameter	Type	Definition	Default
NAME	char	The name identifying the region. A maximum of 200 regions are allowed in a device structure. Names may be up to 20 characters long, however, names of ten characters or less are recommended since the name may be truncated to ten charac- ters in certain places in the output listing. synonym: NUMBER	The material name.

Semiconductor Materials

SILICON	logical	Specifies that the region is silicon.	false
GAAS	logical	Specifies that the region is gallium arsenide.	false

Parameter	Type	Definition	Defau
POLYSILI	logical	Specifies that the region is polysilicon. At the present time, the default material properties associated with regions specified as POLYSILI are the same as the default material properties associated with regions specified as SILICON.	false
GERMANIU	logical	Specifies that the region is germanium.	false
SIC	logical	Specifies that the region is silicon carbide.	false
SEMICOND	logical	Specifies that the region is a generic semiconductor. The default material properties associated with regions specified as SEMICOND are the same as the default material properties associated with regions specified as SILICON.	false
SIGE	logical	Specifies that the region is $\mathrm{Si}_{1-\mathrm{x}} \mathrm{Ge}_{\mathrm{x}}$. The default material properties associated with regions specified as SIGE are the same as the default material properties associated with regions specified as SILICON.	false
ALGAAS	logical	Specifies that the region is $\mathrm{Al}_{\mathrm{x}} \mathrm{Ga}_{1-\mathrm{x}} \mathrm{As}$.	false
A-SILICO	logical	Specifies that the region is amorphous silicon. The default material properties associated with regions specified as A-SILICO are the same as the default material properties associated with regions specified as SILICON.	false
DIAMOND	logical	Specifies that the region is diamond.	false
HGCDTE	logical	Specifies that the region is HgCdTe (mercury cadmium telluride).	false
INAS	logical	Specifies that the region is indium arsenide. The default material properties associated with regions specified as INAS are the same as the default material properties associated with regions specified as GAAS.	false
INGAAS	logical	Specifies that the region is $\mathrm{In}_{\mathrm{x}} \mathrm{Ga}_{1-\mathrm{x}}$ As.	false
INP	logical	Specifies that the region is indium phosphide. The default material properties associated with regions specified as INP are the same as the default material properties associated with regions specified as GAAS.	false
S.OXIDE	logical	Specifies that the region is silicon dioxide (treated as a wide bandgap semiconductor).	false
ZNSE	logical	Specifies that the region is zinc selenide. The default material properties associated with regions specified as ZNSE are the same as the default material properties associated with regions specified as GAAS.	false
ZNTE	logical	Specifies that the region is zinc telluride. The default material properties associated with regions specified as ZNTE are the same as the default material properties associated with regions specified as GAAS.	false
ALINAS	logical	Specifies that the region is $\mathrm{Al}_{\mathrm{X}} \mathrm{In}_{1-\mathrm{x}} \mathrm{As}$.	false
GAASP	logical	Specifies that the region is $\mathrm{GaAs}_{\mathrm{x}} \mathrm{P}_{1-\mathrm{x}}$.	false
INGAP	logical	Specifies that the region is $\operatorname{In}_{x} \mathrm{Ga}_{1-\mathrm{x}} \mathrm{P}$.	false
INASP	logical	Specifies that the region is $\operatorname{InAs} s_{1-x} \mathrm{P}_{\mathrm{x}}$.	false

Default
Units

Parameter Type
Semiconductor Material Parameters

X.MOLE	number	The mole fraction to use in the region for compound materials. For graded compounds, X. MOLE represents the initial mole fraction at the left, top, or front edge of the region depending on whether X.LINEAR, or Y.LINEAR, respectively, is specified. This parameter is only used with the Heterojunction Device AAM. synonym: X.INITIA
X.END	number	The mole fraction for graded compounds at the right, bottom, or backedge of the region depending on whether \mathbf{X}.LINEAR, or Y. LINEAR, respectively, is specified. This parameter is only used with the Heterojunction Device AAM.
X.SLOPE	number	The slope of the mole fraction for graded compounds. If this parameter is used, the mole fraction has a value of \mathbf{X}. MOLE at the left, top or front edge of the region and a value of \mathbf{X}.MOLE + width $* \mathbf{X}$.SLOPE at the right, bottom or back edge of the region, where width is the width or depth of the region. This parameter is only used with the Heterojunction Device AAM.
X.LINEAR	logical	Specifies that the mole fraction grading is in the x -direction. This parameter is only used with the Heterojunction Device AAM.
Y.LINEAR	logical	Specifies that the mole fraction grading is in the y direction. This parameter is only used with the Heterojunction Device

Insulator Materials

OXIDE	logical	Specifies that the region is silicon dioxide. synonym: SIO2
NITRIDE	logical	Specifies that the region is silicon nitride. Synonym: SI3N4
SAPPHIRE	logical	Specifies that the region is sapphire.
OXYNITRI	logical	Specifies that the region is oxynitride. The default material properties associated with regions specified as OXYNITRI are the same as the default material properties associated with regions specified as OXIDE.
INSULATO	logical	Specifies that the region is an insulator. The default material properties associated with regions specified as INSULATO are the same as the default material properties associated with regions specified as OXIDE.

Location

X.MIN number The minimum x location of the region.

Parameter	Type	Definition	Default	Units
IX.MIN	number	The minimum x node index of the region. synonym: IX.LOW	1	none
X. MAX	number	The maximum x location of the region.	The maximum x location for the device structure.	microns
IX. MAX	number	The maximum x node index of the region. synonym: IX.HIGH	The maximum x node index for the device structure.	none
Y.MIN	number	The minimum y location of the region.	The minimum y location for the device structure.	microns
IY.MIN	number	The minimum y node index of the region. synonym: IY.LOW	1	none
Y. MAX	number	The maximum y location of the region.	The maximum y location for the device structure.	microns
IY. MAX	number	The maximum y node index of the region. synonym: IY. HIGH	The maximum y node index for the device structure.	none
Rotate	logical	Specifies that the region is rotated around a rotation center.	false	
X.CENTER	number	Specifies the x location of the rotation center.	none	microns
Y.CENTER	number	Specifies the y location of the rotation center.	none	microns
R.INNER	number	The inner radius (distance from the rotation center) of a circular region.	none	microns
R.OUTER	number	The outer radius (distance from the rotation center) of a circular region.	none	microns
POLYGON	logical	Specifies that the region is a polygon. The polygon vertices are defined by a pair of arrays: X.POLY and Y.POLY.	false	
X.POLY	array	Specifies an array of x coordinates of the polygon vertices. Number of the vertices should not exceed 40.	none	microns
Y.POLY	array	Specifies an array of y coordinates of the polygon vertices. Number of the vertices should not exceed 40.	none	microns
x	number	The x coordinate of a point within a bounded region.	none	microns
Y	number	The y coordinate of a point within a bounded region.	none	microns
CONVERT	logical	Specifies that the region given by NAME should have its material type converted to the material specified on this statement.	false	
VOID	logical	Specifies that a region or portion of a region (as specified by \mathbf{X}. MIN, \mathbf{X}. MAX, Y.MIN, and \mathbf{Y}. MAX) is voided (i.e. grid points and mesh are removed from the region).	false	

Description

Every mesh element in the device structure must be defined to be some material. Multiple REGION statements which specify the same NAME are allowed providing that the material specified on each such statement is the same. This makes it possible to specify regions which have complicated shapes.

See Also... To further illustrate the REGION statement, refer to input file mdexl in Chapter 4, "Device Regions," p. 4-4.

Material Types

The selection of a material type on the REGION statement causes the program to select default semiconductor or insulator parameters to associate with that region. These parameters may be modified from their default values on the MATERIAL and MOBILITY statements.

Multiple insulator and semiconductor material types can be specified for a simulation using REGION statements.

Boundaries

The boundaries of a region can be specified in one of two ways:

- A bounding box, polygon, or a circular segment can be specified.
- A point within an existing region read in from a file can be specified.

Bounding Box A bounding box can be specified which defines bounds for the region boundaries. Either nodal indices or coordinate values may be used to define the region boundaries. Any unspecified bound will default to the edges of the device.

Polygon A polygon can be specified which defines boundaries of a region. The following statement could be used to specify a triangular polysilicon region:

```
REGION NAME=STRANGE POLYGON POLY
+ X.POLY=(1, 2, 3)
+ Y.POLY=(1, 2, 1)
```

Rotation A circular region can be defined by specifying a 0 parameter. The following statement could be used to specify a donut-shaped nitride region with a center at $x=0$ and $y=0$, internal radius of 0.5 micron and external radius of 1 micron:

```
REGION NAME=RING ROTATE NITRIDE
+ X.CENTER=0 Y.CENTER=0
+ R.INNER=0.5 R.OUTER=1
```

A zero internal radius would convert a donut-shaped region into a circular one.

Point Within an Existing Region

A coordinate pair (X, Y) can be used to specify a point within an existing region which is read in from a file.

The use of the parameters \mathbf{X} and \mathbf{Y} for identifying a region is only valid when boundaries have been read using a BOUNDARY statement.

The following REGION statements may be used to define the material regions for a MOSFET that has an interface between oxide and silicon at $\mathrm{y}=0$. In this example, the silicon region was named "Body" and the oxide region was named "SiO2":

```
REGION NAME=Body SILICON
REGION NAME=SiO2 OXIDE Y.MAX=0
```

In the following example, the entire device structure is defined to be GaAs (since no region boundaries were specified). Since the NAME parameter is not specified, the region name is the same as the material name (GaAs):

REGION
GAAS

ELECTRODE

The electrode statement specifies the placement of electrodes in a device structure.

ELECTRODE

```
    NAME=<C> [VOID]
    { ( [ {TOP | BOTTOM | LEFT | RIGHT | INTERFAC | PERIMETE} ]
            [ {X.MIN=<n> | IX.MIN=<n>} ] [ {X.MAX=<n> | IX.MAX=<n>} ]
            [ {Y.MIN=<n> I IY.MIN=<n>} ] [ {Y.MAX=<n> | IY.MAX=<n>} ]
            [ { (ROTATE X.CENTER=<n> Y.CENTER=<n> R.INNER=<n> R.OUTER=<n>)
                (POLYGON X.POLY=<a> Y.POLY=<a>)
                }
            ]
        )
        [ X=<n> Y=<n> ]
        [REGION=<C>]
    }
    [MAJORITY]
```

Lattice Temperature AAM Parameters
[THERMAL]

Parameter	Type		
char	Definition	Default	Units
NAME			
The name of the electrode. A maximum of 200 electrodes are allowed in a device structure. Names must be less than 20 char- acters long, however a length of ten characters or less is recom- mended since names may be truncated to ten characters at certain places in the output listing. The Circuit analysis AAM also requires names of ten characters or less since the electrode name used by the program is constructed by concatenating the device name and the user-specified electrode name. synonym: NUMBER			
none			

Parameter	Type	Definition	Default	Units
PERIMETE	logical	Specifies that the electrode lies along the perimeter of the device structure.	false	
X.MIN	number	The minimum x location of the electrode.	The minimum x location for the device structure.	microns
IX.MIN	number	The minimum x node index of the electrode. synonym:IX.LOW	1	none
X. MAX	number	The maximum x location of the electrode.	The maximum x location for the device structure.	microns
IX. MAX	number	The maximum x node index of the electrode. synonym:IX.HIGH	The maximum x node index for the device structure.	none
Y.MIN	number	The minimum y location of the electrode.	The minimum y location for the device structure.	microns
IY.MIN	number	The minimum y node index of the electrode. synonym:IY.LOW	1	none
Y.MAX	number	The maximum y location of the electrode.	The maximum y location for the device structure.	microns
IY.MAX	number	The maximum y node index of the electrode. synonym:IY. HIGH	The maximum y node index for the device structure.	none
ROTATE	logical	Specifies that the electrode is rotated around a rotation center.	false	
X.CENTER	number	Specifies the x location of the rotation center.	none	microns
Y.CENTER	number	Specifies the y location of the rotation center.	none	microns
R.INNER	number	The inner radius (distance from the rotation center) of a circular electrode.	none	microns
R. OUTER	number	The outer radius (distance from the rotation center) of a circular electrode.	none	microns
POLYGON	logical	Specifies that the electrode is a polygon. The polygon vertices are defined by a pair of arrays: X.POLY and Y. POLY.	false	
X.POLY	array	Specifies an array of x coordinates of the polygon vertices. Number of the vertices should not exceed 40.	none	microns
Y.POLY	array	Specifies an array of y coordinates of the polygon vertices. Number of the vertices should not exceed 40.	none	microns
x	number	The x coordinate of a point which locates a region that is converted to an electrode.	none	microns
Y	number	The y coordinate of a point which locates a region that is converted to an electrode.	none	microns
REGION	char	The name of a region that is converted to an electrode.	none	

Parameter	Type	Definition	Default
MAJORITY	logical	Specifies that the electrode forms a majority carrier contact only. The majority carrier quasi-Fermi level is set equal to the electrode potential. Minority carriers are unaffected by this electrode.	Units

Lattice Temperature AAM Parameters

THERMAL logical \quad| Specifies that this is a thermal electrode used to set the lattice false |
| :--- |
| temperature at this location. This parameter is only used with |
| the Lattice Temperature AAM. |

Description

See Also... To further illustrate the electrode statement, refer to input file mdexl Chapter

 4, "Electrode Locations," p. 4-5.
Boundaries

The boundaries of an electrode can be specified in one of three ways:

- A bounding box, polygon, or a circular segment can be specified.
- A region name can be specified.
- A point within a region can be specified

Bounding Box A bounding box can be specified which defines bounds for the electrode boundaries. All nodes within these bounds become part of the electrode. The bounds may be defined using the following:

- Nodal indices
- Coordinate values
- Parameters TOP, BOTTOM, LEFT, RIGHT, INTERFAC, and PERIMETE.

Unspecified bounds default to the device edges. As an example, the following statements could be used to specify the electrodes for a MOSFET device:

```
ELECTROD NAME=Drain INTERFAC X.MIN=2.5
ELECTROD NAME=Gate TOP X.MIN=1.0 X.MAX=2.0
ELECTROD NAME=Source INTERFAC X.MAX=0.5
ELECTROD NAME=Substrate BOTTOM
```

Polygon A polygon can be specified which defines boundaries of a electrode. The following statement could be used to specify a triangular electrode:

```
ELECTROD NAME=STRANGE POLYGON
+ X.POLY=(1, 2, 3)
+ Y.POLY=(1, 2, 1)
```

If both bounding box and polygon are provided in an ELECTRODE statement, then the electrode is defined only where the two overlap. Therefore, a bounding box can be used to truncate a polygonal electrode.

Rotation A circular electrode can be defined by specifying a ELECTRODE parameter. The following statement could be used to specify a donut-shaped electrode with a center at $x=0$ and $y=0$, internal radius of 0.5 micron and external radius of 1 micron:

```
ELECTROD NAME=RING ROTATE
+ X.CENTER=0 Y.CENTER=0
+ R.INNER=0.5 R.OUTER=1
```

A zero internal radius would convert a donut-shaped electrode into a circular one.
If both bounding box and rotation are specified in an ELECTRODE statement, then the electrode is defined only where the two overlap. Therefore, a bounding box can be used to define segments of a circle or a donut.

Region Name

A region name may be specified that is converted to an electrode. In this case, every node in the specified region becomes part of the electrode. As an example, the following statement converts region named Top_part into an electrode. The electrode name in this example is arbitrarily chosen to be Anode.

```
ELECTROD NAME=Anode REGION=Top_part
```


Point Within a Region Specification

The method is very similar to the region name method. A coordinate pair (X, Y) is used to specify a point within a region. As in the previous case, every node in the region where the point (X, Y) is located becomes part of the electrode.

Electrode Nodes

The total number of nodes associated with all electrodes in the device structure must be less than the following:

- 1000 for a 3200 node version of Medici
- 2500 for a 10000 node version of Medici
- 5000 for a 20000 node version of Medici.

The voID parameter may be used to reduce the number of nodes associated with electrodes. When this parameter is specified, all interior nodes within a non-zerothickness electrode are completely removed from the structure.

As an example, the following statement creates an electrode in the corner of a structure and then uses VOID to remove all the interior nodes.

ELECTROD NAME=Corner X.MAX=0.6 Y.MAX=0.6 VOID

Adding Electrodes to Existing Structures

An electrode can be added to an existing structure, or added to a structure created by TSUPREM- 4 by following the MESH statement that reads in the structure with the appropriate ELECTRODE statements. For example, the following statements add a source and drain contact to a structure read from TSUPREM-4:

| MESH | IN.FILE=TS4FILE | TSUPREM4 |
| :--- | :--- | :--- | :--- |
| ELECTROD | NAME=Source | INTERFAC \quad X.MAX=0.5 |
| ELECTROD | NAME=Drain \quad INTERFAC \quad X.MAX=2.5 | |

RENAME

Changes the name of an electrode or region.
RENAME
\{ELECTROD | REGION | T.ELECTR\} OLDNAME=<C> NEWNAME=<C>

Parameter	Type	Definition	Default
ELECTROD	logical	Specifies that an electrical electrode is renamed.	false
REGION	logical	Specifies that a region is renamed.	false
T.ELECTR	logical	Specifies that a thermal electrode is renamed.	false
OLDNAME	char	Specifies the old name of the electrode or region.	none
NEWNAME	Specifies the new name for the electrode or region.	none	

Description

Usually RENAME is used in order to provide meaningful names to electrodes read from a TSUPREM-4 file.

See Also... To further illustrate the RENAME statement, refer to input file mdex9b in Chapter 10, "Medici Simulation," p. 10-17.

Examples

Suppose that an existing device structure (for example read in from TSUPREM-4 as a TIF file) contains an electrical electrode "ALUMINUM1" which you would like to change to "GATE". The following statements could be used:

MESH	IN.FILE=SOME_FILE.TIF TIF		
RENAME	ELECTROD OLDNAME=ALUMINUM1	NEWNAME=GATE	
SYMBOL	$\ldots \ldots$.		
SOLVE	V(GATE) $=3 \ldots . .$.		

PROFILE

The PROFILE statement defines profiles for impurities and other quantities to be used in the device structure.

PROFILE

```
    [REGION=<C>]
    [X.MIN=<n>] [ {WIDTH=<n> | X.MAX=<n>} ]
    [Y.MIN=<n>] [ {DEPTH=<n> | Y.MAX=<n>} ]
Output Doping File
    [OUT.FILE=<C>]
Uniform Profile
    { ( UNIFORM {N-TYPE | P-TYPE | IMPURITY=<C> | OTHER=<C>} N.PEAK=<n> )
Analytic Profiles
    | ( {N-TYPE | P-TYPE | IMPURITY=<C> | OTHER=<C>} {N.PEAK=<n> | DOSE=<n>}
        {Y.CHAR=<n> | Y.JUNCTI=<n>} {X.CHAR=<n> | XY.RATIO=<n>} [X.ERFC]
            )
Analytic Polygonal Profiles
    | ( {N-TYPE | P-TYPE | IMPURITY=<C> | OTHER=<C>}
                N.PEAK=<n> N.CHAR=<n> [N.ERFC]
                { ( POLYGON X.POLY=<a> Y.POLY=<a> )
            | ( MASK.FIL=<n> LAYER=<n>
                [XM.FLIP] [YM.FLIP] [XM.OFFSE=<n>] [YM.OFFSE=<n>]
            )
        }
    )
Analytic Rotated Profiles
    | ( ROTATE {N-TYPE | P-TYPE | IMPURITY=<C> | OTHER=<C>} N.PEAK=<n>
        X.CENTER=<n> Y.CENTER=<n> R.INNER=<n> R.OUTER=<n> R.CHAR=<n> [R.ERFC]
        )
One-Dimensional Profiles from Data Files
    | ( IN.FILE=<C> [N.OFFSET=<n>] [Y.OFFSET=<n>]
        { ( 1D.PROC [N-TYPE] [P-TYPE] )
            ( SUPREM2 [N-TYPE] [P-TYPE] )
            ( 1D.ASCII [Y.COLUMN=<n>]
                { ( [N.COLUMN=<n>] [P.COLUMN=<n>] )
                    | ( D.COLUMN=<n> {IMPURITY=<C> | OTHER=<C>} )
                }
            )
        }
        {X.CHAR=<n> | XY.RATIO=<n>} [X.ERFC]
    )
```

(PROFILE statement continued on next page)
(PROFILE statement continued from previous page)

```
Two-Dimensional Profiles from Data Files
    | ( IN.FILE=<C> [N.OFFSET=<n>] [X.OFFSET=<n>] [Y.OFFSET=<n>]
                { ( 2D.PROC [N-TYPE] [P-TYPE] )
                ( SUPRA [N-TYPE] [P-TYPE] )
                ( TSUPREM4 [N-TYPE] [P-TYPE] )
            ( 2D.ASCII [X.COLUMN=<n>] [Y.COLUMN=<n>]
                { ( [N.COLUMN=<n>] [P.COLUMN=<n>] )
                    ( D.COLUMN=<n> {IMPURITY=<c> | OTHER=<c>} )
                }
            )
                | ( TIF [ {IMPURITY=<C> | ( [N-TYPE] [P-TYPE] )} ]
                    [OTHER=<C> [INSULATO] ]
            )
            ( MEDICI [ {IMPURITY=<C> | ( [N-TYPE] [P-TYPE] )} ] [OTHER=<C>] )
        }
        [X.CHAR=<n>] [X.ERFC] [Y.CHAR=<n>] [Y.ERFC]
        )
    }
```

Parameter	Type	Definition	Default	Units
REGION	char	The names of the regions to which the profile is to be added. If more than one name is given, they should be enclosed within parentheses and separated with commas (for example, "(silicon-1,silicon-2)").	All semiconductor regions.	
X.MIN	number	The minimum x location of the profile. synonyms: X.LEFT, X.PEAK	The minimum x location in the structure.	microns
WIDTH	number	The x extent of the profile.	The maximum x location in the structure minus X.MIN.	microns
X.MAX	number	The maximum x location of the profile. synonym: X.RIGHT	The maximum x location in the structure.	microns
Y.MIN	number	The minimum y location of the profile. synonyms: Y.TOP, Y.PEAK	The minimum y location in the structure for input from a file or if UNIFORM is specified; otherwise, 0.0.	microns
DEPTH	number	The y extent of the profile.	The maximum y location in the structure minus \mathbf{Y}. MIN for input from a file or if UNIFORM is specified; else 0.0 .	microns

Parameter	Type	Definition
Y.MAX	number	The maximum y location of the profile. synonym: צ. воттом
N-TYPE	logical	Specifies that the impurity profile is n-type (donors). If the 1D. PROC, SUPREM2, 2D. PROC, SUPRA, TIF, Or MEDICI parameter is specified, then the donor impurity profile is read from the data file. If the TSUPREM4 parameter is specified, the donor impurity profile is reconstructed from the doping in the data file using $\mathrm{N}($ donor $)=[\mathrm{N}($ total $)+\mathrm{N}($ net $)] / 2$. synonym: N.TYPE
P-TYPE	logical	Specifies that the impurity profile is p -type (acceptors). If the 1D. PROC, SUPREM2, 2D. PROC, SUPRA, TIF, or MEDICI parameter is specified, then the acceptor impurity profile is read from the data file. If the TSUPREM4 parameter is specified, the acceptor impurity profile is reconstructed from the doping in the data file using $\mathrm{N}($ acceptor $)=[\mathrm{N}($ total $)-\mathrm{N}($ net $)] / 2$. synonym: P.TYPE
IMPURITY	char	The name of an impurity for which a profile is being defined or read. The chemical name of the impurity should be specified here (such as "B" or "As"). Medici assumes all impurities specified with this parameter are electrically active. If the TIF or MEDICI parameter is specified, multiple impurities may be read (separate their names with commas and enclose the entire list with parentheses).
OTHER	char	The name of an arbitrary quantity for which a profile is being defined or read. If the TIF or MEDICI parameter is specified, multiple ОTHER quantities may be read (separate their names with commas and enclose the entire list with parentheses).
Output Doping File		
OUT.FILE	char	The identifier for the data file to which the profile information is to be written. This file is used only in conjunction with the REGRID statement. synonym: OUTFILE

Uniform Profile

UNIFORM	logical
N.PEAK	numbe

Specifies that the profile has a uniform distribution.
The peak impurity concentration for an impurity profile or the peak value for OTHER profiles.

synonym: CONCENTR

Analytic Profiles

DOSE numbe
Y.CHAR number

The dose of the impurity profile assuming a full Gaussian distribution

The y characteristic length of the profile outside the range of Y. MIN < y < Y. MAX. synonym: CHAR

Default
The maximum y loca- microns tion in the structure for input from a file or if UNIFORM is specified; otherwise,

Y.MIN

false

false

none
none
false
none
$\# / \mathrm{cm}^{3}$
for
impuri-
ties
none \#/cm ${ }^{2}$
0.0002 for data read microns
from a file; otherwise, none

Parameter	Type	Definition	Default	Units
y. unncti	number	The y location under the center of the profile where the magnitude of the profile being added equals the magnitude of the background profile. synonym: JUNCTION	none	microns
X.CHAR	number	The horizontal characteristic length of the profile outside the range \mathbf{X}. MIN < x < X . MAX. synonym: LAT. CHAR	0.0002 for data read from a file; otherwise XY.RATIO*Y.CHAR,	microns
xy.ratio	number	The ratio of the horizontal characteristic length to the vertical characteristic length for an analytic profile. If the vertical profile is input from a data file, XY . RATIO is the factor which multiplies the extent of the profile when the profile is rotated to the horizontal direction. synonym: RATIO.LA	1.0	none
x.ERFC	logical	Specifies that the x variation of the profile is described by a complementary error function. If this parameter is false, then the horizontal variation is uniform from X. MIN to X. MAX with Gaussian tails outside of this region. synonym:ERFC. LAT	false	
Analytic Polygonal Profiles				
polygon	logical	Specifies that the profile is a polygon. The polygon vertices are defined by a pair of arrays: X. POLY and Y. POLY.	false	
x.poly	array	Specifies an array of x coordinates of the polygon vertices. The number of the vertices should not exceed 40 .	none	microns
Y.poly	array	Specifies an array of y coordinates of the polygon vertices. The number of the vertices should not exceed 40.	none	microns
N.CHAR	number	The characteristic length of the profile outside of the polygon. synonym: R.CHAR	none	microns
N.ERFC	logical	Specifies that the lateral variation of the polygonal profile outside of the polygon is described by a complimentary error function. synonym: R.ERFC	false	
MASK.FIL	char	The identifier for the data file containing polygonal vertices created by the Taurus Layout program. synonym: MASKFIL	none	
LAYER	char	The identifier for the layer name in the mask file defined by the MASK. FIL parameter.	none	
XM.FLIP	logical	Specifies that a mask defined by the MASK. FIL parameter is flipped around zero along the x -axis.	false	microns
YM.FLIP	logical	Specifies that a mask defined by the MASK. FIL parameter is flipped around zero along the y-axis.	false	microns
xM. offse	number	Specifies the x -direction shift of a mask defined by the MASK.FIL parameter along the x -axis.	0.0	microns
ym. offse	number	Specifies the y-direction shift of a mask defined by the MASK.FIL parameter along the y-axis.	0.0	microns

Parameter	Type	Definition	Default	Units
Rotate	logical	Specifies that the profile is rotated around a rotation center.	false	
X.CENTER	number	Specifies the x location of the rotation center.	none	microns
Y.CENTER	number	Specifies the y location of the rotation center.	none	microns
R.INNER	number	The inner radius (distance from the rotation center) of a circular profile.	none	microns
R.OUTER	number	The outer radius (distance from the rotation center) of a circular profile.	none	microns
R.CHAR	number	The characteristic length of the profile outside of the R. INNER to R. OUTER rotation range. synonym: N. CHAR	none	microns
R.ERFC	logical	Specifies that the radial variation of the rotated profile outside of the R. INNER to R. OUTER range is described by a complimentary error function. synonym: n. ERFC	false	
One-Dimensional Profiles from Data Files				
IN. FILE	char	The identifier for the data file containing the profile. synonyms: INFILE and FILE	none	
n. OFFSET	number	The concentration to be subtracted from both the donor and acceptor impurity profiles obtained from a data file.	0.0	$\begin{aligned} & \text { atoms/ } \\ & \mathrm{cm}^{3} \end{aligned}$
Y. OFFSET	number	The y direction shift of a profile obtained from a data file.	0.0	microns
1D. PROC	logical	Specifies that the data file containing an impurity profile was generated by TMA SUPREM-3.	false	
SUPREM2	logical	Specifies that the data file containing an impurity profile was generated by SUPREM-2.	false	
1D.ASCII	logical	Specifies that profile data is read from a formatted file. One column of the file should correspond to depth (in microns) and should be identified with Y. COLUMN. The file should also contain one or more columns of profile data that can be identified with the parameters N. COLUMN, P. COLUMN, or D. COLUMN.	false	
Y. COLUMN	number	The column of the formatted data file corresponding to the y coordinate.	1 if 1 D .ASCII is specified; 2 if 2D. ASCII is specified.	none
n. COLUMN	number	The column of the formatted data file corresponding to net donor impurity concentration. Data with values less than zero are considered to correspond to net acceptor impurity concentration.	None if P. COLUMN is specified; otherwise, 2 if $1 \mathbf{D}$. ASCII is specified and 3 if 2D. ASCII is specified.	none
P. COLUMN	number	The column of the formatted data file corresponding to net acceptor impurity concentration. Data with values less than zero are considered to correspond to net donor impurity concentration.	none	none

Parameter	Type	Definition	Default	Units		
D. COLUMN	number					The column of the formatted data file corresponding to either
:---						
IMPURITY or OTHER profile values.	\quad none \quad none					

Two-Dimensional Profiles from Data Files

X.OFFSET	number	The x -direction shift of a two-dimensional profile obtained from a data file.	0.0	microns
2D.PROC	logical	Specifies that the data file is in a format generated by TMA SUPRA with a revision code of 8501 or later. This parameter is used to read a data that was saved by using TMA SUPRA's SAVEFILE statement with the DEVICE parameter specified.	false	
SUPRA	logical	Specifies that the data file is in a format generated by a version of TMA SUPRA with a revision code earlier than 8501.	false	
TSUPREM4	logical	Specifies that the data file is in a format generated by TSUPREM-4. This parameter is used to read a data that was saved by using TSUPREM-4's SAVEFILE statement with the MEDICI parameter specified.	false	
2D.ASCII	logical	Specifies that profile data is read from a formatted file. Two columns of the file should correspond to the x - and y coordinates (in microns) and should be identified with X.COLUMN and Y. COLUMN, respectively. The file should also contain one or more columns of profile data that can be identified with the parameters N. COLUMN, P. COLUMN, or D.COLUMN.	false	
X. COLUMN	number	The column of the formatted data file corresponding to the x coordinate.	1 if 2 D . ASCII is specified	none
TIF	logical	Specifies that the data file is in TIF.	false	
INSULATO	logical	Specifies that when an OTHER quantity is read from a TIF file at an interface node, the value associated with the insulator material should be read instead of the value associated with the semiconductor material.	false	
MEDICI	logical	Specifies that the data file is a standard Medici mesh file.	false	

Description

The PROFILE statement can be used to describe both impurity profiles and other arbitrary two-dimensional profiles for the structure. Profiles may be defined either analytically or through input from a data file. The data file can be a formatted file containing columns of data representing coordinates and values, the output generated by a process simulation program, or a Medici mesh file containing profile information.

See Also... To further illustrate the profile statement, refer to input file mdexl in Chapter 4, "Impurity Profiles," p. 4-5.

Profile Types

Specifying Individual Impurity Profiles

Specifying Profiles for Other Quantities

The IMPURITY parameter is used to specify individual impurities for the structure (such as B or As). This parameter can be used to specify the name of an impurity that is being defined analytically or the names of the impurities to be read from ASCII, Medici, or TIF files. The use of the IMPURITY parameter is illustrated in the following examples.

Define an analytic boron profile:

```
```

PROFILE IMPURITY=B N.PEAK=1E18 Y.MIN=0 Y.MAX=0

```
```

PROFILE IMPURITY=B N.PEAK=1E18 Y.MIN=0 Y.MAX=0

+ Y.CHAR=.2 X.MIN=0 X.MAX=0.5 X.CHAR=0.2

```
```

+ Y.CHAR=.2 X.MIN=0 X.MAX=0.5 X.CHAR=0.2

```
```

Read an arsenic profile from a 2D ASCII file:

```
```

PROFILE IMPURITY=As IN.FILE=COOl_data 2D.ASCII

```
```

PROFILE IMPURITY=As IN.FILE=COOl_data 2D.ASCII

+ X.COLUMN=1 Y.COLUMN=2 D.COLUMN=3

```
```

+ X.COLUMN=1 Y.COLUMN=2 D.COLUMN=3

```
```

Read multiple profiles from a TIF file:

```
```

PROFILE IMPURITY=(B,As,P,In) IN.FILE=cool.tif TIF

```
```

```
```

PROFILE IMPURITY=(B,As,P,In) IN.FILE=cool.tif TIF

```
```

Note:
When using the IMPURITY parameter, impurities should be specified with their chemical name. All impurities specified with IMPURITY are assumed to be electrically active and their names are stored internally with the letter "a" appended to their chemical name. When reading impurities from TIF files, specifying $\operatorname{IMPURIT} \mathrm{Y}=(\mathrm{B}, \mathrm{As}, \mathrm{P}, \ldots$) will cause the program to look for Ba, Asa, Pa,... in the TIF file.
The profile type is specified with one of the parameters \mathbf{N}-TYPE, P-TYPE, IMPURITY, or OTHER.

The parameters $\mathbf{N}-\mathbf{T Y P E}$ and $\mathbf{P - T Y P E}$ are used with impurity profiles and merely classify them as either donors or acceptors.

The OTHER parameter is used to specify spatial distributions of arbitrary quantities other than electrically active impurities. As with impurities, OTHER quantities can be defined analytically or read from ASCII, Medici, or TIF files. Some uses of the OTHER parameter are illustrated in the following examples.

Define an analytic density of states for use with the TRAP statement:

```
PROFILE OTHER=DOS N.PEAK=1E19 Y.MIN=0 Y.MAX=0
+ Y.CHAR=.1
```

Read a lifetime profile from a 2D ASCII file for use on EXTRACT or TRAP statements:

```
PROFILE OTHER=Lifetime IN.FILE=life.dat 2D.ASCII
+ X.COLUMN=1 Y.COLUMN=2 D.COLUMN=3
```

Read the chemical boron concentration from a TIF file:

PROFILE OTHER=B IN.FILE=stuff.tif TIF

Read the stress components from a TIF file:

```
PROFILE OTHER=(SxX,SyY,SxY) IN.FILE=stuff.tif TIF
```


Analytic Profiles

Specifying UNIFORM creates a uniform profile of concentration N. PEAK. Otherwise, the profile has a constant concentration of N.PEAK only in the region $\mathbf{X} . \mathbf{M I N}<x<\mathbf{X}$. MAX and \mathbf{Y}. MIN $<y<\mathbf{Y}$. MAX. Outside this region, the profile varies vertically as a Gaussian with a characteristic length of Y. CHAR.

The horizontal profile outside this region can either vary as a Gaussian (the default) or as the difference of two complementary error functions (if X.ERFC is specified). In either case, a characteristic length of \mathbf{X}. CHAR or XY. RATIO*Y. CHAR is used in the x direction.

The mathematical description of an analytic profile is given by
$N(x, y)=$ N. PEAK $\cdot a(x) \cdot b(y)$
Equation 3-3
Vertical Variation
The function $b(y)$ describes the vertical variation of the profile and is given by

$$
b(y)= \begin{cases}\exp \left[-\left(\frac{y-\mathbf{Y} \cdot \mathbf{M I N}}{\mathbf{Y} \cdot \mathbf{C H A R}}\right)^{2}\right] & y<\mathbf{Y} \cdot \mathbf{M I N} \\ 1 & \mathbf{Y} \cdot \mathbf{M I N} \leq y \leq \mathbf{Y} \cdot \mathbf{M A X} \quad \text { Equation } 3-4 \\ \exp \left[-\left(\frac{y-\mathbf{Y} \cdot \mathbf{M A X}}{\mathbf{Y} \cdot \mathbf{C H A R}}\right)^{2}\right] & y>\mathbf{Y} \cdot \mathbf{M A X}\end{cases}
$$

Lateral Direction Variation

The function $a(x)$ describes the lateral variation of the profile and is given by

$$
a(x)=\left\{\begin{array}{lll}
a_{1}(x) & \text { X.ERFC } & \text { not specified } \\
a_{2}(x) & \text { X.ERFC } & \text { specified }
\end{array}\right.
$$

where
$a_{1}(x)= \begin{cases}\exp \left[-\left(\frac{x-\mathbf{X} \cdot \mathbf{M I N}}{\mathbf{X} \cdot \mathbf{C H A R}}\right)^{2}\right] & x<\mathbf{x} \cdot \mathbf{M I N} \\ 1 & \mathbf{x} \cdot \mathbf{M I N} \leq x \leq \mathbf{x} \cdot \mathbf{M A X} \\ \exp \left[-\left(\frac{x-\mathbf{X} \cdot \mathbf{M A X}}{\mathbf{X} \cdot \mathbf{C H A R}}\right)^{2}\right] & x>\mathbf{x} \cdot \mathbf{M A X}\end{cases}$
and
$a_{2}(x)=\frac{\operatorname{erfc}\left(\frac{x-\mathbf{x} \cdot \mathbf{M A X}}{\mathbf{x} \cdot \mathbf{C H A R}}\right)-\operatorname{erfc}\left(\frac{x-\mathbf{x} \cdot \mathbf{M I N}}{\mathbf{x} \cdot \mathbf{C H A R}}\right)}{2}$
Equation 3-7

Junction Depth

Impurity Dose

Polygonal
Profiles

The Y. JUNCTI parameter may be used to specify the p-n junction depth as a y location where the magnitude of the impurity profile equals the magnitude of the current background impurity concentration.
Y. JUNCTI is used to define the vertical characteristic length which otherwise must be specified with the Y. CHAR parameter.

The DOSE parameter may be used to specify the integral amount of doping atoms which relates to the peak concentration in terms of the vertical characteristic length as N. PEAK $=\operatorname{DOSE} /(\sqrt{\pi} \cdot \mathbf{Y} \cdot \mathbf{C H A R})$.

A polygon can be defined in the XY plane for describing an area where the profile has a constant value of N.PEAK. The polygon is defined by a pair of coordinate arrays \mathbf{X}. POLY and \mathbf{Y}. POLY representing the location of vertices of the polygon. The polygon can be arbitrary as long as it is non-self-intersecting. The last vertex may or may not coincide with the first one, either way will do.

Lateral profile extension outside of the polygon is determined by the parameters N. CHAR and N. ERFC. These parameters are applied to the lateral profile extension in the direction, normal to the nearest polygon edge.

Outside of the profile bounding box (X.MIN, X. MAX, Y. MIN, and Y. MAX) there is no lateral profile extension for a polygonal profile.

Polygonal
Profiles from
Taurus Layout
Mask Files
An imported mask file can also be used for describing an area where the profile has a constant value of N. PEAK. Taurus Layout can be used to create these mask files interactively. An example of a mask data file is given in Appendix G. The layers in this file contain polygons that can be used to define the areas that should receive the specified doping.

The fall off of the impurity profile outside the cross-sectional area defined by the mask is described by using the \mathbf{N}. CHAR parameter.

Only nonself-intersecting polygons are allowed.

Profile Rotation A profile can also be described by a rotation in the XY plane around a rotation

 center, defined by the center location coordinates X. CENTER and Y. CENTER. When using a rotated profile, the profile has a constant value of N.PEAK within the range R. INNER to R. OUTER. If R. INNER is zero, then a circular profile is created, otherwise, a donut-shaped profile is created.Lateral profile extension outside of the range R.INNER to R.OUTER is determined by the parameters R.CHAR and R.ERFC. These parameters are applied to the lateral profile extension in the radial direction.

Outside of the profile bounding box the lateral profile extension is defined by the conventional parameters X.CHAR, X. ERFC, and Y. CHAR.

A combination of the profile rotation and profile bounding box (X.MIN, X. MAX, \mathbf{Y}. MIN, and \mathbf{Y}. MAX) can be used in order to form segments of a circular profile.

One-Dimensional Profiles from Data Files

The vertical impurity profile may be input from a data file by specifying the IN.FILE parameter and one parameter from the set 1D.PROC, SUPREM2, or 1D.ASCII. By default, the origin for the impurity profile is aligned with the vertical origin in Medici.

For one-dimensional impurity profiles input from data files created by a process simulation program, the origin occurs at the first point of the bottom semiconductor material (polysilicon and silicon are treated as the same material). The Y. OFFSET parameter may be used to shift the vertical profile relative to the Medici structure.

Vertical Range

The \mathbf{Y}.MIN and \mathbf{Y}. MAX parameters define the y interval within which the impurity profiles contribute to the total impurity distribution for the structure. The impurity profiles are considered to drop to zero concentration outside of this y interval.

When Y.MIN and \mathbf{Y}.MAX are not specified and the Medici structure has a greater y extent than the input profile, the program extends the input profile. This is done by setting the concentration at points of the structure outside the vertical interval of the input profile to be equal to the concentration at the top and bottom points of the input profile.

Lateral Range
For a particular vertical location, the profile has a constant concentration in the horizontal direction in the range \mathbf{X}. MIN $<\mathrm{x}<\mathbf{x}$. MAX. The horizontal variation outside of this range can vary as a Gaussian (the default) or as the difference of two complementary error functions (if X.ERFC is specified). In either case, the characteristic length is specified with X. CHAR.

Rotational Profile Extension

The XY. RATIO parameter may be used to rotate the vertical profile about axes perpendicular to the simulation plane and located at x coordinates of X.MIN and \mathbf{X}. MAX. The y coordinate for each rotation axis corresponds to the top of the impurity profile input from the data file. This coordinate is regardless of what portion is actually used in Medici (Y.MIN and Y. MAX parameters) or how it is shifted (Y. OFFSET parameter). During the rotation, the extent of the profile in the horizontal direction is multiplied by the factor specified with XY. RATIO.

Choosing Profiles to Input

The choice of which profiles to input from the file is made by specifying either, both, or none of the parameters $\mathbf{N}-\mathbf{T Y P E}$ and $\mathbf{P - T Y P E}$. If neither parameter is specified, then both the donor and acceptor impurity profiles are read from the data file.

If the impurity profiles are taken from a formatted file, the parameters \mathbf{N}. COLUMN and P. COLUMN are used to identify columns of data containing net donor and/or net acceptor impurity concentration. The D. COLUMN parameter can be used in conjunction with the IMPURITY or OTHER parameter to read individual impurity profiles or other spatial distributions from the file.

As an example, the following PROFILE statements read in impurity profiles generated by TMA SUPREM-3 in order to specify the doping for an N -channel MOSFET:

```
PROFILE P-TYPE 1D.PROC IN.FILE=CHANNEL
PROFILE N-TYPE 1D.PROC IN.FILE=SRCDRN X.MIN=0 WIDTH=1
+ XY.RATIO=. }
PROFILE N-TYPE 1D.PROC IN.FILE=SRCDRN X.MIN=3 WIDTH=1
+
    XY.RATIO=. }
```

The first statement reads the p-type profile from a file named CHANNEL and by default places this over the entire width of the device. The second and third statements read the n-type profile from a file named SRCDRN. These statements define the source and drain for the device.

As a further example, the following statement reads both n-type and p-type impurity profiles from a formatted data file and places them over the entire device:

```
PROFILE 1D.ASCII IN.FILE=MYDATA Y.COL=1 N.COL=2 P.COL=3
```


Two-Dimensional Profiles From Data Files

The entire two-dimensional impurity profile may be input from a data file by specifying the IN.FILE parameter and one parameter from the set 2D.PROC, SUPRA, TSUPREM4, 2D.ASCII, TIF, or MEDICI.

By default the origin for the impurity profile is aligned with the origin in Medici. The X. OFFSET and Y. Offset parameters may be used to shift the twodimensional impurity profile relative to Medici structure.

Vertical and Lateral Ranges

The \mathbf{X}. MIN and \mathbf{X}. MAX parameters and the \mathbf{Y}. MIN and \mathbf{Y}. MAX parameters define the x and y intervals, respectively, of the profile definition range within which the impurity profiles contribute to the impurity distribution for the structure. Outside of these intervals the profile decays as a Gaussian with characteristic lengths of X.CHAR and Y.CHAR for horizontal and vertical directions, respectively. If X.ERFC and/or Y.ERFC are specified, then an error function is used to extend the profiles outside the profile definition range in the horizontal and vertical directions, respectively.

When X.MIN, X.MAX, Y.MIN, or Y.MAX is not specified and the structure has a greater x or y extent than the input profile, the input profile is extended by setting the concentration at points of the structure outside the x or y intervals. The profile is extended by the input profile to be equal to the concentration at the top, bottom, left, and right edges of the input profile.

Choosing Profiles to Input

The choice of which impurity profiles to input from the file is made by specifying either, both, or neither of the parameters $\mathbf{N}-\mathbf{T Y P E}$ and $\mathbf{P}-\mathbf{T Y P E}$. If neither parameter is specified, then both the donor and acceptor impurity profiles are read from the data file. For 2D . ASCII, TIF, and MEDICI files, the choice of profiles to read can also be made by using the IMPURITY and OTHER parameters.

When the impurity profiles are taken from a formatted file, the parameters N. COLUMN, P . COLUMN, or D. COLUMN are used to identify columns of data containing net donor impurity concentration, net acceptor impurity concentration, or profiles identified with the IMPURITY or OTHER parameters.

As an example, the following PROFILE statement reads in an entire twodimensional impurity profile generated by TSUPREM-4 from a file named LDDSTRUC:

PROFILE TSUPREM4 IN.FILE=LDDSTRUC

REGRID

The REGRID statement allows refinement of a coarse mesh.

REGRID

```
Regrid Criteria
    { POTENTIA | ( E.FIELD [ {X.COMPON | Y.COMPON} ] ) | QFN | QFP
            DOPING | ELECTRON | HOLES | NET.CHAR | NET.CARR
                ( MIN.CARR [LOCALDOP] ) | II.GENER | BB.GENER | PHOTOGEN
                ELE.TEMP | HOL.TEMP | TRUNC | ARRAY1 | ARRAY2 | ARRAY3
                IMPURITY=<C> | OTHER=<C>
Lattice Temperature AAM Parameters
            LAT.TEMP
    }
Regrid Controls
    (RATIO=<n> | FACTOR=<n>) [IN.FILE=<C>]
    [CHANGE] [ABSOLUTE] [LOGARITH] [MAX.LEVE=<n>] [SMOOTH.K=<n>]
    [X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
    [REGION=<C>] [IGNORE=<c>] [COS.ANGL=<n>]
    [ OUT.FILE=<C> [NO.TTINF] [ASCII] ]
Quadtree Regrid Controls
    [BOUNDARY=<c>]
    [SPACING=<n>] [X.SPACIN=<n>] [Y.SPACIN=<n>]
    [CRITICAL=<n>] [ARC.ANGL=<n>] [ARC.LENG=<n>]
    [ASINH] [VAL.MIN=<n>] [VAL.MAX=<n>] [UNREFINE=<n>] [GRADING=<n>]
```

Parameter Type Definition Default Units

Regrid Criteria

POTENTIA	logical	Specifies that the grid refinement is based on mid-gap poten- tial.
E.FIELD	logical	Specifies that the grid refinement is based on the magnitude of electric field.
X.COMPON	logical	Specifies that the grid refinement is based on the x-compo- nent of electric field instead of the magnitude.
Y.COMPON	logical false	
QFN	Specifies that the grid refinement is based on the y compo- nent of electric field instead of the magnitude.	false
QFP	Specifies that the grid refinement is based on electron quasi- Fermi potential.	false
DOP ING	logical	Specifies that the grid refinement is based on hole quasi- Fermi potential.
logical	Specifies that the grid refinement is based on net impurity concentration.	false

Parameter	Type	Definition	Default	Units
ELECTRON	logical	Specifies that the grid refinement is based on electron concentration.	false	
HOLES	logical	Specifies that the grid refinement is based on hole concentration.	false	
NET. CHAR	logical	Specifies that the grid refinement is based on net charge concentration.	false	
NET. CARR	logical	Specifies that the grid refinement is based on net carrier concentration.	false	
MIN . CARR	logical	Specifies that the grid refinement is based on minority carrier concentration.	false	
LOCALDOP	logical	Specifies that when MIN. CARR is specified, refinement takes place when the minority carrier concentration exceeds the local doping. This is the only case where RATIO does not have to be specified.	false	
II. GENER	logical	Specifies that the grid refinement is based on the total generation rate due to impact ionization.	false	
BB. GENER	logical	Specifies that the grid refinement is based on the total generation rate due to band-to-band tunneling.	false	
PHOTOGEN	logical	Specifies that the grid refinement is based on total photogeneration.	false	
ELE.TEMP	logical	Specifies that the grid refinement is based on the electron temperature.	false	
HOL.TEMP	logical	Specifies that the grid refinement is based on the hole temperature.	false	
TRUNC	logical	Specifies that grid refinement is based on the truncation error for the Poisson equation.	false	
ARRAY1	logical	Specifies that grid refinement is based on the quantity stored in the user calculated ARRAY1.	false	
ARRAY2	logical	Specifies that grid refinement is based on the quantity stored in the user calculated ARRAY2.	false	
ARRAY 3	logical	Specifies that grid refinement is based on the quantity stored in the user calculated ARRAY3.	false	
IMPURITY	char	The name of an impurity to use as the basis for grid refinement.	none	
OTHER	char	The name of an OTHER quantity to use as the basis for grid refinement.	none	
Lattice Temperature AAM Parameters				
LAT . TEMP	logical	Specifies that the grid refinement is based on lattice temperature. This parameter is only used with the Lattice Temperature AAM.	false	

Parameter Typ Regrid Controls

RATIO	number	The numerical criterion for refining a triangle. If the specified quantity differs by more than RATIO at the nodes of a triangle, the triangle is refined. If ${ }^{\wedge}$ CHANGE is specified, the triangle is refined if the magnitude of the specified quantity exceeds RATIO at each node of the triangle. If LOGARITH is specified, then RATIO should be specified as a logarithmic value. synonym: STEP	none	None if LOGARITH is specified; otherwise volts, volts/ $\mathrm{cm}, \# / \mathrm{cm}^{3}$, or \#/cm ${ }^{3} / \mathrm{sec}$.
FACTOR	number	Numerical factor by which to increase the number of grid points by. If FACTOR is specified the program automatically determines the refinement criteria (RATIO) required to produce a new grid with a total number of grid points equal to FACTOR multiplied by the present number of grid points	none	none
IN.FILE	char	The identifier for the file which contains the doping for the device. Specifying IN. FILE avoids interpolating doping values at any newly created grid points (the default), by using the initial doping specification to redope the structure. synonym: DOPFILE	none	
CHANGE	logical	Specifies that the difference of the specified quantity at the nodes of a triangle is used as the criterion for refinement. If ${ }^{\wedge}$ CHANGE is specified, the magnitude of the specified quantity at the nodes of a triangle is used as the criterion for refinement.	true	
ABSOLUTE	logical	Specifies that refinement is based on the absolute value of the specified quantity.	false	
LOGARITH	logical	Specifies that refinement is based on the logarithm of the specified quantity. Since many of the quantities may become negative, the program actually uses $\operatorname{sign}(\mathrm{x}) * \log (1+\|\mathrm{x}\|)$ to avoid overflow. To get refinement on the true logarithm of a quantity, specify ABSOLUTE and LOGARITH. Absolute value is taken first and there is no danger of negative arguments.	false	
MAX . LEVE	number	Specifies the maximum level of any refined triangle relative to the original mesh	One more than the maximum level of the grid.	none
SMOOTH.K	number	Specifies a method for mesh smoothing. SMOOTH . K=1 indicates triangular smoothing is used, maintaining all region boundaries fixed. SMOOTH . K=2 indicates triangular smoothing is used, maintaining only material boundaries	none	none
X.MIN	number	The minimum x coordinate of the area to be refined.	The minimum x location in the device structure.	microns
X.MAX	number	The maximum x coordinate of the area to be refined.	The maximum x location in the device structure.	microns
Y.MIN	number	The minimum y coordinate of the area to be refined.	The minimum y location in the device structure.	microns

Parameter	Type	Definition	Default	Units
Y.MAX	number	The maximum y coordinate of the area to be refined.	The maximum y location in the device structure.	microns
REGION	char	The names of the regions over which refinement takes place. Elements in other regions may be refined as a side effect to maintain well-shaped triangles. Multiple regions may be specified by enclosing the names in parentheses and separating them with commas (for example, "(Body,Oxide,Gate)").	all regions	
IGNORE	char	The names of the regions over which no refinement takes place. Ignored regions are not refined either according to the user criterion nor according to the "obtuse criterion" (see COS .ANGL). Ignored regions are also not smoothed after regrids. Multiple regions may be specified by enclosing the names in parentheses and separating them with commas (for example, "(Body,Oxide,Gate)").	none	
COS.ANGL	number	The "obtuse criterion" to limit the creation of obtuse triangles in the mesh. If a regrid would create a triangle with an angle whose cosine is less than -COS . ANGL, then nodes are added so that this does not occur. The test may be turned off locally by using the IGNORE parameter. It can be turned off everywhere by using a value of COS .ANGL greater than 1 .	2.0	none
OUT FILEE	char	The identifier for the binary output file to store the refined mesh. synonym: OUTFILE	none	
NO. TTINF	logical	Specifies that triangle tree information is not written to the output mesh specified by OUT.FILE. This option is not recommended if further grid refinement is to be performed.	false	
ASCII	logical	Specifies that the refined mesh should be stored in a formatted file instead of a binary file.	false	
Quadtree Regrid Controls				
BOUNDARY	char	Specifies the name of the region whose boundaries should be refined.	none	
SPACING	number	Specifies the desired mesh spacing in both the x and y directions.	none	microns
X.SPACIN	number	Specifies the desired mesh spacing in the x -direction.	none	microns
Y.SPACIN	number	Specifies the desired mesh spacing in the y-direction.	none	microns
ASINH	logical	Specifies that regridding should occur on the asinh of the criterion	false	
VAL.MIN	number	Specifies the minimum of the field value range to consider during refinement.	-Infinity	from criterion
VAL. MAX	number	Specifies the maximum of the field value range to consider during refinement.	Infinity	from criterion
GRADING	number	Specifies the relative size of neighboring mesh elements. Should be larger than 2.0.	none	
UNREFINE	number	Specifies that unrefinement should occur with the given factor.	none	

Parameter	Type	Definition	Default	Units
CRITICAL	number	Specifies the smallest feature size that should be resolved by the Quadtree mesh generator.	$5.0 \mathrm{e}-4$	microns
ARC.ANGL	number	The boundary cutoff angle for sharp corner detection.	0.53	radians
ARC.LENG	number	The boundary arclength for sharp corner detection.	$20.0 \mathrm{e}-3$	microns

Description

The REGRID statement allows coarse meshes to be refined based on where the physical properties of the device structure require it. A triangle is refined if the value of the chosen criterion differs by more than a specified tolerance (RATIO) at the nodes of the triangle. Alternatively, by selecting ^CHANGE, the triangle can be refined if the magnitude of the chosen criterion exceeds a specified value.

See Also... To further illustrate the REGRID statement, refer to input file mdexl in Chapter 4, "Grid Refinement," p. 4-6.

Note:

If the value of the specified criteria ranges over several orders of magnitude, it is advisable to base the refinement on the logarithm of the value by selecting the LOGARITH parameter.

Grid Refinement

This section details the procedures used to control and manipulate the regrid process.

Refinement
Levels

An initial mesh consists of all level 0 triangles: no regridding has been performed. When a triangle is found that satisfies the user-specified refinement criterion, it is subdivided into four congruent triangles. These are now level 1 triangles and the various grid quantities are interpolated onto the new nodes.

After all level 0 triangles have been examined and refined if needed, the same procedure is applied in turn to level 1 triangles. Refinement of level 1 triangles creates level 2 triangles, and so on.

When a REGRID statement is encountered, the default maximum level of refinement is one level higher than the highest existing level before refinement begins. It is often advisable to specify the maximum level of refinement with the MAX. LEVE parameter.

If a mesh has already been refined several times, and it is only desired to refine a coarse part of the mesh without regridding the finer regions, then MAX. LEVE should be set below the level of the finer regions.

When several levels of regrid are performed in immediate succession, the refinement decisions at the higher levels are made using interpolated data. Because of the nonlinearity of semiconductor problems, this can result in too many nodes in areas where they are not required, and not enough where they are needed.

Note:

It is recommended that only one level of refinement be performed with each REGRID statement. A SOLVE should be performed before the next REGRID statement.

Using the FACTOR Option

The FACTOR parameter gives a convenient way to increase the size of the mesh automatically without having to guess at the proper regridding criterion (RATIO). The user specifies the appropriate regrid quantity and the FACTOR by which to increase the grid, for example:

```
REGRID POTENTIAL FACTOR=1.2 SMOOTH=1
```


Note:

If the old grid contained 1000 grid points, the new grid produced by this regrid operation contains approximately 1200 grid points. Due to the complicated constraints on the gridding process, the exact size of the mesh cannot be predetermined so the actual increase in grid will differ slightly from the specified FACTOR.

Other Notes

Other regrid considerations include the following:

- If performing a regrid that requires solution information, a SOLVE should be performed before the next regrid.
- If performing a DOPING regrid, the original doping specification should be read using the IN.FILE parameter to improve the accuracy of doping interpolation onto the refined mesh.
- The refined mesh can be smoothed using the Sмоотн. \mathbf{K} parameter. Refer to the MESH statement for a discussion of smoothing.

Quadtree Mesh Refinement

One of the main benefits of a quadtree mesh is that it can be anisotropically refined using the REGRID statement. This means that the mesh spacing in the x direction can be set independently of the mesh spacing in the y-direction. This type of refinement usually reduces the number of required nodes in a mesh.

The goal of quadtree refinement is to refine the mesh in certain areas of a device in order to achieve a desired mesh spacing. The target mesh spacing in the x and y directions can be set using the X. SPACIN and \mathbf{Y}. SPACIN parameters, respectively. The SPACING parameter can be used as a shorthand for setting
equal spacings in the x and y directions. It should be noted that the mesh spacing actually obtained during mesh generation may be smaller than the specified mesh spacing by a factor of two. The area of a device over which refinement to the target mesh spacing is performed can be limited in a number of ways:

- Use the REGION or IGNORE parameters to limit the regions involved.
- Use the X.MIN, X.MAX, Y.MIN, and Y.MAX parameters to set a bounding box to limit the refinement area.
- Specify a regrid criterion using one of the supported fields. Currently, the supported fields are DOP ING, POTENTIA, and BOUNDARY. When a regrid criterion is used, the edge of an element in the mesh is only refined if it satisfies the specified regrid criteria and is larger than the specified mesh spacing. The criterion used by the quadtree mesh generator is always on the change in a quantity along an edge. The desired change is specified by ratio. By default, the actual field quantities are used in the criterion. However, log values or asinh values can be used instead by specifying LOG or ASINH, respectively. The range of field values to consider during refinement can be specified using the VAL. MIN and VAL. MAX parameters. A mesh edge is only considered for refinement if the field values at its endpoints are within the range specified by VAL. MIN and VAL. MAX. The bOUNDARY parameter is a special criterion that allows for refinement at the boundaries of the specified region.

The three ways described above to limit the area over which refinement takes place can be used individually or together. For example, the REGRID statement below:

```
REGRID SPACING=20E-3 POTENTIAL RATIO=.1
REGION=SILICON1 Y.MIN=0.0
```

specifies that a target mesh spacing of 20 nm in both the x and y directions should be generated in areas of the device where the potential varies by more than 1 V along mesh edges and only in the region named silicon1 and only in the area of the device beyond $\mathrm{y}=0.0$.

REGRID statements for quadtree mesh refinement do not always need a regrid criterion. For example, the statement below:

```
REGRID Y.SPACING=8E-4 X.MIN=-0.09 X.MAX=0.09
Y.MIN=0.0 Y.MAX=0.02
```

could be used to specify a very fine ($8 \AA$) vertical mesh spacing in the channel of a MOSFET.

Controlling Mesh Quality

Mesh quality is an important factor in obtaining good convergence during simulation and can be controlled in a couple of ways. The number of obtuse elements can be reduced by using the COS. ANGL parameter to specify the desired maximum allowed element angle. The GRADING parameter can be used to specify the relative size of neigboring elements. This parameter can be used to ensure that large, abrupt changes in element size, which could lead to solution
errors, do not occur. This parameter must be larger than 2.0. Unrefinement can be performed by specifying the unrefine factor, UNREFINE, to be greater than 2.0 . The CRITICAL parameter specifies the smallest feature in the structure that should be considered by the mesh generator. The fidelity of the region boundaries produced during a regrid is controlled by the ARC. LENG and ARC. ANGL parameters. See "Boundary Fidelity," p. 3-29 for a description.

Multiple Regrids

When refining a quadtree mesh, multiple regrids can be performed during a single call to the mesh generator by specifying multiple REGRID statements. A common and highly recommended practice is to regrid on the doping during the initial quadtree mesh construction phase. This will ensure accurate doping interpolation during refinement. If a doping file is available, it can be used to redope the structure using the IN.FILE parameter. In addition, the refined mesh can be automatically stored to the file specified by the OUT FIILE parameter.

See Also... To see an example of the REGRID statement applied to a quadtree mesh, refer to input file mdexlqt in Chapter 4, "Grid Refinement," p. 4-6.

STITCH

The STITCH statement reads a previously-generated structure from a file and merges it with the currently initiated structure.

STITCH

```
IN.FILE=<C> [ASCII.IN] [ {TIF | TSUPREM4} [POLY.ELE] ]
{ TOP | BOTTOM | LEFT | RIGHT } [X.OFFSET=<n>] [Y.OFFSET=<n>]
[FLIP.X] [FLIP.Y] [ELEC.MER] [REG.MERG]
```

Parameter	Type	Definition	Default	Units
IN.FILE	char	The identifier for the file containing a previously-generated structure. Unless TIF or TSUPREM4 is specified, the file is assumed to be in standard Medici format.	none	
ASCII.IN	logical	Specifies that the input data file is formatted.	false	
TIF	logical	Specifies that the input data file is in TIF format.	false	
TSUPREM4	logical	Specifies that the input data file was generated by TSUPREM-4 for Medici.	false	
POLY.ELE	logical	Specifies that polysilicon regions in the input data file are converted to electrodes.	false	
TOP	logical	Specifies that the appended structure is stitched to the top of the existing device structure (minimum y coordinate).	false	
BOTTOM	logical	Specifies the appended structure is stitched to the bottom of the existing device structure (maximum y coordinate).	false	
LEFT	logical	Specifies the appended structure is stitched to the left side of the existing device structure (minimum x coordinate).	false	
RIGHT	logical	Specifies the appended structure is stitched to the right side of the existing device structure (maximum coordinate).	false	
X. OFFSET	number	Specifies an additional horizontal shift of the input structure before stitching	0	microns
Y. OFFSET	number	Specifies an additional vertical shift of the input structure before stitching.	0	microns
FLIP. X	logical	Specifies that the input structure is flipped horizontally before stitching.	false	
FLIP.Y	logical	Specifies that the input structure is flipped vertically before stitching.	false	
ELEC. MER	logical	Specifies that electrodes with the same name in the existing structure and in the input structure are merged. If ELEC.MER is false, electrodes from the input structure will be given unique names.	false	
REG.MERG	logical	Specifies that regions with the same name and material type in the existing structure and in the input structure are merged. If REG. MER is false, regions from the input structure will be given unique names.	true	

STITCH Statement Usage

A STITCH statement specifies that a structure stored in a file should be appended to the existing device structure. You can include several STITCH statements in a single input file to stitch multiple structures together. Stitched structures can come from Medici files, TSUPREM-4 files (stored in Medici format), and TIF files.

One of the parameters, TOP, BOTTOM, LEFT, or RIGHT must be specified to designate where the appended structure is to be stitched relative to the existing structure. The X. OFFSET and Y. OFFSET parameters are used to specify additional shifts of the appended structure prior to stitching. Stitching structures that overlap is not allowed.

When a structure is stitched to an existing structure, regions of the same material type that are in contact with each other will be merged into a single region. Similarly, electrodes that are in contact with each other will be merged into a single electrode. The names of the merged regions and electrodes will be those of the initial structure. The ELEC. MER and REG. MERG parameters are used to control the merging of electrodes and regions that are not in contact with each other.

As an example, Figure 3-16 shows an initial structure and a structure to be appended (stitched) to the initial structure. The stitching is accomplished by the statements:

MESH	IN.FILE=INITIAL.MSH		
STITCH	IN.FILE=APPEND.MSH	BOTTOM	FLIP.Y
+	X.OFFSET=-0.5		

INITIAL.MSH

APPEND.MSH

Figure 3-16 Initial structure and structure to be stitched to it

The appended structure is stored in the file APPEND.MSH. The STITCH statement says to vertically flip the structure stored in this file and attach it to the bottom of the existing structure. The appended structure is also shifted to the left by 0.5 micron by specifying \mathbf{X}. OFF SET $=-0.5$. Figure 3-17 shows the final structure.

Figure 3-17 The final structure

3.2 Solution Specification

The following statements specify how solutions are generated by Medici:

Statement	Definition	Page
MODELS	Enables the use of physical models during solutions.	$3-108$
PHOTOGEN	Models the spatial and temporal generation of electron-	$3-118$
	hole pairs in a device.	
TRAPS	Includes traps in the device materials.	$3-136$
SYMBOLIC	Performs a symbolic factorization.	$3-144$
METHOD	Sets parameters associated with solution algorithms.	$3-147$
SOLVE	Generates solutions for specified biases.	$3-161$

MODELS

The MODELS statement sets the temperature for the simulation and specifies model flags to indicate the inclusion of various physical mechanisms and models.

MODELS
[\{SRH | CONSRH\} [R.TUNNEL]] [AUGER] [BGN]
[\{FN.CUR | (DT.CUR [DT.METH=<n>] [DT.CBET] [DT.VBET] [DT.VBHT])\}]
[\{BOLTZMAN | FERMIDIR\} [REGION=<C>]]
[IMPACT.I] [II.VALDI] [\{II.NLOC=<n> | II.NODE=<n>\}] [II.TEMP]
[INCOMPLE [ENERGY.L] [HIGH.DOP] [IMPURITY=<C>]]
[BTBT [BT.MODEL=<n>] [BT.LOCAL=<n>]
[BT.QUAD [BT.ATOL=<n>] [BT.RTOL=<n>] [BT.TINY=<n>]]
]
[SBT [SBT.NSEG=<n>]]
[$\{$ CONMOB | ANALYTIC | ARORA | CCSMOB | PHUMOB | LSMMOB
| GMCMOB | SHIRAMOB | LUCMOB | IALMOB
\}
]

\}
]
[\{HPMOB | FLDMOB | LUCMOB | IALMOB | TMPMOB\}
[\{ND.MOB | C.ND.MOB=<n>\}]
]
[E.EFFECT] [EJ.MOBIL] [EHSCAT] [STRMOB]
[\{ (MLDA [MLDA.TEM])
| (QM.PHILI [QM.AC] [QM.OLD] [QM.METHO=<n>] [QM.NORP=<n>] [QM.EFIEL=<n>] [QM.EMIN=<n>] [QM.EXTEN] [QM.FERMI]
)
\}
]
[\{GATE1 | (GATE2 [GATE.SUR])\} [GATE.GEN=<n>] [GATE.TEM]]
[TMPDIFF] [ET.MODEL] [EF.TMP] [EFI.TMP] [COMP.ET] [EBLT.HT] [TMPTAUWN] [TMPTAUWP] [EB.SRH.G] [TEMPERAT=<n>] [3KT.LT] [ECII.LAT] [\{HJSC2 | (HJTEM [HJTUN])\}] [STRESS] [Y.ORIENT=<n>] [PRINT]

Parameter	Type	Definition	Default
SRH	logical	Specifies that Shockley-Read-Hall recombination with fixed lifetimes is used.	false
CONSRH	logical	Specifies that Shockley-Read-Hall recombination with concentration dependent lifetimes is used.	false
R.TUNNEL	logical	Specifies that trap-assisted and band-to-band tunneling are included in the Shockley-Read-Hall recombination.	false
AUGER	logical	Specifies that Auger recombination is used.	false
BGN	logical	Specifies that band-gap narrowing is used.	false

Parameter	Type	Definition	Default	Units
FN.CUR	logical	Specifies that self-consistent Fowler-Nordheim tunneling is to be included in the simulation. Since a self consistent model requires that current flow in the oxide be modeled, the oxide layers must be modeled as S. OXIDE, i.e., as a wide band gap semiconductor. If FN. CUR is specified on the SOLVE statement instead of on the MODEL statement then a post processing Fowler-Nordheim tunneling model is used in place of the self consistent version.	false	
DT. CUR	logical	Specifies that self-consistent direct tunneling is to be included in the simulation. If DT .CUR is specified on the SOLVE statement instead of on the MODELS statement, then a post processing direct tunneling model is used in place of the self consistent version.	false	
DT. METH	number	The method for evaluating the direct tunneling current: $2=\mathrm{WKB}, 3=$ Gundlach, 4=AiryTMT.	2	
DT. CBET	logical	Specifies that conduction band electron tunneling should be included in direct tunneling.	true	
DT. VBET	logical	Specifies that valence band electron tunneling should be included in direct tunneling.	false	
DT. VBHT	logical	Specifies that valence band hole tunneling should be included in direct tunneling.	false	
BOLTZMAN	logical	Specifies that Boltzmann carrier statistics are used.	true	
FERMIDIR	logical	Specifies that Fermi-Dirac carrier statistics are used.	false	
REGION	char	The name(s) of the regions for which the model flags apply. If more than one name is given, the entire group should be surrounded by parentheses and the individual names should be separated with commas. Currently, the REGION parameter only applies to carrier statistics.	none	
IMPACT.	logical	Specifies that carrier generation due to impact ionization is included in the solution self-consistently.	false	
II. VALDI	logical	Specify that Valdinoci impact ionization model is applied.	false	
II.NLOC	number	Specifies the model level for non-local impact ionization: -1=non-local impact ionization not invoked, $0=$ post-processing non-local impact ionization, $1=$ selfconsistent non-local impact ionization without derivatives, $2=$ self-consistent nonlocal impact ionization with derivatives.	-1	
II. NODE	number	Specifies the model level for nodal-based impact ionization: $-1=$ nodal-based impact ionization not invoked, $0=$ post-processing nodal-based impact ionization, $1=$ self-consistent nodal-based impact ionization without derivatives, $2=$ self-consistent nodal-based impact ionization with derivatives.	-1	
II.TEMP	logical	Specifies that a carrier temperature-based model is used for impact ionization instead of the electric field-dependent model whenever impact ionization is used.	false	

Parameter	Type	Definition	Default	Units
INCOMPLE	logical	Specifies that incomplete-ionization of impurities are accounted for.	false	
ENERGY.L	logical	Specifies that a doping and temperature dependent impurity activation energy model is used in conjunction with the INCOMPLE model.	false	
HIGH.DOP	logical	Specifies that the INCOMPLE model is modified to account for a transition from partial ionization to complete ionization at high doping levels.	false	
IMPURITY	char	The impurities for which the INCOMPLE model is applied. To specify more than one impurity, separate their names with commas and enclose the group within parentheses.	all impurities	
BTBT	logical	Specifies that carrier generation due to band-to-band tunneling is included in the solution.	false	
BT. MODEL	number	Specifies the tunneling field model for Втвт. A value of 1 indicates a local field, a value of 2 indicates an average field, and a value of 3 indicates a path integral.	1	
BT. LOCAL	number	Specifies the locality of BTBT generation. A value of 1 indicates that electronhole pairs are generated at the beginning of the tunneling path, and a value of 0 indicates that electrons and holes are generated at opposite ends of the tunneling path.	1	
BT. QUAD	logical	Specifies that recursive refinement is to be applied in ВтвT calculations.	false	
BT. ATOL	number	Specifies the threshold BTBT generation rate below which recursive refinement is not applied.	1.0e16	$\# / \mathrm{cm}^{3} / \mathrm{s}$
BT. RTOL	number	Specifies the $\log 10$ relative change in BTBT generation rate above which recursive refinement is to be applied.	0.3	
BT.TINY	number	Specifies the size of the triangle below which recursive refinement is not applied.	5e-4	$\begin{aligned} & \text { micron } \\ & \mathrm{s} \end{aligned}$
SBT	logical	Specifies that carrier generation due Schottky barrier tunneling is included in the solution.	false	
SBT.NSEG	number	Specifies the number of segments to use in the discretization of the tunneling barrier for SBT.	1	
CONMOB	logical	Specifies that mobility tables are used to model the dependence of carrier mobility on impurity concentration.	false	
ANALYTIC	logical	Specifies that concentration and temperature dependent mobility calculated from an analytic expression is used.	false	
ARORA	logical	Specifies that a concentration and temperature dependent mobility model based on the work of Arora, et al. is used.	false	
CCSMOB	logical	Specifies that the carrier-carrier scattering model is to be used. This model also includes the dependence of mobility on doping and temperature.	false	

Parameter	Type	Definition	Default
PHUMOB	logical	Specifies that the Philips Unified mobility model is used. Note that PHUMOB models minority carrier mobility adequately, which is crucial for bipolar devices. However, to model minority carrier transport correctly, appropriate values of band-gap narrowing parameters should be used. See Chapter 2, "Philips Unified Mobility," p. 2-27.	false
SHIRAMOB	logical	Specifies that the Shirahata mobility model is used. Note that SHIRAMOB uses all the parameters of РнUMOB.	false
LUCMOB	logical	Specifies that the Lucent mobility model is used.	false
IALMOB	logical	Specifies the use of the "Inversion and Accumulation Layer Mobility Model".	false
LSMMOB	logical	Specifies that the Lombardi surface mobility model is used.	false
SRFMOB	logical	Specifies that an effective mobility is calculated at semiconductor-insulator surfaces using an effective electric field.	false
SRFMOB2	logical	Specifies that an enhanced surface mobility model is used along semiconductorinsulator surfaces which accounts for phonon scattering, surface roughness scattering, and charged impurity scattering.	false
UNIMOB	logical	Specifies that the Universal Mobility model is used.	false
PRPMOB	logical	Specifies that a mobility model using the perpendicular electric field component is used.	false
GMCMOB	logical	Specifies that the Generalized Mobility Curve mobility model is used.	false
TFLDMOB	logical	Specifies that a transverse field-dependent mobility model based on work done at the University of Texas, Austin, is used.	false
HPMOB	logical	Specifies that a mobility model developed by Hewlett-Packard which takes into account both the transverse and parallel electric field components is used.	false
FLDMOB	logical	Specifies that a mobility model using the parallel electric field component is used.	false
TMPMOB	logical	Specifies that a mobility model using a carrier temperature-based effective field is used.	false
ND. MOB	logical	Only relevant for GaAs-like semiconductors when FLDMOB or TMPMOB are used. If ND. MOB is true, negative values of mobility derivatives are included in the calculation of the Jacobian matrix. If ND. MOB is false, negative values of the mobility derivative are limited to the value of C.ND.MOB, which may improve convergence.	false

Parameter	Type	Definition	Default	Units
C. ND. MOB	number	Only relevant for GaAs-like semiconductors when FLDMOB or TMPMOB are used. Specifies the minimum value of normalized mobility derivatives, $(E / \mu) \cdot(\partial \mu / \partial E)$, that are included in the calculation of the Jacobian matrix. The value specified for C.ND.MOB should be less than or equal to 0 . Specifying values in the vicinity of -1 for this parameter sometimes helps difficult convergence problems. NOTE: C.ND. MOB will only be applied if ND.MOB is false.	0.0	none
E. EFFECT	logical	Specifies that an effective electric field is calculated at interfaces for use in the transverse field dependent mobility models.	true	
EJ.MOBIL	logical	Specifies that the electric field components used in the mobility calculations are parallel and perpendicular to current flow. If this parameter is not specified, the mobility reduction along a side of a triangular element is computed using the electric field components parallel and perpendicular to the side.	false	
EHSCAT	logical	Specifies that electron hole scattering is included in the electron and hole continuity equations.	false	
STRMOB	logical	Specifies that stress-induced changes to the electron and hole mobilities are included. This model must be used in conjunction with the STRESS model for bandgap change.	false	
MLDA	logical	Specifies that quantum mechanical corrections at semiconductor/insulator interfaces are included by invoking the Modified Local Density Approximation.	false	
MLDA. TEM	logical	Specifies that the temperature dependence of the MLDA carrier wavelength parameters is calculated.	false	
QM.PHILI	logical	Specifies that quantum mechanical corrections for MOSFET inversion layers are included by invoking the Philip's band-gap widening model.	false	
QM. AC	logical	Specifies that a new implementation of QM correction model is applied. This allows the QM correction to be included in AC small-signal analysis. This implementation also reduces model evaluation time in normal simulation. synonym: QM.NEW	true	
QM.OLD	logical	Specifies that the old calculation of interface normal electric field used in versions of Medici prior to 1999.2 will be used with the QM. PHILI model.	false	
QM.METHO	number	An integer that specifies how quantum mechanical band-gap widening is applied as we move away from the interface. Specifying $\mathbf{Q M} . \mathbf{M E T H O}=1$ uses a method suggested by van Dort. Specifying QM. METHO=2 uses a similar method suggested by researchers at Stanford University.	1	
QM. NORP	number	An integer that specifies whether quantum mechanical band-gap widening occurs in n-type regions ($\mathbf{Q M} . \mathrm{NORP}=1$), p-type regions ($\mathbf{Q M} . \mathrm{NORP}=-1$), or both ($\mathbf{Q M} . \operatorname{NORP}=0$). Values of $\mathbf{Q M} . \operatorname{NORP}= \pm 2$ cause the program to behave like $\mathbf{Q M} \cdot \mathbf{N O R P}= \pm 1$ before inversion and like $\mathbf{Q M} . \mathbf{N O R P}=0$ as you approach inversion. If this parameter is specified here, it will apply to the entire device structure. To apply this parameter to specific regions, use the QM. NORP parameter on the MATERIAL statement.	0	

Parameter	Type	Definition	Default	Units
QM.EFIEL	number	An integer that specifies whether quantum mechanical band-gap widening occurs in regions where the normal electric field at the interface points into the semiconductor (QM.EFIEL=1), points into the insulator (QM.EFIEL=-1), or both (QM.EFIEL=0). If this parameter is specified here, it will apply to the entire device structure. To apply this parameter to specific regions, use the QM. EFIEL parameter on the MATERIAL statement.	0	
QM.EMIN	number	The minimum interface normal electric field that must exist before the QM.PHILI model is applied.	1 e 3	V/cm
QM.EXTEN	logical	Specifies that the $\mathbf{Q M}$ model evaluation is extended such that flat band singularity is removed and $\mathbf{Q M}$ correction in the accumulation regime is reduced at high doping levels.	true	
QM.FERMI	logical	Specifies that when Fermi-Dirac statistics are used, the vanDort QM correction model (QM.PHILI) is calculated in a manner consistent with the TSUPREM-4 program.	false	
GATE1	logical	Specifies that the standard lucky-electron gate current model is to be used for performing gate current calculations. Gate current calculations are enabled by specifying GATE.CUR on the SOLVE statement.	true	
GATE2	logical	Specifies that a more complicated angle-dependent gate current model is used for performing gate current calculations. See Chapter 2, "Medici Description," p. 2119 for more details. Gate current calculations are enabled by specifying GATE. CUR on the SOLVE statement.	false	
GATE.SUR	logical	Specifies that gate current calculations are only performed along the insulatorsemiconductor interface. This type of analysis may be more accurate with coarse grids. This parameter only effects the GATE2 model.	false	
GATE.GEN	number	Selects the gate current hot carrier distribution function to be used during gate current calculations. A value of 1 selects a standard Maxwellian function. A value of 2 selects a more complex formula that was derived from Monte Carlo data. See Chapter 2, "Medici Description," p. 2-113 for more details.	1	none
GATE.TEM	logical	Specifies that the electron or hole temperatures calculated from the solution of the energy balance equations are used in place of the local electric field during gate current calculations.	false	
TMPDIFF	logical	Specifies that the thermal diffusion term in the current density definition is used. This parameter is only relevant when one or both of the carrier energy balance equations are included with the solution of the device equations.	true	
ET. MODEL	logical	Specifies that the Energy Transport Model is used when solving the energy balance equations. If this parameter is not selected, the conventional energy balance model is used.	false	

Parameter	Type	Definition	Default	Units
EF.TMP	logical	Specifies that the homogeneous energy balance equation is solved locally to determine the effective electric field used in the carrier temperature dependent mobility models. This parameter should normally be selected in simulations that include the solution of the carrier energy balance equations if the TMPMOB parameter is specified.	Si, Poly, Semi, SiGe, $\mathrm{Ge}, \mathrm{SiC}$: false; GaAs, AlGaAs: true	
EFI.TMP	logical	Specifies that the cooling term due to impact ionization is included in the homogeneous energy balance equation utilized to determine the local effective electric field used in the carrier temperature-dependent mobility and/or impact ionization models. Automatically turns EF . TMP on when selected.	false	
COMP.ET	logical	Only relevant for GaAs-like semiconductor regions. It enables an energy-balance model suitable for compound-semiconductors. No action is taken if neither ELE.TEMP nor HOL. TEMP is specified on the SYMBOLIC statement.	false	
EBLT. HT	logical	Enables a lattice heating model based on the energy transfer between the carrier bath and the phonon bath. Only relevant if LAT . TEMP and at least one of ELE.TEMP, HOL.TEMP is specified on the SYMBOLIC statement.	true	
TMPTAUWN	logical	Enables a carrier temperature-dependent electron energy relaxation time model. Separate models exist for silicon and GaAs materials. This model is only applicable if ELE. TEMP is specified on the SYMBOLIC statement.	false	
TMPTAUWP	logical	Enables a carrier temperature-dependent hole energy relaxation time model. This model is only applicable if HOL.TEMP is specified on the SYMBOLIC statement.	false	
EB. SRH.G	logical	Allows SRH recombination carrier cooling to be accounted for (active only at nodes where $U_{S R H}<0$). Relevant only when at least one carrier temperature is calculated.	false	
TEMPERAT	number	The (initial) lattice temperature for the structure.	300	${ }^{\circ}$ Kelvi n
3KT.LT	logical	Specifies that each recombining carrier pair transfers $3 k T_{\text {Lattice }}$ Joules to the lattice in addition to the gap energy E_{g}. Relevant only if the lattice temperature is calculated and neither balance equation is solved.	true	
ECII.LAT	logical	Specifies that the critical electric field used in impact ionization is calculated from the default expression for all regions. This resets values previously specified with ECN.II or ECP.II on the MATERIAL statement.	false	
HJSC2	logical	Specifies that currents across virtual sides are such that fermi levels are continuous across heterojunctions. Only relevant with heterojunctions if VIRTUAL was turned on in the MESH statement.	true	
HJTEM	logical	Specifies that a thermionic emission current model will be used to calculate heterojunction currents. Automatically turns HJSC2 off when stated. Only relevant with heterojunctions if VIRTUAL was turned on in the MESH statement.	false	

Parameter	Type	Definition	Default Units
HJTUN	logical	Specifies that a tunneling current model will be used to calculate heterojunc- tion currents. This model requires HJTEM to be on. The tunneling current and thermionic emission current will be combined. Only relevant with heterojunc- tions if vIRTUAL was turned on in the MESH statement.	
STRESS	logical	Specifies that stress-induced changes in the bandgap are included in the solu- tion.	false
Y.ORIENT	number	Specifies the crystallographic orientation of the substrate used for stress calcu- lations. Must be one of 100, 110, or 111.	100
PRINT	logical	Specifies that the status of all models, some constants, and some temperature dependent parameters are printed.	false

Description

The MODELS statement allows you to specify various physical models to use in the simulation. The temperature for the simulation is also set here. A model selected with this statement remains in effect until another MODELS statement explicitly requests not to use it.

See Also... To further illustrate the MODELS statement, refer to:

- Input file mdexl in Chapter 4, N-Channel MOSFET Examples
- Input file mdex2 in Chapter 5,NPN Bipolar Transistor Examples
- Other examples where a solution is calculated

Impact Ionization

Impact ionization can be requested in one of two ways:

- By specifying IMPACT . I on the MODELS statement, carrier generation due to impact ionization is included in the solution. In this case, the Newton solution method with two carriers is required.
- By specifying IMPACT.I on the SOLVE statement, a post-processing analysis of impact ionization is performed. This is based on the electric fields and current densities for the most recently solved for bias or time point (see the SOLVE statement).

Carrier Temperature

If II .TEMP is specified on the MODELS statement, impact ionization is based upon carrier temperature instead of the standard local electric field value as
described in"MODELS," p. 3-108. This applies to both the self-consistent and post-processing simulation of impact ionization.

Fowler-Nordheim Tunneling

Fowler-Nordheim tunneling can be requested in one of the following two ways:

- By specifying FN. CUR on the MODELS statement, current due to tunneling is included in the solution. In this case, the Newton solution method with two carriers is required and the oxide through which tunneling is occurring must be modeled using S. OXIDE.
- By specifying FN.CUR on the SOLVE statement, a post-processing analysis is performed. This is based on the electric fields and current densities for the most recently solved for bias or time point (see the SOLVE statement).

Direct Tunneling

Direct tunneling can be requested in one of the following two ways:

- By specifying DT. CUR on the MODELS statement, current due to direct tunneling is included in the solution. In this case, the Newton solution method with electrons-only for CBET or electrons and holes for VBET, or holes-only for VBHT is required. Unlike Fowler-Nordheim tunneling, normal oxide may be used as the material through which tunneling occurs.
- By specifying DT . CUR on the SOLVE statement, a post-processing analysis is performed. This is based on the potential, electron and hole concentrations for the most recently solved for bias or time point (see the SOLVE statement).

Quantum Mechanical Effects in MOSFET Inversion Layers

An approximate method to account for quantum mechanical effects in MOSFET inversion layers is invoked by specifying the QM.PHILI parameter. This invokes a band-gap widening approach suggested by van Dort at Philips. A description of this model and the parameters associated with it (QM.METHO, QM.NORP,
QM. EFIEL, and QM.EMIN) is given in Chapter 2, "Medici Description," p. 217. The quantum mechanical effects can be accounted for when performing AC small-signal analysis by specifying the parameter QM. AC in addition to QM.PHILI. An alternative quantum model, the Modified Local Density Approximation, can be invoked by specifying the MLDA parameter.

Stress-Induced Effects in Silicon

Stress-induced effects on the bandgap and mobility in silicon can be included using the STRESS and STRMOB parameters, respectively. When using the STRMOB mobility model, the STRESS model must also be used. These models require that the device orientation relative to the crystallographic coordinate system be specified using the Y. ORIENT parameter.

Currently, only three orientations are supported. Specification of the substrate orientation using Y. ORIENT fixes the orientation of the x-axis to the value given in the following table:

Y. ORIENT	x-axis
100	110
110	$1 \overline{1} 0$
111	$1 \overline{1} 0$

The stress models also require that the 2D stress tensor at each node location be read from a TIF file using the PROFILE statement. The three components of the stress tensor must be identified by the names Sxx, Syy, and Sxy and are read using the OTHER parameter on the PROFILE statement as follows:

PROFILE IN.FILE=DEVICE.TIF TIF OTHER=(SXX,SYY,SXY)

Models in Solution Files

When a solution file is read using the LOAD statement, the model flags and temperature stored in this file replace the corresponding model flags and temperature in the present setup. This makes it unnecessary to respecify models that were selected in a previous simulation when continuing the simulation from a saved solution.

PHOTOGEN

The PHOTOGEN statement allows the steady-state or time-dependent injection of electrons and holes into the device.

```
PHOTOGEN
    [X.START=<n>] [Y.START=<n>] X.END=<n> Y.END=<n>
    [X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
    [ELECTRON] [HOLES]
Spatial Terms
    [R.CHAR=<n>]
    [A1=<n>] [A2=<n>] [A3=<n>] [A4=<n>]
    [C1=<n>] [C2=<n>] [C3=<n>] [C4=<n>]
    [RECO=<n>] [ IN.FILE=<C> [RD.CHAR] ] [PC.UNITS] [CLEAR]
    [G.INTEG] [N.INTEG=<n>]
Temporal Terms
    { UNIFORM
        | ( GAUSSIAN TC=<n> [T0=<n>] )
        ( DELTA [TO=<n>] )
        ( PULSE TRS=<n> TPD=<n> TFS=<n> TPRD=<n> [TO=<n>] )
    }
Circuit Analysis AAM Parameters
    [STRUCTUR=<C>]
Optical Device AAM Parameters
Incident Ray Quantities
    [ RAYTRACE X.ORG=<n> Y.ORG=<n> [ANGLE=<n>] [SPLIT.RA]
            { ( WAVELENG=<n> {FLUX=<n> | INTENSIT=<n>} )
            | ( {SP.FILE=<C> | ( BB.RADIA [BB.TEMP=<n>] ) }
                WAVE.STA=<n> WAVE.END=<n> WAVE.NUM=<n>
                )
            }
            [RAY.WIDT=<n>] [RAY.NUM=<n>]
            [WAVE.SCA=<n>] [INT.SCAL=<n>]
            { ( [POLARIZA=<n>] [PHASE.DI=<n>] )
            | ( [A.ELLIPS=<n>] [R.ELLIPS=<n>] )
        }
    ]
Ray-Tracing Quantities
    [ {INT.RATI=<n> | INT.LIMI=<n>} ]
    [BOT.RFLT=<n>] [TOP.RFLT=<n>] [SID.RFLT=<n>] [SID.INCI] [TRANSPAR]
    [AMB.REFR=<n>] [WIDTH.CH] [QUAN.EFF=<n>] [PRINT.AB]
Film Quantities
    [FILM.REG=<C>]
```

Parameter	Type	Definition	Default	Units
X.START	number	The x -coordinate of the start of the line segment along which carriers are injected.	Minimum xcoordinate in the device structure.	microns
Y. START	number	The y-coordinate of the start of the line segment along which carriers are injected.	Minimum ycoordinate in the device structure.	microns
X. END	number	The x -coordinate of the end of the line segment along which carriers are injected.	Minimum xcoordinate in the device structure.	microns
Y. END	number	The y-coordinate of the end of the line segment along which carriers are injected.	Minimum ycoordinate in the device structure.	microns
X.MIN	number	The minimum x-coordinate at which charge generation is allowed; generation is zero for $\mathrm{x}<\mathbf{X}$. MIN.	Minimum xcoordinate in the device structure.	microns
X. MAX	number	The maximum x-coordinate at which charge generation is allowed; generation is zero for $\mathrm{x}>\mathbf{X}$. MAX.	Maximum xcoordinate in the device structure.	microns
Y.MIN	number	The minimum y-coordinate at which charge generation is allowed; generation is zero for $\mathrm{y}<\mathbf{Y}$. MIN.	Minimum ycoordinate in the device structure.	microns
Y.MAX	number	The maximum y-coordinate at which charge generation is allowed; generation is zero for $\mathrm{y}>\mathbf{Y}$. MAX.	Maximum ycoordinate in the device structure.	microns
ELECTRON	logical	Specifies that electrons are generated.	true	
HOLES	logical	Specifies that holes are generated.	true	
Spatial Terms				
R. CHAR	number	The characteristic radial distance for charge generation. synonym: DCHR	0.0 or read from IN.FILE if RD. CHAR is true	microns
A1	number	The constant depth dependence of charge generation.	0.0	carriers/

Parameter	Type	Definition	Default	Units
A2	number	The linear depth dependence of charge generation.	0.0	carriers/cm ${ }^{3} /$ micron
A3	numberThe pre-exponential depth dependence of charge generation. 0.0	carriers/cm ${ }^{3}$		

Temporal Terms

UNIFORM logical Specifies that the photogeneration is uniform (constant) in time. true

Parameter	Type	Definition	Default	Units
GAUSSIAN	logical	Specifies that the time dependence of the photogeneration is Gaussian.	false	
DELtA	logical	Specifies that the time dependence of the photogeneration is a Dirac delta function i.e. all generation is applied at a single time point.	false	
PULSE	logical	Specifies that the time dependence of the photogeneration is a trapezoidal pulse.	false	
тС	number	The characteristic time of the generation pulse.	0.0	seconds
TRS	number	The rise time of the intensity of the pulse-type light source.	0	second
TFS	number	The fall time of the intensity of the pulse type light source.	0	second
TPD	number	The pulse width of the intensity of the pulse type light source.	1.0 e 9	second
TPRD	number	The repetition period of the intensity of the pulse type light source.	1.0 e 9	second

Circuit Analysis AAM Parameters

STRUCTUR char \quad| The device in which generation specified by this statement occurs. This |
| :--- |
| parameter is only used with the Circuit Analysis AAM. If this parameter |
| is not specified, then generation is applied to all devices. |

Optical Device AAM Parameters

Incident Ray Quantities

RAYTRACE	logical	Specifies that ray-tracing and photogeneration by traced rays is performed. If not specified, the related statements below this are ignored.	false	
X. ORG	number	The x-coordinate of the origin of the ray. The origin must be located outside the device region.	none	microns
Y. ORG	number	The y-coordinate of the origin of the ray. The origin must be located outside the device region.	none	microns
ANGLE	number	The angle of the ray direction relative to the horizontal axis. The value is positive clockwise and negative counter-clockwise. synonym: THETA	90	degrees
SPLIT.RA	logical	Specifies that ray splitting is used for ray tracing. This method uses a minimum number of rays for determining where photogeneration occurs within the device. If ${ }^{\wedge}$ SPLIT. RA is specified, then specify enough incident rays (using the RAY . NUM parameter) to "cover" the device.	true	
FLUX	number	The photon flux of the incident monochromatic ray.	none	photons/ $\mathrm{cm}^{2}-\mathrm{sec}$

Parameter	Type	Definition	Default	Units
INTENSIT	number	The intensity of the incident monochrome ray. The light intensity and flux are related as follows: INTENSIT $=(h c / \lambda) \times \mathbf{F L U X}$, where h is Plank's constant, c is speed of light ($h c=1.986473 \times 10^{-19} \mathrm{~J}-\mu \mathrm{m}$).	none	Watts/cm ${ }^{2}$
WAVELENG	number	The wavelength of the incident monochrome ray.	none	microns
SP.FILE	char	The formatted spectral intensity file name. The file must contain two columns: the first is the wavelength in microns, the second is the spectral power density in Watts $/ \mathrm{cm}^{2} /$ micron. The file must contain at least two lines and the maximum number of lines that the file can have is 100 .	none	
BB. RADIA	logical	Specifies that the spectral intensity distribution is given by the black body radiation formula which is a function of temperature. The intensity is given in units of [Watts $/ \mathrm{cm}^{2} /$ micron] for each wavelength.	false	
BB. TEMP	number	The temperature used to characterize the black body radiation. A temperature of 5800° Kelvin can be used to approximate the AM0 solar spectrum, which is the case outside the atmosphere of the earth.	5800	${ }^{\circ}$ Kelvin
WAVE.STA	number	The starting wavelength of the source ray when multi-wavelength simulations are performed.	none	microns
WAVE. END	number	The ending wavelength of the source ray when multi-wavelength simulations are performed.	none	microns
WAVE . NUM	number	The number of wavelengths of the source ray when multi-wavelength simulations are performed. The value specified for WAVE . NUM must be less than or equal to $\min (500,30 *$ (maximum allowed nodes)/(actual number of nodes)).	none	none
RAY.WIDT	number	The width of incident ray. The illumination width is automatically clipped to the device domain. The default width is wide enough to cover the whole device surface. (See Figure 3-20) synonym: A.WIDTH	twice the diagonal distance of the device domain	microns
RAY. NUM	number	The number of rays in the incident beam. The rays are incident in a collimated way. synonym: A.RAYS	1	none
WAVE. SCA	number	The scale factor for the wavelengths in multi-wavelength simulations. Each of the wavelengths from the spectral file is multiplied by this factor.	1.0	none
INT.SCAL	number	The scale factor for the relative light intensities in multi-wavelength simulations. Each of the intensities from the spectral file is multiplied by this factor.	1.0	none
POLARIZA	number	The linear polarization angle of the incident ray which is the angle between the electric field vector and the incident plane of the ray, or the azimuthal angle of the vibration.	45.0	degrees

Parameter	Type	Definition	Default	Units
PHASE.DI	number	The phase difference between TM wave and TE wave components of the incident ray.	0.0	degrees
A.ELLIPS	number	The angle made by the major axis of the polarization ellipsis of the incident wave and the horizontal axis. The zero default value means there is no phase difference between the impinging TM and TE waves.	0.0	degrees
R.ELLIPS	number	The ratio between the lengths of the elliptical axes of polarization of the incident wave $(0.0 \leq R . \operatorname{ELLIPS} \leq 1.0)$. The unity default value means the ray is non-polarized or the amplitudes of electric field of the impinging TM and TE waves are equal.	1.0	none
Ray-Tracing Quantities				
INT. RATI	number	The numerical criterion for deciding whether to continue tracing for one ray being traced (relative value). The absolute intensity value of the criterion is (intensity of ray segment at the starting point in one region)*(INT. RATI).	$1.0 \mathrm{e}-3$	none
INT.LIMI	number	The numerical criterion for decision to continue tracing or not for one ray being traced (absolute value). If the light intensity is below this value, the program stops tracing for this beam. This parameter is only used if specified.	none	Watts/cm ${ }^{2}$
BOT. RFLT	number	Specifies the boundary conditions for rays at the bottom edge of the device structure. A value of 1 specifies the vacuum boundary, 2 specifies total reflection, and 0 specifies the continuous boundary.	0	none
TOP. RFLT	number	Specifies the boundary conditions for rays at the top edge of the device structure. A value of 1 specifies the vacuum boundary, 2 specifies total reflection, and 0 specifies the continuous boundary.	0	none
SID.RFLT	number	Specifies the boundary conditions for rays at the left and right edges of the device structure. A value of 1 specifies a vacuum boundary and 0 specifies a continuous boundary.	0	none
SID.INCI	logical	Specifies that the incident rays can enter through the left and right edges of the device.	false	
TRANSPAR	logical	Specifies that incident rays suffer no reflection or refraction at the device surface. The transmissivity is assumed to be 1.0 in this case.	false	
AMB. REFR	number	The refractive index of the ambient surrounding the device. This value is assumed constant over the whole wavelength range. The default value is that of vacuum.	1.0	none
WIDTH.CH	logical	Specifies that the characteristic radial distance R.CHAR is set to half the width of the ray travelling the region.	false	none
QUAN EFF	number	The quantum efficiency of photogeneration.	1.0	none

Parameter	Type	Definition	Default	Units
PRINT. AB	logical	Causes a table of the optical absorption distance as a function of wavelength to be printed in the program output. A separate table is printed for each semiconductor region; the doping used in the calculation of each table is indicated. Note that the actual absorption distance used at each node may be different for the values indicated in the table since the doping is not necessarily constant within a region and the absorbing distance depends on doping. The absorbing distance is defined as the distance the light must travel for its intensity to fall by a factor of 1/e.	false	

Film Quantities

FILM.REG char The region names belonging to layers of stacked materials where interfer- none ence effects are accounted for. A maximum of 25 regions can be specified.

Description

The PHOTOGEN statement allows steady-state or time-dependent injection of charge (electrons and holes) into the device. This photogeneration mode was originally developed for Single-Event Upset (SEU) simulation, but can also be used to simulate transient upset by gamma rays, x-rays, or visible light.

See Also... To further illustrate the PHOTOGEN statement, refer to input files:

- mdex5 in Chapter 7, "Photogeneration Examples," p. 7-1
- mdex6 in Chapter 7, "Photogeneration Examples," p. 7-1
- mdex12b in Chapter 7, "Photogeneration Examples," p. 7-1
- mdex19a in Chapter 7, "Photogeneration Examples," p. 7-1
- mdex20a in Chapter 7, "Photogeneration Examples," p. 7-1

A path through the device can be described by specifying the coordinates of the end points of a line segment using:

- X.START, Y.START
- X.END, Y.END

The location of any point in the device relative to this path is parameterized by a length l, which is defined as the distance from (X.START, Y.START), measured parallel to the line segment and by a radius r which is defined as the perpendicular distance from the segment (see Figure 3-18).
(X.START, Y.START)

Figure 3-18 Specification of the photogeneration path

Photogeneration Equation

The generation term which is applied to the continuity equations has the following form:

$$
\begin{aligned}
G_{n}(l, r, t), & G_{p}(l, r, t) \\
& =L(l) \cdot R(r) \cdot T(t)
\end{aligned}
$$

where t is time.
Time-Dependent Term

The time-dependent term may be chosen as one of the four forms, GAUSSIAN, DELTA, UNIFORM, or PULSE.

$$
T(t)= \begin{cases}\frac{2 \exp \left[-\left(\frac{t-\mathbf{T O}}{\mathbf{T C}}\right)^{2}\right]}{T C \sqrt{\pi} \operatorname{erfc}\left(-\frac{T 0}{T C}\right)} & \text { GAUSSIAN } \\ \delta(t-T 0) & \text { DELTA } \\ 1 & \text { UNIFORM } \\ f(T 0, \text { TRS, TPD, TFS, TPRD }) & \text { PULSE }\end{cases}
$$

Pulse Light Type Source

Figure 3-19 Parameter definition of pulse type light source
Note that for the GAUSSIAN and DELTA dependence, the integral of the above expression is 1.0 , assuming the simulation starts at $t=0$.

Radial
Dependence
The radial dependence is:

$$
R(r)= \begin{cases}\exp \left[-\left(\frac{r}{\mathbf{R} \cdot \mathbf{C H A R}}\right)^{2}\right] & \text { R.CHAR }>0 \\ 1 & \text { R.CHAR }=0\end{cases}
$$

Equation 3-10

The length dependence has the following form:

$$
\begin{align*}
& L(l)=\mathbf{A} \mathbf{1}+\mathbf{A} \mathbf{2} \cdot l+\mathbf{A} \mathbf{3} \cdot \exp (\mathbf{A} \mathbf{4} \cdot l) \\
& \quad+k\left[\mathbf{C} \mathbf{1} \cdot(\mathbf{C} \mathbf{2}+\mathbf{C 3} \cdot l)^{\mathbf{c 4}}+L_{f}(l)\right]
\end{align*}
$$

In the above expression:

- Parameters A1, A2, A3, and A4 can be used to describe the length dependence of the photogeneration rate.
- Parameters C1, C2, C3, and C4 can be used to define the linear energy transfer (LET) for SEU simulations.
- $\quad L_{f}(l)$ represents a table of LET values as a function of length l which is read from a formatted file using the IN FIILE parameter.
- If the parameter RD. CHAR is specified, then the characteristic distance R. CHAR are read from the third column of the file and used during the generation process.
- If IN.FILE is not specified, $L_{f}(l)=0$ for all values of l.

The following defines k in Equation 3-11:

- If parameter PC.UNITS is specified as true, constant k is calculated by the program so that the generation rate integrated over the radial distance yields a number of carriers corresponding to the specified LET in picoCoul/micron.
- Therefore, if PC.UNITS is FALSE, $k=1$ and if PC. UNITS is TRUE, constant k is numerically equal to:

$$
k=\left\{\begin{array}{ll}
\frac{1.0}{1.6023 \times 10^{-19} \sqrt{\pi} \mathrm{R} . \mathrm{CHAR}} & \text { Cartesian coordinates } \\
\frac{1.0}{1.6023 \times 10^{-19} \pi{\mathrm{R} . \mathrm{CHAR}^{2}}^{2}} & \text { Cylindrical coordinates }
\end{array}\right. \text { Equation 3-12 }
$$

Note:

$100 \mathrm{MeV} /\left(\mathrm{mg} / \mathrm{cm}^{2}\right)=1.0 \mathrm{picoCoul} / \mathrm{micron}$ in silicon.

Spatially Dependent Terms

Medici stores the spatially dependent terms (the product $L(l) R(r)$ at each grid point) in two special arrays:

- One array for electrons
- One array for holes

Multiple PHOTOGEN statements can be used to build up complicated generation distributions since each PHOTOGEN statement adds its contribution to the arrays. The CLEAR parameter controls whether the array is cleared before the present PHOTOGEN statement is processed.

For example, to create a pattern of two intersecting charge tracks, the following pair of PHOTOGEN statements is used.

```
PHOTOGEN X.START=0 X.END=5 Y.START=0 Y.END=5 PC.UNITS
+ C1=0.2 R.CHAR=0.2
PHOTOGEN X.START=5 X.END=0 Y.START=0 Y.END=5 PC.UNITS
+ C1=0.3 R.CHAR=0.3 T0=4E-12 TC=2E-12 ^CLEAR
SOLVE TSTEP=5.0E-13 TSTOP=2E-9
```

The first track has an LET of 0.2 picoCoul/micron, $1 / \mathrm{e}$ radius of 0.2 microns and starts at the upper left corner and ends at the lower right corner. The second track has an LET of 0.3 picoCoul/micron, $1 / \mathrm{e}$ radius of 0.3 microns and starts at the upper right corner and ends at the lower left corner.

The $\mathbf{T O}$ and $\mathbf{T C}$ parameters apply to both tracks, and both are generated simultaneously (with peak generation at 4 ps).

Time parameters T0 and TC apply to both electrons and holes simultaneously.

Shockley-Read-Hall Lifetime Modifier

Since damage to the semiconductor crystal structure may occur as a result of the passage of a high energy ion, it may be appropriate to reduce the SRH lifetime along the ion's path. If RECO is specified, then the electron lifetime is defined by:

$$
\frac{1}{T_{n}(x, y)}=\frac{1}{T_{n 0}(x, y)}+\operatorname{RECO} \cdot G_{n}(x, y)
$$

Equation 3-13
where:

- T_{n} is the new SRH lifetime
- $T_{n 0}$ is the original SRH lifetime
- G_{n} is the electron generation function.

The evaluation of G_{n} in this case is not time-dependent; that is, $T(t)$ is evaluated as 1 . The expression for hole lifetime is analogous.

Examples

This section provides examples of the PHOTOGEN statement. The following subjects are presented:

- SEU
- Gaussian X-Ray pulse
- Uniform X-ray pulse
- Visible light simulation

Single-Event Upset (SEU) \#1

SEU simulation requires the generation of a thin line of charge over a period of tens of picoseconds. The line of charge is characterized by its diameter and charge density per unit length (an equivalent term is Linear Energy Transfer (LET)) in picoCoul/micron.

A typical transient SEU simulation might require the generation of a line of charge along the left edge of the device with a diameter of 1 micron and a charge density of 0.18 picoCoul/micron. The following parameters are used to specify the carrier generation:

```
PHOTOGEN X.ST=0. Y.ST=0. X.EN=0. Y.EN=5.
+ TO=20e-12 TC=10e-12 R.CHAR=0.5 C1=0.18 PC.UNITS
```

This statement creates a line of charge with a $1 / \mathrm{e}$ radius of 0.5 microns (diameter of 1 micron).

The charge is generated gradually, over a period of about 40ps, with the peak generation occurring at 20 ps . The total charge generated along the 5 micron path would be $5 \cdot(0.18)=0.9 \mathrm{e} \times 10^{-12}$ Coulombs. A detailed example of this type is presented in Chapter 7, "Photogeneration Examples," p. 7-1.

Single-Event Upset (SEU) \#2

This example simulates the impact of a 5.5 MeV alpha particle. From the TRIM program (J. F. Ziegler, J. P. Biersack, U. Littmark, "The Stopping and Ranges of Ions in Matter," Pergamon Press, 1985), it is determined that the charge column has the following:

- A diameter of 1000 Angstroms
- An average charge density of 6.0 e 18 Electron-hole-pairs $/ \mathrm{cm}^{3}$
- A total length of 40 microns

Assuming this charge is generated over a 10 picosecond time span and the particle passes down the left edge of the device, use the following:

```
PHOTOGEN X.ST=0. Y.ST=0. X.EN=0. Y.EN=40.0
+ T0=5e-12 TC=2.5e-12 R.CHAR=0.05 A1=6.0E18
```

Gaussian X-Ray Pulse

This example performs a transient simulation of a 50 ns (full width), 10.0 RAD xray pulse. The example assumes spatially uniform generation throughout a $3 \times 5 \times 3$ micron portion of the device.

1. One RAD of radiation generates 4.2 e 13 electron-hole-pairs $/ \mathrm{cm}^{3}\left(\mathrm{EHP} / \mathrm{cm}^{3}\right)$, therefore:

$$
\begin{align*}
\mathbf{A 1} & =10 \text { RADS } \cdot 4.2 \times 10^{13} \\
& =4.2 \times 10^{14} \mathrm{EHP} / \mathrm{cm}^{3}
\end{align*}
$$

2. To assure spatially uniform generation, set \mathbf{R}. $\mathbf{C H A R}=0$, which sets the radial dependence $R(r)$ to unity.
3. To define the 5 by 3 micron box, use the MIN and MAX parameters.
4. To define a segment along the left edge of the device, use the START and END parameters.
Medici requires that the START and END parameters be defined, even though they have no effect here.
5. Specify the time dependence. Since the full pulse width is 50 ns , the $1 / \mathrm{e}$ characteristic time for the Gaussian is 25 ns .
6. Center the time Gaussian at 75 ns to be sure to include the complete pulse.

The following statement is appropriate:

```
PHOTOGEN A1=4.2e14. R.CHAR=0.
+ X.MIN=1. X.MAX=4. Y.MIN=0. Y.MAX=5.0
+ X.ST=0. Y.ST=0. X.EN=0. Y.EN=5.O
+ T0=75e-9 TC=25e-9
SOLVE DT=1E-9 TSTOP=100E-9
```

The total charge generated (assuming the device is larger than 5 by 5 microns) would be:

$$
\begin{aligned}
& Q=q \cdot(\mathbf{Y} . \mathbf{M A X}-\mathbf{Y} . \mathbf{M I N}) \cdot 10^{-4} \cdot(\mathbf{X} . \mathbf{M A X}-\mathbf{X} . \mathbf{M I N}) \cdot 10^{-4} \cdot \mathbf{A} \mathbf{1} \\
& =1.6023 \times 10^{-19} \cdot(5.0-0.0) \cdot 10^{-4} \cdot(4.0-1.0) \cdot 10^{-4} \cdot 4.2^{\text {Equatipht }} 3-15 \\
& =1.01 \times 10^{-11} \mathrm{Coul} / \text { micron }
\end{aligned}
$$

Note:

The factors of 10^{-4} convert from microns to cm.

Uniform X-Ray Pulse

This example repeats the x-ray pulse example with a uniform generation rate pulse instead of the Gaussian. This illustration assumes that the X-Ray pulse lasts for 50 ns and generates 2 e 8 RADS/s (a total of 10 RADS as before). The electron-hole-pair generation rate G is:

$$
\begin{aligned}
& \mathrm{G}=2 \times 10^{8} \mathrm{RADS} \cdot 4.2 \times 10^{13} \\
& \mathbf{A 1}=G=8.21 \times 10^{21} \mathrm{EHP} / s
\end{aligned}
$$

To assure that the pulse only lasts for 50ns, two PHOTOGEN statements are used as follows:

```
PHOTOGEN A1=8.21e21 R.CHAR=0. UNIFORM
+ X.MIN=1. X.MAX=4. Y.MIN=0. Y.MAX=5.0
+ X.ST=0. Y.ST=0. X.EN=0. Y.EN=5.O
SOLVE DT=1E-9 TSTOP=50E-9
PHOTOGEN A1=0.0 R.CHAR=0. UNIFORM
+ X.MIN=1. X.MAX=4. Y.MIN=0. Y.MAX=5.0
+ X.ST=0. Y.ST=0. X.EN=0. Y.EN=5.0
SOLVE TSTOP=100E-9
```

The second PHOTOGEN statement has a generation rate of zero and stops all generation at 50 ns .

> Visible Light Simulation

Consider steady-state simulation of visible light at 1.0 e 12 photons $/ \mathrm{cm}^{2} / \mathrm{s}$, with a characteristic 1/e absorption distance of 0.5 micron. Note that since A3 has units of $\mathrm{EHP} / \mathrm{cm}^{3}$, it is necessary to divide the photon flux by the absorption distance (in cm) to calculate A3. Appropriate coefficient values would be:

```
PHOTOGEN X.ST=0. Y.ST=0. X.EN=0. Y.EN=2. X.MIN=0.
+ X.MAX=3. A3=2.0e16 A4=-2.
```

In this case the total charge generated is:

$$
\begin{aligned}
Q & =q \cdot \# \mathrm{photons} / \mathrm{cm}^{2} \cdot(\mathbf{x} \cdot \text { MAX }-\mathbf{x} . \mathrm{MIN}) \cdot 10^{-4} \cdot 1 \text { micron } \\
& =1.6023 \times 10^{-19} \cdot 10^{12} \cdot(3.0-0.0) \cdot 10^{-4} \cdot 10^{-4} \quad \text { Equation } 3-17 \\
& =4.8 \times 10^{-15} \mathrm{Coul}
\end{aligned}
$$

A detailed example of this type is presented in Chapter 7, "Photogeneration Examples," p. 7-1.

Ray Tracing

Note:
These features are available only if the OD-AAM has been licensed.
This section describes the parameters associated with using ray tracing for determining photogeneration rates within a device structure.

The following parameters describe the geometrical properties of the incident radiation:

- X. ORG and Y.ORG specify the origin of the light source.
- ANGLE specifies the beam direction. The angle has positive value when the ray direction vector is rotated clockwise and negative value counter-clockwise with reference to the horizontal axis (x axis).
- RAY. WIDT specifies the width of the incident beam. The default value is twice the diagonal distance of the device structure. Any part of the beam width that bypasses the device is automatically clipped.
- RAY . NUM (default = 1) specifies the number of initial rays incident on the device. Each ray has a width associated with it such that the sum of widths covers the entire illuminated surface.

The above quantities are illustrated in Figure 3-20.
TM and TE Wave

The relationship between the angles and the coefficients of incidence, reflection and transmission at the interface between two media is calculated using the Fresnel Formulae for the TM and TE wave for each wavelength in the chosen spectrum.

These values are calculated as a function of the complex refractive indices of the two different materials. Total reflection occurs when a beam proceeds from an optically more dense media to a less dense media ($n_{1}>n_{2}$) and the incidence angle is larger than the critical value, which is given as $\arcsin \left(n_{2} / n_{1}\right)$.

Boundary On the first interface at which the ray meets the device, the vacuum/device Conditions boundary is assumed unless AMB . REFR is specified. By default, when a ray hits an electrode other than a polysilicon or transparent electrode, total reflection is assumed.

Once within the device, each beam suffers optical absorption within the media, and refraction and reflections at the material interfaces and at the device edges. Boundary conditions for rays within the device that hit the top, bottom, or side are specified with TOP .RFLT, BOT.RFLT, and SID. RFLT parameters:

Figure 3-20 Optical ray geometry

Figure 3-21 Automatic splitting of ray at discontinuous points

Ray Termination

Spectral Intensity

 FileA ray is discarded when its intensity becomes smaller than INT.LIMI, which is a user-specified absolute criteria for intensity, or smaller than
INTENSIT*INT. RATI, where INT. RATI is also user-specifiable. Tracing is also stopped when the number of ray segments originated from one initial beam exceeds 50.

The optical source can be either monochromatic or spectral.
For a monochromatic ray, use the WAVELENG parameter to specify the wavelength in microns.

In case of a spectral light source, a spectral intensity file should be given, specified by the SP.FILE parameter. The format of the file is as follows:

```
wavelength_1 spectral_intensity_1
wavelength_2 spectral_intensity_2
. . .
wavelength_n spectral_intensity_n
```

Additional considerations when using a spectral intensity file include:

- The maximum number of records is 100 .
- Wavelength should be specified in units of microns and the spectral intensity in units of Watts $/ \mathrm{cm}^{2} / \mu \mathrm{m}$.
- The parameters WAVE . STA, WAVE . END, and WAVE . NUM should be specified to sample wavelengths from the file. The maximum value of WAVE . NUM can vary between 30 and 500 , depending on the number of mesh nodes used in the simulation structure:

Equation 3-18
$(\text { WAVE . NUM })_{\max }=\min \left(500,30 \times \frac{\text { maximum allowed nodes }}{\text { actual number of nodes used }}\right)$

- WAVE . SCA and INT . SCAL are used when the spectral intensity file has data with units other than the default units and one needs to scale them uniformly.

Transmission Through a Stack of Material Layers

Multiple layers can be modeled as a single film to take into account interference effects (constructive and destructive). This is accomplished by using the FILM.REG parameter to identify the regions that make up the material layers.

One should be careful in defining FILM. REG statements due to the following prerequisites:

- Every layer should be rectangular-shaped and run parallel with the neighboring layer.
- Electrodes can not be part of the FILM. REG specification.

The exception is for polysilicon or transparent electrodes with zero thickness, since transmission is not allowed electrodes.

When a ray enters or leaves the device through the side edges of the stack defined by FILM. REG or meets a non-film material during propagation within the stack, the tracing of that ray is terminated. This means the stack should be wide and thin enough as well as planar and parallel to prevent such errors.

Example Statements

The following statements calculate the transmittance of an anti-reflecting coating structure of a solar cell device:

```
REGION NAME=1 Y.MAX=0 OXIDE Y.MIN=-5E-3
REGION NAME=2 Y.MIN=0 Y.MAX=150e-3 INSULATOR
REGION NAME=3 Y.MIN=150e-3 Y.MAX=300e-3 INSULATOR
REGION NAME=4 Y.MIN=300e-3 SILICON
MATERIAL REG=2 WAVE.RE=(0.31,1) INDEX.RE=(1.35,1.35)
MATERIAL REG=3 WAVE.RE=(0.31,1) INDEX.RE=(2.25,2.25)
PHOTOGEN RAYTRACE SP.FILE=AMO.DAT WAVE.ST=0.3 WAVE.EN=1
+ WAVE.NUM=10
+ X.ORG=0.5 Y.ORG=-4 ANGLE=90 INT.RATI=1e-2 N.INTEG=10
+ RAY.N=1 FILM.REG=(1,2,3)
```

- The first four statements define the structure of an AR coating which is a stack of a 5 nm oxide, a $150 \mathrm{~nm} \mathrm{MgF}_{2}$ and a 150 nm ZnS layers.
- The next two MATERIAL statements assign the appropriate refractive indices (real terms) to MgF_{2} and ZnS materials. The index of oxide is given by the default table.
- The FILM. $\mathbf{R E G}=(1,2,3)$ term specifies that the stack consists of the materials with the region names " 1 ", " 2 ", and " 3 " and that the stack is analyzed as a single film structure so that the interference within the stack is taken into account.
- The am0.dat file gives the solar spectrum outside the atmosphere of earth and is to be read in for each wavelength.

Black-Body
The black-body radiation spectrum can be specified with the BB. RADIA
Radiation parameter. Particular wavelengths of the spectrum can be sampled by using the parameters WAVE.STA, WAVE .END and WAVE. NUM. The intensity (in Watts/ $\mu \mathrm{m} / \mathrm{cm}^{2}$) is defined by

$$
\Delta I=\left(\frac{R_{S}}{R_{S E}}\right)^{2} 2 \pi h c^{2} \frac{\lambda^{-5}}{\exp \left(\frac{h c / \lambda}{k \mathrm{BB} \cdot \mathrm{TEMP}}\right)-1} \Delta \lambda
$$

where:

- $R_{S}=7 \times 10^{8} \mathrm{~m}$ is the radius of the sun
- $R_{S E}=1.5 \times 10^{11} \mathrm{~m}$ is the distance between the sun and the earth
- BB. TEMP is the black-body temperature

The extra-terrestrial solar spectrum (AM0) can be approximated by that of a black body at 5800 K .

TRAPS

The TRAPS statement instructs Medici to create trap states within semiconductor regions. This statement is available only if the Trapped Charge Advanced Application Module (TC-AAM) has been authorized for use.

```
TRAPS
Energy Level Creation
    { ( DISTRIB [N.LEVEL=<n>] [ OUT.FILE=<C> X.PLOT=<n> Y.PLOT=<n> ] )
        | ( [E1=<n>] ... [E50=<n>] )
    }
    [MIDGAP] [CHARGE1] . . [CHARGE50] [ALL.CHAR] [DGEN1=<n>] ... [DGEN50=<n>]
Trap Parameters
    [ [TAUN=<C>] [TAUP=<C>] [N.TOTAL=<C>] [Q.FIX=<C>] [CONDITIO=<C>]
        [FREEZE]
    ]
Transient Parameter
    [TIME.DEP]
```

Parameter Type Definition Default Units

Energy Level Creation

DISTRIB logical Specifies that a distribution of N. LEVEL trap levels, equally spaced false within the forbidden band, is created with spacing:
$\Delta E_{t}=E_{g} /(\mathbf{N} . \operatorname{LEVEL}+1)$. By default, the trap levels are centered around the intrinsic Fermi level. If the MIDGAP parameter is specified, then the trap levels are centered around the middle of the forbidden band.

N.LEVEL	number	Specifies the number of energy states created if an uniform distribution is specified. Note that the total number of states must be less than 51.	20	none
OUT.FILE	char	Specifies that a file is created containing the trap density (\mathbf{N}. TOTAL), electron and hole lifetimes (TAUN, TAUP) and fixed charge density (QFIX) as a function of energy at the location specified by the X.PLOT and \mathbf{Y}. PLOT parameters. The file created is of the TIF.ivl format and may be viewed using Taurus Visual.	none	
X.PLOT	number	Specifies the location of the point at which the output file specified by OUT .FILE is created. Refer to the OUT.FILE parameter for more information.	0	

Y.PLOT number Specifies the location of the point at which the output file specified by 0 OUT . FILE is created. Refer to the OUT. FILE parameter for more information.

Parameter	Type	Definition	Default	Units
E<i>	number	Specifies the energy value of the i ith energy state. Note that i must be in the range of 1 through 50 . By default, $\mathbf{E}<i>$ is taken relative to the instrinsic Fermi level. If MIDGAP is specified, $\mathbf{E}<\boldsymbol{i}>$ is taken relative to the middle of the forbidden band.	None, unless DISTRIB is specified	eV
MIDGAP	logical	Specifies that the middle of the forbidden band should be used as the energy reference when specifying the trap energy level(s). By default, the intrinsic Fermi level is used as the energy reference.	false	
CHARGE<i>	logical	Specifies that the state i is electrically charged when empty. Note that i must be in the range of 1 through 50 . A charged electron trap is a donor state. A charged hole trap is an acceptor state.	false	
all . Char	logical	Specifies that all states are electrically charged when empty. A charged electron trap is a donor state. A charged hole trap is an acceptor state.	false	
DGEN<i>	number	Specifies the degeneracy factor for ith energy state.	1.0	none
Trap Parameters				
taun	char	Specifies the electron lifetime for the state (or states). The argument of this parameter is a numeric expression which may be a function of the state energy fener, the state number fnener, or any other predefined Medici variable (refer to "EXTRACT," p. 3-180).	none	Seconds
taup	char	Specifies the hole lifetime for the state (or states). The argument of this parameter is a numeric expression which may be a function of the state energy fener, the state number fnener, or any other predefined Medici variable (refer to "EXTRACT," p. 3-180).	none	Seconds
n.total	char	Specifies the number of traps for the state (or states). The argument of this parameter is a numeric expression which may be a function of the state energy fener, the state number fnener, or any other predefined Medici variable (refer to "EXTRACT," p. 3-180). If n. TOTAL >0 electron traps are created. If \mathbf{N}. TOTAL <0 hole traps are created. If N. TOTAL $=0$, only recombination occurs from the trap (no charge trapping occurs).	none	traps $/ \mathrm{cm}^{3} / \mathrm{eV}$ if DISTRIB is specified, otherwise traps $/ \mathrm{cm}^{3}$
Q.FIX	char	Specifies a density for fixed charge which is placed within the device. The argument of this parameter is a numeric expression which may be a function of any predefined Medici variable (refer to "EXTRACT," p. 3180).	none	\#/cm ${ }^{3}$
conditio	char	Specifies the condition that must be satisfied for the above four parameter expressions (TAUN, TAUP, N. TOT, $\mathbf{Q F} \mathbf{I X}$) to be applied. The argument of this parameter is a logical expression which may be a function of the state energy fener, the state number fnener, or any other predefined Medici variable (refer to "EXTRACT," p. 3-180).	none	

| Parameter | Type | Definition |
| :--- | :---: | :--- | Default Units

Transient Parameter

TIME.DEP logical Specifies that the traps are to be time dependent. This parameter applies true to all trap states.

Description

The TRAPS statement provides a powerful method of modeling the effects of defects within the bandgap of a semiconductor.

See Also... To further illustrate the TRAPS statement, refer to the following input files:

- mdex18a in Chapter 15, "Trapped Charge Examples," p. 15-1
- mdex18b in Chapter 15, "Trapped Charge Examples," p. 15-7
- mdex18c in Chapter 15, "Trapped Charge Examples," p. 15-10

Note:

Special Medici assigned variables for this statement only:
fener-Represents the energy value within the forbidden gap fnener-Represents the energy state number i

When discrete trap levels are specified using multiple TRAPS statements, fnener must be used in CONDITIO for all the statements after the first to assure that the trap parameters are assigned properly. Otherwise, all the trap levels specified thus far will be assigned the parameter values that are specified on the current TRAPS statement.

Trap Model

The trap model consists of the following two parts:

- A recombination model (which applies only to the continuity equations)
- A charge trapping model (which applies to the Poisson equation)

The charge trapping model is activated by specifying \mathbf{N}. TOTAL on the TRAPS statement.

Trap States Five possibilities for a given state are shown below:

$\mathbf{N} . \mathbf{T O T A L}$	CHARGE<i>	Result
0	Not Applicable	Recombination only
>0	TRUE	Donor state
>0	FALSE	Neutral electron trap
<0	TRUE	Acceptor state
<0	FALSE	Neutral hole trap

Note:

Parameters n. TOTAL and Charge<i> do not affect the recombination process.

Saved
Information

Trap information is stored within solution files or TIF files and does not need to be respecified each time a simulation is performed. For use with the CA-AAM, each numerical device model must have the same number of total energy levels.

Trap Statement Examples

This section presents examples of trap statements. Each example includes a discussion of the created trap, and its necessary parameters and statements.

Single Electron
Trap

The following statement creates a single electron trap level positioned 0.1 eV above mid-gap with an electron lifetime of 1e-5 sec, a hole lifetime of 1e-6 sec and a trap density of $1 \mathrm{e} 13 / \mathrm{cm}^{3}$:

```
TRAPS E1=0.1 MIDGAP TAUN="1E-5" TAUP="1E-6"
+ N.TOT="1E13"
```

Time Dependent Traps

The trap statements below create two time dependent trap states, one for electrons and one for holes, with parameters listed in the following table. The trap energy levels are specified relative to the intrinsic Fermi level.

Parameter	State 1	State 2
Type	Electron	Hole
Tn	$1 \mathrm{e}-5$	$3 \mathrm{e}-5$
Tp	$1 \mathrm{e}-6$	$5 \mathrm{e}-5$
Density	1 e 14	1 e 13
Energy	0.2	-0.3

```
TRAP E1=0.2 TAUN="1E-5" TAUP="1E-6"
+ N.TOT="1E14" COND="@FNENER=1"
TRAP E2="-0.3" TAUN="3E-5" TAUP="5E-6"
+ N.TOT="-1E13" COND="@FNENER=2" TIMEDEP
```

Note:
By default, energy level E1 is assigned the normal SRH recombination parameters. Normally these parameters are discarded by specifying energy levels E1, E2, etc. Starting the energy level sequence with E2 will retain the normal SRH recombination parameters for energy level E1. Any gap in the numeric sequence of energy levels will create an unintentional normal SRH recombination level. For example, specifying E1, E2, and $E 4$ will create an E3 level for normal SRH recombination.

To create the trap distribution of Figure 3-22 (which is of the type used in TFT simulation), it is easiest to use the following two TRAPS statements.

- The first statement creates the hole traps in the lower $1 / 2$ of the forbidden band (fener<0).
- The second statement creates the electron traps (fener >0).

For the electron and hole lifetimes, constant values of $1 \mathrm{e}-5$ and $1 \mathrm{e}-6$ is used, respectively. For this example the trap density is greatest at the surface of the device $(\mathrm{y}=0)$ and decays linearly to zero at $\mathrm{y}=0.1$ micron.

Figure 3-22 Trap density states function to be modeled

Electron Traps For the electron traps, the density of state must have the following form:

$$
G(x, y, E)=(1-y / 0.1)\left(1 e 17+1 e 18 \exp \left(E-E_{c}\right) / L_{n}\right) \quad \text { Equation 3-20 }
$$

In the above equation:

- E is the energy within the band
- E_{c} is the conduction band energy
- L_{n} is the characteristic energy for the exponential portion of the electron DOS profile
L_{n} is calculated from $L_{n}=\left(E_{c}-0.4\right) \log (1 e 18 / 1 e 17)$.
This expression is the result of forcing the exponential portion Equation 3-20 to equal 5 e 16 at an energy of 0.4 eV . In the input file, L_{n} is represented by the assigned variable NCHR.

Hole Traps The expression for the hole density of states function is shown below:

$$
G(x, y, E)=(1-y / 0.1)\left(5 e 16+1 e 19 \exp \left(-\left(E-E_{v}\right) / L_{p}\right)\right. \text { Equation 3-21 }
$$

In a similar manner, the characteristic length for the exponential portion of the hole trap distribution is $L_{p}=\left(-0.25-E_{\nu}\right) \log (1 e 19 / 1 e 16)$. In the input file L_{p} is represented by the assigned variable PCHR. The input statements to generate the traps are as follows:

```
$
ASSIGN NAME=EV N.VALUE=-1.08/2
ASSIGN NAME=EC N.VALUE=1.08/2
$
$ Find the characteristic length for the hole traps
ASSIGN NAME=PCHAR N.VALUE=(-0.25-@EV)/log(1e19/5e16)
$ Create hole traps
TRAP DISTR TAUN="1e-5" TAUP="1e-6"
+ N.TOT="-(1.0-@Y/0.1)*(5e16+1e19/exp(-(@FENER-@EV)/@PCHR))"
+ MIDGAP COND="(@FENER<0)&(@Y<0.1)"
$
$ Find the characteristic length for the electron traps.
ASSIGN NAME=NCHAR N.VALUE=(@EC-0.4)/log(1e18/1e17)
$Create electron traps
TRAP TAUN="1e-5" TAUP="1e-6"
+ N.TOT="(1.0-@Y/0.1)*(1e17+1e18*exp((@FENER-@EC)/@NCHR))"
+ MIDGAP COND="(@FENER>0)&(@Y<0.1)"
```


Interface Traps

Interface traps are a special case of the general trap model described above, and deserve special discussion.

Interface traps are created only at interface nodes. An interface node is defined as a semiconductor node which is on the boundary between any two regions. The interface need not be between semiconductor and oxide.

Identifying Interface Nodes

Medici provides the following special predefined variables for identifying these nodes (see Figure 3-23):

- interfac evaluates to 1 if the node is at an interface, and 0 otherwise.
- nx.int evaluates to 1 for nodes which are next to, but not on interfaces and 0 otherwise.
- prp.dist gives the thickness of the grid section at an interface node measured perpendicular to the interface.

Figure 3-23 Definition of Interface nodes and prp.dist

Specifying Interface States

Interface trap densities are normally measured on the basis of $\# / \mathrm{cm}^{2}$ rather than $\# / \mathrm{cm}^{3}$ (as with the TRAPS statement). It is necessary to perform this conversion if the TRAPS statement is to be used for interface traps. The prp.dist predefined variable provides a means of doing this.

Referring to Figure 3-23, a section of grid along the interface is shown. To convert from \#/cm ${ }^{2}$ to \#/cm ${ }^{3}$, dividing by the thickness of the grid section associated with the interface nodes and prp.dist is precisely this distance.

The following example shows how this is done to create donor and acceptor states distributed uniformly across the band gap. The following may be used to replace the INTERFACE statement in example mdexlf Chapter 4,, N-Channel MOSFET

Examples), with the advantage that arbitrary trap distributions as a function of energy may be specified.

```
LOOP STEPS=3
    COMMENT Assign the number of donors/acceptors in #/cm^2/eV
    ASSIGN NAME=NDON N.VALUE=(0.0, 5e11, -5e11)
    COMMENT Create the traps
    TRAPS DISTRIB ALL.CHARGE N.TOTAL="@NDON/@PRP.DIST"
+ MIDGAP COND="@INTERFAC=1"
    SOLVE . .....
```

L. END

Trap Placement
The CONDITIO parameter can be expanded to allow more precise placement of the traps as well. For example, to restrict interface trap generation to be between X equal 2 and 3 microns, the following is used:

COND="@INTERFAC=1\&@X>2\&@X<3"

Heterojunction Limitations

Some difficulties have been encountered when placing traps along heterojunction interfaces. This is mainly a problem when using the wide bandgap semiconductor S.OXIDE to model charge trapping within the oxide layers.

Synopsys TCAD recommends that the traps be distributed throughout the oxide or placed close to the oxide rather than on the interface itself. To aid in this process, the predefined variable NX. INT is available which evaluates to true at those nodes adjacent to the interface. A fine grid should be specified in oxide.

A predefined variable equivalent to PRP. DIST is not available, and you need to evaluate this distance manually, based on the grid being used. Example mdex18c (see Chapter 15, "Trapped Charge Examples," p. 15-1) provides an illustration of how to create oxide traps. These restrictions are to be removed in a future version of the program.

SYMBOLIC

The SYMBOLIC statement performs a symbolic factorization in preparation for the LU decompositions in the solution phase of the program.

SYMBOLIC

```
{NEWTON | GUMMEL}
CARRIERS=<N> [ {ELECTRON | HOLES} ]
[ ELE.TEMP [COUP.ELE] ] [ HOL.TEMP [COUP.HOL] ] [EB.POST]
[ LAT.TEMP [COUP.LAT] ]
[MIN.DEGR] [ {[ILUCGS] | [BICGS]} ] [STRIP] [VIRTUAL]
[BLOCK.MA] [PRINT]
```

Parameter	Type	Definition	Default	Units
NEWTON	logical	Specifies that the Newton solution method is used.	true	
GUMMEL	logical	Specifies that the Gummel solution method is used.	false.	
CARRIERS	number	The number of carriers to be simulated.	1	none
ELECTRON	logical	Specifies that the simulation is for electrons if a solution for one carrier is being obtained.	true	
HOLES	logical	Specifies that the simulation is for holes if a solution for one carrier is being obtained.	false	
ELE.TEMP	logical	Specifies that the simulation is done for Poisson, continuity and electron temperature.	false	
Coup .ele	logical	Specifies that the electron temperature equation is fully coupled (i.e. solved simultaneously) with the carrier continuity equation(s) and the Poisson equation.	false	
HOL. TEMP	logical	Specifies that the simulation is done for Poisson, continuity and hole temperature.	false	
COUP. HOL	logical	Specifies that the hole temperature equation is fully coupled (i.e. solved simultaneously) with the carrier continuity equation(s) and the Poisson equation.	false	
EB. POST	logical	Specifies that post-processing energy balance analysis is used. Post-processing energy balance ignores the electron/hole temperature dependence of the continuity equations giving an approximate solution, but with great savings in CPU time over the complete energy balance model.	false	
LAT. TEMP	logical	Specifies that the simulation is done for Poisson, continuity and lattice temperature. This parameter is only used with the Lattice Temperature AAM.	false	

Parameter	Type	Definition	Default	Units
COUP . LAT	logical	Specifies that the lattice temperature equation is fully coupled with the Poisson and continuity equations. This parameter is only used with the Lattice Temperature AAM.	false	
MIN.DEGR	logical	Specifies that a minimum degree ordering of the pivots for decomposition in order to reduce the size of the generated L and U matrices. In the case that a solution method using a complete LU factorization is used, this reduces the solution time for solving the linear system. If an iterative method relying on incomplete factorization is selected, specifying this parameter may inhibit convergence.	true	
ILUCGS	logical	Specifies that an incomplete symbolic factorization is performed instead of direct LU decomposition in order to conserve memory and ILUCGS is used to solve the linear system. synonym: INCOMPLE	false	
BICGS	logical	Specifies that an incomplete symbolic factorization is performed instead of direct LU decomposition in order to conserve memory and Bi-CGSTAB is used to solve the linear system.	false	
STRIP	logical	Specifies that if two adjoining elements form a rectangle, the coupling between the nodes along the diagonal are removed from the symbolic map.	False if NEWTON is specified and IMPACT.I, PRPMOB, or EJ. MOBIL has been selected on the MODELS statement; otherwise, true.	
VIRTUAL	logical	Generates virtual nodes at heterojunctions	false	
BLOCK. MA	logical	Specifies that the block structure in Jacobian matrix is exploited to speed up the linear solver	false	
PRINT	logical	Specifies that memory allocation information for the run should be printed to the standard output file.	false	

Description

The SYMBOLIC statement performs a symbolic factorization in preparation for the LU decompositions in the solution phase of the program.

See Also... To further illustrate the SYMBOLIC statement, refer to the following:

- Input file mdexl in Chapter 4, "N-Channel MOSFET Examples," p. 4-8.
- Input file mdex2 in Chapter 5, "NPN Bipolar Transistor Examples," p. 5-51.
- Most other examples where a solution is calculated

Usage

Because each of the available numerical solution techniques used by the program may result in entirely different linear systems, the method used and the number of carriers to be simulated must be specified at this time. A symbolic factorization should be performed whenever the solution technique is changed, and before the next SOLVE statement if the mesh has been refined as the result of a REGRID statement

METHOD

The METHOD statement sets parameters associated with a particular solution algorithm chosen in the SYMBOLIC statement.

```
METHOD
    [ITLIMIT=<n>] [XNORM] [RHSNORM] [XRNORM [NODE.ERR=<n>] ]
    [PX.TOLER=<n>] [CX.TOLER=<n>] [PR.TOLER=<n>] [CR.TOLER=<n>]
    [ XRI.NORM [XRI.TOLE=<n>] [XRI.THXV=<n>] [XRI.THXC=<n>]
        [XRI.THI=<n>]
    ]
    [NO.CARR=<C>] [LIMIT] [PRINT] [FIX.QF] [ITER.TTY] [ASMB.OLD]
ILUCGS AND BICGS Solver Parameters
    [ILU.ITER=<n>] [ILU.TOL=<n>] [ILU.XTOL=<n>]
Gummel's Method Parameters
    { ( [ { DVLIMIT=<n>
            | ( DAMPED [DELTA=<n>] [DAMPLOOP=<n>] [DFACTOR=<n>] )
            }
            ]
            [ ICCG [LU1CRIT=<n>] [LU2CRIT=<n>] [MAXINNER=<n>] ]
            [ SINGLEP
                    [ ACCELERA [ACCSTART=<n>] [ACCSTOP=<n>] [ACCSTEP=<n>] ]
            ]
        )
Newton's Method Parameters
        | ( [ AUTONR [NRCRITER=<n>] [ERR.RAT=<n>] ]
            [ VC.COUPL [C.VCOUP=<n>] [TH.VCOUP=<n>]
            [ ELEC.VCP=<c> [VO.VCOUP=<n>] ]
            ]
            [ CONT.RHS [ITRHS=<n>] ] [CONT.PIV] [ {CONT.ITL | STOP.ITL} ]
            [CONT.STK] [STACK=<n>] [ACONTINU=<n>]
            [TAUTO] [2NDORDER] [TOL.TIME=<n>] [L2NORM] [DT.MIN=<n>]
            [EXTRAPOL] [DT.DC.UP=<n>] [DT.DC.LO=<n>]
            [CARR.MIN=<n>] [CARR.FAC=<n>] [N.DVLIM=<n>] [N.DVMAX]
            [ {N.DAMP | ( DAMP.ONE [TH.DAMP1=<n>] [TH.DAMP2=<n>] )} ]
            [DAMP.CON]
        )
    }
Energy Balance Parameters
    [ETX.TOLE=<n>] [ETR.TOLE=<n>] [N.MAXBL=<n>] [N.MAXEB=<n>]
Lattice Temperature AAM Parameters
    [LTX.TOLE=<n>] [LTR.TOLE=<n>] [LTX.FACT=<n>] [LTR.FACT=<n>]
    [MAX.TEMP=<n>]
Direct Tunneling Parameter
    [DT.JACOB]
```

Parameter	Type	Definition	Default	Units
ITLIMIT	number	The maximum number of Newton iterations or Gummel continuity iterations. This parameter is also used for the maximum number of iterations for the global algorithm to solve four equations: Poisson, continuity (electrons and holes), and one of carrier temperature equations (electrons or holes) or lattice temperature equation.	20	none
XNORM	logical	Specifies that the size of the updates to the device variables at each iteration are used to determine convergence. Potential updates are measured in units of kT / q, carrier concentration updates are measured relative to the local carrier concentration and carrier temperature updates are measured relative to the ambient temperature. The solution is considered converged when the potential updates are smaller than the value specified by PX.TOLER, the carrier concentration updates are smaller than the value specified by CX.TOLER, the carrier temperature updates are smaller than the value specified by ETX . TOLE and the lattice temperature updates are smaller than the value specified by LTX. TOLE at every node in the device.	false	
RHSNORM	logical	Specifies that the differences between the left- and right-hand sides of the device equations are used to determine convergence. The Poisson equation error is measured in $\mathrm{C} /$ micron. The continuity equation errors are measured in $\mathrm{A} /$ micron. The solution is considered converged when the Poisson equation errors are smaller than the value specified by PR. TOLER, the continuity equation errors are smaller than the value specified by CR. TOLER, the carrier temperature equation errors are smaller than the value specified by ETR.TOLE and the lattice temperature equation errors are smaller than the value specified by LTR.TOLE at every node in the device.	false	
XRNORM	logical	Specifies that both XNORM and RHSNORM are used to determine convergence. A solution is considered converged when either the XNORM tolerances or the RHSNORM tolerances are satisfied at every node in the device.	true	
NODE. ERR	number	Specifies that node numbers are printed that correspond to the locations in the device where the maximum XRNORM and RHSNORM errors occur. NODE . ERR=1 prints node numbers corresponding to the maximum error. Higher values of NODE . ERR cause node numbers and error values to be printed for the top NODE . ERR errors. The maximum value allowed for NODE . ERR is 10.	0	none
PX.TOLER	number	The potential update tolerance. synonym: P.TOLER	$1 \mathrm{e}-5$	kT/q
CX. TOLER	number	The carrier concentration update tolerance. synonym: C.TOLER	1e-5	none
PR.TOLER	number	The Poisson equation error tolerance.	1e-26	C/micron

Parameter	Type	Definition	Default	Units
CR. TOLER	number	The continuity equation error tolerance.	$5 \mathrm{e}-18$	A/micron
XRI . NORM	logical	Specifies that an alternative convergence criterion is used that combines both variable updates and carrier equation residuals normalized by current level.	false	
XRI.TOLE	number	Convergence criterion used with.XRI .NORM. Specifies the tolerance for the product of carrier update and carrier residual normalized by current level.	$1 \mathrm{e}-6$	none
XRI.THXV	number	Threshold for the potential update for the XRI . NORM convergence criterion. The XRI . NORM criterion is only used if potential updates are smaller than XRI. THXV.	$1 \mathrm{e}-4$	none
XRI.THXC	number	Threshold for the carrier update for the XRI . NORM convergence criterion. The XRI . NORM criterion is only used if carrier updates are smaller than XRI. THXC.	$2 \mathrm{e}-3$	noce
XRI.THI	number	Threshold for the carrier residual for the XRI . NORM convergence criterion. The XRI . NORM criterion is only used if carrier residuals are smaller than XRI. THI times the device current.	$2 \mathrm{e}-3$	none
NO. CARR	char	The region names for which steady-state carrier equations are not solved. If more than one region name is specified, separate their names with commas and enclose the entire group in parentheses (for example, "(polygate,substrate)").	none	
LIMIT	logical	Specifies that the convergence criterion should be ignored, and iterations are to proceed until ITLIMIT is reached.	false	
PRINT	logical	Specifies that the terminal fluxes and currents are printed after each continuity iteration. If this parameter is not set, the terminal fluxes and currents are only printed after the solution converges.	false	
FIX. QF	logical	Specifies that the quasi-Fermi potential of each unsolved for carrier is fixed to a single value, instead of picking a value based on local bias. If electrons are not being solved for, the electron quasi-Fermi potential throughout the device is set to the maximum applied bias in the structure. If holes are not being solved for, the hole quasi-Fermi potential throughout the device is set to the minimum applied bias in the structure (also see the P.BIAS and N. BIAS parameters on the SOLVE statement).	false	
ITER.TTY	logical	Causes the error norms for each Newton iteration to be displayed on your terminal.	true	
ASMB. OLD	logical	Specifies that default routines in previous versions of Medici are used in equation assembly. The use of this parameter will likely result in longer CPU time.	false	

Parameter	Type	Definition	Default	Units					
ILUCGS and BICGS		Solver Parameters							
ILU. iter	number	The maximum number of ILUCGS or BICGS iterations to perform. The default iteration count is determined dynamically according to the number of carriers and nodes in the simulation by the following equation: $\max (35, \sqrt{(1+\text { carriers }) \times \text { nodes }})$. NOTE: The default value of ILU.ITER is recalulated using this expression whenever a SYMBOLIC statement is encountered.	The default iteration count is determined dynamically. See definition.	no					
ILU.tol	number	The ILUCGS or BICGS error tolerance where the error norm is defined as $\left\\|(\mathrm{LU})^{-1} r\right\\| /\left\\|(\mathrm{LU})^{-1} b\right\\|$. For a more complete description, please refer to the discussion below and Chapter 2,. The majority carrier contact is implemented by injecting a majority carrier current I_{m} at the nodes of the electrode. The majority carrier current is calculated from $\mathrm{I}_{m}=G\left(\phi_{n}{ }^{-} V_{a}\right)$ for N -type material and $\mathrm{I}_{m}=G\left(\phi_{p}{ }^{-} V_{a}\right)$ for P-type material. The conductivity G is calculated by the program and corresponds to the resistivity of 0.1 micron of silicon. V_{a} is the voltage applied to the contact.	1e-7	none					
ILU. xtOL	number	The ILUCGS or BICGS x-vector error tolerance where the error norm is defined as $\left\|1.0-\\|x\\|\\|/\\| x^{\prime} \\|\right\|$. For a more complete description please refer to Chapter 2, "Medici Description," p. 2-84.	1e-3	none					
Gummel's Method Parameters									
DVLIMIT	number	The maximum potential update allowed for a single Gummel loop.	1.0 if DAMPED is true and 0.1 otherwise.	volts					
DAMPED	logical	Specifies that a sophisticated damping scheme proposed by Bank and Rose is used when using Gummel's method for the solution.	true						
delta	number	The threshold for determining the damping factor for the potential update when DAMPED is specified. Normally, DELTA must be between 0 and 1. If a negative DELTA is specified, however, an alternative damping scheme will be used.	0.5	none					
DAMPLOOP	number	The maximum number of damping loops allowed to find a suitable damping coefficient when DAMPED is specified.	10	none					
DFACTOR	number	The factor which serves to increase the initial damping coefficient for the next damping loop when DAMPED is specified.	10.0	none					
ICCG	logical	Specifies that the iterative method of Incomplete Cholesky Conjugate Gradients is used to solve each linearized Poisson equation in the multiPoisson loop portion of Gummel's method.	false						
LU1CRIT	number	The amount that the inner norm is required to decrease by in each Poisson loop before returning when using ICCG.	3e-3	none					

Parameter	Type	Definition	Default	Units
Lu2CRIT	number	The factor below the projected Newton error that the inner norm must reach in each Poisson loop before returning when using ICCG.	$3 \mathrm{e}-2$	none
MAXINNER	number	The maximum number of ICCG iterations to perform.	25	none
SINGLEP	logical	Specifies that only a single Poisson iteration is to be performed per Gummel loop. If this parameter is not specified, the standard Gummel iterative procedure is carried out where the continuity equation is only treated after the Poisson equation has fully converged (i.e., multi-Poisson).	false	
Accelera	logical	Specifies that acceleration is used in the SINGLEP mode.	false	
ACCSTART	number	The starting value of the acceleration parameter.	0.3	none
ACCSTOP	number	The final (limiting) value of the acceleration parameter.	0.6	none
ACCSTEP	number	The step to be added to the value of the acceleration parameter after each iteration.	0.04	none
Newton's Method Parameters				
AUTONR	logical	Specifies that an automated Newton-Richardson procedure is used to reduce the number of $L U$ decompositions per bias point when using Newton's method to obtain the solution.	False if EJ. MOBIL has been selected on the models statement; otherwise, true.	
NRCRITER	number	The value which the ratio of the error norms from the two most recent Newton iterations must be smaller than in order to use the same Jacobian (LU decomposition) for the next Newton iteration.	0.1	none
ERR.RAt	number	The value that the ratio of the maximum RHSNORM continuity error to the maximum terminal current must be smaller than before the program stops on an iteration for which an LU decomposition was not performed.	1e-5	none
vc. Coupl	logical	Specifies that a matrix transformation is applied to the Jacobian matrix to allow tighter coupling between potential and carrier variables.	false	
c.vcour	number	Specifies the amount of matrix transformation: 1 being full strength while 0 means no transformation	1	none
th.vcour	number	Specifies the threshold for carrier concentration, measured in terms of net doping, above which the matrix transformation is applied at a node.	1e-4	none
Elec.vCP	char	Specifies the electrode whose bias level the amount of matrix transformation is tied to.	none	

Parameter	Type	Definition	Default	Units
vo.vcour	number	Specifies the bias at ELEC.VCP that beyond which the matrix transformation will cease to apply.	0	none
CONT. RHS	logical	Specifies that if the solution process starts to diverge, the electrode bias steps taken from the previous solution are reduced by the multiplicative factor ACONTINU. The solution process is considered to be diverging if the RHSNORM errors for Poisson's equation and both continuity equations all increase for ITRHS iterations. synonym: CONTINUA	false	
ITRHS	number	Number of iterations to be made with an increasing RHSNORM (see CONT.RHS).	1	none
CONT.PIV	logical	Specifies that if the numerical value of a pivot is approximately equal to zero, the electrode bias steps taken from the previous solution are reduced by the multiplicative factor ACONTINU.	true	
CONT.ITL	logical	Specifies that if a solution does not converge within ITLIMIT iterations, the electrode bias steps taken from the previous solution are reduced by the multiplicative factor ACONTINU.	true	
STOP.ITL	logical	Specifies that if a solution does not converge within ITLIMIT iterations, execution of the program is terminated.	false	
CONT.STK	logical	Specifies that if a stack overflow occurs (see STACK), that program execution should continue with the next non-SOLVE statement.		
STACK	number	The size of the stack which holds the bias conditions that have not converged when using a continuation method (CONT . RHS, CONT .PIV, or CONT.ITL). When this value is exceeded, execution of the program terminates if CONT . STK is not specified. If CONT . STK is specified, the program attempts to continue execution with the next non-SOLVE statement (Maximum is 10).	4	none
ACONTINU	number	The multiplicative factor used to reduce the electrode bias steps when CONT.RHS, CONT.PIV, or CONT.ITL is specified.	0.5	none
tauto	logical	Specifies that time steps are selected automatically by Medici from the local truncation error estimates. This is the default for both the firstand second-order schemes.	true	
2NDORDER	logical	Specifies that a variable order time discretization is used (maximum order is second). If this parameter is false, then a first-order time discretization is used.	true	
TOL.TIME	number	The maximum allowed local truncation error. To use dynamic error tolerance, set TOL. TIME to zero.	$1 \mathrm{e}-2$	none
L2NORM	logical	Specifies the error norms are L2 as opposed to infinity norms for calculating the time steps.	true	

Parameter	Type		Definition
DT.MIN	number	The minimum time step allowed.	Default
EXTRAPOL	logical	Specifies that a second-order extrapolation is used to compute initial guesses for successive time steps.	false

Energy Balance Parameters

$\begin{array}{lll}\text { ETX.TOLE } & \text { number } & \text { The carrier temperature update tolerance. }\end{array}$

Parameter	Type	Definition	Default	Units
ETR.TOLE	number	The carrier temperature equation error tolerance.	1e-18	W/micron
N.MAXBL	number	Maximum number of energy balance block iteration plug-ins.	25	none
N.MAXEB	number	Maximum number of energy balance iterations.	15	none

Lattice Temperature AAM Parameters

LTX.TOLE	number	The lattice temperature update tolerance. This parameter is only used with the Lattice Temperature AAM.	$1 \mathrm{e}-3$	none
LTR.TOLE	number	The lattice temperature equation error tolerance. This parameter is only used with the Lattice Temperature AAM.	le-11	W/micron
LTX.FACT	number	Factor by which CX. TOLER and LTX.TOLE are scaled for the intermediate step of the global method when solving the lattice temperature equation. This parameter is only used with the Lattice Temperature AAM.	100	none
LTR.FACT	number	Factor by which CR.TOLER and LTR.TOLE are scaled for the intermediate step of the global method when solving the lattice temperature equation. This parameter is only used with the Lattice Temperature AAM.	100	none
MAX . TEMP	number	Maximum lattice temperature allowed during a simulation. If the lattice temperature at any point within the device exceeds MAX. TEMP the program terminates the simulation. This parameter is only used with the Lattice Temperature AAM.	2000	degrees K
Direct Tunneling Parameters				
DT. JACOB	logical	Specifies whether or not direct tunneling should be included in the jacobian.	true	none

Description

The METHOD statement sets parameters associated with a particular solution algorithm chosen in the SYMBOLIC statement. If no METHOD statement is specified in a simulation input file, the default values of all parameters are used. Whenever a METHOD statement is encountered, only the parameters which are actually specified are modified. All other parameters retain their previous values.

See Also... To further illustrate the METHOD statement, refer to the following:

- Input file mdex1 in Chapter 4," "N-Channel MOSFET Examples"
- Input file mdex2 inChapter 4, "N-Channel MOSFET Examples," p. 4-2.
- Other examples where a solution is calculated

Solution Methods

Four linear solution methods used in Medici are listed below in order of increasing memory and CPU effort:

- ICCG-An iterative technique used only to solve Poisson's equation during the Gummel iteration. Convergence is not guaranteed.
- ILUCGS—An iterative technique used to solve linear equations in Newton's method or Poisson's or the continuity equations in Gummel's method. This method requires that a partial (incomplete) LU factorization be performed as a pre-conditioner prior to iteration. Convergence is not guaranteed.
- Bi-CGSTAB-An iterative method used to solve the augmented Jacobian matrix as a whole. Although slower than SOR at low frequencies, it is able to converge at higher frequencies. In most cases, bipolar transistors and MOSFETs can be analyzed well above their cutoff frequencies.
- DIRECT-Conventional Gaussian elimination. May be used to solve any of the linear equations. Requires that a full (complete) LU factorization be performed. This method always finds a solution but is expensive in CPU and memory requirements.

Note:
ILUCGS and BICGS are available as parameters on the SYMBOLIC statement.

Convergence Criteria

This section details common convergence criteria. In addition, specific convergence criteria is discussed for the following:

- Energy balance solution
- Lattice temperature solution
- ILUCGS and Bi-CGSTAB
- Gummel's method
- Newton's method
- Continuation methods

Default The convergence criterion established with XRNORM is used as the default. This implies that a solution is considered converged when either the XNORM tolerances or the RHSNORM tolerances are satisfied at every node in the device.

The iteration errors that are printed to the output file are the maximum potential and carrier concentration updates in the device (XNORM) excluding those nodes where the RHSNORM tolerances are already satisfied. A printed value of " $0.0000 \mathrm{E}+00$ " indicates that the RHSNORM tolerances are satisfied at every node in the device.

The XRNORM criterion remains in effect until it is explicitly turned off by specifying ^XRNORM. For example, to use the RHSNORM criterion instead of the XRNORM criterion, the following statement should be specified:

METHOD ^XRNORM RHSNORM

As a further example, the following statement causes the program to print the XNORM and RHSNORM errors to the output file, but the XRNORM errors are still used (by default) to determine convergence:

METHOD XNORM RHSNORM

XRI.NORM During Newton iteratioj, XRI . NORM is an anternative convergence criterion

 which measures the product of the maximum carrier update and the normalized maximum carrier equation residual (scaled by the current). When specified, this criterion will be considered when the maximum potential update is below XRI . THXV, the maximum carrier update is below XRI . THXC and the normalized maximum carrier equation residual is below XRI.THI. The simulation is considred when the product of the maximum carrier update and the normalized maximum carrier equation residual is below XRI . TOLE. It should be noted that this criterion is intended to let certain slowly converging simulation pass the convergence criteria where it would not normally pass. To prevent this criterion to terminates a simulation which would have converged normally with a few more iterations, it is not considered unless the convergence rate of maximum carrier equation residual is low.
Error Tolerances The XNORM and RHSNORM error tolerances can be adjusted with the parameters PX.TOLER, CX.TOLER, ETX.TOLE, LTX.TOLE, PR.TOLER, CR.TOLER, ETR. TOLE and LTR.TOLE.

Note:

Specifying larger values for these parameters may decrease the number of iterations required for convergence, but may also decrease the accuracy of the resulting solution.

Energy Balance Solution

The accuracy and convergence of the energy balance solution is controlled by the following parameters:

- The relative accuracy of the carrier temperature is specified with ETX. TOLE.
- The right-hand-side norm tolerance for the energy balance equation is specified with etr.tole.
- If neither COUP . ELE nor COUP . HOL is specified on the SYMBOLIC statement, a decoupled solution is performed.
In this case, the convergence criterion specified with ETX.TOLE has to be satisfied both inside the energy balance iteration and in the outer loop of the block iteration (see Chapter 2, "Medici Description," p. 2-132).
- The number of decoupled energy balance solutions is limited by \mathbf{n}.maxeb.
- The maximum number of block iteration plug-ins is limited by N. MAXBL.

Lattice
Temperature
Solution
A further set of parameters shown below, used with the Lattice Temperature AAM, controls the solution of the lattice temperature equation:

- The tolerance of the temperature update and the right-hand-side norm toler- ance for the lattice heat flow equation is specified by LTX.TOLE and LTR.TOLE.
- If a decoupled solution is performed, i.e., ^COUP . LAT is specified, the parameters LTX. FACT and LTR.FACT can be used to relax the convergence criteria for the inner loop lattice heat equation iteration.
- Only one of COUP .LAT, COUP .ELE and COUP . HOL can be specified.

ILUCGS and Bi-CGSTAB

The ILUCGS or Bi-CGSTAB method is considered to have converged if:
$\frac{\left\|(L U)^{-1} r\right\|}{\left\|(L U)^{-1} b\right\|}<$ ILU. TOL
Equation 3-22
where:

- b is the right hand side of $A x=b$
- r is the residual defined by $r=b-A x$

ILU. XTOL An additional convergence criterion is placed on ILUCGS or Bi-CGSTAB by the ILU. XTOL parameter in which case ILUCGS or Bi-CGSTAB is considered to have converged if:

$$
\left|1-\frac{\|x\|}{\left\|x^{\prime}\right\|}\right|<\text { ILU.XTOL }
$$

Equation 3-23
where:

- x is the present solution found by ILUCGS or Bi-CGSTAB.
- x^{\prime} is the solution from the previous ILUCGS or Bi-CGSTAB iteration.

In general, it is not necessary to specify this extra criterion and in any case, specifying ILU. ХTOL < 1.0e-3 results in an increased number of ILUCGS or Bi-CGSTAB iterations on non-convergence.

Gummel's Method

Various methods are available to try to speed convergence when using Gummel's method for the solution. Among these are the following:

- ICCG
- The single-Poisson method (SINGLEP) with acceleration (ACCELERA)

For many cases, ICCG provides the fastest convergence, and should routinely be chosen.

Damping When Gummel's method is being used, or when performing a Poisson-only solution (zero carriers), damping is used to stabilize the convergence by limiting the maximum potential change per iteration inside the device with DVLIMIT.

The default value of DVLIMIT is 1.0 V unless ^DAMPED is specified, in which case it is 0.1 V .

Increasing DVLIMIT from its default value may result in faster simulations by allowing the potential at each node to be adjusted by a larger amount. However, if DVLIMIT is set too high, it may cause the convergence to be unstable.

In general, DVLIMIT should not be set higher than 10-20\% of the bias step applied to an electrode. Larger values of DVLIMIT may be possible at high voltages.

A more sophisticated damping scheme than that described above is available by specifying DAMPED. This option is recommended for most situations. By setting DELTA to a negative value, an alternative damping scheme can be invoked which usually works better for very large bias steps.

Newton's This section details the special parameters used to control the various convergence Method criteria for Newton's method. Use of Newton's method also allows the selection of various continuation methods (see "Continuation Methods," p. 3-159).

Speeding Convergence with AUTONR

It is possible to speed up convergence significantly by using the automated Newton-Richardson method parameter AUTONR. This attempts to reduce the number of times that the Jacobian matrix is refactored. When using Newton's method, AUTONR is used by default in all cases except when EJ. MOBIL has been selected on the MODELS statement.

Without AUTONR, the Jacobian matrix is refactored at every iteration. With AUTONR, the Jacobian matrix is not refactored if the error norms fall by more than the amount specified by NRCRITER. This is indicated by an asterisk (*) next to the iteration number in the output file.

Maximum Potential Update with N.DVIIM

The parameter N.DVLIM controls the maximum potential update during a single newton iteration. In many cases, reducing the size of N. DVLIM to about one third of the present bias step can aid convergence by damping large oscillations in the solution.

Selecting too small a value for N.DVLIM, however, can harm convergence since (assuming the previous solution is used as the initial guess) the number of Newton iterations required will be greater than the bias step specified divided by n. DVLIM.

Rose-Bank

 Damping
One-Step Damping

DAMP.CON

Continuation Methods

When DAMP. CON is specified, the update on the continuation electrode will be used in a varying-length update scheme to improve convergence. Depending on the situation, this could results in damping or acclerating the updates.
The parameter N. DAMP causes the program to use Rose-Bank damping during Newton iteration, which can help improve convergence in certain cases (particularly when using large bias steps or when increasing the number of carriers). For example, when going from a 0 carrier solution to a 1 or 2 carrier solution at the same bias.

Rare cases have been observed when damping can harm the process and cause a bias point to fail to converge. In most cases, when convergence fails while using N. DAMP, it also fails without N. DAMP. Convergence fails sooner with damping because the program stops iterating once the damping factor is less than $1 \mathrm{e}-4$, rather than when 20 iterations are reached. This results in less total CPU time. The overhead for the damping is very slight, and in most cases it does not cause harm.

Specifying DAMP . ONE causes the program to use a one-step damping scheme. On the first Newton iteration, the maximum update is limited by the larger of the maximum change in the bias and $\boldsymbol{T H}$. DAMP1. On subsequent Newton iterations, the update is damped only when it is significantly higher than that in the previous iteration. In this case, the maximum update is the larger of the maximum update in the previous iteration and TH. DAMP2. This scheme can improve convergence of difficult simulations caused by model discontinuities (for example, when simulating structures with floating regions when impact ionization is invoked).

Medici allows continuation methods to be chosen when using the Newton solution technique. These methods may be used for the following:

- To adjust for bias steps that are too large by automatically reducing the step if convergence problems occur
- To adjust time steps in transient simulations if automatic time step selection is not being used

The criteria for performing a reduction of the bias or time step can be the following:

- An increase in the RHSNORM errors (CONT . RHS)
- An occurrence of a numerical pivot which is approximately zero (CONT.PIV)
- Failure to converge within ITLIMIT iterations (CONT.ITL)

In each case the multiplicative factor ACONTINU is used to reduce the step. The continuation methods specified with CONT. ITL and CONT.PIV are used by default. If STOP.ITL is selected, program execution terminates if the solution does not converge within ITLIMIT iterations.

Transient Simulation

The METHOD statement is also used to select parameters affecting transient simulations. Two time discretization schemes that can be made available are shown below:

- A first-order backward difference scheme
- A sophisticated variable order method with a maximum order of 2 (the default)

When using the either scheme, time steps are selected automatically by Medici unless this capability is disabled by specifying ^${ }^{\wedge} \mathbf{T A U T O}$.

When TOL. TIME is set to zero, a dynamic error tolerance is calculated. There are two parameters associated with this scheme: DT.DC.UP and DT.DC.LO. DT.DC. UP specifies the upper bound of the maximum carrier update above with the time step must be reduced. On the other hand, DT.DC.LO specifies the lower bound of the maximum carrier update below which the time step will be reduced. The default values of these parameters are chosen to allow quick simulation with modest amount of error. To get more accurate result, the values of these parameters will need to be reduced.

SOI Convergence

With the ill-conditioning associated with the floating region, partially depleted SOI (Silicon-On-Insulator) simulation with impact ionization has been a great convergence challenge. To improve the convergence, a matrix transformation scheme VC. COUPL is introduced. When specified, this matrix tranformation allows tighter coupling between electrical potential and carrier variables. The combination of node-based impact ionization model (II . NODE $=2$ on the MODELS statement) and VC. COUPL has been found to significantly improved certain SOI simulations at at low current levels. It has also been found that VC. COUPL could prevent convergence at high current levels. To allow continuous simulation through all these current levels, parameters ELEC.VCP and VO. VCOUP are introduced. ELEC.VCP specifies the electrode whose bias is used control the amount of matrix transformation while VO. VCOUP specifies the bias at which matrix tranformation will stop at apply. For example,

METHOD ELEC.VCP=Drain VO.VCOUP=1

specifies that matrix transformation will cease to apply when \mathbf{V} (Drain) reaches one Volt.

The SOLVE statement instructs Medici to perform a solution for one or more specified bias points.

SOLVE

```
Initial Guesses, Biasing, and Fermi Potentials
    [ {INITIAL | PREVIOUS | PROJECT | LOCAL | P.LOCAL | P2QFN | P2QFP} ]
    [ {V(namel)=<n> | I (namel)=<n> | T (namel)=<n> | Q (namel)=<n>} ]....
    [{V(name200)=<n> | I (name200)=<n> | T(name200)=<n> | Q (name200)=<n>} ]
    [N.REGION=<C>] [N.BIAS=<a>]
    [P.REGION=<C>] [P.BIAS=<a>]
Steady State Analysis Parameters
    [ { ( ELECTROD=<c> {VSTEP=<n> | ISTEP=<n>} NSTEPS=<n> )
Continuation Method Parameters
            | ( CONTINUE ELECTROD=<C> C.VSTEP=<n> [ C.AUTO [C.TOLER=<n>] ]
                [C.VMIN=<n>] [C.VMAX=<n>] [C.IMIN=<n>] [C.IMAX=<n>]
                        [C.DVMAX=<n>] [C.DVMIN=<n>] [C.RMAX=<n>]
            )
Transient Analysis Parameters
            ( TSTEP=<n> [TMULT=<n>] [DT.MAX=<n>]
                        {TSTOP=<n> | TD.STOP=<n> | T.INCREM = <n> | NSTEPS=<n>}
                        [ { RAMPTIME=<n>
                    ENDRAMP=<n>
                        ( SINE ELECTROD=<c> S.FREQ=<n> S.AMPLIT=<n>
                        [S.PHASE=<n>] [TO=<n>]
                        )
                }
                ]
            )
        }
    ]
Hot Carrier and Parasitic Analysis Parameters
    [IMPACT.I] [GATE.CUR] [DQDV]
Programmable Device AAM Parameters
    [FN.CUR]
Direct Tunneling Analysis Parameters
    [DT.CUR] [DT.METH=<n>] [DT.CBET] [DT.VBET] [DT.VBHT]
AC Small-Signal Analysis Parameters
    [ AC.ANALY FREQUENC=<n> [ FSTEP=<n> NFSTEP=<n> [MULT.FRE] ]
        [VSS=<n>] [TERMINAL=<c>]
        [S.OMEGA=<n>] [MAX.INNE=<n>] [TOLERANC=<n>] [HI.FREQ]
        [ S.PARAM [R.SPARA=<n>] ]
    ]
AC Charge-Partition Analysis Parameters
    [ AC.CHARG [TERMINAL=<C>] ]
(SOLVE statement continued on next page)
```

```
(SOLVE statement continued from the previous page)
Circuit Analysis AAM Parameters
    [ ELEMENT=<c> V.ELEMEN=<n> [VSTEP=<n> NSTEPS=<n>] ] [UIC]
AC Analysis with a Circuit
    [ AC.ANALY FREQUENC=<n> AC.SOURC=<c>
        [ FSTEP=<n> NFSTEP=<n> [MULT.FRE] ]
    ]
Output Choices
    [ OUT.FILE=<C> [SAVE.BIA]
        [ { ( TIF [ALL] [BANDS] [CURRENTS] [GENERATI] [COMPONEN] )
            | ( [CURRENTS] [ASCII] [STRUCTUR=<C>] )
            }
        ]
    ]
Optical Device AAM Parameters
    [ { ( { WAVE=<n>
            | ( [WAVE.STA=<n>] [WAVE.END=<n>] )
                SPECTR
            }
            )
            | ( [FLUX=<n>]
                    { [LAMBDA=<n>]
                | ( LAMBDA.S=<n> LAMBDA.E=<n> LAMBDA.N=<n> )
                }
            )
            | ( INTENSIT=<n> [INT.STEP=<n>] )
        }
    ]
    [L.MODULA LSS=<n>]
```

Parameter Type Definition Default Units

Initial Guesses, Biasing, and Fermi Potentials

INITIAL logical Specifies that the charge neutral assumption is used to compute the initial guess This is the starting point for all device simulations.

PREVIOUS
logical Specifies that the previous solution is used as the initial guess. The previous solution is modified by setting the applied bias at the contacts. This is the default when a previous solution is available.

Parameter	Type	Definition	Default	Units
PROJECT	logical	Specifies that a projection is used as the initial guess. This is the default when two previous solutions are available and the ratio of two successive bias steps is the same for each electrode where the bias has changed.	false	
LOCAL	logical	Specifies that local values of the quasi-Fermi potentials are used to compute an initial guess. This type of initial guess takes the previous solution, sets the applied bias, and then sets the majority carrier quasi-Fermi potentials to the applied bias throughout each region connected to an electrode by material of the same doping type.	false	
P. LOCAL	logical	Specifies that local quasi-Fermi potentials are used to compute the initial guess in heavily doped regions attached to electrodes, while the previous solution is used for the initial guess elsewhere. This type of initial guess may be helpful as an alternative to "previous" particularly when the heat equation is being solved.	False unless lattice temperature is being solved for.	
P2QFN	logical	Specifies that the maximum of potential from the previous solution and the minimum bias applied to the semiconductor is used as the electron quasi-Fermi potential in p-type regions. This parameter is intended for use with n-channel MOSFETs when creating 0-carrier solutions with no bias applied to the gate. This selection of electron quasi-Fermi potential often results in better convergence when switching to solutions with carriers.	false	
P2QFP	logical	Specifies that the minimum of potential from the previous solution and the maximum bias applied to the semiconductor is used as the hole quasi-Fermi potential in n-type regions. This parameter is intended for use with p-channel MOSFETs when creating 0 -carrier solutions with no bias applied to the gate. This selection of hole quasi-Fermi potential often results in better convergence when switching to solutions with carriers.	false	
V(name)	number	The applied bias at the electrode specified by name. Any number of biases corresponding to electrodes can be specified on the same SOLVE statement.	Previous bias at electrode name	volts
I (name)	number	The terminal current at the electrode specified by name, if a current boundary condition was specified for this contact. Any number of terminal currents corresponding to electrodes can be specified on the same SOLVE statement.	Previous current at electrode name	amps/ micron
T (name)	number	The temperature at the thermal electrode specified by name. Values of temperature for multiple thermal electrodes can be specified on the same statement. This parameter is only used with the Lattice Temperature AAM.	Previous temperature at thermal electrode name	Kelvins
Q (name)	number	The charge at the electrode number specified by name, if a charge boundary condition was specified for this contact. The charge on multiple electrodes can be specified on the same statement. This parameter is only used with the Programmable Device AAM.	Previous charge at electrode name	Coulombs/ micron
N. REGION	char	The region names for which electron quasi-Fermi potentials are specified. If more than one region name is specified, separate their names with commas and enclose the entire group in parentheses (for example, "(substrate,drain)").	none	

Parameter	Type	Definition
n. BIAS	array	The electron quasi-Fermi potentials to use in the regions identified with N. REGION, if electrons are not being solved for. If more than one value is specified, separate each value with commas and enclose the entire group in parentheses (for example, "(5.0,3.0)"). Values specified here override any value established as a result of specifying FIX.QF on the METHOD statement.
P.REGION	char	The region names for which hole quasi-Fermi potentials are specified. If more than one region name is specified, separate their names with commas and enclose the entire group in parentheses (for example, "(substrate,drain)").
P.BIAS	array	The hole quasi-Fermi potentials to use in the regions identified with P.REGION, if holes are not being solved for. If more than one value is specified, separate each value with commas and enclose the entire group in parentheses (for example, "(5.0,3.0)"). Values specified here override any value established as a result of specifying FIX. QF on the METHOD statement.

Default

Units

Local quasi-
Fermi potential based on bias and doping type.
none

Local quasiFermi potential based on bias and doping type.
volts
volts
amp/
micron
none

Continuation Method Parameters

CONTINUE logical Specifies that an automatic continuation procedure is used to trace I-V curves. This procedure automatically selects the bias step and switches from voltage to current boundary conditions as appropriate.
C. VSTEP
number Specifies the initial voltage step for the continuation method. If the value is >0 the initial step is positive. If the value is less than 0 the initial steps in the negative voltage direction.
synonym: C.LENGTH
C. AUTO
C. TOLER
number Local truncation error tolerance for continuation method. A smaller value causes CPU time. This parameter does not affect the accuracy of the computed points, only the spacing between them.

Parameter	Type	Definition	Default	Units
C. VMIN	number	Minimum terminating voltage for the continuation method. If the continuation method is tracing an I-V curve and the bias voltage at the electrode becomes less than this value, the tracing process is considered complete and the continuation terminates.	-5.0	volts
C. VMAX	number	Maximum terminating voltage for the continuation method. If the continuation method is tracing an I-V curve and the bias voltage at the electrode becomes greater than this value, the tracing process is considered complete and the continuation terminates.	5.0	volts
C. IMIN	number	Minimum terminating current for the continuation method. If the continuation method is tracing an I-V curve and the bias current at the electrode becomes less than this value, the tracing process is considered complete and the continuation terminates.	-1.0e-4	amps/ micron
C. IMAX	number	Maximum terminating current for the continuation method. If the continuation method is tracing an I-V curve and the bias current at the electrode becomes greater than this value, the tracing process is considered complete and the continuation terminates.	$1.0 \mathrm{e}-4$	amps/ micron
C. DVMAX	number	Maximum potential update allowed during continuation method. If the potential update exceeds this limit, the bias step is immediately reduced and the program tries again. This is useful because it stops the program from wasting time trying to solve for bias points that are not likely to converge. Since projection is used to find the initial guess during continuation, the potential updates are normally quite small and large updates indicate a possible problem.	50.0	kT/q
C. DVMIN	number	Minimum normal potential update allowed during the continuation method. This might be useful for difficult simulations where the device resistance calculated fluctuates significantly thus resulting in excessively small potential updates.	$1 \mathrm{e}-4$	Volt
C. RMAX	number	Maximum value of external resistance allowed during continuation. If not specified, it is dynamically determined by the program.		ohms
Transient Analysis Parameters				
TSTEP	number	The time step between solutions. For simulations using automatic time step selection (see the METHOD statement), TSTEP is used to select the first time step only. All other time steps are chosen automatically by Medici. synonym: T.STEP	none	seconds
TMULT	number	The multiplicative factor used to vary the size of successive time steps during a transient simulation when automatic time step selection is not used. synonym: T. MULT	1.0	none
DT . MAX	number	Maximum time step as a ratio of the total simulation interval.	0.25	none
TSTOP	number	The end of the time interval to be simulated. synonym: T.STOP	none	seconds

Parameter	Type	Definition	Default	Units
TD.STOP	number	The end of the time interval to be simulated. This parameter can be used to specify stopping times with up to 14 digits of accuracy. The value specified can not be a numeric expression (such as TD.STOP=@mytime or $T \mathrm{D} . \mathrm{STOP}=1.234+5.678$).	none	seconds
T. INCREM	number	The time increment for the time interval to be simulated.	none	seconds
RAMPTIME	number	A time interval over which any bias change is applied as a linear ramp. If the ramp begins at time $t=t_{0}$, it ends at $t=t_{0}$ + RAMPTIME .	0.0	seconds
ENDRAMP	number	The ending time for a period over which any bias change is applied as a linear ramp. If the ramp begins at time $t=t_{0}$, it ends at $t=$ ENDRAMP .	0.0	seconds
SINE	logical	Specifies that the signal applied to the electrode(s) indicated with the ELECTROD parameter should vary as a sine wave as a function of time.	false	
S.FREQ	number	The frequency of the sinusoidal signal when SINE is specified.	none	Hz
S.AMPLIT	number	The amplitude of the sinusoidal signal when SINE is specified.	none	volts or amps/ micron
S.PHASE	number	The phase of the sinusoidal signal when SINE is specified.	0.0	degrees
то	number	The time offset for the start of the sinusoidal signal when SINE is specified.	current simu- lation time	seconds

Hot Carrier and Parasitic Analysis Parameters

IMPACT.I logical Specifies that an impact ionization analysis is performed after each bias or time false point is solved for.

GATE . CUR

DQDV
logical Specifies that a gate current analysis is performed after each bias or time point is false solved for.
logical Causes Medici to calculate the capacitance at the electrodes. The capacitance is false calculated by dividing the change in terminal charge by the change in voltage. This procedure gives one column of the capacitance matrix. This method can only be used if the voltage at one electrode is changed at a time, and if a previous solution resides in memory

Programmable Device AAM Parameters

FN.CUR \quad logical	Specifies that Fowler-Nordheim tunneling current is be calculated. During a transient analysis, the charge on any floating regions affected by this current is updated automatically. This parameter is only used with the Programmable
	Device AAM.

Direct Tunneling Analysis Parameters

Parameter	Type	Definition	Default	Units
DT. CUR	logical	Specifies that the direct tunneling current through insulating layers is calculated after the solution is found.	false	
DT . METH	number	The method for evaluating the direct tunneling current. $1=$ analytical, $2=\mathrm{WKB}$, 3=Gundlach, 4=AiryTMT.	2	
DT. Cbet	logical	Specifies that conduction band electron tunneling should be included in the direct tunneling.	true	
DT. VBET	logical	Specifies that valence band electron tunneling should be included in the direct tunneling.	false	
DT. VBHT	logical	Specifies that valence band hole tunneling should be included in the direct tunneling.	false	
AC Small-Signal Analysis Parameters				
AC. ANALY	logical	Specifies that AC sinusoidal small-signal analysis is performed after the DC condition is solved for.	false	
FREQUENC	number	The frequency at which the AC small-signal analysis is performed.	none	Hz
FSTEP	number	The increment for frequency when performing an AC small-signal analysis at multiple frequencies. If MULT . FRE is not specified, the frequency for each analysis is obtained by adding FSTEP to the previous value of frequency. If MULT . FRE is specified, the frequency for each analysis is obtained by multiplying the previous value of frequency by FSTEP.	0.0	None if mult.f RE is specified; otherwise, Hz.
NFSTEP	number	The number of additional frequencies at which an AC small-signal analysis is performed.	0	none
MULT . FRE	logical	Specifies that FSTEP is a multiplicative factor for incrementing frequency.	false	
vSS	number	The magnitude of the applied small-signal bias.	$0.1 \cdot K T / q$	volts
TERMINAL	char	The electrode(s) to which the AC bias is applied. More than one electrode may be specified, but each case is solved separately. To specify more than one electrode, separate them with commas, and enclose the entire group within parentheses (for example, "(drain, gate, source)").	all electrodes	
S. OMEGA	number	The SOR relaxation parameter used when solving the linear system during an AC small-signal analysis. This parameter is only used if HI FREQ is false.	1.0	none
MAX. INNE	number	The maximum number of iterations when performing an AC small-signal analysis. Default: 25 or $2 \times \max (35, \sqrt{3 \times \text { nodes }})$ if using HI .FREQ	See Definition	none

Parameter	Type	Definition	Default	Units		
TOLERANC	number	The SOR convergence criterion when performing an AC small-signal analysis. If HI FRREQ is true, then this parameter specifies the Bi-CGSTAB convergence criterion when performing an AC small-signal analysis. The error norm is calculated as $\left\\|\left(X_{i}-X_{i}^{\prime}\right) /\left(X_{i}^{\prime}\right)\right\\|$ and represents the component-wise relative error in the solution vector. For a complete description please refer to Chapter 2, "Medici Description," p. 2-84.	$1 \mathrm{e}-5$	none		
HI.FREQ	logical	Specifies that high frequency AC analysis mode is used. This option allows AC analysis at higher frequencies than the standard method of SOR iteration but it is much slower. When HI . FREQ is true, the AC system is solved using either BiCGSTAB or a direct method with iterative correction depending on whether a direct method or iterative method, respectively, is used for the DC solution. If HI . FREQ is not specified, the program tries SOR first, and if this method fails it automatically switches to the HI FREQ method.	false			
S.PARAM	logical	Specifies that S-parameters should be calculated. If S-parameters are to be calculated then TERMINAL should be used to specify which electrodes are terminal " 1 " and terminal " 2 " (see below).	false			
R. SPARA	number	Transmission line impedance used in S-parameter calculation. Input the actual transmission line impedance multiplied by the device width if not doing circuit simulation, otherwise, no scaling is needed.	50	Ohms \times Microns; Ohms if CA AAM		

AC Charge Analysis Parameter

Abstract

AC.CHARG logical Specifies that AC charge partition analysis is performed after a DC solution is obtained. This analysis avoids a problem of the standard AC analysis that pro-

 duces abnormal capacitance values at the terminals of significant DC current.
Circuit Analysis AAM Parameters

ELEMENT \quad char $\quad \begin{aligned} & \text { A voltage or current source that has its voltage or current set to the value speci- } \\ & \text { fied with the V.ELEMEN parameter. This parameter is only used with the Circuit }\end{aligned}$ Analysis AAM.
V.ELEMEN number Specifies the voltage or current to be applied to the circuit element specified by the ELEMENT parameter. This value remains in effect for the remainder of the simulation. This parameter is only used with the Circuit Analysis AAM.
none
volts or amps
none

AC Analysis with a Circuit

AC. SOURC char \quad Specifies the name of the AC small signal voltage or current source when AC none analysis is performed with a circuit.

Output Choices

Parameter	Type	Definition	Default	Units
OUT.FILE	char	The identifier for the file in which the solution information is saved. If multiple solutions are obtained from a single SOLVE statement, the last non-blank character of the supplied identifier is incremented in succession, resulting in a unique file for each solution. If necessary, the incrementing of the file identifiers extended to the characters prior to the last. synonym: oUtrile	solution is not saved	
CURRENTS	logical	Specifies that electron, hole, and displacement current densities are written to the output file. For TIF files, the output also includes carrier velocities. For nonTIF files, the stored information, which also includes electric field and recombination, is only used with the DIFFEREN option on the LOAD statement.	false	
ASCII	logical	Specifies that the solution file is written as a formatted file.	false	
SAVE.BIA	logical	Specifies that solution files are only saved for the biases that OUT.FILE is specified for. That is, if a bias step is reduced because of convergence problems, solution files are not saved at the these additional bias points.	false	
STRUCTUR	char	Specifies which device data to write to the solution file. This parameter is only used with the Circuit Analysis AAM.	all devices	
TIF	logical	Specifies that the TIF format is used for the output file. The output automatically includes basic physical quantities such as doping, potential, carrier concentrations, carrier and lattice temperatures, electric field and total current density.	false	
ALL	logical	Specifies that all available physical quantities are written to the TIF file.	false	
BANDS	logical	Specifies that physical quantities associated with the band structure of the device are written to the TIF file. These include electron and hole quasi-Fermi potentials, and valence band, conduction band, and vacuum level potentials.	false	
GENERATI	logical	Specifies that impact ionization generation, band-to-band tunneling generation, photogeneration, and recombination are written to the TIF file.	false	
COMPONEN	logical	Specifies that components of vector quantities are written to the TIF file in addition to the magnitudes of these quantities.	false	
Optical Device Parameters				
WAVE	number	Specifies the wavelength number from the sampling of wavelengths specified with the WAVE .STA, WAVE . END, and WAVE. NUM parameters on the PHOTOGEN statement. The charge generated within the device structure is only due to the selected wavelength number. If this parameter is not specified, the generation is due to the entire spectrum.	none	

Parameter	Type	Definition	Default	Units
WAVE.STA	number	Specifies the first of a series of wavelength numbers taken from the sampling of wavelengths specified with the WAVE.STA, WAVE .END, and WAVE . NUM parameters on the PHOTOGEN statement. A solution is performed for each wavelength number from WAV. STA through WAV .END. The charge generated within the device structure is only due to the specific wavelength number under consideration.	1	
WAVE.END	number	Specifies the last of a series of wavelength numbers taken from the sampling of wavelengths specified with the WAVE.STA, WAVE .END, and WAVE . NUM parameters on the PHOTOGEN statement. A solution is performed for each wavelength number from WAV. STA through WAV. END. The charge generated within the device structure is only due to the specific wavelength number under consideration.	WAVE. NUM from the PHOTOGEN statement	
SPECTR	logical	Specifies that a solution is to be performed for each of the wavelength numbers taken from the sampling of wavelengths specified with the WAVE.STA, WAVE . END, and WAVE . NUM parameters on the PHOTOGEN statement. The charge generated within the device structure is only due to the specific wavelength number under consideration.	false	
FLUX	number	Specifies that PHOTOGEN and RAYTRACE are to be reinitiated with the given light FLUX while the other parameters remain unchanged. The solutions are to be obtained for the photogeneration associated with this new wavelength. This is only for the monochrome ray.	none	photons/ cm^{2}-sec
LAMBDA	number	Specifies the wavelength for which ray tracing and photogeneration are reinitiated while the other parameters remain unchanged. The solutions are obtained using the photogeneration associated with this new wavelength.	none	micron
LAMBDA.S	number	Specifies the minimum wavelength for which ray tracing and photogeneration are reinitiated while the other parameters remain unchanged. Spectral simulations are reperformed.	none	micron
LAMBDA.E	number	Specifies the maximum wavelength for which ray tracing and photogeneration are reinitiated while the other parameters remain unchanged. Spectral simulations are reperformed.	none	micron
LAMBDA.N	number	Specifies the number of wavelengths between LAMBDA.S and LAMBDA.E for which ray tracing and photogeneration are reinitiated while the other parameters remain unchanged. Spectral simulations are reperformed.	none	none
INTENSIT	number	The light intensity to use for a new calculation of ray tracing and photogeneration. Unspecified ray tracing quantities retain the values specified on the PHOTOGEN statement. Solutions are to be obtained for the photogeneration associated with this new intensity.	none	Watts/ cm^{2}
INT. STEP	number	The light intensity step to use for new calculations of ray tracing and photogeneration. After an initial solution with the intensity given by INTENSIT, the intensity will be incremented by INT . STEP for each successive calculation for a total of NSTEPS additional steps.	none	Watts/ cm^{2}

Parameter	Type	Definition	Default	Units
L. MODULA	logical	Specifies that light modulation analysis is performed after the DC condition is solved for.	false	

Description

The SOLVE statement performs a solution for one or more specified bias points. The following sections discuss the various elements of the SOLVE statement including:

- Initial guesses
- Bias selection
- Circuit analysis
- Continuation method
- Transient simulations
- Post-Processing impact ionization
- Gate current
- AC small-signal analysis
- Optical analysis

See Also... To further illustrate the SOLVE statement, refer to the following:

- Input file mdexl in Chapter 4, "N-Channel MOSFET Examples," p. 4-11
- Input file mdex1g in Chapter 4, "N-Channel MOSFET Examples," p. 4-11
- Input file mdexld in Chapter 4, "N-Channel MOSFET Examples," p. 4-11
- Every other example where a solution is calculated

Initial Guesses

Medici automatically uses INITIAL as the initial guess for the first bias point for a given structure. For this bias point, 0 volts is assumed for any electrode where voltage is not specified.

If a previous solution exists, Medici uses it as the initial guess for the next solution. If two previous solutions are present and equivalent bias steps were taken for any electrode biases that were changed, a projection is used to obtain an improved initial guess for the next solution.

Bias Selection

The boundary conditions for the simulation to be performed are set by specifying the electrode applied biases shown below:

- V (DRAIN) , V (GATE) $, \ldots, \mathrm{V}($ WHAT_EVER)
or the terminal currents shown below:
- I (DRAIN), I (SOURCE) , \ldots, I (ENOUGH) at the contacts.

If terminal currents are specified at the contact, you should have previously specified this contact as one where current boundary conditions are to apply (see the CONTACT statement). If an electrode boundary condition is not specified, the previous bias or current is used by default.

Multiple Solutions

Multiple solutions with one SOLVE statement can be accomplished by specifying one of the following:

- The voltage or current step (VSTEP or ISTEP)
- The electrode(s) to be stepped (ELECTROD)
- The number of additional solutions to be performed (NSTEPS)

This is particularly convenient for obtaining I-V characteristics.

Synchronization in Saving Solutions

The SAVE.BIA parameter is useful in order to ensure synchronization of the reading and writing of solution files. This parameter forces writing of solution files only at bias, current, or time points actually specified. Solutions generated during a step cutback (due to nonconvergence) are not saved. For example, the following code fragment attempts to sweep multiple drain curves:

```
SOLVE V(gate)=0 V (source)=0 V(drain)=0
$ Bias up the gate.
SOLVE ELECTROD=gate VSTEP=0.1 NSTEP=10 OUT.FILE=SOL01
$ Drain curves.
LOOP STEPS=10
    ASSIGN NAME=SFX C.VAL=01 DELTA=1
    LOAD IN.FILE="SOL"@SFX
    SOLVE ELECTROD=DRAIN VSTEP=0.5 NSTEP=20
L.END
```

If any bias point from the second SOLVE statement failed, then the filenames of solutions written would lose their intended correspondence to voltage (i.e., SOLO1 $\rightarrow 0.1 \mathrm{v}$, SOLO5 $\rightarrow 0.5 \mathrm{v})$. In order to enforce the correspondence, the SAVE. BIA parameter should be added to the second SOLVE statement shown below:

SOLVE ELECT=gate VSTEP=0.1 NSTEP=10 OUT.F=SOL01 SAV.BIA

Circuit Analysis Parameters

Steady state or transient analysis may also be performed on circuits. If steady state analysis is performed, then the ELEMENT parameter is used to specify the element to be altered. This element may be a voltage source, current source or resistor. The value to be used for the element is specified with the \mathbf{V}. ELEMEN parameter.

Multiple steps may be taken using VSTEP to determine the step size and NSTEPS to determine the number of steps.

Note:

The final value specified on the solve replaces the original value of the element.

For example, the following two SOLVE statements step source VCC and VDD from 0 to 5 and from 0 to 15 volts respectively. At the end of the simulation, $\mathrm{VCC}=5$ and $\mathrm{VDD}=15$ volts regardless of their original values of 7 and 3 volts.

```
VDD 1 0 7
VCC 2 0 3
SOLVE ELEMENT=VCC V.ELEMEN=O VSTEP=1 NSTEP=5
SOLVE ELEMENT=VDD V.ELEMEN=O VSTEP=3 NSTEP=5
```

Transient analysis with a circuit is very straightforward and is the same as simulation without circuit (see below). Voltage and current sources take on their time dependent values (see the V and I element).

Continuation Method

The continuation method can be used to trace difficult I-V characteristics such as those due to snap-back or latch-up. The continuation method automatically selects voltage or current boundary conditions based on the relative slope of the I-V characteristics and automatically selects bias points to resolve interesting features (refer to Chapter 2, "Medici Description," p. 2-79 for more details).

User-Input You are required to supply the following:

- The electrode (only one at a time) for which voltage and current is incremented
- The initial bias step to use (subsequent ones are selected by the program)

It is also wise to specify the terminating values for the voltage or current, although the defaults may be sufficient in some cases.

For example to step the drain from 1 V to 10 V with a maximum current of $1 \mathrm{e}-2$ and an initial bias step of 0.5 V , you would specify the following:

```
SOLVE V(drain)=1 CONTINU ELECT=drain C.VSTEP=0.5 C.VMAX=10
+ C.IMAX=1E-2
```

Likewise, to start at 2 V and to step to -5 V with an initial voltage step of 0.3 V with minimum and maximum currents of $-3 \mathrm{e}-4$ and 1e-5, respectively, the following statement could be used:

```
SOLVE V (drain)=2 CONTINU ELECT=drain C.VSTEP=-0.3
+ C.VMIN=-5 C.VMAX=2 C.IMIN=-3e-4 C.IMAX=1e-5
```

Trace Back Problems

Occasionally the continuation method becomes confused at a sharp bend in an IV curve and traces back along the same path which it came up (see Figure 3-24). This problem can often be cured simply by reducing the continuation tolerance C. TOLER to a smaller value such as 0.01 .

Figure 3-24 Continuation method becomes confused and retraces same curve

Transient Simulations

The Newton solution method must be used when performing a transient analysis. The use of the parameters relating to a transient analysis depend on the type of transient analysis which is being performed (see the METHOD statement).

A transient analysis is performed by specifying the following:

- The size of the initial time step with TSTEP
- The stopping time or time increment with TSTOP, TD.STOP or \mathbf{T}. INCREM

All intermediate time steps are calculated automatically, based on the size of the local truncation error. When automatic time step selection is not used, TMULT can be specified to increase or decrease the time step size for all successive steps.

Ramped Voltage or Current

A ramped voltage or current can be applied using one of two parameters shown below:

- RAMPTIME specifies a time interval over which any bias change specified on the SOLVE statement is applied as a linear ramp.
- ENDRAMP causes the linear ramp to begin at the simulation time when the SOLVE statement is encountered, and ends at time $\mathrm{t}=\mathbf{E N D R A M P}$.

Sinusoidal Waveform

A sinusoidal signal can be applied to one or more electrodes by specifying the SINE parameter. The electrode(s) that the signal is applied to must be specified with the ELECTROD parameter. The frequency and amplitude of the signal must also be specified with the S.FREQ and S.AMPLIT parameters, respectively. If voltage boundary conditions are being used, S.AMPLIT should be specified in volts. If current boundary conditions are being using, then S. AMPLIT should be specified in amps/micron. The phase of the signal may also be specified with the S.PHASE parameter. The sinusoidal signal is assumed to begin at the simulation time when SINE is encountered, but can be requested to start at a later time by specifying the $\mathbf{T O}$ parameter.

Post-Processing Impact Ionization

An impact ionization analysis is performed after each solution for which the parameter IMP ACT. I is specified. This analysis calculates the generation rate at each node of the simulation mesh based on the electric field and current densities at the most recently solved for bias or time point.

The generation rate is integrated over the entire device to arrive at a value for the total impact ionization current. For a MOS device, this may be interpreted as the substrate current due to impact ionization. This analysis also gives the location in the device structure where the generation rate is maximum, including the magnitude of electric field and current density at that location.

Gate Current

A gate current analysis is performed after each solution for which the parameter GATE.CUR is specified. This analysis calculates the electron, hole, and total current injected into all insulators present in the structure due to carriers capable of surmounting the insulator potential barrier.

Results of the gate current analysis are reported in the output file if the gate current is not negligible. An example of the output is shown below:

Electrode	Elec. Curr. (A/um)	Hole Curr. (A/um)	Tot. Current (A/um)
Float_Gate	-1.5315E-11	$0.0000 \mathrm{E}+00$	-1.5315E-11

The hot carrier injection analysis reports that electrons are injected onto the floating gate with the current density of $1.5315 \mathrm{E}-11$.

Fowler-Nordheim Tunneling Analysis

In addition to the hot-carrier contribution to the gate current turned on by the parameter GATE . CUR, a tunneling current analysis based on the FowlerNordheim model is performed after each solution for which FN. CUR is specified.

Results of the simulation are reported in the output file if the predicted current is not negligible. An example of the output is shown below:

```
Fowler-Nordheim Tunneling Analysis:
Electrode Tun. Current
    (A/um)
M-61310-12
Float_Gate 7.6131E-12
S: Source -7.6131E-12
```

In the example, tunneling occurs between the floating gate and a semiconductor region identified by " s :" before the number of the electrode attached to this region (in this case the source of the flash EEPROM). If the region is attached to more than one electrode, only the first two electrodes are reported.

Direct Tunneling

 AnalysisAs a substitute for Fowler-Nordheim tunneling analysis for very thin insulating layers, DT . CUR can be specified instead of FN. CUR to activate the direct tunneling model. As for the FN. CUR model, after each solution is found, the direct tunneling current injected into each electrode is calculated and written to the output file. For an example of using the direct tunneling mode, see the input file mdexldt in Chapter 4, "N-Channel MOSFET Examples," p. 4-43.

An AC sinusoidal small-signal analysis is performed after each DC solution whenever the parameter AC. ANALY is specified. The following parameters are used to delineate this process:

- The frequency at which to perform the analysis must be specified with FREQUENC.
- The analysis can be performed at a number of different frequencies (using the same DC solution) by using the parameters FSTEP, NFSTEP.

Optionally, use MULT . FRE to increment the initial frequency by a multiplicative factor.

- Specify the magnitude of applied small-signal bias with the VSS parameter.

This bias is applied separately to all contacts (the default) but may be applied only to selected contacts using the TERMINAL parameter.

- For high frequencies (approaching cutoff), if it is necessary to use a value of the SOR relaxation parameter less than unity, use the S. OMEGA parameter.
- To increase the value for the maximum number of SOR iterations allowed, use MAX. INNE.

Note:

The Newton solution method is required when performing AC small-signal analysis.

S-Parameters If S-parameters are requested, the program calculates these from the Y-parameters calculated by AC analysis.

- TERMINAL is used to specify which of the device electrodes are used for the S-parameter analysis (maximum of 2 per device).
- R. SPARA is used to specify the characteristic transmission line impedance.

In order to obtain the correct S-parameters when circuit simulation is not performed, it is important to multiply the characteristic transmission line impedance by the actual device width (in micron). Note that Medici's default device width is one micron. As an example, if S-parameters for a BJT with width of 20 microns (in the z direction) are to be calculated at 100 Mhz in the common emitter configuration with a characteristic transmission line impedance of 50 ohms:

SOLVE AC.ANAL FREQ=1e8 TERM=(BASE,COLLECT) S.PARA R.SPAR=50*20

AC Analysis with

 CircuitSimulation

If a simulation is performed with a circuit, then AC analysis may also be performed. The frequency and the source (either voltage or current) to which the AC voltage are applied are specified using the FREQUENC and AC. SOURC parameters. S-parameter analysis of the Medici devices can also be performed (see above).

The program then calculates the small signal voltages at all nodes in the circuit and the small-signal currents in all inductors and voltage sources. For example, to apply an AC voltage at source VIN at frequencies of $1 \mathrm{e} 6,1 \mathrm{e} 7,1 \mathrm{e} 8$, and 1 e 9 Hz :

SOLVE AC.ANAL FREQ=1e6 AC.SOURC=VIN FSTEP=10 MULT NFSTEP=3

Optical Analysis

This section provides the following two examples of using the SOLVE statement in conjunction with ray tracing.

- Monochrome light DC response
- Multi-spectral light DC response

The light modulation analysis capability is also briefly described.

Monochrome Light DC Response

The following four SOLVE statements specify that solutions are to be obtained for the following specified optical parameters:

```
SOLVE LAMBDA=0.7
SOLVE INTENSI=10
SOLVE FLUX=1e17
SOLVE LAMBDA=0.6 FLUX=1e20
```

For the first three SOLVE statements, ray tracing and the photogeneration calculation are repeated with the new wavelength (LAMBDA), intensity (INTENSIT) or photon flux (FLUX) as specified. The final SOLVE statement requests both a new wavelength and a new photon flux. For all four of the statements, unspecified ray tracing quantities retain their values from the previous PHOTOGEN statement.

Multi-Spectral Light DC Response

This example is similar to the monochrome example except that a spectral intensity file $A M 0 . D A T$ (representing the AM0 spectrum of sunlight outside the atmosphere) is used, as shown below:

```
PHOTOGEN RAYTRACE SP.FILE=AMO.DAT WAVE.SCA=1E-3
+ WAVE.ST=0.2 WAVE.EN=0.8 WAVE.NUM=6
+ X.ORG=5 Y.ORG=190 ANGLE=-90
+ RAY.WIDT=10 RAY.NUM=1 TRANSPAR
+ INT.RATI=1E-2
SYMBOLIC NEWTON CARRIERS=2
SOLVE
SOLVE WAVE=5
SOLVE LAMBDA=0.55
SOLVE LAMBDA.S=0.4 LAMBDA.E=0.6 LAMBDA.N=4
```

The above statements first perform photogeneration, ray tracing, and a solution with parameters as given on the PHOTOGEN statement. A solution is then obtained using only the carriers generated by the fifth wavelength from the sampling specified on the PHOTOGEN statement. Ray tracing is not repeated for this case, since the information is already available from the previous calculation.

The next SOLVE statement specifies LAMBDA=0.55. For this solution, ray tracing using the new wavelength is repeated, interpolating from the information in the spectral intensity file, AMO.DATA, if necessary. The calculation is repeated as if there were a new PHOTOGEN statement.

The last SOLVE statement is similar to the previous one, except that new calculations are requested for four different wavelengths between $0.4 \mu \mathrm{~m}$ and 0.6 $\mu \mathrm{m}$.

Light Modulation Analysis

Light modulation analysis is requested by specifying the paramete 138
r L. MODULA. After a DC solution with photogeneration is obtained, light modulation analysis induces a sinusoidal optical generation at each node i so that:

$$
G_{o p t, i}=G_{o p t, i 0}+\tilde{G}_{o p t, i} \exp (j w t)
$$

where $G_{o p t, i 0}$ is the existing optical generation rate and $\tilde{G}_{\text {opt }, i}$ is the magnitude of the sinusoidal generation that depends on the light modulation magnitude specified with the parameter LSS. The frequency at which to perform the analysis, FREQUENC, must be specified. The analysis can be performed at different frequencies by using the parameters FSTEP, NFSTEP, and MULT . FRE.

3.3 Input/Output

The following statements print and plot results, write results to files, or read solutions from files.

Statement	Definition	Page
EXtract	Extracts selected data over device cross-sections.	3-180
PRINT	Prints values of a quantity over a device cross-section.	3-196
PLOT.1D	Plots a quantity along a line through the structure; plots terminal characteristics from data in a log file.	3-199
PLOT. 2 D	Initializes graphics display device; plots device boundaries, junctions, and depletion edges in two dimensions.	3-215
PLOT. 3D	Initiates three-dimensional plots.	3-221
3D. SURFACE	Performs a three-dimensional surface projection plot.	3-230
CONTOUR	Plots two-dimensional contours of a quantity.	3-232
VECTOR	Plots current and field vectors over a device cross-section.	3-240
FILL	Fills areas of a two-dimensional plot.	3-245
E.LINE	Locates and plots potential gradient paths as part of a 2D plot; calculates and plots quantities along potential gradient paths as part of a 1D plot.	3-248
LABEL	Plots a line or character string on a 1D or 2D plot.	3-254
LOG	Specifies files for storing terminal and user-defined data.	3-259
LOAD	Reads a solution stored in a file.	3-267
SAVE	Writes solution or mesh information to a file.	3-270

EXTRACT

```
                    The EXTRACT statement extracts selected data from the solution over a specified
                    cross-section of the device.
    EXTRACT
    Extraction Using Names and Expressions
        { ( EXPRESSI=<c> NAME=<c> [UNITS=<c>] [CONDITIO=<c>] [INITIAL=<n>]
            [ {AT.BIAS | NOW} ] [OUT.FILE=<C> TWB] [CLEAR] [PRINT]
    Optimization Using Targets and Expressions
            [ TARGET=<n> [WEIGHT=<n>] [MIN.REL=<n>] [MIN.ABS=<n>]
                [TARTOL=<n>] [TARREL=<n>]
            ]
        )
    Extract Physical Quantities from Solution
        | ( { NET.CHAR | NET.CARR | ELECTRON | HOLE | RECOMBIN | IONIZATI
            RESISTAN | N.RESIST | P.RESIST | ( METAL.CH CONTACT=<c> )
                ( {N.CURREN | P.CURREN} {CONTACT=<C> | REGIONS=<C>} )
                II.GENER | ( SHEET.RE X.POINT=<n> [TOP] )
            }
            [R.METHOD=<n>]
            [X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
            [ OUT.FILE=<C> [ TWB [NAME=<C>] ] ]
            Device to Extract (Circuit Analysis AAM)
            [STRUCTUR=<C>]
        )
    Extract MOS Device Parameters
        | ( MOS.PARA [DRAIN=<C>] [GATE=<C>] [IN.FILE=<C>] [I.DRAIN=<n>]
            [OUT.FILE=<C> [TWB] ] [CONDITIO=<C>] [APPLIED]
        )
    }
Parameter Type Definition Default Units
```


Extraction Using Names and Expressions

```
\begin{tabular}{lllll} 
& char & \begin{tabular}{l} 
Name of the assigned variable where the numeric value calculated by \\
EXPRESSI is to be stored. If extracting a physical quantity from a solution \\
and writing to a TWB format file, NAME can be used to override the default \\
name written to the file.
\end{tabular} & none
\end{tabular}
```

Parameter	Type	Definition	Default	Units
INITIAL	number	Specifies the initial value to use during evaluation of EXPRESSI. This parameter is useful mainly for accumulator type expression such as: EXTRACT NAME=DOG EXPRESS=MAX (@DOG; @TL) INITIAL=0. Here the variable DOG must be assigned some value at the start of evaluation, its value comes from INITIAL=0. synonym: INITIAL.V.	0	none
AT. BIAS	logical	Specifies that the expressions CONDITIO and EXPRESSI are evaluated at the conclusion of each bias / time point.	TRUE, unless NOW=TRUE	
NOW	logical	Specifies that the expressions CONDITIO and EXPRESSI are evaluated when the EXTRACT statement is encountered. If this parameter is not specified, the extraction is performed after each SOLVE step or when a PLOT . 1D statement is encountered.	false	
OUT.FILE	char	Specifies a file to which TARGET information is written to in TWB format.	none	
TWB	logical	Specifies that the extracted result is to be stored in the file specified by OUT.FILE in the format used by TWB. synonym: CAESAR.	false	
CLEAR	logical	Specifies that all previous EXTRACT expressions are deleted.	false	
PRINT	logical	Specifies that the value of the extracted expression is displayed on the user's terminal and printed to the standard output file.	false	
Optimization Using Targets and Expressions				
TARGET	number	The desired value of the target being defined for an optimization loop. The optimization attempts to match the extracted value with the value of this parameter.	none	Defined by the extracted value.
WEIGHT	number	The weighting factor applied to the target being defined for optimization. The weights are used to control the relative importance of the individual targets in calculation of error during optimization.	1.0	none
MIN. REL	number	The minimum target ratio for which relative error is used to calculate error during optimization.	1e-2	none
MIN. ABS	number	The minimum target value for which relative error is used to calculate the error during optimization.	$1 \mathrm{e}-10$	none
TARTOL	number	The target tolerance used during optimization.	5	\%
TARREL	number	The relative target tolerance used during optimization (see below).	0.1	\%
Extract Physical Quantities from Solution				
NET. CHAR	logical	Specifies that the integrated net charge is extracted.	false	
NET. CARR	logical	Specifies that the integrated net carrier concentration is extracted.	false	
ELECTRON	logical	Specifies that the integrated electron concentration is extracted.	false	
HOLE	logical	Specifies that the integrated hole concentration is extracted.	false	
RECOMBIN	logical	Specifies that the integrated recombination rate is extracted.	false	
IONIZATI	logical	Specifies that the maximum electron and hole ionization integrals are extracted.	false	

Parameter	Type	Definition	Default	Units
RESISTAN	logical	Specifies that the resistance (including both electrons and holes) of a crosssection is extracted. The current flow is assumed to be perpendicular to the xy plane. The result is given in Ohms per micron of distance perpendicular to the xy plane.	false	
N. RESIST	logical	Specifies that the n-resistance of a cross-section is extracted. The current flow is assumed to be perpendicular to the xy plane. The result is given in Ohms per micron of distance perpendicular to the xy plane.	false	
P.RESIST	logical	Specifies that the p-resistance of a cross-section is extracted. The current flow is assumed to be perpendicular to the xy plane. The result is given in Ohms per micron of distance perpendicular to the xy plane.	false	
Metal. Ch	logical	Specifies that the integrated charge on an electrode is extracted.	false	
CONTACT	char	The electrode name over which the integration takes place when metal. Ch, n. CURREN, or P.CURREN are specified. Only nodes falling within the specified bounds and belonging to the electrode are included in the integration.	none	
N. CURREN	logical	Specifies that the electron current through an electrode or the electron current across the boundary between two regions is extracted.	false	
P.CURREN	logical	Specifies that the hole current through an electrode or the hole current across the boundary between two regions is extracted.	false	
REGIONS	char	The names of two adjacent regions. Electron or hole current flow across the boundary between these regions is extracted if N. CURREN or P.CURREN, respectively, is specified. The two region names should be enclosed in parentheses and separated by a comma.	none	
II. GENER	logical	Specifies that the number of electron-hole pairs generated by impact ionization in the entire device or, if specified, in the area identified by \mathbf{X}. MIN, $\mathbf{X . M A X}, \mathbf{Y} . \mathrm{MIN}^{\prime}$, and Y.MAX, is extracted.	false	
SHEET.RE	logical	Extracts the sheet resistance of the layers intersected by the vertical line at $\mathrm{x}=\mathbf{x}$. POINT producing a table giving the resistance of each doped layer. Current flow is assumed to be perpendicular to xy plane.	false	
X.POINT	number	The x location of the line along which to extract sheet resistance.	none	microns
TOP	logical	If specified, the sheet resistance written to a TWB format file is for the top layer only.		
R.METHOD	number	The method used in the calculation of RESISTAN, N. RESIST, P.RESIST, and SHEET . RE. Specifying R.METHOD $=1$ uses average values for mobilities and carrier concentrations in the calculations, while R.METHOD=2 uses localized values for these quantities.	1	none
X.MIN	number	The minimum x coordinate of the region over which the specified quantity is extracted.	The minimum x location in the device structure.	microns
X.MAX	number	The maximum x coordinate of the region over which the specified quantity is extracted.	The maximum x location in the device structure.	microns
Y.MIN	number	The minimum y coordinate of the region over which the specified quantity is extracted.	The minimum y location in the device structure.	microns

Parameter	Type	Definition	Default
Y.MAX	number	The maximum y coordinate of the region over which the specified quantity is extracted.	The maximum y location in the device
structure.			

Device to Extract (Circuit Analysis AAM)

STRUCTUR char Specifies the device in which the extraction is performed. This parameter is first element only used with the Circuit Analysis AAM.

Extract MOS Parameters

MOS.PARA	logical	Specifies that various parameters associated with MOS devices are extracted. If an I-V log file is available, or if one is specified with IN.FILE, the pro- gram attempts to extract information such as threshold voltage and sub- threshold slope. If a mesh file is available, the program attempts to extract the channel length for the structure.	false
DRAIN	char	The electrode name associated with the drain in an open log file, or one that is read in using IN.FILE.	none

Description

The EXTRACT statement extracts selected data from the solution over a specified cross-section of the device.

See Also... To further illustrate the EXTRACT statement, refer to the following input files:

- mdexlm (Chapter 4, "Analysis Including Band-to-Band Tunneling," p. 4-25)
- mdex2fp (Chapter 5, "Simulation of Forward Characteristics," p. 5-55)
- mdex2m (Chapter 5, "Simulation of a One-Dimensional Bipolar Transistor," p. 5-69)

Extraction with Expressions and Names

This capability allows access to internal (predefined) variables through an algebraic expression. The expression is evaluated (at each device node if required) and stored in the variable given by NAME. The NAME variable may then be used for plotting, to control program execution, or in other expressions.

If two extract statements use the same NAME, the second extract statement replaces the first, thus the following two statements:

```
EXTRACT NAME=DOG EXP="@x*@x"
EXTRACT NAME=DOG EXP="@x*@x*@x"
```

would assign x^{3} to the variable dog. All extract definitions may be deleted by use of the CLEAR parameter.

Four examples of EXTRACT capabilities are presented below.

Extraction of Maximum
 Electric Field

EXTRACT
$+$

Calculate the maximum value of the electric field within the portion of the device $x>5$ and $y<3$. Next on the EXTRACT statement set EMAX=MAX (@EMAX; \mathbf{E} (i)) where $\mathbf{E}(\mathbf{i})$ represents the magnitude of the electric field at each grid point. The CONDITIO parameter is used to limit the points to be checked to those within the portion of the device where $x>5$ and $y<3$. The parameter INITIAL is used to set the target EMAX to zero at the start of the calculation.

```
EXPRESS="MAX (@EMAX;@EM)" COND="@X>5&@Y<3" NAME=EMAX
INITIAL=0
```


$J \cdot E$ Calculation

Plot the heating term $J \cdot E$. The predefined array ARRAY1 is used to hold the result of the calculation. The program multiplies J_{n} and E at each grid point and stores the result in the array ARRAY1. ARRAY1 may then be plotted in the normal way.

```
EXTRACT EXPRESS=" (@JNX+@JPX)*@EX+(@JNY+@JPY)*@EY" NAME=ARRAY1
PLOT.2D BOUND
CONTOUR FILL ARRAY1
```


Defining Mobility

 and Lifetime ValuesNote that lifetime and mobility are predefined quantities that are "writable". This means they can be used to define the mobility and lifetime to be used during the solution process. For example, the following statement can be used to define the low-field electron mobility in the structure based on total donor concentration and lattice temperature:

```
EXTRACT NAME=mobn NOW ^AT.BIAS
+ EXPRESS=1000*(1e18/@Nd)*(300/@tl)**2
```


CAUTION

When defining mobility or lifetime using an EXTRACT expression, models should not be specified that will cause the defined values to be overwritten. For example, if "MODELS CONMOB FLDMOB" is specified, then during the iterative solution process, low-field mobility will be calculated using CONMOB rather than the defined expression on the EXTRACT statement.

Binary Search

Defining Doping
 Profiles Using

 EXTRACT ExpressionsUse a binary search to find the gate voltage needed to make the drain current equal to 1 mA . Search the interval $\mathrm{Vg}=1 \mathrm{~V}$ to $\mathrm{Vg}=5 \mathrm{~V}$. The EXTRACT statement is used to check whether or not the drain current is greater than $1 \mathrm{e}-3 \mathrm{~A}$. If it is, the assigned variable TEST is set to 1 . Next, check TEST; if TEST=1, decrease the bias.

This example illustrates a powerful method of extraction or optimization. This case varied a bias voltage, but a doping profile or model parameter could have been varied instead.

```
MESH .....
SYMBOLIC .....
ASSIGN NAME=LOW N.VAL=1
ASSIGN NAME=HIGH N.VAL=5
ASSIGN NAME=STEP N.VAL=(@HIGH-@LOW)/2
ASSIGN NAME=VA N.VAL=@LOW+@STEP
EXTRACT EXPRESS="@I (Drain)>1E-3" NAME=TEST
LOOP STEPS=10
    SOLVE V(Gate)=@VA
    ASSIGN NAME=STEP N.VAL=@STEP/2
    IF COND=@TEST
        ASSIGN NAME=VA N.VAL=@VA-@STEP
    ELSE
        ASSIGN NAME=VA N.VAL=@VA+@STEP
    IF.END
L.END
ECHO "THE REQUIRED VOLTAGE IS: "@VA" +/-"@STEP
```

The EXTRACT statement provides a means of defining sophisticated doping profiles that can't be created using the simple analytic expressions available on the PROFILE statement. However, the user must exercise caution when using the EXTRACT statement in this way. The following points should be kept in mind:

- When using EXTRACT to define doping for a structure, it is recommended that individual impurity names be used. The current choices are listed in Table 3-1.

Note:

The generic impurities "N-type" and "P-type" can not be specified on the EXTRACT statement.

Table 3-1 Impurity Names Available on Extract Statements

EXTRACT Name	PROFILE Name	Description
asa	As	Electrically active arsenic concentration
pa	\mathbf{P}	Electrically active phosphorus concentration
sba	Sb	Electrically active antimony concentration
ba	B	Electrically active boron concentration
ina	In	Electrically active indium concentration
ala	Al	Electrically active aluminum concentration
gaa	Ga	Electrically active gallium concentration

- Specifying an individual impurity on the EXTRACT statement does not create the impurity. The impurity must be created using a PROFILE statement, even if the profile will be completely replaced by the EXTRACT statement expression. Example:

```
PROFILE impurity=As uniform n.peak=1
.
EXTRACT name=asa express=1e18 cond="@x<5" now
```

- Several points regarding the EXTRACT statement should be kept in mind when creating definitions that define doping:
- The EXTRACT statement only provides a definition for a quantity. Subsequent EXTRACT statements with the same name will simply replace any previous definition.
- Evaluation takes place after a solution is created, when a plot statement is encountered, or immediately if Now is specified on the ExTRACT statement.
- When evaluation takes place, all extract definitions are evaluated.

Example:

EXTRACT	name=ba	express=1e16 NOW
EXTRACT	name=ba	express=@ba+1e18 cond="@x<2"
EXTRACT	name=asa	express=1e18 cond="@x<5"
EXTRACT	name=asa	express=1e20 cond="@x>5" NOW

The first statement causes the entire structure to have a boron doping of 1e16 because now invokes an immediate evaluation. The second statement replaces the definition of "ba". The third statement creates a definition for "asa". The forth statement replaces the definition of "asa" and the now specification causes all extract definitions to be evaluated: a 1 e18 concentration of boron will be added to the existing boron concentration (but only at nodes where $\mathrm{x}<2$) and a 1 e 20 arsenic concentration will be placed at nodes where x >5.

- EXTRACT statements are not considered structure generation statements. Because of this, Medici does not automatically regenerate net doping and total doping after an individual impurity is specified on the EXTRACT statement. To ensure that the net doping and total doping is consistent with individual impurities specified with EXTRACT statements, the mesh should be saved in a temporary file, and then read back in. Example:

```
.
PROFILE impurity=As uniform n.peak=1
EXTRACT name=asa express=1e18 now
+ cond="(@x*@x+@y*@y)<25"
SAVE out.file=temp TIF
MESH in.file=temp TIF
.
.
```

- It is not recommended that "net" be used to define the net doping profile for a structure. Net doping is a quantity that is normally calculated from the individual impurity profiles that are present. In most cases, specifying "net" on the EXTRACT statement will not cause individual impurity profiles to be updated.

If "net" is used on the EXTRACT statement for defining doping, please note the following:

- "net doping" is not saved in Medici mesh files and is generally only saved in TIF files for the purpose of visualization with TV. Specification of "net" on the EXTRACT statement will affect the net doping of the current structure, but this information is not saved for the purpose of structure generation in subsequent simulations.
- An expression for total doping that is consistent with "net" should also be specified using the quantity "total" on another EXTRACT statement. Failure to do so will usually result in incorrect evaluation of mobility, lifetime, and other quantities that depend on total doping.

Note:
Although use of "net" on EXTRACT is not recommended, it has been retained in Medici for backward compatibility with previous releases.

Note:

If no impurities have been created for the structure using PROFILE statements or as the result of reading in a previously generated structure, Medici will try to create " N-type" and "P-type" impurities from net doping and total doping when writing a mesh file or TIF file. Except for this situation, Medici will not attempt to adjust the concentration of any existing impurities due to "net" or "total" specifications on EXTRACT statements.

Optimization

The optimization functions built into the input parser can be used for optimizing a wide variety of parameters such as the following:

- Bias voltages
- Doping profiles
- Model parameters

The following example optimizes two doping profiles in a simple 1D diode to give specific IV results:

```
LOOP OPTIMIZE
    ASSIGN NAME=DOP1 UP=1E20 LOW=2E17 N.VAL=3E18 OPTIMIZE
    ASSIGN NAME=DOP2 UP=1E17 LOW=1E14 N.VAL=1E16 OPTIMIZE
    MESH
    X.MESH WIDTH=1 N.SPACES=1
    Y.MESH WIDTH=1 N.SPACES=50
    ELECT NUM=ANODE TOP
    ELECT NUM=CATHODE BOTTOM
    PROFILE N-TYPE N.PEAK=@DOP2 UNIF
    PROFIIE P-TYPE N.PEAK=@DOP1 Y.JUNC=0.2
    SYMB NEWT CARR=2
    EXTRACT NAME=P1 EXP="@I(ANODE)" TARG=2.2E-8
        COND=" @V (ANODE) = . 5"
    EXTRACT NAME=P2 EXP=@I (ANODE) TARG=4.6E-7
        COND="@V (ANODE) = . 6"
    SOLVE V (ANODE) =0.5
    SOLVE V (ANODE)=0.6
L. END
```

where:

- The LOOP statement defines the start of the optimization loop.
- The statements between the LOOP and the L. END are repeated until the optimization is complete.
- The OPTIMIZE parameter on the LOOP statement tells the program to perform the optimization.
- The two ASSIGN statements set up the following:
- The initial values for the variables DOP1 and DOP2
- The LOWER and UPPER bounds to constrain the optimization
- Tells the program to actually optimize these variables via the OPTIMIZE parameter
- The two PROFILE statements make use of the optimized doping values via the DOP1 and DOP2 assigned used as the values for CONC.
- The two EXTRACT statements are used to extract the anode currents into variables P1 and P2.

At the same time the EXTRACT statement defines the TARGET values for the optimization.

- The program then tries to adjust DOP1 and DOP2 so that the extracted anode currents match the targets ($2.2 \mathrm{e}-8$ and $4.6 \mathrm{e}-7$).

Optimization Guidelines

Device simulation and optimization can be a lengthy process. Since both device simulation and optimization are highly non-linear processes there is no guarantee that the optimization will succeed. To get the most from the optimization, Synopsys TCAD recommends the following guidelines.

Parameter Selection

Initial Guess and

 Limits
Examining the

 ResultsTerminating the Process

- Optimize as few parameters as possible.
- While the EXTRACT statement can optimize up to 20 parameters at once, a practical upper limit is about three or four.
- If possible, break a complex optimization up into several smaller optimizations.
- For example, for a MOSFET, you may want to first optimize mobility parameters which effect the forward region and then separately optimize band-toband tunneling parameters in the reverse region.
- Carefully choose the initial guess and limits.
- Use the UPPER and LOWER parameters to constrain the solution to values which should be close to the true solution.

The optimizer can become easily confused if the initial guess is far from the true solution. The reason is that the optimizer only finds local minima. If a local minimum lies between the initial guess point and the true solution the optimizer finds the local minimum, not the true solution. In a solution space of several variables, there may be a great many local minima, but only one true solution.

In general, picking many parameters, using randomly chosen initial values and letting the simulator "sort them out" does not work.

- Carefully examine the results of the optimization.

The minimum found is not guaranteed to give a good fit and even if it does, the parameter set that was found may not be unique or the best set. The parameters which give the best fit may not be the best choices from the standpoint of producing predictive simulations. This is particularly true if a large number of parameters are optimized.

The following two parameters determine when the optimization process terminates.

- TARTOL is the absolute tolerance and the optimization stops as soon as the error becomes less than TARTOL percent.
- TARREL stops the optimization when the error between two consecutive optimization steps becomes less than TARREL.
The second limit is needed since in general the bottom of a minima is not at zero. At the bottom of a minima, however, the error stops changing and TARREL terminates the process.

Simple Extraction

The EXTRACT statement can be used for the following "simple" processes:

- To integrate concentrations over a specified cross-section of a device for net carrier, net charge, electron, and hole.
- To extract the charge on part of an electrode, as well as the current through that part. This is useful for capacitance studies, in conjunction with the difference mode on the LOAD statement.
- The current flow across the boundary between two adjacent regions can be extracted by using the REGIONS parameter. The resistance of a cross-sectional structure, for instance a diffused line, can also be extracted.
- Ionization integrals for electrons and holes are computed by using the IONIZATI parameter. Ionization integrals are computed along potential gradient paths initiated at nodes lying in the rectangular region defined by the parameters X.MIN, X. MAX, Y. MIN, and Y.MAX. The output consists of the maximum ionization integral for both electron and holes, the peak field along the path that produced the maximum ionization integral, and the location of the peak field along this path.

The above extracted information can be written to a formatted output file by specifying the OUT FILE parameter. To write the data in a TWB format, the TWB parameter should also be specified. In this case, default names for the various quantities will be used as indicated in the table below. A user selected name can be used instead by specifying the NAME parameter.

Table 3-2 Default Names for Extracted Quantities in TWB Files

Parameter	TWB Name	Definition
NET. CHAR	Q_net	integrated net charge
NET. CARR	N_carr	integrated net carriers
ELECTRON	N_elec	integrated electron concentration
HOLE	N_hole	integrated hole concentration
RECOMBIN	UA	integrated recombination rate
IONIZATI	A_max	maximum ionization integral
RESISTAN	R_t	total (electron and hole) resistance of cross-sec- tion
N.RESIST	R_n	electron resistance of cross-section

Parameter	TWB Name	Definition
P.RESIST	R_p	hole resistance of cross-section
METAL.CH	Q_cont	charge on contact
N.CURREN	I_n	electron current through contact or region
P.CURREN	I_p	hole current through contact or region
II.GENER	GA_ii	integrated impact ionization generation rate
SHEET.RE	R_sheet	total sheet resistance (sheet resistance of top "layer" only if TOP is specified)

Extraction of MOS Device Parameters

Various parameters associated with MOS devices can be extracted by selecting MOS .PARA. If an I-V log file is available, or if one is specified with IN FILE, the program attempts to extract information such as threshold voltage and subthreshold slope. The program will look for electrodes that have names "gate" and "drain." If these names are not available for the device structure, then you must specify the electrode names that correspond to the gate and drain using the GATE and DRAIN parameters, respectively.

If a valid Medici device structure is available, the program attempts to extract the MOS channel length from it. For this purpose, the channel length is defined as the distance between the source-channel and drain-channel metallurgical junctions at the semiconductor-insulator interface.

For example:

```
EXTRACT MOS.PARA IN.FILE=GATE.IVI
```

An example of the output produced by this statement is shown below:

```
MOS Parameter Extraction
file: GATE.IVL
number of data values: 11
first point: Vg= 0. , Vd= 0.1000, Id= 8.8635E-12
last point: Vg= 2.000, Vd= 0.1000, Id= 8.2236E-06
    S_lin (linear slope): 5.5002E-06 (A/um-V) at Vg= 0.8000 (V)
Vth (intercept) : 0.3621 (V) from Vg= 0.8000 (V)
Vth_sat (intercept) : 0.2186 (V) from Vg= 0.6000 (V)
S_sub (subthr slope): 81.76 (mV/dec) at Vg= 0.2000 (V)
```


Predefined Quantities in Expressions

Expressions follow the general rules set forth in "Numerical Expressions" p. 3-5. The following predefined quantities are available for use in calculations. These quantities allow access to the simulation structure and the solution process.

The special variables are accessed in parameter expressions by prefixing the variable name with an at sign "@" in the same way as normal assigned variables. Some of the quantities are writable meaning that the value currently in use by the simulator can be altered. For example, you can create new initial guesses by altering n, p, or pot. Footnotes are at the end of the table.

Note:

In addition to the predefined quantities listed below, quantities that were originally defined on the PROFILE statement using the IMPURITY or ОTHER parameters can also be used in expressions by prefixing their names with "@". The IMPURITY and OTHER quantities are also writable.

Table 3-3 Predefined Quantities Used in Calculations

Table 3-3 Predefined Quantities Used in Calculations (Continued)

Name	Quantity	Units	Writable?
pot	Node potential	Volts	Yes
n	Node electron conc	\#/cm ${ }^{3}$	Yes
p	Node hole conc	\#/cm ${ }^{3}$	Yes
tn	Node electron temp.	Kelvin	Yes
tp	Node hole temp	Kelvin	Yes
tl	Node Lattice temp	Kelvin	Yes
jnm	Electron current density	Amps/cm ${ }^{2}$	No
jpm	Hole current density	Amps/cm ${ }^{2}$	No
jdm	Displacment current density	Amps/cm ${ }^{2}$	No
jtm	Total current density	Amps/cm ${ }^{2}$	No
ii.gener	Impact Ionization rate	\#/cm ${ }^{3} / \mathrm{sec}$	No
recomb	Recombination rate (for unequal electron and hole recombination, recombin is the same as n.recomb)	\#/cm ${ }^{3} / \mathrm{sec}$	No
n.recomb	Electron recombination rate	\#/cm ${ }^{3} / \mathrm{sec}$	No
p.recomb	Hole recombination rate	\#/cm ${ }^{3} / \mathrm{sec}$	No
em	Electric field	Volts/cm	No
bb.gener	Band-to-band generation rate	\#/cm ${ }^{3} / \mathrm{sec}$	No
trap.occ	Trap occupation	\#/cm ${ }^{3}$	No
qfn	Electron quasi Femi level	eV	No
qfp	Hole quasi Fermi level	eV	No
conduc.b	Conduction band energy	eV	No
valenc.b	Valence band energy	eV	No
vacuum	Vacuum level	eV	No
Nc	Conduction band density of states	\#/cm ${ }^{3}$	No
Nv	Valence band density of states	\#/cm ${ }^{3}$	No
i(i)	Terminal current ${ }^{(3)}$	Amps/micron	No
va(i)	Applied voltage at the terminal	Volts	No
v(i)	Terminal Voltage	Volts	No
he(i)	Hot electron gate current at term.	Amps/micron	No
fe(i)	Fowler Nordheim or Direct Tunneling current at term.	Amps/micron	No
q(i)	Terminal charge	Coul./micron	No
freq	AC analysis frequency	Hz	No
g(i,j)	AC small signal conductance	Mhos/micron	No

Table 3-3 Predefined Quantities Used in Calculations (Continued)

Name	Quantity	Units	Writable?
$\mathbf{y}(\mathbf{i}, \mathbf{j})$	Y parameter at terminal	Mhos/micron	No
$\mathbf{c}(\mathbf{i}, \mathbf{j})$	AC small signal capacitance	Farads/micron	No
sr(i,j)	Real S parameter ${ }^{(4)}$	none	No
si(i,j)	Imaginary S parameter ${ }^{(4)}$	none	No
ve(i)	Circuit node voltage	Volts	No
ic(i)	Circuit inductor/voltage src. current	Amps	No
$\operatorname{vcr}(\mathbf{i})$	AC node voltage, real part	Volts	No
icr(i)	AC ind/voltage src. current (real)	Amps	No
vci(i)	AC node voltage imaginary part	Volts	No
ici(i)	AC ind/voltage src. current (Imag)	Amps	No
array 1	Scratch array 1	-	Yes
array 2	Scratch array 2	-	Yes
array 3	Scratch array 3	-	Yes
ii.n.int	Electron ionization integral (synonym: ii.integ)	-	No
ii.p.int	Hole ionization integral	-	No
jnx	x-component elect. curr density	$\mathrm{A} / \mathrm{cm}^{2}$	No
jny	y-component elect. curr density	$\mathrm{A} / \mathrm{cm}^{2}$	No
jpx	x -component hole curr density	$\mathrm{A} / \mathrm{cm}^{2}$	No
jpy	y-component hole curr density	$\mathrm{A} / \mathrm{cm}^{2}$	No
ex	x-component Electric field	V/cm	No
ey	y-component Electric field	V/cm	No
nie	Intrinsic Carrier concentration	\#/cm ${ }^{3}$	No
net.carr	net carriers	\#/cm ${ }^{3}$	No
net.char	net charge	\#/cm ${ }^{3}$	No
gin	Hot electron injection current	A/micron	No
gip	Hot hole injection current	A/micron	No
x.mole	mole Fraction	none	No
Lchan	Channel length	microns	No
Vth	Threshold voltage ${ }^{(5)}$	Volts	No
S_lin	Linear region slope ${ }^{(5)}$	A/micron-V	No
S_sub	Subthreshold region slope ${ }^{(5)}$	$\mathrm{mV} /$ decade	No
Vg_lin	V_{g} where $I_{d}=$ user specified value (using linear interpolation) ${ }^{(6)}$	Volts	No

Table 3-3 Predefined Quantities Used in Calculations (Continued)

Name	Quantity	Units	Writable?
Vg_log	V $_{g}$ where I_{d} = user specified value using logarithmic interpolation) $^{(6)}$	Volts	No
Vd_lin	V_{d} where I_{d} = user specified value (using linear interpolation) $^{(7)}$	Volts	No
Vd_log	V_{d} where I_{d} = user specified value using logarithmic interpolation) $^{(7)}$	Volts	No
Vth_sat	Saturation region intercept. ${ }^{(8)}$	Volts	No

Table Notes:
(1) This is the case for steady state simulations. In the case of time-dependent simulations, the rate is integrated over the duration of the simulation and a rate in \#/cm ${ }^{3}$ is used.
(2) This quantity gives the perpendicular distance to the interface associated with each interface node. If the node is not an interface node, 0 is returned. Refer to the section on the TRAPS statement for use.
(3) The " i " and " j " arguments used with the names of terminal characteristics represent valid electrode names. If "drain" and "gate" are valid electrode names in a simulation, then "c(gate,drain)" could be used in an expression.
(4) Only the real and imaginary parts of $S(1,1), S(1,2), S(2,1), S(2,2)$ may be used in expressions.
(5) An appropriate set of $\mathrm{I}_{\mathrm{d}}-\mathrm{V}_{\mathrm{g}}$ data must be available to extract this quantity. Vth is defined as the intercept with the V_{g} axis from the point of maximum slope.
(6) This quantity is only available if an appropriate set of $\mathrm{I}_{\mathrm{d}}-\mathrm{V}_{\mathrm{g}}$ data is available and if a previous EXTRACT statement specified "MOS.PARA

I . DRAIN=<n>"

(7) This quantity is only available if an appropriate set of $\mathrm{I}_{\mathrm{d}}-\mathrm{V}_{\mathrm{d}}$ data is available and if a previous EXTRACT statement specified "MOS.PARA I. DRAIN $=$ < $\mathrm{n}>$ "
(8) This quantity is only available if $\mathrm{I}_{\mathrm{d}}-\mathrm{V}_{\mathrm{g}}$ data is available for which $\mathrm{V}_{\mathrm{d}}=\mathrm{V}_{\mathrm{g}}$ or if $\mathrm{V}_{\mathrm{d}}=$ constant. Vth_sat is defined as the intercept with the V_{g} axis from the point of maximum slope of the $\sqrt{I_{d}}-\mathrm{V}_{\mathrm{g}}$ curve.

Gradients of

 Predefined QuantitiesIt is also possible to use gradients of the spatially varying predefined quantities in expressions. The available gradient operations take on the following functional forms (where @ name represents one of the predefined quantities):

PRINT

The PRINT statement prints specific quantities at points within a defined area of a device.

PRINT

```
    [ { ( [X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>] )
        ( [IX.MIN=<n>] [IX.MAX=<n>] [IY.MIN=<n>] [IY.MAX=<n>] )
        }
    ]
    [POINTS] [ELEMENTS] [GEOMETRY] [INTERFAC] [ IMPURITY [INCOMPLE] ]
    [OTHER] [SOLUTION] [ CURRENT [ {X.COMPON | Y.COMPON} ] ]
    [E.FIELD] [NET.CHAR] [RECOMBIN] [II.GENER] [II.EJG] [CONC.DEP]
    [BB.GENER] [BB.EG] [TEMPERAT] [BAND.STR] [PHOTOGEN]
Circuit Analysis AAM Parameters
    [STRUCTUR=<c>]
```

Parameter	Type	Definition	Default	Units
X.MIN	number	The minimum x coordinate of the area which defines the print region.	The minimum x location in the device structure.	microns
X.MAX	number	The maximum x coordinate of the area which defines the print region.	The maximum x location in the device structure.	microns
Y.MIN	number	The minimum y coordinate of the area which defines the print region.	The minimum y location in the device structure.	microns
Y. MAX	number	The maximum y coordinate of the area which defines the print region.	The maximum y location in the device structure.	microns
IX.MIN	number	The minimum x node index of the area which defines the print region.	1	none
IX.MAX	number	The maximum x node index of the area which defines the print region.	The maximum x node number in the device structure.	none
IY.MIN	number	The minimum y node index of the area which defines the print region.	1	none
IY.MAX	number	The maximum y node index of the area which defines the print region.	The maximum y node number in the device structure.	none
POINTS	logical	Specifies that node information is printed. This includes the node coordinates, impurity concentration, interface charge, region number, material type index, and electrode connections.	false	

Parameter	Type	Definition	Defaul
ELEMENTS	logical	Specifies that element information is printed. This includes element number, node numbers of the element's vertices, and material number.	false
GEOMETRY	logical	Specifies that geometrical information for each element is printed. This includes both Poisson and current-continuity coupling coefficients and the area associated with each node of the element.	false
INTERFAC	logical	Specifies that information for interface nodes is printed. This includes the amount of fixed charge, densities of fast interface traps, and insulator charge (at insulator nodes).	false
IMPURITY	logical	Specifies that nodal values of impurity concentration for all impurities present in the structure are printed. Net and total concentrations are also printed.	false
INCOMPLE	logical	Specifies that impurity concentration values that are printed include the effect of the incomplete ionization of impurities model, if this model was specified on MODELS statement.	false
OTHER	logical	Specifies that nodal values of all ОTHER quantities present in the structure are printed.	false
SOLUTION	logical	Specifies that information for the present solution is printed. This includes potential, carrier concentrations, and quasiFermi potentials.	false
CURRENT	logical	Specifies that the magnitude of electron, hole, conduction, displacement, and total current density for the present solution is printed.	false
X.COMPON	logical	Specifies that the x component of current density is printed instead of the magnitude.	false
Y.COMPON	logical	Specifies that the y component of current density is printed instead of the magnitude.	false
E.FIELD	logical	Specifies that the electric field for the present solution is printed. This includes location, magnitude, and x and y components.	false
NET . CHAR	logical	Specifies that net charge for the present solution is printed. synonym: QU	false
RECOMBIN	logical	Specifies that recombination for the present solution is printed.	false
II.GENER	logical	Specifies that the total generation rate due to impact ionization is printed at each node of the simulation mesh.	false
II.EJG	logical	Specifies that information pertaining to the calculation of impact ionization generation for each element is printed. This information includes the electric field parallel to the current flow for the element, the current density magnitude for the element, and the impact ionization generation rate for the element.	false
CONC. DEP	logical	Specifies that concentration-dependent mobility and lifetime values at each node are printed.	false
BB. GENER	logical	Specifies that the total generation rate due to band-to-band tunneling is printed at each node of the simulation mesh.	false

Parameter	Type	Definition	Defaul
BB.EG	logical	Specifies that information pertaining to the calculation of band-to-band tunneling generation for each element is printed. This information includes the electric field parallel to the current flow for the element, and the band-to-band tunnel- ing generation rate for the element.	false
TEMPERAT	logical	Specifies that the lattice, electron and hole temperature at each grid point is printed.	false
BAND.STR	logical	Specifies that various parameters related to the band structure are printed. These include node number, region name, elec- tron affinity, the band structure parameter, the energy gap, the conduction and valence band densities, and the intrinsic car- rier concentration.	false
PHOTOGEN	logical	Specifies that photogeneration rates are printed at each node of the simulation mesh.	false

Circuit Analysis Parameters

Selects the device for which the information is printed. This parameter is only used with the Circuit Analysis AAM.

char

Default
Units

STRUCTUR

The PRINT statement prints specific quantities at points within a defined area of a device. Information is printed for all nodes (for nodal quantities) or for all elements (for elemental quantities) within the selected area of the device.

The region of interest may be selected by specifying either the bounding device coordinates or by specifying the bounding nodal indices. If nodal indices are used the mesh must be an unrefined rectangular mesh. The default area is the entire device.

PLOT.1D
The PLOT . 1D statement plots a specific quantity along a line segment through the device, or plots terminal characteristics from data accumulated in a log file or read in from a previous \log file.

PLOT.1D
Distance Plot Quantities
i (i potentia | gfn | gfr | Valenc.b | Conduc.b | vacuum
| E.field | ARRAY1 | ARRAY2 | ARRAY3 | OTHER=<c>
| (\{DOPING | N.tOTAL | DONORS | ACCEPTOR | IMPURITY=<C>\}
[INCOMPLE]
)
electron | holes | nie | net.char | net.carr J.conduc | J.electr | J.hole | J.displa | J.total recombin | n.recomb | p.recomb | II.gener | bb.gener Q.fix | (\{TRAPS | TRAP.OCC\} [LEVEL=<n>]) (PHOTOGEN [WAVE.NUM=<n>]) | N.MOBILI | P.MOBILI | SIGMA ele.temp | hol.temp | ele.vel | hol.vel | J.efield G.gAMN | G.gAMP | G.gAMT | G.IN | G.ip | G.it QPOTN | QPOTP | QF | S.n | S.P | Q.insula (\{N.ACCEPT | P.ACCEPT | N.DONOR | P.DONOR\} [PER.CM2]) QPOTN | QPOTP | SBt.ngen | Sbt.pGen

Lattice Temperature AAM Parameters
LAT.TEMP

Heterojunction Device AAM Parameters
| x.mole
\}
AC Small-Signal Analysis Quantity Parameters
[\{AC.REAL | AC.IMAG | AC.MAGN | AC.phAS\}]
Line Plot Parameters
[\{X.COORD | Y.COORD\}] [\{X.COMPON | Y.COMPON\}] [HORZ.OFF=<n>] f ([X.START=<n>] [Y.START=<n>] [X.END=<n>] [Y.END=<n>])
| ([INTERFAC [[MATERIAL=<c> | REGION=<C>\}] [IX.MIN=<n>] [IX.MAX=<n>] [IY.MIN=<n>] [IY.MAX=<n>]]
)
\}
[\{FIND.MIN | FIND.MAX\} [SEMICOND] [INSULATO] [FIND.DIS=<n>]])

Terminal Characteristics Plot Parameters
| (X.AXIS=<C> Y.AXIS=<C> [ORDER] [IN.FILE=<C>]
[X.MIN=<n>] [X.MAX=<n>] [CONDITIO=<c>]
)
\}
(PLOT.1D statement continued on next page)

```
(PLOT.1D statement continued from previous page)
Plot Controls
    [ SPLINE [NSPLINE=<n>] ]
    [LEFT=<n>] [RIGHT=<n>] [BOTTOM=<n>] [TOP=<n>] [UNCHANGE]
    [ {Y.LOGARI | S.LOGARI | INTEGRAL} ] [ABSOLUTE] [NEGATIVE]
    [CLEAR] [AXES] [LABELS] [MARKS] [TITLE=<C>] [T.SIZE=<n>]
    [X.OFFSET=<n>] [X.LENGTH=<n>] [X.SIZE=<n>] [X.LOGARI]
    [Y.OFFSET=<n>] [Y.LENGTH=<n>] [Y.SIZE=<n>]
    [CURVE] [ {SYMBOL=<n> | POINTS} ] [C.SIZE=<n>]
    [LINE.TYP=<n>] [COLOR=<n>] [DEVICE=<C>] [PAUSE]
    [PLOT.OUT=<C>] [PLOT.BIN=<C>] [PRINT] [OUT.FILE=<C>]
    [TIMESTAM [TIME.SIZ=<n>] ]
Circuit Analysis AAM Parameters
    [STRUCTUR=<C>]
```

Parameter	Type	Definition	Defa
Distance Plot Quantities			
potentia	logical	Specifies that midgap potential in volts is plotted versus distance along the specified line through the device.	false
QFN	logical	Specifies that the electron quasi-Fermi potential in volts is plotted versus distance along the specified line through the device.	false
QFP	logical	Specifies that the hole quasi-Fermi potential in volts is plotted versus distance along the specified line through the device.	false
valenc.b	logical	Specifies that the valence band potential in volts is plotted versus distance along the specified line through the device.	false
conduc. B	logical	Specifies that the conduction band potential in volts is plotted versus distance along the specified line through the device.	false
vacuum	logical	Specifies that the vacuum potential in volts is plotted versus distance along the specified line through the device.	false
E.field	logical	Specifies that the magnitude of electric field in volts per centimeter is plotted versus distance along the specified line through the device.	false
ARRAY1	logical	Specifies that the user generated array number 1 is to be plotted along the specified line. Refer to the EXTRACT statement for more information.	false
ARRAY2	logical	Specifies that the user generated array number 2 is to be plotted along the specified line. Refer to the EXTRACT statement for more information.	false
ARRAY3	logical	Specifies that the user generated array number 3 is to be plotted along the specified line. Refer to the EXTRACT statement for more information.	false
Other	char	The name of an OTHER quantity to plot as a function of distance along the specified line through the device.	none

Parameter	Type	Definition	Defau
DOP ING	logical	Specifies that the net impurity concentration in number per cubic centimeter is plotted versus distance along the specified line through the device. The net impurity concentration is the donor impurity concentration minus the acceptor impurity concentration.	false
N. TOTAL	logical	Specifies that the total impurity concentration in number per cubic centimeter is plotted versus distance along the specified line through the device.	false
DONORS	logical	Specifies that the total donor concentration in number per cubic centimeter is plotted versus distance along the specified line through the device.	false
ACCEPTOR	logical	Specifies that the total acceptor concentration in number per cubic centimeter is plotted versus distance along the specified line through the device.	false
IMPURITY	char	The name of an impurity to plot in number per cubic centimeter as a function of distance along the specified line through the device.	none
INCOMPLE	logical	Specifies that the effect of the incomplete ionization of impurites model is taken into account (if this model was specified on the MODELS statement) when plotting impurity concentrations.	false
ELECTRON	logical	Specifies that electron concentration in number per cubic centimeter is plotted versus distance along the specified line through the device.	false
HOLES	logical	Specifies that hole concentration in number per cubic centimeter is plotted versus distance along the specified line through the device.	false
NIE	logical	Specifies that effective intrinsic carrier concentration in number per cubic centimeter is plotted versus distance along the specified line through the device.	false
NET. CHAR	logical	Specifies that the net charge concentration in number per cubic centimeter is plotted versus distance along the specified line through the device. The net charge concentration is the sum of the donor impurity concentration and hole concentration minus the sum of the acceptor impurity concentration and electron concentration plus the concentration of any trapped charge.	false
NET. CARR	logical	Specifies that the net carrier concentration in number per cubic centimeter is plotted versus distance along the specified line through the device. The net carrier concentration is the hole concentration minus the electron concentration.	false
J.CONDUC	logical	Specifies that conduction current in amps per square centimeter is plotted versus distance along the specified line through the device.	false
J.ELECTR	logical	Specifies that electron current in amps per square centimeter is plotted versus distance along the specified line through the device.	false
J.HOLE	logical	Specifies that hole current in amps per square centimeter is plotted versus distance along the specified line through the device.	false
J.DISPLA	logical	Specifies that displacement current in amps per square centimeter is plotted versus distance along the specified line through the device.	false
J.TOTAL	logical	Specifies that total current in amps per square centimeter is plotted versus distance along the specified line through the device.	false
RECOMBIN	logical	Specifies that net recombination in number per cubic centimeter per second is plotted versus distance along the specified line through the device. For unequal electron and hole recombination, RECOMBIN is the same as N. RECOMB.	false

Parameter	Type	Definition	Default
N.RECOMB	logical	Specifies that net electron recombination in number per cubic centime- ter per second is plotted versus distance along the specified line through the device.	false

Parameter	Type	Definition	Defau
G. GAMT	logical	Specifies that the probability per unit length that an electron or hole (the sum of the electron and hole probabilities) is injected into the oxide is plotted versus distance along the specified line through the device.	false
G.IN	logical	Specifies that hot electron injection current initiated from each point in amps/micron is plotted versus distance along the specified line through the device.	false
G. IP	logical	Specifies that hot hole injection current initiated from each point in $\mathrm{amps} /$ micron is plotted versus distance along the specified line through the device.	false
G.IT	logical	Specifies that total hot carrier injection current initiated from each point in amps/micron is plotted versus distance along the specified line through the device.	false
QPOTN	logical	Specifies that the electron quantum potential from the MLDA model is plotted versus distance along the specified line through the device.	false
QPOTP	logical	Specifies that the hole quantum potential from the MLDA model is plotted versus distance along the specified line through the device.	false
QF	logical	Specifies that fixed interface charge in \#/cm ${ }^{2}$ is plotted versus distance along the specified line through the device.	false
S.N	logical	Specifies that the electron surface recombination velocity in $\mathrm{cm} / \mathrm{sec}$ is plotted versus distance along the specified line through the device.	false
S.P	logical	Specifies that the hole surface recombination velocity in $\mathrm{cm} / \mathrm{sec}$ is plotted versus distance along the specified line through the device.	false
Q.INSULA	logical	Specifies that insulator fixed charge in $\# / \mathrm{cm}^{3}$ is plotted versus distance along the specified line through the device.	false
N. ACCEPT	logical	Specifies that the interface trapped charge density for electron acceptors in $\# / \mathrm{cm}^{2} / \mathrm{eV}$ is plotted versus distance along the specified line through the device. If the parameter PER.CM2 is specified, then this quantity will include the appropriate energy factor and will be plotted in units of \#/cm ${ }^{2}$.	false
P. ACCEPT	logical	Specifies that the interface trapped charge density for hole acceptors in $\# / \mathrm{cm}^{2} / \mathrm{eV}$ is plotted versus distance along the specified line through the device. If the parameter PER. CM2 is specified, then this quantity will include the appropriate energy factor and will be plotted in units of \#/ cm^{2}.	false
N. DONOR	logical	Specifies that the interface trapped charge density for electron donors in $\# / \mathrm{cm}^{2} / \mathrm{eV}$ is plotted versus distance along the specified line through the device. If the parameter PER. CM2 is specified, then this quantity will include the appropriate energy factor and will be plotted in units of \#/ cm^{2}.	false
P.DONOR	logical	Specifies that the interface trapped charge density for hole donors in \#/ $\mathrm{cm}^{2} / \mathrm{eV}$ is plotted versus distance along the specified line through the device. If the parameter PER. CM2 is specified, then this quantity will include the appropriate energy factor and will be plotted in units of \#/ cm^{2}.	false
PER.CM2	logical	Specifies that fast interface quantities are plotted in units of \#/cm ${ }^{2}$ instead of \#/cm ${ }^{2} / \mathrm{eV}$.	false
SBT. NGEN	logical	Specifies that the electron generation rate from the SBT model is plotted versus distance along the specified line through the device.	false

Parameter	Type	Definition
SBT . PGEN	logical	Specifies that the hole generation rate from the SBT model is plotted versus distance along the specified line through the device.

Default
false
false tance along the specified line through the device. This parameter is only used with the Lattice Temperature AAM.

Heterojunction Device AAM Parameters

Parameter	Type	Definition	Default	Units
X.END	number	The x location of the final point of the line segment along which the specified quantity is plotted. synonym: B.x	X.START, if specified; otherwise the maximum x coordinate in the device structure	microns
Y.END	number	The y location of the final point of the line segment along which the specified quantity is plotted. synonym: B. Y	Y. START, if specified; otherwise the maximum y coordinate in the device structure	microns
INTERFAC	logical	Specifies that the quantity of interest is plotted along an interface. By default, all interfaces between semiconductors and insulators are considered. The parameters MATERIAL, REGION, IX.MIN, IX.MAX, IY. MIN and IY. MAX can be used to select specific interfaces.	false	
MATERIAL	char	The material or materials that make up the interface when INTERFAC is specified. If one material is specified, interfaces between this material and all other materials are considered. If two materials are specified (enclosed in parentheses and separated with a comma), then only interfaces between these two materials are considered.	none	
REGION	char	The region or regions that make up the interface when INTERFAC is specified. If one region is specified, interfaces between this region and all other regions are considered. If two regions are specified (enclosed in parentheses and separated with a comma), then only interfaces between these two regions are considered.		
IX.MIN	number	The mininum x coordinate of the bounding box that encloses the interface of interest when INTERFAC is specified.	The minimum x coordinate in the device structure.	microns
IX. MAX	number	The maxinum x coordinate of the bounding box that encloses the interface of interest when INTERFAC is specified.	The maximum x coordinate in the device structure.	microns
IY.MIN	number	The mininum y coordinate of the bounding box that encloses the interface of interest when INTERFAC is specified.	The minimum y coordinate in the device structure.	microns
IY.MAX	number	The maxinum y coordinate of the bounding box that encloses the interface of interest when INTERFAC is specified.	The maximum y coordinate in the device structure.	microns
FIND.MIN	logical	Specifies that the minimum value of the specified quantity is plotted versus distance along the specified line through the device. For each point along the specified line, the program finds the minimum value by searching along a line that passes through the point and is perpendicular to the specified line.	false	
FIND.MAX	logical	Specifies that the maximum value of the specified quantity is plotted versus distance along the specified line through the device. For each point along the specified line, the program finds the maximum value by searching along a line that passes through the point and is perpendicular to the specified line.	false	
SEMICOND	logical	Specifies that when FIND.MIN or FIND .MAX is used, the search area should include semiconductor materials.	true	
INSULATO	logical	Specifies that when FIND.MIN or FIND.MAX is used, the search area should include insulator materials.	false	

Parameter	Type	Definition
FIND.DIS	number	The maximum distance to either side of the specified line over which the search takes place when FIND.MIN or FIND.MAX is specified.

Terminal Characteristics Plot Parameters

\log file. If a \log file is available or read using the IN. FILE parameter, the choices include the following:

I-V Terminal Characteristics

$V A(<n a m e>)$	applied bias for electrode <name>
$V(<n a m e>)$	contact bias for electrode <name>
I(<name>)	total terminal current for electrode <name>
IE (<name>)	electron terminal current for electrode <name>
IH(<name>)	hole terminal current for electrode <name>
$I D(<n a m e>)$	displacement terminal current for electrode <name
$Q E$ (<name>)	total charge on electrode <name>
HE(<name>)	hot carrier injection current into electrode <name>
TIME	simulation time (transient simulations)
II	impact ionization current (integrated I.I. gener. rate)
<name>	a quantity defined with the EXTRACT statement

AC Analysis Quantities Note: Quotes are required.

" $C(\langle n i\rangle,\langle n j\rangle) "$ AC capacitance component for elect. <ni>, $\langle n j\rangle$
" $G(\langle n i\rangle,\langle n j\rangle)$ " AC conductance component for elect. $\langle n i\rangle,\langle n j\rangle$
" $Y(\langle n i\rangle,\langle n j\rangle)$ " AC admittance component for elect. $\langle n i\rangle,\langle n j\rangle$
"SR(<ni>,<nj>)" Real component of S-param. for elect. $\langle n i\rangle,\langle n j\rangle$
"SI(<ni>,<nj>)" Imag. component of S-param. for elect. 〈ni>,<nj>
FREQ AC frequency

Programmable Device AAM Quantities

FE(<name>) FN tunneling current into electrode <name>

Circuit Analysis AAM Quantities
 Circit Analys AAM Quantite

$V C(\langle n a m e\rangle)$	voltage at circuit node <name>
$I C(\langle n a m e\rangle)$	current in voltage source <name>
$V(\langle d n\rangle .\langle t n\rangle)$	voltage at electrode <tn> of device <dn>
$I(\langle d n\rangle .\langle t n\rangle)$	total current at electrode <tn> of device <dn>
$I E(\langle d n\rangle .\langle t n\rangle)$	electron current at electrode <tn> of device <dn>
$I H(\langle d n\rangle .\langle t n\rangle)$	hole urrent at electrode <tn> of device <dn>
$I D(\langle d n\rangle .\langle t n\rangle)$	displ. current at electrode <tn> of device <dn>

Circuit Analysis AAM AC Quantities Note: Quotes are required.

"VCR(<name>)" AC real voltage component for node <name>
"VCI(<name>)" AC imaginary voltage comp. for node <name>
$I C$ <name>) current in voltage source <name>
$V(\langle d n\rangle .\langle t n\rangle) \quad$ voltage at electrode $\langle t n\rangle$ of device $\langle d n\rangle$
$I(\langle d n\rangle .\langle t n\rangle) \quad$ total current at electrode $\langle t n\rangle$ of device $\langle d n\rangle$
$I E(\langle d n\rangle .\langle t n\rangle) \quad$ electron current at electrode $\langle t n\rangle$ of device $\langle d n\rangle$
$I H(\langle d n\rangle .\langle t n\rangle)$ hole urrent at electrode $\langle t n\rangle$ of device $\langle d n\rangle$
$I D(\langle d n\rangle .\langle t n\rangle)$ displ. current at electrode $\langle t n\rangle$ of device $\langle d n\rangle$

Default

The search line spans the device.

Units

microns none
X.AXIS
char The quantity used for the horizontal axis when plotting data stored in a

Optical Device AAM Quantities

$W A$	Wavelength (microns)
$I T$	Intensity (W/cm ${ }^{2}$)
$L F$	Frequency of light modulation (Hz)
$I P$	Internal photo current (Amps/micron)
$E P$	External photo current (Amps/micron)
$T R$	Transmittance at the illumination surface
$R F$	Reflectance at the illumination surface
$C E(<n a m e>)$	External collection efficiency at electrode <name>
$C I(<n a m e>)$	Internal collection efficiency at electrode <name>
$I S(<n a m e>)$	Light modulation small signal current at elec <name>
$I S R(<n a m e>)$	Real part of light modulation current at elec <name>
$I S I(<n a m e>)$	Imag. part of light modulation current at elec <name>

Lattice Temperature AAM Quantities

$T A(<n a m e>) \quad$ applied temperature for thermal electrode <name>
T (<name〉) contact temperature for thermal electrode <name>
$T F(<n a m e>) \quad$ thermal flux for thermal electrode <name>

Y.AXIS	char	The quantity used for the vertical axis when plotting data stored in a \log file. The choices are the same as given previously for the \mathbf{X}. AXIS parameter.	none
ORDER	logical	Specifies that the data points in log files are sorted by abscissa value before plotting. If \wedge ORDER is specified, the data points in the log file are plotted as they occur.	true
IN.FILE	char	The identifier for a log file containing either I-V data or AC data to be used when plotting terminal characteristics. If IN.FILE is not specified, data accumulated in the most recent \log file during the present run is used. synonym: INFILE	none

number The minimum abscissa value plotted. Data points in the log file with smaller abscissa values are ignored.
X.MAX number The maximum abscissa value plotted. Data points in the log file with higher abscissa values are ignored.

CONDITIO char Specifies a numeric expression that must evaluate to "TRUE" before data will be plotted.

Plot Controls

Default
Units

Parameter	Type	Definition	Default	Units
Left	number	The value associated with the left end of the horizontal axis.	The minimum value available.	abscissa dependent
RIGHT	number	The value associated with the right end of the horizontal axis.	The maximum value available.	abscissa dependent
воттом	number	The value associated with the bottom end of the vertical axis. synonym: MIN.VALU	The minimum value available.	ordinate dependent
TOP	number	The value associated with the top end of the vertical axis. synonym: MAX.VALU	The maximum value available.	ordinate dependent
UNCHANGE	logical	Specifies that the data is added to the previous plot. UNCHANGE has the effect of disabling CLEAR and AXES, and forces the previous axis bounds to be used for scaling. UNCHANGE can be used to plot more than one curve on the same plot.	false	
Y.LOGARI	logical	Specifies that a logarithmic vertical axis is used. synonym: LOGARITH	false	
S.LOGARI	logical	Specifies that a signed logarithmic vertical axis is used. To avoid overflow, the actual quantity plotted is given by $\operatorname{sign}(\mathrm{y}) * \log (1+\|y\|)$.	false	
INTEGRAL	logical	Specifies that the integral of the ordinate is plotted.	false	
ABSOLUTE	logical	Specifies that the absolute value of the ordinate is plotted.	false	
negative	logical	Specifies that the negative of the ordinate is plotted.	false	
Clear	logical	Specifies that the graphics display area is cleared before beginning the plot.	true	
AXES	logical	Specifies that the horizontal and vertical axes, axis labels, distance marks, and title are plotted.	true	
LABELS	logical	Specifies that axis labels are to be plotted.	true	
MARKS	logical	Specifies that distance marks are to be plotted along the plot axes.	true	
title	char	The character string to be used as the title of the plot.	The character string in the most recent TITLE statement.	
T.SIZE	number	The height of the characters in the character string used as the plot title.	0.4	cm
X.OFFSET	number	The distance by which the left end of the horizontal axis is offset from the left edge of the graphics display area.	2.0	cm
X.LENGTH	number	The length of the horizontal axis.	screen width- X. OFFSET- 1.25	cm
x.SIZE	number	The height of the characters used to label the horizontal axis.	0.25	cm
X.LOGARI	logical	Specifies that the horizontal axis is logarithmic.	false	
Y. OFFSET	number	The distance by which the bottom end of the vertical axis is offset from the bottom edge of the graphics display area.	2.0	cm
Y.LENGTH	number	The length of the vertical axis.	screen height- Y. OFFSET- 1.25	cm
Y.SIZE	number	The height of the characters used to label the vertical axis at the left edge of the plot.	0.25	cm

Parameter	Type	Definition	Default	Units
CURVE	logical	Specifies that solid or dashed line curves are to be plotted connecting the data points in the plot.	true	
SYMBOL	number	The type of centered symbol plotted at the data points in the plot. The value of this parameter may lie in the range 1 to 15 . If this parameter is not specified, the plot will not contain centered symbols. Values of this parameter are associated with the following symbol:	none	none
		1 Square		
		2 Circle		
		3 Triangle		
		4 Plus		
		5 Upper case X		
		6 Diamond		
		7 Up-arrow		
		8 Roofed upper case X		
		9 Upper case Z		
		10 Upper case Y		
		11 Curved square		
		12 Asterisk		
		13 Hourglass		
		14 Bar		
		15 Star		
POINTS	logical	Specifies that centered squares are plotted at the data points in the plot. This parameter has the same effect as specifying $\mathbf{S Y M B O L}=1$.	false	
C.SIZE	number	The size of the centered symbol used for the plot.	0.25	cm
LINE. TYP	number	The type of line used for the plot. A line type value of 1 generates a solid line plot. Line type values greater than 1 generate dashed line plots, with the dash size increasing with the value of line type.	1	none
COLOR	number	The index of the color used for the plot. The color associated with each color index is dependent upon the color graphics device that is used. This parameter has no effect if a color graphics device is not used.	1	none
DEVICE	char	The name of the graphics output device. Valid names are defined by the file mdpdev (see Chapter 1, "Plot Device Definition File—mdpdev," p. 1-14 and Appendix B: Synopsys TCAD Graphics). If the value of this parameter is "DEFAULT", the first entry in mdpdev preceded by "*" is chosen.	The last value specified or "DEFAULT"	
PAUSE	logical	Specifies that program execution pauses after the completion of all graphical output associated with this statement. The user must enter a space followed by a carriage return to continue execution.	false	
PLOT. OUT	char	The identifier for the file in which the character sequences controlling the graphics device are saved. This file may be output to the graphics device to reproduce the graphical output. This output is only available for the direct device drivers such as those used when the DEVICE parameter is HP 2648 , HP2 623, HP 7550, TEK4010, TEK4100, REGIS, or POSTSCRIPT.	<base>.dplt if the DF entry is "T" in the file $m d p d e v$	
PLOT.BIN	char	The identifier for the file in which the binary information describing the graphical output is saved.	<base>.bplt if the $\mathbf{B F}$ entry is " T " in the file $m d p d e v$	
PRINT	logical	Specifies that the data points which are plotted are also printed to the standard output file.	false	

Parameter	Type	Definition	Default	Units
out.file	char	The identifier for a formatted file to store the values of the plotted data points. synonym: outfile	none	
timestam	logical	Specifies that the date and time are to be plotted in the lower right corner of the plot. This option is not available on all computer systems.	false	
time.siz	number	The height of the characters used to plot the date and time.	0.25	cm
Circuit Analysis AAM Parameters				
Structur	char	Specifies the device to plot. This parameter is only used with the Circuit Analysis AAM.	first element	
Optical Device AAM Parameters				
wave. num	number	The identifying index for a wavelength to use for plotting РНотоGEN. The specified index must correspond to one of the wavelengths actually considered during the photogeneration ray tracing analysis. This parameter is only used with the Optical Device AAM.	Contribution due to all wavelengths are included	none

Description

See Also...
To further illustrate the РLOT .1D statement, refer to the following:

- Input file mdexl (Chapter 4, "Impurity Distribution Plots," p. 4-9)
- Input file mdexlg (Chapter 4, "Simulation of Gate Characteristics," p. 4-11)
- Input file mdexld (Chapter 4, "Simulation of Drain Characteristics," p. 4-12)
- Other examples that have graphical output

Line Plots

Plots of quantities along a specified line segment through the device require that a device structure be previously defined. This may be accomplished with a structure definition initiated by a MESH statement or by using the IN FILE parameter on the MESH statement to input a structure file generated previously.

Plots of most quantities require that a solution be present. This may be accomplished with a solution initiated by a SOLVE statement or by using a LOAD statement to input a data file generated previously by a SOLVE statement.

A line plot requires specifying the endpoints of a line segment through the device along which the specified quantity is plotted. Appropriate defaults are chosen for unspecified values of the endpoints. As an example, the following statement plots the potential horizontally through a device along the line $y=0$ microns:

```
PLOT.1D POTENTIAL Y.START=0
```

As an alternative to specifying the endpoints of a line segment, the INTERFAC parameter can be used to indicate the specified quantity should be plotted along an interface. By default, all interfaces between semiconductors and insulators are considered. The particular interface of interest can be selected by using the parameters MATERIAL, REGION, IX.MIN, IX.MAX, IY.MIN and IY.MAX.

Minimum or Maximum Quantity and Location

The PLOT . 1D statement plots the following:

- A specific quantity along a line of segments through the device (distance plots)
or
- Terminal characteristics from data accumulated in a log file or read in from a previous \log file, I-V, AC, or user-defined (arbitrary) data

For each point along the line segment, the program searches for the minimum or maximum value along a line that passes through the point and is perpendicular to the line segment.

The actual locations of the minimum or maximum can be found by specifying the PRINT parameter and examining the standard output listing. The search area can be configured to the following:

- Confined to semiconductor materials only (the default)
- Confined to insulator materials only
- Include all materials by using the parameters SEMICOND and InSULAto
- Confined to occur within a specified distance of the line segment by using the parameter FIND.DIS

Internal Plots of AC Quantities

Distance plots of quantities obtained from the results of an AC small-signal analysis can be obtained by specifying one of the parameters AC. REAL, AC. IMAG, AC. MAGN, or AC. PHAS in addition to the desired quantity (POTENTIA, ELECTRON, HOLE, ELE.TEMP, HOL.TEMP, LAT .TEMP, J. CONDUC, J. ELECT, J. HOLE, J.DISPLA, or J.TOTAL). For the current vectors, the quantity may be further qualified by specifying \mathbf{X}. COMPON or Y.COMPON.

Plots of Log File Data

Plots of data contained in log files include the following:

- I-V and transient data
- Results of AC analysis
- Optical quantities
- User-defined or arbitrary quantities.

The IN. FILE parameter is used to specify the name of a log file containing the data of interest. If IN.FILE is not specified, the program attempts to use data from the most recently opened \log file.

Log files are opened, named, and initiated using the LOG statement or, if no LOG statement is specified, a default \log file with the name <base>.ivl is created.

Axis Quantities A plot of log file data requires specifying the quantity to plot along each axis. As an example, the following statements plot the drain current of a MOSFET as a function of the drain voltage and the drain current as a function of the gate voltage:

```
PLOT.1D IN.FILE=IV.DAT Y.AXIS=I (DRAIN)
X.AXIS=V (DRAIN)
PLOT.1D IN.FILE=MOS.IVL Y.AXIS=I (DRAIN) X.AXIS=V (GATE)
```

In the above examples, the I-V data was read from log files named IV.DAT and MOS.IVL.

Circuit Analysis

AAM
With the Circuit Analysis AAM, node voltages, and the currents flowing in voltage sources are also available as plot options for the x - or y -axis as follows.

- Circuit node voltages are selected using VC(<name>), where <name> is the name of the node of interest.
- Currents in voltage sources or inductors can be selected using IC(<name>), where <name> is the name of the voltage source of interest.
- To plot the voltage or current at the terminal of a numerical device, use $V(\langle\mathrm{~d}$ name \rangle.<tname \rangle) or $I(\langle\mathrm{~d}$ name \rangle. <tname >), where $P<$ dname \rangle is the name of the Medici device and <tname> is the electrode name.

The following examples plot the voltage at circuit node 1 , the current in source $V D D$, and the current at the drain terminal of device $P 4$ respectively.

```
PLOT.1D X.AXIS=TIME Y.AXIS=VC (1)
PLOT.1D X.AXIS=TIME Y.AXIS=IC (VDD)
PLOT.1D X.AXIS=TIME Y.AXIS=I (P4.Drain)
```


Other Information

This section contains additional information important to using pLot . 1d. It includes the following:

- Disabling the clear operation
- Plotting more than one curve
- Integrating the abscissa
- Labeling
- Electric field lines

Specify ${ }^{\wedge}$ CLEAR to disable the clear operation, and leave the previous plot intact. This allows two or more independent plots to be displayed simultaneously by overriding clearing the display device when a plot is initialized.

The UNCHANGE parameter can be used to plot more than one curve on the same plot. UNCHANGE has the same effect as specifying ^CLEAR and ^AXES, and additionally forces the previous axis bounds to be used for scaling.

INTEGRAL can be used to integrate the specified function over the abscissa coordinate. If INTEGRAL is specified, the parameters X. LOGARI, Y.LOGARI, and S.LOGARI should not be specified. If INTEGRAL is specified, and either of the parameters ABSOLUTE or NEGATIVE are also specified, then the absolute value or negative, respectively, of the specified function is taken before the integration is performed.

The PLOT. 1D statement may be followed by any number of LABEL statements to facilitate placing labels in the graphical output.
E.LINE statements for plotting quantities along electric field lines may also follow PLOT .1D statements.

The PLOT. 2D statement initializes the graphical display device for twodimensional plots of device characteristics and plots device boundaries, metallurgical junctions, and depletion region edges.

```
PLOT.2D
    [BOUNDARY [REGION] ] [JUNCTION] [DEPLETIO] [LUMPED] [CON.RESI]
    [ GRID [ELEM.NUM] [NODE.NUM] [REG.NUM] [N.SIZE=<n>] [OBTUSE] ]
    [CROSSES] [FILL] [SCALE]
    [X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
    [CLEAR] [LABELS] [MARKS] [TOP.MARK] [TITLE=<C>] [T.SIZE=<n>]
    [L.BOUND=<n>] [L.JUNCT=<n>] [L.DEPLE=<n>] [L.GRID=<n>] [L.ELECT=<n>]
    [C.BOUND=<n>] [C.JUNCT=<n>] [C.DEPLE=<n>] [C.GRID=<n>] [C.ELECT=<n>]
    [X.OFFSET=<n>] [X.LENGTH=<n>] [X.SIZE=<n>]
    [Y.OFFSET=<n>] [Y.LENGTH=<n>] [Y.SIZE=<n>]
    [DEVICE=<C>] [PLOT.OUT=<C>] [PLOT.BIN=<C>] [PAUSE]
    [TIMESTAM [TIME.SIZ=<n>] ]
    Circuit Analysis AAM Parameters
    [STRUCTUR=<c>]
    Optical Device AAM Parameter
    [RAYPLOT [WAVE.NUM=<n>] ]
```

Parameter	Type	Definition	Default
BOUNDARY	logical	Specifies that the boundary of the device is to be plotted. This includes the boundary of all device regions and electrodes.	false
REGION	logical	Specifies that the boundary between regions of the same material is plotted.	True if BoUNDARY is specified.
JUNCTION	logical	Specifies that the locations of metallurgical junctions are to be plotted.	false
DEPLETIO	logical	Specifies that the locations of the edges of depletion regions are to be plotted.	false
LUMPED	logical	Specifies that schematic representations for lumped resis- tances and capacitances are plotted at each contact for which a lumped resistance or capacitance was specified.	false
CON.RESI	logical	Specifies that a schematic representation for contact resis- tance is plotted at each contact for which contact resistance was specified.	false
GRID	logical	Specifies that the simulation grid showing the boundaries of each mesh element is plotted. synonym: mESH	false
ELEM. NUM	logical	Specifies that numbers which identify the elements are plot- ted.	false
NODE. NUM	logical	Specifies that numbers which identify the nodes are plotted.	false

Parameter	Type	Definition	Default	Units
REG. NUM	logical	Specifies that the region index for each element is plotted.	false	
N.SIZE	number	The size of the numbers which are plotted if ELEM. NUM, NODE . NUM, or MAT . NUM is specified.	0.25	cm
OBTUSE	logical	Specifies that obtuse triangles in the grid structure are color filled on output devices that support this operation.	false	
CROSSES	logical	Specifies that crosses at the locations of the grid points are plotted.	false	
FILL	logical	Specifies that material regions are color filled. The colors used to fill the various material regions can be specified on the FILL statement.	false	
SCALE	logical	Specifies that the size of the plot is reduced from the specified size in either the x or y direction so that the same scale factor is used in both the x and y directions. This parameter facilitates visualization of the device in its proper aspect ratio.	false	
X.MIN	number	The x coordinate in the device coordinate system of the left edge of the display area.	The minimum x location in the device structure.	microns
X.MAX	number	The x coordinate in the device coordinate system of the right edge of the display area.	The maximum x location in the device structure.	microns
Y.MIN	number	The y coordinate in the device coordinate system of the top edge of the display area.	The minimum y location in the device structure.	microns
Y. MAX	number	The y coordinate in the device coordinate system of the bottom edge of the display area.	The maximum y location in the device structure.	microns
CLEAR	logical	Specifies that the graphics display area is cleared before beginning the plot.	true	
LABELS	logical	Specifies that axis and distance labels are plotted along the left and bottom sides of the plot.	true	
MARKS	logical	Specifies that distance marks are plotted around the plotted area.	true	
TOP . MARK	logical	Specifies that distance marks are plotted along the top boundary of the plotted area.	true	
TITLE	char	The character string to be used as the title of the plot.	The character string in the most recent TITLE statement.	
T.SIZE	number	The height of the characters in the character string used as the plot title.	0.4	cm
L. BOUND	number	The index of the line type used to plot the boundaries of the device.	1	none
L. JUNCT	number	The index of the line type used to plot metallurgical junctions.	3	none
L. DEPLE	number	The index of the line type used to plot depletion edges.	2	none

Parameter	Type	Definition	Default	Units	
L. GRID	number	The index of the line type used to plot the simulation grid.	1	none	
L. ELECT	number	The index of the line type used to plot electrodes. If a negative value is specified, only the boundary of the electrode is plotted. In this case, the electrode boundary is plotted with a line type equal to \|L . ELECT	.	4	none
C. BOUND	number	The index of the color used to plot the boundaries of the device.	1	none	
C. Junct	number	The index of the color used to plot metallurgical junctions.	1	none	
C. DEPLE	number	The index of the color used to plot depletion edges.	2	none	
C. GRID	number	The index of the color used to plot the simulation grid.	1	none	
C. ELECT	number	The index of the color used to plot electrodes.	4	none	
X.OFFSET	number	The distance by which the left edge of the boundary is offset from the left edge of the graphics display area.	2.0	cm	
X.LENGTH	number	The horizontal length of the plot.	screen width - X. OFFSET-1.25	cm	
X.SIZE	number	The height of the characters used to label the horizontal boundary at the bottom of the plot.	0.25	cm	
Y. OFFSET	number	The distance by which the bottom boundary is offset from the bottom edge of the graphics display area.	2.0	cm	
Y.LENGTH	number	The vertical height of the plot.	screen height - Y. OffSET-1.25	cm	
Y.SIZE	number	The height of the characters used to label the vertical boundary at the left edge of the plot.	0.25	cm	
DEVICE	char	The name of the graphics output device. Valid names are defined by the file prdvmdpdev (see Chapter 1, "Plot Device Definition File-mdpdev," p. 1-14 and Appendix B: Synopsys TCAD Graphics). If the value of this parameter is "DEFAULT", the first entry in prdvmdpdev preceded by "*" is chosen.	The last value specified or "DEFAULT".		
PLOT.OUT	char	The identifier for the file in which the character sequences controlling the graphics device are saved. This file may be output to the graphics device to reproduce the graphical output. This output is only available for the direct device drivers such as those used when the DEVICE parameter is HP2648, HP2 623, HP 7550, TEK4010, TEK4100, REGIS, or POSTSCRIPT.	<base>.dplt if the DF entry is "T" in the file prdvmdpdev		
PLOT.BIN	char	The identifier for the file in which the binary information describing the graphical output is saved.	<base>.bplt if the $\mathbf{B F}$ entry is "T" in the file prdvmdpdev		
PAUSE	logical	Specifies that program execution pauses after the completion of all graphical output associated with this statement. The user must enter a space followed by a carriage return to continue execution.	false		
TIMESTAM	logical	Specifies that the date and time are to be plotted in the lower right corner of the plot. This option is not available on all computer systems.	false		

Parameter	Type	Definition	Default	Units
TIME.SIZ	number	The height of the characters used to plot the date and time.	0.25	cm
Circuit Analysis AAM Parameters				
STRUCTUR	char	Specifies the device to plot. This parameter is only used with the Circuit Analysis AAM.	first element	
Optical Device AAM Parameters				
RAYPLOT	logical	Resizes the plot window for plotting optical rays. This parameter is only used with the Optical Device AAM.	false	
WAVE. NUM	number	The identifying index for a wavelength to use when plotting the ray tracing results. The specified index must correspond to one of the wavelengths actually considered during the photogeneration ray tracing analysis. This parameter is only used with the Optical Device AAM.	All wavelengths are included.	none

Description

Description

The PLOT. 2D statement initializes the graphical display device for twodimensional plots of the following:

- Device characteristics and plots device boundaries
- Metallurgical junctions
- Depletion region edges

The plot sequence may include CONTOUR, VECTOR, E.LINE, FILL, and LABEL statements to generate various plotted output. TITLE and COMMENT statements may also appear within the plot sequence.

See Also... To further illustrate the PLOT .2D statement, refer to the following:

- Input file mdexl (Chapter 4, "Generation of the Simulation Structure," p. 4-2)
- Input file mdexld (Chapter 4, "Simulation of Drain Characteristics," p. 4-12)
- Other examples that have graphical output

Disabling Clear

Disabling Clear

Specify ^CLEAR to disable the clear operation, and leave the previous plot intact. This allows two or more independent plots to be displayed simultaneously by overriding clearing the display device when a plot is initialized. This facilitates the comparison of results for different device structures or bias conditions.

Physical Device Boundaries

A plot of the physical device boundaries is obtained by specifying the BOUNDARY parameter. The locations plotted include the following:

- Outer extremities of the device structure
- Boundaries between different regions
- Electrode locations

Only those boundaries occurring within the display area are plotted.

Junctions, Depletion Regions, and Grid

The locations of metallurgical junctions are plotted if the JUNCTION parameter is specified. A metallurgical junction occurs where the net impurity concentration is zero.

The locations of the edges of depletion regions are plotted if the DEPLETIO parameter is specified. The edge of a depletion region is defined as the boundary where the majority carrier concentration equals half of the net impurity concentration.

The discretization grid used for the solutions may be plotted by using the GRID parameter.

Schematic Representations

The parameters LUMPED and CON. RESI can be used to plot schematic representations of lumped elements and contact resistance, respectively, at contacts where these quantities were specified.

The lumped element representation consists of a single resistor symbol, single capacitor symbol, or the parallel combination of a resistor and capacitor, drawn at the center of the outer boundary of the contact. The contact resistance representation consists of a single resistor symbol drawn at each node of the outer boundary of the contact.

Device Structure

Plots of the device boundaries, metallurgical junctions, or discretization grid, require that a device structure be previously defined. This may be done with a structure definition initiated by a MESH statement or by using the IN.FILE parameter on the MESH statement to input a data file generated previously.

Required Solutions

Plots of depletion edge locations or lumped element and contact resistance representations additionally require that a solution be present. This may be accomplished with a solution initiated by a SOLVE statement or by using a LOAD statement to input a data file generated previously by a SOLVE statement.

PLOT.3D
The PLOT . 3D statement is used to initialize the graphical display device for three-dimensional plots of physical quantities and defines the placement, size, and rotation of the plot axes.

```
PLOT.3D
    Plot Quantities
    { POTENTIA | QFN | QFP | VALENC.B | CONDUC.B | VACUUM
        | E.FIELD | ARRAY1 | ARRAY2 | ARRAY3 | OTHER=<C>
        | ( {DOPING | N.TOTAL | DONORS | ACCEPTOR | IMPURITY=<C>}
                [INCOMPLE]
            )
            | ELECTRON | HOLES | NIE | NET.CHAR | NET.CARR
            J.CONDUC | J.ELECTR | J.HOLE | J.DISPLA | J.TOTAL
            RECOMBIN | N.RECOMB | P.RECOMB | II.GENER | BB.GENER | PHOTOGEN
            ( {TRAPS | TRAP.OCC} [LEVEL=<N>] ) | N.MOBILI | P.MOBILI | SIGMA
            ELE.TEMP | HOL.TEMP | ELE.VEL | HOL.VEL | J.EFIELD
            G.GAMN | G.GAMP | G.GAMT | G.IN | G.IP | G.IT
            LAT.TEMP | X.MOLE
    }
AC Small-Signal Analysis Quantity Parameters
    [ {AC.REAL | AC.IMAG | AC.MAGN | AC.PHAS} ]
Plot Controls
    [X.COMPON] [Y.COMPON] [Z.MIN=<n>] [Z.MAX=<n>] [ABSOLUTE] [LOGARITH]
Device Bounds
    [X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
Viewing Parameters
    [THETA=<n>] [PHI=<n>] [X.LINES=<n>] [Y.LINES=<n>] [EQUIDIST]
Axis and Labels
    [AXES] [LABELS] [MARKS] [TITLE=<C>] [T.SIZE=<n>]
    [X.LENGTH=<n>] [Y.LENGTH=<n>] [Z.LENGTH=<n>]
    [X.LABEL=<C>] [Y.LABEL=<c>] [Z.LABEL=<C>]
    [X.SIZE=<n>] [Y.SIZE=<n>] [Z.SIZE=<n>]
Display Parameters
    [CLEAR] [FRAME] [CENTER] [FILL.VIE]
    [XV.LENGT=<n>] [XV.OFFSE=<n>] [YV.LENGT=<n>] [YV.OFFSE=<n>]
    [X.OFFSET=<n>] [Y.OFFSET=<n>]
    [DEVICE=<C>] [L.BOX=<n>] [C.BOX=<n>] [PAUSE]
    [ TIMESTAM [TIME.SIZ=<n>] ]
File Output
    [PLOT.OUT=<C>] [PLOT.BIN=<C>]
Circuit Analysis AAM Parameters
    [STRUCTUR=<c>]
```

Parameter	Type	Definition	Defau
Plot Quantities			
POTENTIA	logical	Specifies that mid-gap potential in volts is plotted over a specified cross-section of the device.	false
QFN	logical	Specifies that the electron quasi-Fermi potential in volts is plotted over a specified cross-section of the device.	false
QFP	logical	Specifies that the hole quasi-Fermi potential in volts is plotted over a specified cross-section of the device.	false
VALENC. ${ }^{\text {b }}$	logical	Specifies that the valence band potential in volts is plotted over a specified cross-section of the device.	false
CONDUC.B	logical	Specifies that the conduction band potential in volts is plotted over a specified cross-section of the device.	false
VACUUM	logical	Specifies that the vacuum potential in volts is plotted over a specified cross-section of the device.	false
E.field	logical	Specifies that the magnitude of electric field in volts per centimeter is plotted over a specified cross-section of the device.	false
ARRAY1	logical	Specifies that the user generated array number 1 is to be plotted. Refer to the EXTRACT statement for more information.	false
ARRAY2	logical	Specifies that the user generated array number 2 is to be plotted. Refer to the EXTRACT statement for more information.	false
ARRAY3	logical	Specifies that the user generated array number 3 is to be plotted. Refer to the EXTRACT statement for more information.	false
OTHER	char	The name of an OTHER quantity to plot over a specified cross-section of the device.	none
DOPING	logical	Specifies that the net impurity concentration in number per cubic centimeter is plotted over a specified cross-section of the device. The net impurity concentration is the donor impurity concentration minus the acceptor impurity concentration.	false
N. TOtal	logical	Specifies that the total impurity concentration in number per cubic centimeter is plotted over a specified cross-section of the device.	false
DONORS	logical	Specifies that the total donor concentration in number per cubic centimeter is plotted over a specified cross-section of the device.	false
ACCEPTOR	logical	Specifies that the total acceptor concentration in number per cubic centimeter is plotted over a specified cross-section of the device.	false
IMPURITY	char	The name of an impurity to plot in number per cubic centimeter over a specified cross-section of the device.	none
INCOMPLE	logical	Specifies that the effect of the incomplete ionization of impurites model is taken into account (if this model was specified on the MODELS statement) when plotting impurity concentrations.	false
ELECTRON	logical	Specifies that electron concentration in number per cubic centimeter is plotted over a specified cross-section of the device.	false
HOLES	logical	Specifies that hole concentration in number per cubic centimeter is plotted over a specified cross-section of the device.	false

Parameter	Type	Definition	Default	Units
NIE	logical	Specifies that effective intrinsic carrier concentration in number per cubic centimeter is plotted over a specified cross-section of the device.	false	
NET. CHAR	logical	Specifies that the net charge concentration in number per cubic centimeter is plotted over a specified cross-section of the device. The net charge concentration is the sum of the donor impurity concentration and hole concentration minus the sum of the acceptor impurity concentration and electron concentration plus the concentration of any trapped charge.	false	
NET. CARR	logical	Specifies that the net carrier concentration in number per cubic centimeter is plotted over a specified cross-section of the device. The net carrier concentration is the hole concentration minus the electron concentration.	false	
J. CONDUC	logical	Specifies that conduction current in amps per square centimeter is plotted over a specified cross-section of the device.	false	
J.ELECTR	logical	Specifies that electron current in amps per square centimeter is plotted over a specified cross-section of the device.	false	
J. HOLE	logical	Specifies that hole current in amps per square centimeter is plotted over a specified cross-section of the device.	false	
J. DISPLA	logical	Specifies that displacement current in amps per square centimeter is plotted over a specified cross-section of the device.	false	
J.total	logical	Specifies that total current in amps per square centimeter is plotted over a specified cross-section of the device.	false	
RECOMBIN	logical	Specifies that net recombination in number per cubic centimeter per second is plotted over a specified cross-section of the device. For unequal electron and hole recombination, RECOMBIN is the same as N. RECOMB.	false	
N. RECOMB	logical	Specifies that net electron recombination in number per cubic centimeter per second is plotted over a specified cross-section of the device.	false	
P. RECOMB	logical	Specifies that net hole recombination in number per cubic centimeter per second is plotted over a specified cross-section of the device.	false	
II. GENER	logical	Specifies that the total generation rate due to impact ionization in pairs per cubic centimeter per second is plotted over a specified cross-section of the device.	false	
BB. GENER	logical	Specifies that the total generation rate due to band-to-band tunneling in pairs per cubic centimeter per second is plotted over a specified crosssection of the device.	false	
PHOTOGEN	logical	Specifies that total photogeneration in pairs per cubic centimeter per second is plotted over a specified cross-section of the device.	false	
TRAPS	logical	Specifies that the trap density in number per cubic centimeter is to be plotted.	false	
TRAP. OCC	logical	Specifies that the filled trap density in number per cubic centimeter is to be plotted.	false	
LEVEL	number	The specific trap level to plot. If this parameter is not specified, all trap levels are summed.	none	none
N. MOBILI	logical	Specifies that the electron mobility in $\mathrm{cm}^{2} / \mathrm{V}$-s is plotted over a specified cross-section of the device.	false	

Parameter	Type	Definition	Defau
P.MOBILI	logical	Specifies that the electron mobility in $\mathrm{cm}^{2} / \mathrm{V}$-s is plotted over a specified cross-section of the device.	false
SIGMA	logical	Specifies that the conductivity in $(\mathrm{Ohm}-\mathrm{cm})^{-1}$ is plotted over a specified cross-section of the device.	false
ELE. TEMP	logical	Specifies that the electron temperature in Kelvins is plotted over a specified cross-section of the device.	false
HOL. TEMP	logical	Specifies that the hole temperature in Kelvins is plotted over a specified cross-section of the device.	false
ele.vel	logical	Specifies that the magnitude of the electron velocity in cm / s is plotted over a specified cross-section of the device.	false
HOL. VEL	logical	Specifies that the magnitude of the hole velocity in cm / s is plotted over a specified cross-section of the device.	false
J.EFIELD	logical	Specifies that the component of the electric field in the direction of current density in volts per centimeter is plotted over a specified cross-section of the device.	false
G. GAMN	logical	Specifies that the probability that an electron is injected into the oxide is plotted over a specified cross-section of the device.	false
G. GAMP	logical	Specifies that the probability that a hole is injected into the oxide is plotted over a specified cross-section of the device.	false
G. GAMT	logical	Specifies that the probability that an electron or hole (that is, the sum of the hole and electron probabilities) is injected into the oxide is plotted over a specified cross-section of the device.	false
G. IN	logical	Specifies that hot electron injection current initiated from each point in $\mathrm{amps} /$ micron is plotted over a specified cross-section of the device.	false
G.IP	logical	Specifies that hot hole injection current initiated from each point in $\mathrm{amps} /$ micron is plotted over a specified cross-section of the device.	false
G.IT	logical	Specifies that total hot carrier injection current initiated from each point in amps/micron is plotted over a specified cross-section of the device.	false
LAT. TEMP	logical	Specifies that the lattice temperature in Kelvins is plotted over a specified cross-section of the device. This parameter is only used with the Lattice Temperature AAM.	false
X.MOLE	logical	Specifies that mole fraction is plotted over a specified cross-section of the device. This parameter is only used with the Heterojunction Device AAM.	false
SBT. NGEN	logical	Specifies that the electron generation rate from the SBT model is plotted over a specified cross-section of the device.	false
SBT.PGEN	logical	Specifies that the hole generation rate from the SBT model is plotted over a specified cross-section of the device.	false
AC Small-Signal Analysis Quantity Parameters			
AC. REAL	logical	Specifies that the real part of the quantity obtained from AC analysis is plotted	false
AC.IMAG	logical	Specifies that the imaginary part of the quantity obtained from AC analysis is plotted.	false

Parameter	Type	Definition
AC.MAGN	logical	Specifies that the magnitude of the quantity obtained from AC analysis is plotted.
AC.PHAS	logical	Specifies that the phase of the quantity obtained from AC analysis is plotted. Phase is defined as atan $($ imag $(X) /$ real $(X))$, where X repre- sents the quantity to be plotted.

Default
Units

Plot Controls

X. COMPON	logical	Specifies that the x component of a vector quantity is plotted as opposed to the default magnitude.
Y. COMPON	logical	Specifies that the y component of a vector quantity is plotted as opposed to the default magnitude.
Z.MIN	number	The value of the specified quantity associated with the minimum extent of the z axis. synonym: MINIMUM
Z. MAX	number	The value of the specified quantity associated with the maximum extent of the z axis. synonym: MAXIMUM
ABSOLUTE	logical	Specifies that the absolute value of the specified quantity is to be plotted.
LOGARITH	logical	Specifies that the data axis is logarithmic. To avoid errors, the actual quantity plotted is given by $\log (\|z\|)$. synonym: z.LOGARI

Device Bounds

X.MIN	number	The horizontal distance in the device coordinate system associated with the minimum extent of the x-axis.	Minimum x location in structure.	microns
X.MAX	number	The horizontal distance in the device coordinate system associated with the maximum extent of the x -axis.	Maximum x location in structure.	microns
Y.MIN	number	The vertical distance in the device coordinate system associated with the minimum extent of the y-axis.	Minimum y location in structure.	microns
Y.MAX	number	The vertical distance in the device coordinate system associated with the maximum extent of the y-axis.	Maximum y location in structure.	microns
Viewing Parameters				
THETA	number	The angle of rotation of the plot axes about the x -axis (z into y).	50.0	degrees
PHI	number	The angle of rotation of the plot axes about the z -axis (y into x).	50.0	degrees
X.LINES	number	Specifies the number of lines to use in the x direction when interpolating from the Medici grid to the rectangular plotting grid.	automatic	none
Y.LINES	number	Specifies the number of lines to use in the y direction when interpolating from the Medici grid to the rectangular plotting grid.	automatic	none

Parameter	Type	Definition	Default	Units
EQUIDIST	logical	Specifies that the rectangular plotting grid lines are equally spaced in the x and y directions. If false, then the number of lines specified by \mathbf{X}.LINES and \mathbf{Y}.LINES is distributed throughout the rectangular plotting grid according to the density of nodes in the Medici grid.	true	
Axes and Labels				
AXES	logical	Specifies that the $\mathrm{x}-, \mathrm{y}-$, and $\mathrm{z}-\mathrm{axes}$ are to be plotted.	true	
LABELS	logical	Specifies that labels are to be plotted along the axes.	true	
MARKS	logical	Specifies that marks are to be plotted along the axes.	true	
TITLE	char	The character string to be used as the plot title.	Character string in most recent TITLE statement.	
T.SIZE	number	The height of the characters in the character string used as the plot title.	0.4	cm
X. LENGTH	number	The length of the x -axis when $\mathbf{T H E T A}=0, \mathrm{PHI}=0$.	```0.5* min(XV.LENGT, YV.LENGT)```	cm
Y. LENGTH	number	The length of the y-axis when this axis lies vertically in the viewport plane (THETA=270, $\mathbf{P H I = 0) .}$	$\begin{aligned} & 0.5 \text { * } \\ & \min (X V \text {. LENGT, } \\ & \text { YV . LENGT) } \end{aligned}$	cm
Z. LENGTH	number	The length of the z-axis when $\mathbf{T H E T A}=0, \mathrm{PHI}=0$.	$\begin{aligned} & 0.5 * \\ & \min (X V . \text { LENGT, } \\ & \text { YV. LENGT }) \end{aligned}$	cm
X. LABEL	char	Label for the x-axis.	"X (um)"	
Y.LABEL	char	Label for the y-axis.	"Y (um)"	
Z. LABEL	char	Label for the z-axis.	Label representing the plotted quantity.	
X.SIZE	number	The height of characters used to label the x -axis.	0.25	cm
Y.SIZE	number	The height of the characters used to label the y-axis.	0.25	cm
Z.SIZE	number	The height of the characters used to label the z-axis.	0.25	cm
Display Parameters				
CLEAR	logical	Specifies that the graphics display area is to be cleared before beginning the plot.	true	
FRAME	logical	Specifies that the viewport window frame is to be plotted around the plot area. synonym: VIEWPORT	true	
CENTER	logical	Specifies that the plot is to be centered in the viewport window. If the value of this parameter is false, then the top vertex of the plot is placed at the top of the viewport.	true	
FILL.VIE	logical	Specifies that the plot is to be scaled to the maximum size that fits inside the viewport window.	true	
XV.LENGT	number	The width of the viewport.	screen width - XV. OFFSE	cm

Parameter	Type	Definition	Default	Units
XV.OFFSE	number	The horizontal distance by which the left edge of the viewport is offset from the left edge of the graphics display area.	0.0	cm
YV. LENGT	number	The height of the viewport.	screen height - YV. OFFSE - 1.25	cm
YV. OFFSE	number	The vertical distance by which the bottom edge of the viewport is offset from the bottom edge of the graphics display area.	0.0	cm
X. OFFSET	number	The horizontal distance by which the plot is shifted from its default location in the viewport.	0.0	cm
Y. OFFSET	number	The vertical distance by which the plot is shifted from its default location in the viewport.	0.0	cm
DEVICE	char	The name of the graphics output device. Valid names are defined by the file prdvmdpdev (see Chapter 1, "Plot Device Definition File-mdpdev," p. 1-14 and Appendix B: Synopsys TCAD Graphics). If the value of this parameter is "DEFAULT", the first entry in prdvmdpdev preceded by "*" is chosen.	The last value specified or "DEFAULT".	
L. BOX	number	The type of line used to plot the viewport window. A line type value of 1 generates a solid line plot. Line type values greater than 1 generate dashed line plots, with the dash size increasing with the value of the line type.	1	none
C. BOX	number	The index of the color used to plot the viewport window and axes. The color associated with each color index is dependent upon the color graphics device that is used. This parameter has no effect if a color graphics device is not used.	1	none
PAUSE	logical	Specifies that program execution pauses after the completion of all graphical output associated with this statement. The user must enter a space followed by a carriage return to continue execution.	false	
TIMESTAM	logical	Specifies that the date and time are to be plotted in the lower right corner of the plot. This option is not available on all computer systems.	false	
TIME.SIZ	number	The height of the characters used to plot the date and time.	0.25	cm
File Output				
PLOT. OUT	char	The identifier for the file in which the character sequences controlling the graphics device are saved. This file may be output to the graphics device to reproduce the graphical output. This output is only available for the direct device drivers such as those used when the DEVICE parameter is HP 2648 , HP2 623, HP 7550, TEK4010, TEK4100, REGIS, or POSTSCRIPT.	<base>.dplt if the DF entry is "T" in the file prdvmdpdev	
PLOT.BIN	char	The identifier for the file in which the binary information describing the graphical output is saved.	<base>.bplt if the $\mathbf{B F}$ entry is " T " in the file prdvmdpdev	
Circuit Analysis AAM Parameters				
STRUCTUR	char	Specifies the device to plot. This parameter is only used with the Circuit Analysis AAM.	first element	

Description

The РLOT. 3D statement is used to initialize the graphical display device (such as a graphics terminal or a pen plotter) for three-dimensional plots of physical quantities. РLOT.3D defines the placement, size, and rotation of the plot axes.

This sequence is initiated with a PLOT . 3D statement and may include one or more 3D. SURFACE statements. TITLE and COMMENT statements can also appear within the three-dimensional plot sequence.

See Also... To further illustrate the PLOT . 3D statement, refer to the following input files:

- mdex7b (Chapter 8, "NPN Bipolar Junction Transistor Example," p. 8-12)
- mdex14s (Chapter 13, "SOI Drain Characteristics Example," p. 13-1)

Viewport, Plot Axes, and Rotation Angles

This section details the functions of the viewport, plot axes, and rotation angles. See Figure 3-25.

Viewport The viewport serves as a reference frame for the placement of the plot axes. The x and y axes correspond to the two-dimensional device coordinate system axes. The physical quantity specified on the PLOT. 3D statement is plotted along the z -axis.

Plot Axes and

Rotation Angle
The orientation of the plot axes with respect to the viewport plane is specified by the angles THETA and PHI. Values of zero for THETA and PHI produce a plot with the x and z axes lying in the viewport plane and the y -axis extending out of the plane, directly toward the observer. THETA and PHI can be specified to have
any positive or negative values. They are reduced modulo 360 to values between -360 and +360 degrees.

Figure 3-25 Viewport, plot axes, and rotation angles

3D. SURFACE

The 3D. SURFACE statement plots the projection of a three-dimensional view of the specified data onto a two-dimensional viewport.

3D. SURFACE

[HIDDEN] [VISIBLE] [LOWER] [UPPER] [X.LINE] [Y.LINE] [MASK] [Z.MIN=<n>] [Z.MAX=<n>] [C.AUTO] [LINE.TYP=<n>] [COLOR=<n>] [PAUSE]

Parameter	Type	Definition	Default	Units
HIDDEN	logical	Specifies that the surface lines which are hidden to the viewer by other parts of the surface to be plotted.	false	
VISIBLE	logical	Specifies that the surface lines which are visible to the viewer to be plotted.	true	
LOWER	logical	Specifies that the surface lines associated with the bottom side of the surface to be plotted.	true	
UPPER	logical	Specifies that the surface lines associated with the top side of the surface to be plotted.	true	true

Description

The 3D. SURFACE statement plots the projection of a three-dimensional view of the specified data onto a two-dimensional viewport.

See Also... To further illustrate the 3D. SURFACE statement, refer to the following input files:

- mdex7b (Chapter 8, "NPN Bipolar Junction Transistor Example," p. 8-12)
- mdex14s (Chapter 13, "SOI Drain Characteristics Example," p. 13-1)

Limitations and Plotting Combinations

The 3D. SURFACE statement may only be used within plot sequences initiated by the PLOT. 3D statement. Any combination of the following may be plotted:

- Visible and hidden lines
- Upper and lower surface lines,
- $\quad x$ and y grid lines
- Lines lying between specified minimum and maximum clipping planes

The axes, if specified to be plotted on the preceding PLOT . 3D statement, are plotted immediately following the first specified surface to be plotted. The axes are clipped to conform with the view of this first surface.

Quantity Ranges

Various ranges of the quantity being plotted can be distinguished by using multiple 3D. SURFACE statements. This is accomplished with different clipping plane values and distinct COLOR and/or LINE. TYP values for each range. Alternatively, С. АUTO can be used to obtain this type of plot automatically.

CONTOUR

```
CONTOUR
    Contour Quantities
        { POTENTIA | QFN| QFP | VALENC.B | CONDUC.B | VACUUM | E.FIELD
            | ARRAY1 | ARRAY2 | ARRAY3 | OTHER=<C>
            | ( {DOPING | N.TOTAL | DONORS | ACCEPTOR | IMPURITY=<C>}
                [INCOMPLE]
            )
            ELECTRON | HOLES | NIE | NET.CHAR | NET.CARR
            J.CONDUC
            RECOMBIN
            ( {TRAPS
                J.ELECTR | J.HOLE | J.DISPLA | J.TOTAL | FLOWLINE
                N.RECOMB | P.RECOMB | II.GENER | BB.GENER | PHOTOGEN
                TRAP.OCC} [LEVEL=<n>]) | N.MOBILI | P.MOBILI | SIGMA
            ELE.TEMP | HOL.TEMP | ELE.VEL | HOL.VEL | J.EFIELD
            G.GAMN | G.GAMP | G.GAMT | G.IN | G.IP | G.IT
            QPOTN | QPOTP
Lattice Temperature AAM Parameters
            | LAT.TEMP
Heterojunction Device AAM Parameters
            | X.MOLE
        }
AC Small-Signal Analysis Quantity Parameters
    [ {AC.real | ac.imag | ac.magn | ac.phas} ]
Contour Controls
    [MIN.VALU=<n>] [MAX.VALU=<n>] [WINDOW] [DEL.VALU=<n>] [NCONTOUR=<n>]
    [ FILL [C.START=<n>] [C.INCREM=<n>] ]
    [ABSOLUTE] [LOGARITH] [X.COMPON] [Y.COMPON]
    [LINE.TYP=<n>] [COLOR=<n>] [PAUSE]
```

Parameter Type

Default
Units

Contour Quantities

POTENTIA	logical	Specifies that contours of constant mid-gap potential in volts are plot- ted.	false
QFN	logical	Specifies that contours of constant electron quasi-Fermi potential in volts are plotted.	false
QFP	logical	Specifies that contours of constant hole quasi-Fermi potential in volts are plotted.	false

Parameter	Type	Definition	Defau
E.FIELD	logical	Specifies that contours of constant electric field magnitude in volts per centimeter are plotted.	false
ARRAY1	logical	Specifies that the user-generated array number 1 is to be plotted. Refer to the statement "EXTRACT" p. 3-180 for more information.	false
ARRAY2	logical	Specifies that the user-generated array number 2 is to be plotted. Refer to the statement "EXTRACT" p. 3-180 for more information.	false
ARRAY3	logical	Specifies that the user-generated array number 3 is to be plotted. Refer to the statement "EXTRACT" p. 3-180 for more information.	false
OTHER	char	The name of an OTHER quantity to plot contours of.	none
DOPING	logical	Specifies that contours of constant net impurity concentration in number per cubic centimeter are plotted.	false
N. TOTAL	logical	Specifies that contours of total impurity concentration in number per cubic centimeter are plotted.	false
DONORS	logical	Specifies that contours of total donor concentration in number per cubic centimeter are plotted.	false
ACCEPTOR	logical	Specifies that contours of total acceptor concentration in number per cubic centimeter are plotted.	false
IMPURITY	char	The name of an impurity to plot contours of in number per cubic centimeter.	none
INCOMPLE	logical	Specifies that the effect of the incomplete ionization of impurites model is taken into account (if this model was specified on the MODELS statement) when plotting impurity concentrations.	false
ELECTRON	logical	Specifies that contours of constant electron concentration in number per cubic centimeter are plotted.	false
HOLES	logical	Specifies that contours of constant hole concentration in number per cubic centimeter are plotted.	false
NIE	logical	Specifies that contours of constant effective intrinsic carrier concentration in number per cubic centimeter are plotted.	false
NET. CHAR	logical	Specifies that contours of constant net charge concentration in number per cubic centimeter are plotted.	false
NET. CARR	logical	Specifies that contours of constant net carrier concentration in number per cubic centimeter are plotted.	false
J. CONDUC	logical	Specifies that contours of constant conduction current in amps per square centimeter are plotted.	false
J. ELECTR	logical	Specifies that contours of constant electron current in amps per square centimeter are plotted.	false
J. HOLE	logical	Specifies that contours of constant hole current in amps per square centimeter are plotted.	false
J.DISPLA	logical	Specifies that contours of constant displacement current in amps per square centimeter are plotted.	false
J. TOTAL	logical	Specifies that contours of constant total current in amps per square centimeter are plotted.	false
FLOWLINE	logical	Specifies that current flow lines are plotted.	false

Parameter	Type	Definition	Default	Units
recombin	logical	Specifies that contours of constant net recombination in number per cubic centimeter per second are plotted. For unequal electron and hole recombination, RECOMBIN is the same as \mathbf{N}. RECOMB.	false	
n. RECOMB	logical	Specifies that contours of constant net electron recombination in number per cubic centimeter per second are plotted.	false	
P.RECOMB	logical	Specifies that contours of constant net hole recombination in number per cubic centimeter per second are plotted.	false	
II. GENER	logical	Specifies that contours of constant total generation rate due to impact ionization in pairs per cubic centimeter per second are plotted.	false	
bb. Gener	logical	Specifies that contours of constant band-to-band tunneling generation rate in pairs per cubic centimeter per second are plotted.	false	
PHOTOGEN	logical	Specifies that contours of constant total photogeneration in pairs per cubic centimeter per second are plotted.	false	
TRAPS	logical	Specifies that constant trap density contours in number per cubic centimeter are to be plotted.	false	
TRAP. OCC	logical	Specifies that constant filled trap density contours in number per cubic centimeter are to be plotted.	false	
level	number	The specific trap level to plot. If this parameter is not specified, all trap levels are summed.	none	none
N.MOBILI	logical	Specifies that contours of constant electron mobility in $\mathrm{cm}^{2} / \mathrm{V}$-s are to be plotted.	false	
P.MOBILI	logical	Specifies that contours of constant hole mobility in $\mathrm{cm}^{2} / \mathrm{V}$-s are to be plotted.	false	
SIGMA	logical	Specifies that contours of constant conductivity in (Ohm-cm) ${ }^{-1}$ are to be plotted.	false	
ele.temp	logical	Specifies that contours of constant electron temperature in Kelvins are plotted.	false	
HoL.temp	logical	Specifies that contours of constant hole temperature in Kelvins are plotted.	false	
ele.vel	logical	Specifies that contours of constant electron mean velocity in cm / s are plotted.	false	
HOL.VEL	logical	Specifies that contours of constant hole mean velocity in cm / s are plotted.	false	
J.EFIELD	logical	Specifies that the contours where the component of the electric field in V / cm in the direction of the total current density vector is constant are plotted.	false	
G. GAMN	logical	Specifies that contours of constant probability that an electron will be injected into the oxide are plotted.	false	
G.GAMP	logical	Specifies that contours of constant probability that a hole will be injected into the oxide are plotted.	false	
G. GAMT	logical	Specifies that contours of constant probability that a hole or electron (that is, the sum of the hole and electron probabilities) will be injected into the oxide are plotted.	false	

Parameter	Type	Definition	Default
G.IN	logical	Specifies that contours of constant hot electron injection current initi- ated from each point in amps/micron are plotted.	false
G.IP	logical	Specifies that contours of constant hot hole injection current initiated from each point in amps/micron are plotted.	false
G.IT	logical	Specifies that contours of constant total hot carrier injection current ini- tiated from each point in amps/micron are plotted.	false
QPOTN	logical	Specifies that contours of the electron quantum potential from the MLDA model are to be plotted.	false
QPOTP	logical	Specifies that contours of the hole quantum potential from the MLDA model are to be plotted.	false
SBT.NGEN	logical	Specifies that contours of the electron generation rate from the SBT model are to be plotted.	false
SBT.PGEN	logical	Specifies that contours of the hole generation rate from the SBT model are to be plotted.	false

Lattice Temperature AAM Parameters

LAT.TEMP logical $\quad \begin{aligned} & \text { Specifies that contours of constant lattice temperature in Kelvins are } \\ & \text { plotted. This parameter is only used with the Lattice Temperature }\end{aligned}$ AAM.

Heterojunction Device AAM Parameters

X.MOLE logical Specifies that contours of mole fraction are plotted. This parameter only used with the Heterojunction Device AAM.
false
false
false analysis are plotted.

AC.REAL	logical	Specifies that contours of the real part of the quantity obtained from AC analysis are plotted.		
AC.IMAG false			fogical	Specifies that contours of the imaginary part of the quantity obtained
:---				
from AC analysis are plotted	false			

Contour Controls

MIN. VALU number The minimum contour value. If LOGARITH is specified, MIN.VALU should be a logarithmic value.

MAX.VALU number The maximum contour value. If LOGARITH is specified, MAX. VALU should be a logarithmic value.

WINDOW
$\left.\begin{array}{llll}\text { MIN.VALU number } & \begin{array}{l}\text { The minimum contour value. If LOGARITH is specified, MIN.VALU } \\ \text { should be a logarithmic value. }\end{array} & \begin{array}{l}\text { Minimum value } \\ \text { of the specified } \\ \text { quantity within }\end{array} \begin{array}{l}\text { Depen- } \\ \text { dent on } \\ \text { plotted } \\ \text { the structure. }\end{array} \\ \text { quantity }\end{array}\right\}$

AC Small-Signal Analysis Quantity Parameters

Specifies that the default values for MIN. VALU and MAX.VALU should be found from the portion of the structure that lies within the two-dimensional plot bounds.
false

Parameter	Type	Definition	Default	Units	
DEL.VALU	number	The difference between successive contour values.	(MAX. VALU MIN.VALU)/ (NCONTOUR-1) for NCONTOUR >1	Dependent on plotted quantity	
NCONTOUR	number	The number of contours to plot.	$1+(\text { MAX . VALU }$ - MIN . VALU)/ \|DEL. VALU	, if DEL.VALU is specified; otherwise, 11	none
FILL	logical	Specifies that regions between constant contour values are color filled on devices that support this operation. The contour values defining the edges of the regions to be filled can be specified in the usual way using combinations of MIN. VALU, MAX . VALU, DEL. VALU, and NCONTOUR. If none of these parameters are specified, the entire plot area is filled, with the minimum to the maximum of the specified quantity being spanned by the available colors for the output device that is being used.	false		
C. START	number	The starting color index for the first region which is filled when the FILL parameter is specified.	8	none	
C. INCREM	number	The color index increment for successive regions which are filled when the FILL parameter is specified. If C.START corresponds to a primary color, then C.INCREM causes the color index to cycle through the available primary colors. If C.START corresponds to a secondary color, then C.INCREM causes the color index to cycle through the available secondary colors. This parameter has no effect if a color graphics device is not used.	1	none	
ABSOLUTE	logical	Specifies that contours of the absolute value of the specified quantity are plotted.	false		
LOGARITH	logical	Specifies that contours of the logarithm of the specified quantity are plotted. Since many of the quantities may become negative, the program actually uses $\operatorname{sign}(\mathrm{x}) * \log (1+\|\mathrm{x}\|)$ to avoid overflow. To get the true logarithm of a quantity, specify ABSOLUTE and LOGARITH. The absolute value is taken first and there is no danger of negative arguments.	false		
X.COMPON	logical	Specifies that if the selected quantity is a vector, then constant contours of its x component are plotted.	false		
Y.COMPON	logical	Specifies that if the selected quantity is a vector, then constant contours of its y component are plotted.	false		
LINE.TYP	number	The type of line used for the contour plot. A line type value of 1 generates a solid line plot. Line type values greater than 1 generate dashed line plots, with the dash size increasing with the value of line type.	1	none	
COLOR	number	The index of the color used for the plot. The color associated with each color index is dependent upon the color graphics device that is used. This parameter has no effect if a color graphics device is not used.	1	none	
PAUSE	logical	Specifies that program execution pauses after the completion of all graphical output associated with this statement. The user must enter a space followed by a carriage return to continue execution.	false		

Description

The CONTOUR statement plots contours of various physical quantities on a twodimensional area of the device as defined on the most recent PLOT . 2D statement.

A CONTOUR statement must be preceded by a PLOT .2D statement in order to define the two-dimensional plot bounds.

See Also... To further illustrate the CONTOUR statement, refer to the following:

- mdexl (Chapter 4, "Potential Contours and E-Line Plots," p. 4-32)
- mdexld (Chapter 4, "Simulation of Drain Characteristics," p. 4-12)
- Most other examples that have 2D graphical output

Minimum, Maximum, and Interval Values

The minimum and maximum contour values can be specified with the MIN. VALU and MAX. VALU parameters. The interval between contours can be specified with the DEL. VALU parameters.

The units of these parameters are determined by the specific quantity that is being plotted. If LOGARITH is specified:

- MIN. VALU and MAX. VALU are logarithmic values (base 10)
- DEL.VALU is a logarithmic interval between contours

The NCONTOUR parameter may also be specified to request a specific number of contours.

When a CONTOUR statement is encountered, the program attempts to plot contours corresponding to the following values:

```
MIN.VALU + (i-1)*DEL.VALU, i=1,NCONTOUR, if DEL.VALU > 0
MAX.VALU + (i-1)*DEL.VALU, i=1,NCONTOUR, if DEL.VALU < 0
```

Contour values which are actually plotted are printed to the standard output file.
If MIN. VALU and MAX. VALU are not specified:

- Default values are determined from the minimum and maximum values of the specified quantity over the entire device structure.

If WINDOW is specified:

- Default values for MIN. VALU and MAX. VALU are determined from the minimum and maximum values of the specified quantity over the portion of the device structure that is within the two-dimensional plot bounds.

Examples

The following statements plot contours of impurity concentration:

CONTOUR	DOPING	LOG	MIN=16	MAX=18	DEL=1	LINE=1
CONTOUR	DOPING	LOG	MIN=-18	MAX=-16	DEL=1	LINE=2

The first statement above plots n-type contours of concentration $1 \mathrm{e} 16,1 \mathrm{e} 17$, and $1 \mathrm{e} 18 / \mathrm{cm}^{3}$. The second statement above plots p-type contours of concentration $1 \mathrm{e} 16,1 \mathrm{e} 17$, and $1 \mathrm{e} 18 / \mathrm{cm}^{3}$.

The following statement plots contours of potential:
CONTOUR POTENTIAL NCONTOUR=11

Since neither MIN. VALU nor MAX. VALU are specified, the plotted contours span the entire range of potential values for the structure.

The VECTOR statement plots vector quantities over an area of the device defined by the previous РLOT. 2D statement.

VECTOR

```
    { J.CONDUC | J.ELECTR | J.HOLE | J.DISPLA | J.TOTAL | E.FIELD
    | AC.POTEN | AC.CN | AC.CP | AC.TN | AC.TP | AC.TL
Optical Device AAM Parameters
        ( RAYTRACE [INCIDENT] [INTERNAL] [EXITING] )
    }
AC Small-Signal Analysis Vector Quantity Parameters
    [ { AC.VECT | AC.XCOMP | AC.YCOMP | AC.REAL | AC.IMAG
            AC.MAGN | AC.PHAS
        }
    ]
Plot Control Parameters
    [LOGARITH [NORM.LOG=<n>] ] [V.SIZE=<n>] [CLIPFACT=<n>]
    [MINIMUM=<n>] [MAXIMUM=<n>] [LINE.TYP=<n>] [COLOR=<n>] [PAUSE]
```

Parameter	Type	Definition	Default	Units
J.CONDUC	logical	Specifies that a vector plot of conduction current is plotted.	false	
J.ELECTR	logical	Specifies that a vector plot of electron current is plotted.	false	
J. HOLE	logical	Specifies that a vector plot of hole current is plotted.	false	
J.DISPLA	logical	Specifies that a vector plot of displacement current is plotted.	false	
J.total	logical	Specifies that a vector plot of total current is plotted.	false	
E.field	logical	Specifies that a vector plot of electric field is plotted.	false	
AC. POTEN	logical	Specifies that a complex vector plot of AC potential is plotted.	false	
AC. CN	logical	Specifies that a complex vector plot of AC electron concentration is plotted.	false	
AC. CP	logical	Specifies that a complex vector plot of AC hole concentration is plotted.	false	
AC. TN	logical	Specifies that a complex vector plot of AC electron temperature is plotted.	false	
AC. TP	logical	Specifies that a complex vector plot of AC hole temperature is plotted.	false	
AC. TL	logical	Specifies that a complex vector plot of AC lattice temperature is plotted.	false	

Parameter Type

Definition
Default
Units

Optical Device AAM Parameters

RAYTRACE	logical	Specifies that the optical rays generated by the ODAAM are plotted.	false
INCIDENT	logical	Specifies that incident optical rays generated by the ODAAM are plotted.	true, if RAYTRACE is specified
INTERNAL	logical	Specifies that internal optical rays generated by the ODAAM are plotted.	true, if RAYTRACE is specified
EXITING	logical	Specifies that exiting optical rays generated by the ODAAM are plotted.	true, if RAYTRACE is specified
AC Small-Signal Analysis Vector Quantity Parameters			
AC. VECT	logical	Specifies that a complex vector plot of the spatial magnitude of the vector quantity obtained from AC analysis is plotted.	false
AC. XCOMP	logical	Specifies that a complex vector plot of the x component of the vector quantity obtained from AC analysis is plotted.	false
AC. YCOMP	logical	Specifies that a complex vector plot of the y component of the vector quantity obtained from AC analysis is plotted.	false
AC. REAL	logical	Specifies that a spatial vector plot of the real part of the vector quantity obtained from AC analysis is plotted.	false
AC. IMAG	logical	Specifies that a spatial vector plot of the imaginary part of the vector quantity obtained from AC analysis is plotted.	false
AC. MAGN	logical	Specifies that a spatial vector plot of the complex magnitude of the vector quantity obtained from AC analysis is plotted.	false
AC. PHAS	logical	Specifies that a spatial vector plot of the phase of the vector quantity obtained from AC analysis is plotted.	false
Plot Control Parameters			
LOGARITH	logical	Specifies that the vector magnitudes are logarithmically scaled. If this parameter is not specified, all vectors are scaled linearly.	false
NORM. LOG	number	The number of orders of magnitude of the specified quantity that are plotted when vectors are plotted logarithmically.	all orders
V.SIZE	number	Specifies the size of the largest vector plotted. The vector with the largest magnitude in the display area has a length equal to \mathbf{V}.SIZE. All other vectors are scaled appropriately.	1.0
CLIPFACT	number	The threshold factor for plotting vectors. No vector whose length is smaller than the length of the largest vector multiplied by CLIPFACT is plotted.	0.01

Parameter Type
 Optical Device AAM Parameters

Definition
Default
Units

RAYTRACE	logical	Specifies that the optical rays generated by the ODAAM are plotted.	false
INCIDENT	logical	Specifies that incident optical rays generated by the ODAAM are plotted.	true, if RAYTRACE is specified
INTERNAL	logical	Specifies that internal optical rays generated by the ODAAM are plotted.	true, if RAYTRACE is specified
EXITING	logical	Specifies that exiting optical rays generated by the ODAAM are plotted.	true, if RAYTRACE is specified
AC Small-Signal Analysis Vector Quantity Parameters			
AC. VECT	logical	Specifies that a complex vector plot of the spatial magnitude of the vector quantity obtained from AC analysis is plotted.	false
AC. XCOMP	logical	Specifies that a complex vector plot of the x component of the vector quantity obtained from AC analysis is plotted.	false
AC. YCOMP	logical	Specifies that a complex vector plot of the y component of the vector quantity obtained from AC analysis is plotted.	false
AC. REAL	logical	Specifies that a spatial vector plot of the real part of the vector quantity obtained from AC analysis is plotted.	false
AC. IMAG	logical	Specifies that a spatial vector plot of the imaginary part of the vector quantity obtained from AC analysis is plotted.	false
AC. MAGN	logical	Specifies that a spatial vector plot of the complex magnitude of the vector quantity obtained from AC analysis is plotted.	false
AC. PHAS	logical	Specifies that a spatial vector plot of the phase of the vector quantity obtained from AC analysis is plotted.	false
Plot Control Parameters			
LOGARITH	logical	Specifies that the vector magnitudes are logarithmically scaled. If this parameter is not specified, all vectors are scaled linearly.	false
NORM. LOG	number	The number of orders of magnitude of the specified quantity that are plotted when vectors are plotted logarithmically.	all orders
V.SIZE	number	Specifies the size of the largest vector plotted. The vector with the largest magnitude in the display area has a length equal to V.SIZE. All other vectors are scaled appropriately.	1.0
CLIPFACT	number	The threshold factor for plotting vectors. No vector whose length is smaller than the length of the largest vector multiplied by CLIPFACT is plotted.	0.01

Parameter	Type	Definition	Default	Units
minimum	number	The minimum magnitude plotted.	The minimum magnitude of the specified quantity.	volts/cm for electric field, $\mathrm{amps} / \mathrm{cm}^{2}$ for currents
maximum	number	The maximum magnitude plotted.	The maximum magnitude of the specified quantity.	volts/cm for electric field, $\mathrm{amps} / \mathrm{cm}^{2}$ for currents
LINE.TYP	number	The type of line used to plot vectors. A line type value of 1 generates a solid line. LINE. TYP values greater than 1 generate dashed line vectors, with the dash size increasing with the value of LINE.TYP.	1	none
COLOR	number	The index of the color used to plot vectors. The color associated with each color index is dependent upon the color graphics device that is used. This parameter has no effect if a color graphics device is not used.	1	none
pause	logical	Specifies that program execution pauses after the completion of all graphical output associated with this statement. You must enter a space followed by a carriage return to continue execution.	false	

Description

The VECTOR statement is used to plot one of various vector quantities over the device cross-section specified on the PLOT . 2D statement. One vector is plotted at each node of the simulation grid. The vectors are oriented to point in the direction of the specified vector quantity. When a complex vector from AC analysis is plotted, the x direction represents the real part of the vector while the y direction represents its imaginary part. By default, vectors are plotted linearly.

See Also... To further illustrate the VECTOR statement, refer to the following input files:

- mdex2fp (Chapter 5, "Post-Processing of Forward Bias Results," p. 5-56)
- mdex2pp (Chapter 5, "Post-Processing of Device with Modified Emitter," p. 5-64)

Vector Scaling

For linearly plotted vector involving current, the length of each vector is proportional to the current density at the node. For electric field, the length of each vector is proportional to the magnitude of the electric field at the node.

The following parameters affect the magnitude of plotted vectors:

- LOGARITH specifies that the magnitude of the specified quantity at each node is first normalized by the minimum magnitude. NORM. LOG specifies that the magnitude of the specified quantity at each node is first normalized by $10 * *(-$ NORM. LOG $)$ times the maximum magnitude.

The length of each plotted vector is then proportional to the logarithm of these normalized values.

- NORM. LOG may be used to limit the number of orders of magnitude of the specified quantity that is plotted.
- MINIMUM and MAXIMUM may used to arbitrarily set the minimum and maximum magnitudes.

This makes it possible to plot two bias conditions or devices with the same scaling. Both parameters are printed during the execution of a plot.

Vector Size V.size may be used to increase or decrease the size of the plotted vectors.

 CLIPFACT may be used to prevent very small vectors from being plotted. The smallest plotted vector has a length equal to the length of the largest vector multiplied by CLIPFACT.The VECTOR statement can also be used to plot AC quantities as vectors at each node of the device structure. Complex vector plots (AC real component in the horizontal direction and AC imaginary component in the vertical direction) of the scalar quantities potential, electron concentration, hole concentration, electron temperature, hole temperature and lattice temperature can be plotted by specifying AC. POTEN, AC.CN, AC.CP, AC.TN, AC. TP, and AC.TL, respectively.

For the current densities available on the VECTOR statement (J.CONDUC, J.ELECTR, J. HOLE, J.DISPLA, and J. HOLE), the choice of plotting either complex vector plots or spatial vector plots is available. If $J_{A C}$ represents one of the complex vector current densities, it can be written as

Equation 3-24

$$
\vec{J}_{A C}(x, y)=\left[J_{R, x}(x, y)+i J_{I, x}(x, y)\right] \hat{x}+\left[J_{R, y}(x, y)+i J_{I, y}(x, y)\right] \hat{y}
$$

The choices on the VECTOR statement for plotting this are given in Table 3-4.
Table 3-4

Parameter	Horizontal Component of Vector	Vertical Component of Vector
AC.VECT	$\sqrt{J_{R, x}^{2}+J_{R, y}^{2}}$	$\sqrt{J_{I, x}^{2}+J_{I, y}^{2}}$
AC. XCOMP	$J_{R, x}$	$J_{I, x}$
AC. YCOMP	$J_{R, y}$	$J_{I, y}$
AC. REAL	$J_{R, x}$	$J_{R, y}$
AC. IMAG	$J_{I, x}$	$J_{I, y}$
AC.MAGN	$\sqrt{J_{R, x}^{2}+J_{I, x}^{2}}$	$\sqrt{J_{R, y}^{2}+J_{I, y}^{2}}$
AC. PHAS	$\operatorname{atan}\left(J_{I, x} / J_{R, x}\right)$	$\operatorname{atan}\left(J_{I, y} / J_{R, y}\right)$

FILL

```
[REGION=<C>] [SET.COLO] [N-TYPE] [P-TYPE] [PAUSE]
{ [COLOR=<n>]
    ( [C.SILIC=<n>] [C.GAAS=<n>] [C.POLYSI=<n>] [C.GERMAN=<n>]
        [C.SIC=<n>] [C.SEMI=<n>] [C.SIGE=<n>] [C.ALGAAS=<n>]
        [C.A-SILI=<n>] [C.DIAMON=<n>] [C.HGCDTE=<n>] [C.INAS=<n>]
        [C.INGAAS=<n>] [C.INP=<n>] [C.S.OXID=<n>] [C.ZNSE=<n>]
        [C. ZNTE=<n>]
        [C.OXIDE=<n>] [C.NITRID=<n>] [C.SAPPHI=<n>] [C.OXYNIT=<n>]
        [C.INSUL=<n>] [C.ELECTR=<n>]
        [NP.COLOR] [C.NTYPE=<n>] [C.PTYPE=<n>]
    )
}
```

FILL

Parameter	Type	Definition	Default	Units
Region	char	Color fills only the named region.	All regions are filled with the appropriate color.	
Set colo	logical	Specifies that the colors associated with the various materials are set to the values indicated by any C. <material> parameter that is specified or to the values that are established in the key file. If this parameter is specified, no color fill takes place.	false	
N-TYPE	logical	Specifies that the n -type portion of the specified region is color filled.	True except when P-TYPE alone is specified.	
P-TYPE	logical	Specifies that the p-type portion of the specified region is color filled.	True except when \mathbf{N}-TYPE alone is specified.	
pause	logical	Specifies that program execution pauses after the completion of all graphical output associated with this statement. The user must enter a space followed by a carriage return to continue execution.	false	
coLor	number	The color index for the color used to fill the specified regions.	none	none
c.silic	number	The color index for the color used to fill SILICON regions.	-1	none
c.gAAS	number	The color index for the color used to fill GAAS regions.	-1	none
c. Polysi	number	The color index for the color used to fill POLYSILI regions.	2	none

Parameter	Type	Definition	Default	Units
C. GERMAN	number	The color index for the color used to fill GERMANIU regions.	-1	none
C.SIC	number	The color index for the color used to fill SIC regions.	-1	none
C. SEMI	number	The color index for the color used to fill SEMICOND regions.	-1	none
C.SIGE	number	The color index for the color used to fill SIGE regions.	-1	none
C. ALGAAS	number	The color index for the color used to fill ALGAAS regions.	-1	none
C.A-SILI	number	The color index for the color used to fill A-SILICO regions.	-1	none
C. DIAMON	number	The color index for the color used to fill DIAMOND regions.	-1	none
C. HGCDTE	number	The color index for the color used to fill HGCDTE regions.	-1	none
C. INAS	number	The color index for the color used to fill INAS regions.	-1	none
C. INGAAS	number	The color index for the color used to fill INGAAS regions.	-1	none
C. INP	number	The color index for the color used to fill INP regions.	-1	none
C.S.oxid	number	The color index for the color used to fill S . OXIDE regions.	-1	none
C. ZNSE	number	The color index for the color used to fill ZNSE regions.	-1	none
C. ZNTE	number	The color index for the color used to fill $\mathbf{Z N T E}$ regions.	-1	none
C.OXIDE	number	The color index for the color used to fill OXIDE regions.	5	none
C.NITRID	number	The color index for the color used to fill NITRIDE regions.	6	none
C. SAPPHI	number	The color index for the color used to fill SAPPHIRE regions.	6	none
C. OXYNIT	number	The color index for the color used to fill OXYNITRI regions.	7	none
C. INSUL	number	The color index for the color used to fill INSULATO regions.	5	none
C. ELECTR	number	The index of the color used to fill finite thickness electrodes.	4	none
NP. COLOR	logical	Color fills n - and p -type regions using the colors C.NTYPE and C. PTYPE. If \wedge NP. COLOR is specified, n - and p-type regions are color-filled using the color corresponding to their material type (C.SILIC, C. GAAS, C.SEMI, or C.POLYSI).	true	
C. NTYPE	number	The index of the color used to fill n-type regions.	3	none
C. PTYPE	number	The index of the color used to fill p-type regions.	7	none

Description

The FILL statement causes all material regions to be filled with the specified colors. This statement provides a means of allowing material regions to have interesting and informative colors.

See Also... To further illustrate the FILL statement, refer to the following input files:

- mdex16 (Chapter 14, "SiGe Heterojunction Bipolar Transistor Simulation," p. 14-2)
- mdex17 (Chapter 14, "High Electron Mobility Transistor Simulation," p. 148)
- mdex18c (Chapter 15, "Breakdown Walk-Out in Power MOS Device," p. 1510)

Properties and Parameters

The FILL statement has the following properties and parameters:

- By default, the FILL statement fills all material regions with their corresponding colors.
- A particular region can be filled with a particular color by using the REGION and COLOR parameters.
- All specified values for \mathbf{C}. <material> remain in effect for subsequent occurrences of the FILL statement.
- Colors specified by FILL are used to fill material regions when the PLOT. 2D statement is encountered.
- A negative value for one of the material colors disables color fill for that material.

The E.LINE statement locates potential gradient paths and calculates the ionization integrals for electron and hole initiated multiplication along these paths. This statement also either plots the paths as part of a plot associated with the PLOT.2D statement or extracts and plots various physical quantities along the paths as part of a plot associated with the PLOT .1D statement.
E. LINE
\{ ([POTENTIA] [QFN] [QFP] [VALENC.B] [CONDUC.B] [VACUUM] [ARRAY1] [ARRAY2] [ARRAY3]
)
[E.FIELD [ANGLE=<n>]]
([DOPING] [ELECTRON] [HOLES] [NET.CHAR] [NET.CARR])
([J.CONDUC] [J.ELECTR] [J.HOLE] [J.DISPLA] [J.TOTAL]
[ANGLE=<n>]
)
[RECOMBIN] | [II.GENER] | [BB.GENER] | [PHOTOGEN]
[ELE.TEMP] | [HOL.TEMP] | [ELE.VEL] | [HOL.VEL] | [J.EFIELD]
[G.GAMN] | [G.GAMP] | [G.GAMT] | [G.IN] | [G.IP] | [G.IT]
Lattice Temperature AAM Parameters
[LAT.TEMP]

Heterojunction Device AAM Parameters
[X.MOLE]
\}
Control Parameters
X.START=<n> Y.START=<n> [S.DELTA=<n>] [N.LINES=<n>] [HORZ.STA=<n>] [I.ELECTR] [I.HOLES] [E.MARK=<n>] [M.SIZE=<n>] [INSULATO] [LINE.TYP=<n>] [COLOR=<n>] [FILE=<C>] [SUMMARY] [PLOT] [PAUSE]

Parameter	Type	Definition	Default	Units
POTENTIA	logical	Specifies that the mid-gap potential in volts is to be plotted.	false	
QFN	logical	Specifies that the electron quasi-Fermi potential in volts is to be plotted.	false	
QFP	logical	Specifies that the hole quasi-Fermi potential in volts is to be plotted.	false	
VALENC. B	logical	Specifies that the valence band potential in volts is to be plotted.	false	
CONDUC. ${ }^{\text {B }}$	logical	Specifies that the conduction band potential in volts is to be plotted.	false	
VACUUM	logical	Specifies that the vacuum potential in volts is to be plotted.	false	
ARRAY1	logical	Specifies that the user generated ARRAY \# 1 is to be plotted. See the EXTRACT statement for more information.	false	

Parameter	Type	Definition	Default	Units
ARRAY2	logical	Specifies that the user generated ARRAY \# 2 is to be plotted. See the EXTRACT statement for more information.	false	
ARRAY3	logical	Specifies that the user generated ARRAY \# 3 is to be plotted. See the EXTRACT statement for more information.	false	
E.field	logical	Specifies that the electric field magnitude in volts per centimeter be plotted. If the ANGLE parameter is specified, the electric field component along the specified angular direction is plotted. Otherwise, the electric field magnitude is plotted.	True, if E.field specified in PLOT. 1D; otherwise, false	
ANGLE	number	The angle relative to the horizontal of the electric field or current density component being plotted.	none	degree
DOPING	logical	Specifies that the net impurity concentration in number per cubic centimeter is to be plotted.	false	
ELECTRON	logical	Specifies that the electron concentration in number per cubic centimeter is to be plotted.	false	
HOLES	logical	Specifies that the hole concentration in number per cubic centimeter is to be plotted.	false	
NET. CHAR	logical	Specifies that the net charge concentration in number per cubic centimeter is to be plotted.	false	
NET. CARR	logical	Specifies that the net carrier concentration in number per cubic centimeter is to be plotted.	false	
J. CONDUC	logical	Specifies that the conduction current density in amps per square centimeter is to be plotted. If the ANGLE parameter is specified, the current density component along the specified angular direction is plotted. Otherwise, the current density magnitude is plotted.	false	
J.ELECTR	logical	Specifies that the electron current density in amps per square centimeter is to be plotted. If the ANGLE parameter is specified, the current density component along the specified angular direction is plotted. Otherwise, the current density magnitude is plotted.	false	
J. HOLE	logical	Specifies that the hole current density in amps per square centimeter is to be plotted. If the ANGLE parameter is specified, the current density component along the specified angular direction is plotted. Otherwise, the current density magnitude is plotted.	false	
J.DISPLA	logical	Specifies that the displacement current density in amps per square centimeter is to be plotted. If the ANGLE parameter is specified, the current density component along the specified angular direction is plotted. Otherwise, the current density magnitude is plotted.	false	
J.TOTAL	logical	Specifies that the total current density in amps per square centimeter is to be plotted. If the ANGLE parameter is specified, the current density component along the specified angular direction is plotted. Otherwise, the current density magnitude is plotted.	false	
RECOMBIN	logical	Specifies that the net recombination in number per cubic centimeter per second is to be plotted.	True, if RECOMBIN specified in PLOT . 1D; otherwise, false.	

Parameter	Type	Definition	Default
II. GENER	logical	Specifies that the total generation rate due to impact ionization in pairs per cubic centimeter per second is to be plotted.	True, if II. GENER specified in PLOT. 1D; otherwise, false.
BB. GENER	logical	Specifies that the generation rate due to band-to-band tunneling in pairs per cubic centimeter per second is to be plotted.	True, if BB. GENER specified in PLOT. 1D; otherwise, false.
PHOTOGEN	logical	Specifies that total photogeneration in pairs per cubic centimeter per second is to be plotted.	True, if PHOTOGEN specified in PLOT. 1D; otherwise, false.
ELE. TEMP	logical	Specifies that the electron temperature in Kelvins is to be plotted.	True, if ELE.TEMP specified in PLOT. 1D; otherwise, false.
HOL. TEMP	logical	Specifies that the hole temperature in Kelvins is to be plotted.	True, if HOL . TEMP specified in PLOT. 1D; otherwise, false.
ELE. VEL	logical	Specifies that the electron mean velocity in cm / s be plotted.	True, if ele . VEL specified in PLOT. 1D; otherwise, false.
HOL.VEL	logical	Specifies that the hole mean velocity in cm / s is to be plotted.	True, if HOL. VEL specified in PLOT. 1D; otherwise, false.
J.EFIELD	logical	Specifies that the component of the electric field in the direction of the total current density in V / cm is to be plotted.	True, if J.efield specified in PLOT . 1D; otherwise, false.
G. GAMN	logical	Specifies that the probability per unit length that an electron will be injected into the gate insulator in number per centimeter is to be plotted.	True, if G. GAMN specified in PLOT.1D; otherwise, false.
G. GAMP	logical	Specifies that the probability per unit length that a hole will be injected into the gate insulator in number per centimeter is to be plotted.	True, if G.GAMP specified in PLOT. 1D; otherwise, false.
G.GAMT	logical	Specifies that the probability per unit length that an electron or hole will be injected into the gate insulator in number per centimeter is to be plotted.	True, if G. GAMT specified in PLOT.1D; otherwise, false.
G.IN	logical	Specifies that the hot electron injection current in amps/ micron is to be plotted.	True, if G.IN specified in PLOT. 1D; otherwise, false.
G.IP	logical	Specifies that the hot hole injection current in amps/micron is to be plotted.	True, if G.IP specified in PLOT. 1D; otherwise, false.
G.IT	logical	Specifies that the total hot carrier injection current in amps/ micron is to be plotted.	True, if G.IT specified in PLOT. 1D; otherwise, false.

Parameter Type
 Lattice Temperature AAM Parameters

Definition

Default
Units

True if LAT.TEMP specified in PLOT . 1D; otherwise, false

True if \mathbf{x}. Mole specified in PLOT . 1D; oth erwise, false.

Parameter	Type	Definition	Default	Units
LINE. TYP	number	The type of line used for the plot. A line type value of 1 generates a solid line plot. Line type values greater than 1 generate dashed line plots, with the dash size increasing with the value of line type.	1	none
COLOR	number	The index of the color used for the plot. The color associated with each color index is dependent upon the color graphics device that is used. This parameter has no effect if a color graphics device is not used.	1	none
FILE	char	The identifier for the formatted output data file in which the distance and extracted quantities at every point along the path are to be stored.	none	
SUMMARY	logical	Specifies that the ionization integral information for each potential gradient path is to be printed on the standard output device.	true	
PLOT	logical	Specifies that the potential gradient paths or extracted quantities are to be plotted.	true	
PAUSE	logical	Specifies that program execution pauses after the completion of all graphical output associated with this statement. The user must enter a space followed by a carriage return to continue execution.	false	

Description

The E.LINE statement locates potential gradient paths and calculates the ionization integrals for electron and hole initiated multiplication along these paths. This statement does one of the following:

- Plots the paths as part of a plot associated with the PLOT . 2D statement
or
- Extracts and plots various physical quantities along the paths as part of a plot associated with the PLOT . 1D statement

See Also... To further illustrate the E.LINE statement, refer to input file mdexla in Chapter 4, "Potential Contours and E-Line Plots," p. 4-32.

Identifying Output and Input

The printed output associated with the E.LINE statement is labeled with two lines of information identifying the type of output and the input line number responsible for the output.

The E.LINE statement may either appear alone or within plot sequences initiated by the PLOT. 2D and PLOT.1D statements. Within a two-dimensional plot sequence, the locations of the potential gradient paths are plotted. Within a onedimensional plot sequence, the requested physical quantities are plotted along the potential gradient paths.

First Potential Gradient Path

The location of the starting point for the first potential gradient path must be specified with the $\mathbf{X} . \mathbf{S T A R T}$ and $\mathbf{Y} . \mathbf{S T A R T}$ parameters. This point must lie within the semiconductor region of the device structure. The default starting point of the potential gradient path is associated with the value of zero on the horizontal axis when extracted quantities are being plotted.

The extracted data can be shifted on the horizontal axis by specification of the HORZ . STA parameter. HORZ . STA allows for arbitrary shifting of data along the horizontal axis, facilitating the comparison of profiles along different lines.

Previously Defined Solutions

The use of the E.LINE statement requires that solutions be previously defined. This may be accomplished with a solution initiated by a SOLVE statement or by using a LOAD statement to input a data file generated previously by a SOLVE statement.

Line Type

The type of line used during the plotting of the data may be changed from the default solid line to a variety of dotted and dashed lines. This allows easier distinction between various plots.

LABEL

The LABEL statement plots character strings, centered symbols, and lines as part of a plot associated with the PLOT .1D and PLOT .2D statements.

LABEL

[LABEL=<C>] [SYMBOL=<n>] [X=<n>] [Y=<n>] [ANGLE=<n>]
[\{START.LE START.CE START.RI\} [[ARROW]
[LX.START=<n>] [LY.START=<n>]
[LX.FINIS=<n>] [LY.FINIS=<n>]
[CM] [C.SIZE=<n>] [LINE.TYP=<n>] [COLOR=<n>] [PAUSE]

Parameter	Type	Definition	Default	Units
LABEL	char	The character string to be used to label the plot.	none	
SYMBOL	number	The type of centered symbol plotted at the data points in the plot. The value of this parameter may lie in the range 1 to 15 . If this parameter is not specified, the plot will not contain centered symbols. Values of this parameter are associated with the following symbols:	none	none
		1 Square		
		2 Circle		
		3 Triangle		
		4 Plus		
		5 Upper case X		
		6 Diamond		
		7 Up-arrow		
		8 Roofed upper case X		
		9 Upper case Z		
		10 Upper case Y		
		11 Curved square		
		12 Asterisk		
		13 Hourglass		
		14 Bar		
		15 Star		
x	number	The x location associated with the lower left corner of the first character in the character string or the center of the centered symbol. If the CM parameter is specified, then this parameter specifies the location in cm relative to the left edge of the graphics display area. Otherwise, this parameter specifies the location in axis units along the x -axis.	The left side of the plot for the first LABEL statement after a plot; otherwise determined by the previous LABEL statement.	cm or x axis units
Y	number	The y location associated with the lower left corner of the first character in the character string or the center of the centered symbol. If the CM parameter is specified, then this parameter specifies the location in cm relative to the bottom edge of the graphics display area. Otherwise, this parameter specifies the location in axis units along the y-axis.	The top side of the plot for the first LABEL statement after a plot; otherwise determined by the previous LABEL statement.	cm or y axis units
ANGLE	number	The angle (increasing counterclockwise) relative to the horizontal of the bottom of the character string.	0.0	degrees

Parameter	Type	Definition	Default	Units
START.LE	logical	Specifies the line is to start at the left side of the character string or centered symbol.	false	
START.CE	logical	Specifies the line is to start at the center of the character string or centered symbol.	false	
START.RI	logical	Specifies the line is to start at the right side of the character string or centered symbol.	false	
ARROW	logical	Specifies that an arrowhead is to be plotted at the end of the line.	false	
LX. START	number	The starting x coordinate of the line. If the CM parameter is specified, then this parameter specifies the location in cm relative to the left edge of the graphics display area. Otherwise, this parameter specifies the location in axis units along the x axis.	The left side of the plot for the first LABEL statement after a plot statement; otherwise the previous value of LX.FINIS.	cm or $\mathrm{x}-$ axis units
LY.START	number	The starting y coordinate of the line. If the CM parameter is specified, then this parameter specifies the location in cm relative to the bottom edge of the graphics display area. Otherwise, this parameter specifies the location in axis units along the y-axis.	The top side of the plot for the first LABEL statement after a plot statement; otherwise the previous value of LY.FINIS.	$\begin{aligned} & \mathrm{cm} \text { or } \mathrm{y} \text { - } \\ & \text { axis } \\ & \text { units } \end{aligned}$
LX.FINIS	number	The ending x coordinate of the line. If the CM parameter is specified, then this parameter specifies the location in cm relative to the left edge of the graphics display area. Otherwise, this parameter specifies the location in axis units along the x axis.	The horizontal starting point of the line.	cm or $\mathrm{x}-$ axis units
LY.FINIS	number	The ending y coordinate of the line. If the CM parameter is specified, then this parameter specifies the location in cm relative to the bottom edge of the graphics display area. Otherwise, this parameter specifies the location in axis units along the y-axis.	The vertical starting point of the line.	$\begin{aligned} & \mathrm{cm} \text { or } \mathrm{y} \text { - } \\ & \text { axis } \\ & \text { units } \end{aligned}$
CM	logical	Specifies that the X, Y, LX.START, LY.START, LX.FINIS, and LY.FINIS parameters specify locations in cm relative to the left and bottom edges of the graphics display area.	false	
C.SIZE	number	The height of the characters in the character string or centered symbol.	0.25	cm
LINE. TYP	number	The type of line used to plot the line. A line type value of 1 generates a solid line plot. Line type values greater than 1 generate dashed line plots, with the dash size increasing with the value of the line type.	1	none
COLOR	number	The index of the color used to plot the character string, centered symbol, and line. The color associated with each color index is dependent upon the color graphics device that is used. This parameter has no effect if a color graphics device is not used.	1	none
PAUSE	logical	Specifies that program execution pauses after the completion of all graphical output associated with this statement. The user must enter a space followed by a carriage return to continue execution.	false	

Description

The LABEL statement plots character strings, centered symbols, lines, and arrows as part of a plot associated with the PLOT .1D and PLOT .2D statements.

See Also... To further illustrate the LABEL statement, refer to the following:

- Input file mdexlg (Chapter 4, "Simulation of Gate Characteristics," p. 4-11)
- Input file mdexld (Chapter 4, "Simulation of Drain Characteristics," p. 4-12)
- Most other examples

Example

LABEL statements may appear at any point in the input file after the first PLOT.1D or PLOT .2D statement. For example, the following statement plots a label:

LABEL LABEL="This is a label"

Parameters

The LABEL statement uses a variety of parameters to plot an assortment of functions.

Note:

The default settings for many of the LABEL parameters are dependent on the previous use of other statements and parameters.

Sizing The sizes of characters and centered symbols plotted by the LABEL statement are specified by the C.SIZE parameter. Characters have a height of C.SIZE and a width of $0.5713^{*} \mathbf{C}$.SIZE.

The spacing between the left sides of two successive characters in a label is C. SIZE. The length of a label containing n characters is ($\mathrm{n}-0.4286$)*C.SIZE. Centered symbols have a height of C.SIZE and a width of C.SIZE.

Location The \mathbf{X} and \mathbf{Y} parameters specify the location of the lower left corner of the first character in the character string or the center of the centered symbol. Default values are used for the \mathbf{X} and \mathbf{Y} parameters if they are not specified.

Default Selection The default for labei statement is dependent on whether labei statements have appeared since the last PLOT.1D or PLOT.2D statement.

No Previous LAbel Statement

If no previous LABEL statements have appeared since the last PLOT . 1D or PLOT. 2D statement, the default values for \mathbf{X} and \mathbf{Y} are selected as follows:

1. A default value is used for \mathbf{X} which places the start of the character string or centered symbol at the left side of the current plot.
2. A default value is used for \mathbf{Y} which places the start of the character string or centered symbol at the top side of the current plot. For example, the following statements plot axes with a label in the top left corner of the plot:
```
PLOT.2D BOUND
LABEL LABEL="This label appears in the top left corner"
```


Previous Label Statement

If previous LABEL statements have appeared since the last PLOT .1D or РLOT. 2D statement, the default values for \mathbf{X} and \mathbf{Y} are selected based on the following conditions:

1. If neither \mathbf{X} nor \mathbf{Y} is specified, default values are used for \mathbf{X} and \mathbf{Y} which place the character string or centered symbol below the previously plotted string or symbol.
2. If only \mathbf{X} is specified, a default value is used for \mathbf{Y} which places the start of the character string or centered symbol at the same vertical location as the previously plotted string or symbol.
3. If only \mathbf{Y} is specified, a default value is used for \mathbf{X} which places the start of the character string or centered symbol at the same horizontal location as the previously plotted string or symbol. For example, the following statements plot a label and a centered square symbol:
```
LABEL LABEL="A centered square is under this label"
+ X=.1 Y=1E20
LABEL SYMBOL=1
```

The start of the label is placed at coordinates $(0.1,1 \mathrm{E} 20)$ on the plot. The centered square is plotted under the first character in the label.

Line and Arrowhead

A line is plotted if either the LX.FINIS or LY.FINIS parameters is specified. An arrowhead is plotted at the end of the line if the ARROW parameter is specified. For example, the following statement plots a line between the coordinates $(0.1,1 \mathrm{E} 19)$ and $(0.2,1 \mathrm{E} 20)$ with an arrowhead at the end of the line:

```
LABEL LX.START=. 1 LY.START=1E19
+ LX.FINIS=.2 LY.FINIS=1E20 ARROW
```

Starting Starting coordinates are determined by the LX.START, LY.START, START.LE, Coordinates START.CE, and START.RI parameters.

Default Selection

If either the LX.START or LY.START parameters is not specified, default starting coordinates are selected based on the following conditions:

1. If StART.LE, StART.CE, or START.RI is specified, default starting coordinates are selected which place the starting point of the line at the specified edge or center of the character string or centered symbol.
For example, the following statement plots a label with a line from the right edge of the label to the coordinates $(0.1,1 \mathrm{E} 20)$:
```
LABEL LABEL="The line starts at the right" START.RI
```

+ LX.FINIS=. 1 LY.FINIS=1E20

2. If neither Start .Le, start.ce, nor Start.ri is specified and a line has been plotted previously since the last PLOT .1D or PLOT . 2D statement, default starting coordinates are selected which place the starting point of the line at the end of the previous line.
For example, the following statements plot a line between the coordinates (0.1,1E19), (0.2,1E20), and (0.3,1E21):
```
LABEL LX.START=.1 LY.START=1E19
+ LX.FINIS=.2 LY.FINIS=1E20
LABEL LX.FINIS=.3 LY.FINIS=1E21
```

The coordinates of the final point of the first line are used as the coordinates for the starting point of the second line.
3. If neither StART.LE, START.CE, nor START.RI is specified and a line has not been plotted previously since the last PLOT.1D or PLOT . 2D statement, default starting coordinates are selected which place the starting point of the line at the top left corner of the plot.

LOG

The LOG statement allows the I-V and/or AC terminal data for a simulation to be written to a file. This statement also provides for the conversion of Medici log files to data files that can be used by common parameter extraction programs.

LOG
\{ ([OUT.FILE=<C> [TIF]] [CLOSE])
| ([1 (AURORA [LENGTH=<n>] [WIDTH=<n>] [DEVID=<n>] [REGION=<n>]
[P.CHANNE]
)
| (ICCAP [MDM] [I.MIN=<n>] [V.MIN=<n>] [REFERENC=<c>] [SCALE=<n>]
[INP1=<c> [LIST1]] [INP2=<c> [LIST2]]
[INP3=<c> [LIST3]] [INP4=<c> [LIST4]]
[INP5=<c> [LIST5]]
\{ ([OUT1=<c>] [OUT2=<c>] [OUT3=<c>] [OUT4=<c>]
[OUT5 $5<c>$] [OUT $6=<c>$] [OUT7=<c>] [OUT8=<c>]
[SWAP.CGY]
)
| ([\{S.PARAM | Y.PARAM | H.PARAM\} TERMINAL=<C>]) \}
)
STANFORD \}
IN.FILE=<C> OUT.FILE=<C>
[GATE=<C>] [SOURCE=<C>] [DRAIN=<C>] [SUBSTRAT=<C>]
[BASE=<C>] [EMITTER=<C>] [COLLECT=<C>] [EXTRA=<C>]]
)
\}

Parameter	Type	Definition	Default	Units
OUT FFILE	char	The identifier for the file to store data obtained at each bias or time point. In the case where Medici data is being converted to a new for- mat, this parameter specifies the name of the new file. synonym: IVFILE	none	

Parameter	Type	Definition
Devid	number	An optional device identification parameter written to output files created for Aurora.
REGION	number	An optional device behavior region parameter written to output files created for Aurora.
P. Channe	logical	Specifies that the sign of all voltages and currents are changed before writing the data to the Aurora output file.
ICCAP	logical	Specifies that a data file for Hewlett-Packard's IC-CAP program is created.
MDM	logical	Specifies that the data file created for Hewlett-Packard's IC-CAP program is written using the measured data management file format. The file extension for these data files should be ".mdm". This is the recommended format.
I.MIN	number	The minimum recognizable current value when examining currents in the Medici \log file. Currents with absolute values smaller than this are considered to be zero.
V.MIN	number	The minimum recognizable voltage value when examining voltages in the Medici \log file. Voltages with absolute values smaller than this are considered to be zero.
REFERENC	char	The name of an electrode that is used as a voltage reference. If this parameter is specified, all input and output voltages written to the ICCAP data file are referenced to the voltage corresponding to this electrode.
SCALE	number	A value that multiplies all currents, conductances, capacitances and admittances found in the Medici log file before writing output results to the IC-CAP data file.
INP 1	char	The first input variable written to the data file created for IC-CAP. Valid choices include applied bias VA(name), contact bias V(name), terminal current I (name), and frequency freq.
LIST1	logical	Specifies that the sweep type of the first IC-CAP input variable is LIST. If this parameter is not specified, the sweep type is LIN. This parameter is valid only when MDM is specified.
INP2	char	The second input variable written to the data file created for IC-CAP. Valid choices include applied bias VA(name), contact bias V(name), terminal current I (name), and frequency freq.
LIST2	logical	Specifies that the sweep type of the second IC-CAP input variable is LIST. If this parameter is not specified, the sweep type is LIN. This parameter is valid only when MDM is specified.
INP 3	char	The third input variable written to the data file created for IC-CAP. Valid choices include applied bias VA(name), contact bias V(name), terminal current I (name), and frequency freq.
LIST3	logical	Specifies that the sweep type of the third IC-CAP input variable is LIST. If this parameter is not specified, the sweep type is LIN. This parameter is valid only when MDM is specified.
INP 4	char	The fourth input variable written to the data file created for IC-CAP. Valid choices include applied bias $V A($ name), contact bias V(name), terminal current I (name), and frequency freq.
LIST4	logical	Specifies that the sweep type of the forth IC-CAP input variable is LIST. If this parameter is not specified, the sweep type is LIN. This parameter is valid only when MDM is specified.

Default
 Units

none none

Parameter	Type	Definition	Defau
INP 5	char	The fifth input variable written to the data file created for IC-CAP. Valid choices include applied bias VA(name), contact bias V(name), terminal current I (name), and frequency freq.	none
LIST5	logical	Specifies that the sweep type of the fifth IC-CAP input variable is LIST. If this parameter is not specified, the sweep type is LIN. This parameter is valid only when MDM is specified.	false
OUT1	char	The first output variable written to the data file created for IC-CAP. Valid choices include applied bias VA(name), contact bias V(name), and terminal current I (name). If MDM is specified, the choices also include capacitance C (name1,name2), conductance G (name1,name2), admittance Y (name1,name2), and user-defined names that are in the Medici \log file.	none
OUT2	char	The second output variable written to the data file created for IC-CAP. Valid choices include applied bias VA(name), contact bias V(name), and terminal current I(name). If MDM is specified, the choices also include capacitance C (name1,name2), conductance G (name1,name2), admittance Y (name1,name2), and user-defined names that are in the Medici \log file.	none
OUT3	char	The third output variable written to the data file created for IC-CAP. Valid choices include applied bias VA(name), contact bias V(name), and terminal current I(name). If MDM is specified, the choices also include capacitance C (name1,name2), conductance G (name1,name2), admittance Y (name1,name2), and user-defined names that are in the Medici \log file.	none
OUT 4	char	The fourth output variable written to the data file created for IC-CAP. Valid choices include applied bias VA(name), contact bias V(name), and terminal current I(name). If MDM is specified, the choices also include capacitance C (name1,name 2), conductance G (name1,name 2), admittance Y (name 1,name2), and user-defined names that are in the Medici \log file.	none
OUT5	char	The fifth output variable written to the data file created for IC-CAP. Valid choices include applied bias VA(name), contact bias V(name), and terminal current I (name). If MDM is specified, the choices also include capacitance C (name1,name 2), conductance G (name1,name2), admittance Y (name 1,name2), and user-defined names that are in the Medici \log file.	none
OUT 6	char	The sixth output variable written to the data file created for IC-CAP. Valid choices include applied bias VA(name), contact bias V(name), and terminal current I (name). If MDM is specified, the choices also include capacitance C (name1,name2), conductance G (name1,name2), admittance Y (name1,name2), and user-defined names that are in the Medici \log file.	none
OUT 7	char	The seventh output variable written to the data file created for IC-CAP. Valid choices include applied bias VA(name), contact bias V(name), and terminal current I (name). If MDM is specified, the choices also include capacitance C (name1,name2), conductance G (name1,name2), admittance Y (name1,name2), and user-defined names that are in the Medici \log file.	none
OUT 8	char	The eighth output variable written to the data file created for IC-CAP. Valid choices include applied bias VA(name), contact bias V(name), and terminal current I (name). If MDM is specified, the choices also include capacitance C(name1,name2), conductance G(name1,name2), admittance Y (name1,name2), and user-defined names that are in the Medici \log file.	none

Parameter	Type	Definition	Default
SWAP.CGY	logical	Specifies that if any of the output variables (ouT1 through outs) are capacitance, conductance or admittance quantities, then the node names associated with these quantities will be switched in the IC-CAP data file.	false

Description

The LOG statement allows the I-V and/or AC terminal data for a simulation to be written to a file. This statement also provides for the conversion of Medici I-V log files to data files that can be used by common parameter extraction programs. This section describes the LOG statement as it functions with the following:

- Medici log files
- Aurora data files
- IC-CAP data files

See Also... To further illustrate the LOG statement, refer to the following:

- Input file mdexlg in Input file mdexlg (Chapter 4, "Simulation of Gate Characteristics," p. 4-11)
- Input file mdexld (Chapter 4, "Simulation of Drain Characteristics," p. 4-12)
- Other examples when I-V characteristics are saved for later plotting.

Medici Log Files

A LOG statement causes I-V or AC data obtained as a result of all subsequent SOLVE statements to be saved. When a LOG statement is encountered, any open \log file is closed and a new file, as specified by OUT.FILE, is opened.

Data stored in log files is used by PLOT.1D statements to generate onedimensional parametric plots. Data is generated for log files whenever a SOLVE statement is used to create steady state, transient, or AC solutions. The data stored in a \log file can consist of the following:

- Frequency - User-defined parameters - Contact voltages
- Terminal currents - Transient simulation times - Electrode charge
- AC capacitances
- Optical data
- Applied voltages
- AC conductances
- Impact ionization current
- Hot electron injection and tunneling currents associated with each electrode

Aurora Data Files

The LOG statement can also be used to create a data file that can be read directly by Synopsys TCAD's parameter extraction program Aurora. To accomplish this:

- The AURORA parameter should be specified
- A previously created Medici log file containing the data of interest should be specified with the IN.FILE parameter
- The OUT.FILE parameter is used to specify the identifier for the output data file for Aurora.
- The parameters GATE, DRAIN, etc., identify the electrodes for the I-V data in IN. FILE that correspond to the gate contact, drain contact, etc., of the simulated structure.
For each such parameter that is specified, the program writes both the applied voltage and terminal current corresponding to this contact to the data file created for Aurora.

IC-CAP Data Files

The LOG statement can also be used to create a data file that can be read directly by Hewlett-Packard's IC-CAP program. To accomplish this:

- The ICCAP parameter should be specified. To create a file in the Measured Data Management file format (recommended), the parameter MDM should also be specified.
- A previously created Medici log file containing the data of interest should be specified with the IN. FILE parameter.
- The OUT . FILE parameter should be specified to identify the output data file for IC-CAP.

Input Variables Up to five input variables can be specified using the parameters INP1, INP2, INP 3, INP 4, and INP 5. The quantities that can be specified for these parameters include any of the available voltages and currents contained in the Medici log file, or frequency (if an AC small-signal analysis was performed).

When specifying input variables, INP1 should be used for the most rapidly varying quantity, INP2 should be used for the next most rapidly varying quantity, and so on. For input variables that are constant, the order is unimportant as long as they are specified after quantities that vary.

By default, Medici will assume that the input variable sweep type is LIN and will look for start, stop, and step values consistent with the data in the log file. The user may, however, indicate that the sweep type is LIST for one or more of the input variables by specifying LIST1, LIST2, LIST3, LIST4, and/or LIST5.

Note:

> The LIST parameters can only be used when writing IC-CAP data files using the MDM format.

Output Variables
Up to eight output variables can be specified using the parameters OUT1, OUT2, OUT3, OUT4, OUT5, OUT 6, OUT 7 and OUT8. The quantities that can be specified for these parameters are any of the available voltages and currents contained in the Medici log file. If the MDM parameter is specified, the choices also include any capacitance, conductance, and admittance values contained in the Medici log file (available if an AC small-signal analysis was performed), as well as any userdefined quantity contained in this file.

S-Parameters S-parameters can be written to IC-CAP data files in a two-port data format, provided that S-parameters were calculated by Medici during an AC small-signal analysis (the S.PARAM parameter on the SOLVE statement) and are contained in a Medici log file. This is accomplished by specifying the S. PARAM parameter instead of the output variables described above. In this case, the TERMINAL parameter is also required to specify which electrodes are terminal " 1 " and terminal " 2 ". S-parameters are only allowed when writing data using the MDM format.

Y-Parameters and H Parameters

Y-parameters or H-parameters can also be written to IC-CAP data files in an MDM two-port data format by specifying the Y.PARAM or H.PARAM parameter, respectively. Output of Y-parameters or H-parameters can only occur if AC analysis results ($\mathrm{G}(\mathrm{i}, \mathrm{j}$), $\mathrm{C}(\mathrm{i}, \mathrm{j})$ and frequency) are contained in the Medici log file. Y-parameters are obtained from the expression

$$
Y(i, j)=G(i, j)+i 2 \pi v C(i, j)
$$

Equation 3-25
H -parameters are computed from Y-parameters using the relations

```
H11 = 1/Y11
H12 = -Y12/Y11
H21 = Y21/Y11
H22 = (Y11*Y22-Y12*Y21)/Y11
```

As with S-parameters, the TERMINAL parameter must be specified for Yparameters or H-parameters to identify which electrodes are terminal " 1 " and terminal " 2 ".

Electrode Names
The parameters GATE, DRAIN, etc., identify the electrode names for the data in IN FFILE that correspond to the gate contact, drain contact, etc., of the simulated structure. If these parameters are specified, then appropriate mnemonics are substituted for the electrode names when the input and output variables are written to the IC-CAP data file.

IC-CAP Example
Consider a case where Medici is used to simulate the gate characteristics for a MOS device ($I d$ vs. $V g$) for several substrate biases ($V b$). In Medici, electrode names "Drain", "Gate", "Src" and "Subst" correspond to the drain, gate, source, and substrate contacts, respectively, and that the I-V data is stored in the file medici.ivl.

The following statement can be used to create a data file for IC-CAP using the MDM format:

LOG	ICCAP MDM IN.FILE=medici.ivl OUT.FILE=iccap.mdm	
+	DRAIN=Drain GATE=Gate SOURCE=SrC SUBSTRAT=Subst	
+	OUT1=I (Drain)	INP1=V(Gate) INP2=V (Subst)
+	INP3=V(Drain)	INP4=V(Src)

In this example,

- Drain current is identified as the output variable with the parameter OUT1.
- Gate voltage is identified as the most rapidly varying input variable with the parameter INP 1.
- The parameter INP2 identifies the substrate voltage as the next most rapidly varying input variable.
- Both the drain voltage and the source voltage are constant and are identified with the input parameters INP3 and INP4.
- The parameters DRAIN, GATE, SOURCE, and SUBSTRAT cause the name id to be used for the output variable and the names $v g, v b, v d$, and $v s$ to be used for the four input variables in the IC-CAP data file.

Data File Names

To be compatible with IC-CAP nomenclature, the data file for IC-CAP should end with the suffix ".set" (for example, iccap.set) when MDM is not specified, or with the suffix ".mdm" if the MDM format is used (for example, iccap.mdm in the above example).

LOAD

The LOAD statement reads previous solutions from files to use as initial guesses for continued simulations or for post-processing.

LOAD

[IN.FILE=<C> [ASCII.IN]] [IN.PREV=<C> [DIFFEREN]]
[OUT.FILE=<C> [ASCII.OU]] [CHECK.ER] [TIF]

Circuit Analysis AAM Parameters
[STRUCTUR=<c>]

Parameter	Type	Definition	Default
IN.FILE	char	The identifier for a file containing a solution to read in. synonym: INFILE	none
ASCII.IN	logical	Specifies that IN.FILE is a formatted file.	false
IN. PREV	char	The identifier for a file containing a second solution to read in. synonym: IN2FILE	none
DIFFEREN	logical	Specifies that the difference between the solutions in IN.FILE and IN. PREV is calculated.	false
OUT.FILE	char	The identifier for a file in which to store a solution. synonym: OUTFILE	none
ASCII.OU	logical	Specifies that OUT.FILE is a formatted file.	false
CHECK.ER	logical	Specifies that an inconsistency between the solution read in and the presently available device structure flags an error and terminates execution. If this parameter is false, a warning is given and an attempt to continue execution is made.	true
TIF	logical	Specifies that the TIF format is assumed for the input file.	false

Circuit Analysis AAM Parameters

STRUCTUR char Specifies the device to load. This parameter is only used with all devices the Circuit Analysis AAM.

Description

The LOAD statement reads previous solutions from files to use as initial guesses for continued simulations or for post-processing.

See Also... To further illustrate the LOAD statement, refer to the following:

- Input file mdexld (Chapter 4, "Initialization," p. 4-11)
- Input file mdexlg (Chapter 4, "Simulation of Gate Characteristics," p. 4-11)
- Input file mdexld (Chapter 4, "Simulation of Drain Characteristics," p. 4-12)
- Most other examples

Parameters

The LOAD statement uses a variety of parameters to read, store, and analyze differences between stored solutions.

Single Solution A previous solution which is stored in a file can be read using the IN .FILE parameter. By default, the program assumes the solution is stored in a binary file. If the solution is stored in a formatted file, the ASCII . IN parameter should be specified.

Two Solutions Two previous solutions stored in files can be read using the IN.FILE and IN. PREV parameters. This may be desired, for example, so that a projection can be used to obtain the initial guess for the next solution.

Since the program only stores the two most recent solutions, the solution read in with IN.PREV is the first to be lost when new solutions are obtained.

Analyzing Differences

The difference between two solutions can be analyzed by reading in both and specifying the DIFFEREN parameter. The difference is stored as a solution but can only be used for plotting or extracting data.

The difference solution can not be used as an initial guess for subsequent solutions.

Storing a The LOAD statement can also be used to store a solution. This is accomplished by Solution specifying the OUT.FILE parameter. By default, the solution is stored in a binary file. To store the solution in a formatted file, the parameter ASCII . OU should be specified.

Solution File Data

The data stored in a solution file includes:

- The potential at each node
- The carrier concentrations at each node
- The carrier temperature at each node
- The lattice temperature at each node

In addition, information describing the setup used to obtain the solution is stored and includes:

- Physical parameters for the materials in the device structure
- Special boundary conditions that may have been specified
- Flags indicating what physical models were selected.

Setup Information

When a solution file is read using the LOAD statement, the setup information contained in the file is used by default for all subsequent solutions. The setup may be modified using MATERIAL, MOBILITY, CONTACT, INTERFACE, and MODELS statements.

SAVE

Specifies files in which to save data.

```
SAVE
    OUT.FILE=<C> [QT.FILES=<C>]
    { ( SOLUTION [STRUCTUR=<C>] [ASCII] )
        | ( MESH [W.MODELS] [ASCII] )
    Technology Interchange Format
        | ( TIF [ALL] [BANDS] [CURRENTS] [GENERATI] [COMPONEN]
                [AC.POTEN] [AC.CN] [AC.CP] [AC.TN] [AC.TP] [AC.TL]
                [AC.JDISP] [AC.JN] [AC.JP] [AC.JCOND] [AC.JTOT]
                [AC.COMP] [AC.SCOMP] )
    Structure Parameters
        [MESH] [BOUND]
    Scalar Quantities
        [POTENTIA] [QFN] [QFP] [VALENC.B] [CONDUC.B] [VACUUM]
        [DOPING] [ELECTRON] [HOLES] [NET.CHAR] [NET.CARR]
        [RECOMBIN] [II.GENER] [BB.GENER] [PHOTOGEN]
        [ELE.TEMP] [HOL.TEMP] [ELE.VEL] [HOL.VEL] [J.EFIELD]
        [G.GAMN] [G.GAMP] [G.GAMT] [G.IN] [G.IP] [G.IT]
    Vector Quantities
        [J.CONDUC] [J.ELECTR] [J.HOLE] [J.DISPLA] [J.TOTAL] [E.FIELD]
    Lattice Temperature AAM Parameters
        [LAT.TEMP]
    Heterojunction Device AAM Parameters
        [X.MOLE]
        )
    }
```

Parameter	Type	Definition	Default		
OUT FFILE	char	The identifier for the file in which the information is written.	none		
QT FFILES	char	For a quadtree mesh, the basename of the quadtree support files.	none		
SOLUTION	logical	Specifies that the solution information shall be written to the file. STRUCTUR	char		Specifies the device for which the solution information is written. This
:---					
parameter is only used with the Circuit Analysis AAM.	all devices				

Parameter	Type	Definition	Default
W.MODELS	logical	Specifies that the information written contains model and coefficient information.	false

Technology Interface Format

TIF	logical	Specifies that the TIF format is used for the output file. The output automatically includes structure information and some basic physical quantities such as doping, potential, carrier concentrations, carrier and lattice temperatures, electric field and total current density. If the Circuit Analysis AAM is being used, the circuit (topology, element values), circuit node voltages, and currents are also written to the TIF file.	false
ALL	logical	Specifies that all available physical quantities are written to the TIF file.	false
BANDS	logical	Specifies that physical quantities associated with the band structure of the device are written to the TIF file. These include electron and hole quasi-Fermi potentials, and valence band, conduction band, and vacuum level potentials as well as quantum potentials.	false
CURRENTS	logical	Specifies that electron, hole, and displacement current densities and carrier velocities are written to the output file. The average total electron and hole mobilities at each node will also be written.	false
GENERATI	logical	Specifies that impact ionization generation, band-to-band tunneling generation, photogeneration, and recombination are written to the TIF file.	false
COMPONEN	logical	Specifies that components of vector quantities are written to the TIF file in addition to the magnitudes of these quantities.	false
AC. POTEN	logical	Specifies that values of the magnitude of AC potential in volts are written to the TIF file.	false
AC. CN	logical	Specifies that values of the magnitude of AC electron concentration in number per cubic centimeter are written to the TIF file.	false
AC. CP	logical	Specifies that values of the magnitude of AC hole concentration in number per cubic centimeter are written to the TIF file.	false
AC. TN	logical	Specifies that values of the magnitude of AC electron temperature in Kelvins are written to the TIF file.	false
AC. TP	logical	Specifies that values of the magnitude of AC hole temperature in Kelvins are written to the TIF file.	false
AC. TL	logical	Specifies that values of the magnitude of AC lattice temperature in Kelvins are written to the TIF file.	false
AJDISP	logical	Specifies that values of the magnitude of AC displacement current in amps per square centimeter are written to the TIF file.	false
AC. JN	logical	Specifies that values of the magnitude of AC electron current in amps per square centimeter are written to the TIF file.	false
AC. JP	logical	Specifies that values of the magnitude of AC hole current in amps per square centimeter are written to the TIF file.	false
AC. JCOND	logical	Specifies that values of the magnitude of AC conduction current in amps per square centimeter are written to the TIF file.	false
AC. JTOT	logical	Specifies that values of the magnitude of AC total current in amps per square centimeter are written to the TIF file.	false

Parameter	Type	Definition	Default
AC. COMP	logical	Specifies that complex components of AC quantities are written to the TIF file in addition to the magnitudes of these quantities.	false
AC. SCOMP	logical	Specifies that spatial components of AC vector quantities are written to the TIF file in addition to the magnitudes of these quantities.	false
Structure Parameters			
BOUND	logical	Specifies that boundary information is written to the data file.	false
Scalar Quantities			
POTENTIA	logical	Specifies that values of mid-gap potential in volts are written to the data file.	false
QFN	logical	Specifies that values of electron quasi-Fermi potential in volts are written to the data file.	false
QFP	logical	Specifies that values of hole quasi-Fermi potential in volts are written to the data file.	false
VALENC. B	logical	Specifies that values of valence band potential in volts are written to the data file.	false
CONDUC. B	logical	Specifies that values of conduction band potential in volts are written to the data file.	false
VACUUM	logical	Specifies that values of vacuum potential in volts are written to the data file.	false
DOP ING	logical	Specifies that values of net impurity concentration in number per cubic centimeter are written to the data file.	false
ELECTRON	logical	Specifies that values of electron concentration in number per cubic centimeter are written to the data file.	false
HOLES	logical	Specifies that values of hole concentration in number per cubic centimeter are written to the data file.	false
NET. CHAR	logical	Specifies that values of net charge concentration in number per cubic centimeter are written to the data file.	false
NET. CARR	logical	Specifies that values of net carrier concentration in number per cubic centimeter are written to the data file.	false
RECOMBIN	logical	Specifies that values of net recombination in number per cubic centimeter per second are written to the data file.	false
II.GENER	logical	Specifies that values of the total generation rate due to impact ionization in pairs per cubic centimeter per second are written to the data file.	false
BB. GENER	logical	Specifies that values of band-to-band tunneling generation rate in pairs per cubic centimeter per second are written to the data file.	false
PHOTOGEN	logical	Specifies that total photogeneration in pairs per cubic centimeter per second are written to the data file.	false
ELE. TEMP	logical	Specifies that values of electron temperature in Kelvins are written to the data file.	false
HOL. TEMP	logical	Specifies that values of hole temperature in Kelvins are written to the data file.	false

Parameter	Type
ELE.VEL	logical
HOL.VEL	logical
J.EFIELD	logical
G.GAMN	logical
G.GAMP	logical
G.GAMT	logical
G.IN	logical
G.IT	logical

Vector Quantities

J.CONDUC	logical	Specifies that the magnitude and vectors of conduction current density in amps per square centimeter are written to the data file.	false
J.ELECTR	logical	Specifies that the magnitude and vectors of electron current density in amps per square centimeter are written to the data file.	false
J.HOLE	logical	Specifies that the magnitude and vectors of hole current density in amps per square centimeter are written to the data file.	false
J.DISPLA	logical	Specifies that the magnitude and vectors of displacement current den- sity in amps per square centimeter are written to the data file.	false
J.TOTAL	logical	Specifies that the magnitude and vectors of total current in amps per square centimeter are written to the data file.	false
E.FIELD	logical	Specifies that the magnitude and vectors of electric field in volts per centimeter are written to the data file.	false

Lattice Temperature AAM Parameters

LAT.TEMP logical | Specifies that values of lattice temperature in Kelvins are written to the false |
| :--- |
| data file. This parameter is only used with the Lattice Temperature |
| AAM. |

Heterojunction Device AAM Parameters

Description

The SAVE statement specifies files in which to save data, and provides a convenient way to save simulation results at any point during the simulation.

See Also... To further illustrate the SAVE statement, refer to the following:

- mdex9b (Chapter 10, "Interface to TSUPREM-4," p. 10-12)
- mdexl1 (Chapter 12, "Generation of the Simulation Structure and Solutions," p. 12-7)
- mdex17 (Chapter 14, "High Electron Mobility Transistor Simulation," p. 148)
- Any other examples with the SAVE statement.

File Formats The tif format should be used for communication between the Medici program and other Synopsys TCAD programs such as Taurus Visual and Taurus WorkBench.

When specified with the DATEX parameter, the value of the OUT.FILE parameter is the root name of up to three data files to be written (each named with a separate suffix), and should therefore not have a suffix. The following is an example of the correct syntax.

```
SAVE TIF OUT.FILE=SOL11.TIF ALL
SAVE MESH OUT.FILE=NMOS.OOO W.MODELS
SAVE DATEX OUT.FILE=nmOS1 MESH BOUND ELECTRON HOLE
+
```

Saving AC Quantities in TIF Files

The internal solution distributions obtained from an AC small-signal analysis can be saved in a TIF file for visualization with Taurus Visual. This is accomplished on the SAVE statement by selecting among the parameters AC. POTEN, AC.CN, AC. CP, AC.TN, AC. TP, AC. TL AC. JDISP, AC.JN, AC.JP, AC. JCOND, and АС. ЈТОт.

The magnitude of a requested AC quantity is always written to the TIF file. If AC. COMP is specified, then the real and imaginary parts of the AC quantities are also written to the TIF file. If AC. SCOMP is specified, then the spatial components of requested AC vector quantities are also written to the TIF file.

Note:

Because of the large amount of data involved, specifying the ALL parameter will not cause the AC internal distributions to be saved. To save AC quantities in TIF files, they must be specified explicitly.

Saving a
Quadtree Mesh

The quadtree mesh used by Medici is generated and refined using an external mesh generator. This mesh generator makes use of two support files in addition to
the primary mesh file used by Medici. Medici usually manages these additional files automatically, however, you should be aware of them in case the primary mesh file is moved or deleted. These additional files are a tree file describing the element hierarchy and a TDF file used to hold additional structure information. During a SAVE statement, these support files are by default renamed to be consistent with the primary mesh file. For example, if a Quadtree mesh is saved to a file called device.tif, then the support files will be named device.tree and device.tdf. However, this automatic naming procedure may be overridden during reading and saving by using the QT.FILES parameter. QT.FILES is used to set the basename of the support files. For example, if QT.FILES=myfiles, then the names used for the support files are myfiles.tree and myfiles.tdf. These support files are needed if subsequent regrids are performed

3.4 Coefficients and Material Parameters

The following statements specify the material parameters and coefficients used by Medici:

Statement	Definition	Page
MATERIAL	Specifies material properties.	$3-278$
MOBILITY	Specifies parameters associated with mobility models.	$3-306$
IMPURITY	Specifies parameters associated with impurities.	$3-332$
CONTACT	Specifies parameters associated with electrodes; specifies special boundary conditions.	$3-335$
INTERFACE	Specifies interface parameters for the structure.	$3-341$
ANISOTROPIC	Specifies anisotropic material coefficients.	$3-344$

MATERIAL

The MATERIAL statement associates physical parameters with the materials in the device structure.

(MATERIAL statement continued on next page)
(MATERIAL statement continued from previous page)

```
    [MLDA.LN=<n>] [MLDA.LP=<n>]
    {[KAPPA.QM=<n>] | ( [KAPPA.N=<n>] [KAPPA.P=<n>] )}
    [N.ACCUM=<n>] [P.ACCUM=<n>] [DREF.QM=<n>]
    [QM.NORP=<n>] [QM.EFIEL=<n>]
    [U.STRESS=<n>] [D.STRESS=<n>] [A.STRESS=<n>]
    [B.STRESS=<n>] [C.STRESS=<n>]
    [ME.DT=<n>] [MHH.DT=<n>] [MLH.DT=<n>]
    [ME.SCDT=<n>] [MHHSC.DT=<n>] [MLHSC.DT=<n>]
Energy Balance Equation Parameters
    [ELE.CQ=<n>] [ELE.TAUW=<n>] [WTNO=<n>] [WTN1=<n>]
    [WTN2=<n>] [WTN3=<n>] [WTN4=<n>] [WTN5=<n>] [WTNL=<n>] [TNL=<n>]
    [HOL.CQ=<n>] [HOL.TAUW=<n>] [WTPO=<n>] [WTP1=<n>]
    [WTP2=<n>] [WTP3=<n>] [WTP4=<n>] [WTP5=<n>] [WTPL=<n>] [TPL=<n>]
Lattice Temperature AAM Parameters for Semiconductors
    [DENSITY=<n>] [DN.LAT=<n>] [DP.LAT=<n>]
    [A.SP.HEA=<n>] [B.SP.HEA=<n>] [C.SP.HEA=<n>] [D.SP.HEA=<n>]
    [F.SP.HEA=<n>] [G.SP.HEA=<n>]
    [A.TH.CON=<n>] [B.TH.CON=<n>] [C.TH.CON=<n>] [D.TH.CON=<n>]
    [E.TH.CON=<n>]
    [OP.PH.EN=<n>] [LAN300=<n>] [LAP300=<n>]
Heterojunction Device AAM Parameters
    [ {X.MOLE=<n> | X.OTHER=<C>} ] [EPS.X1=<n>] [EPS.X2=<n>]
    [NC.O=<n>] [NC.E=<n>] [NV.O=<n>] [NV.E=<n>] [EM.MODEL=<n>]
    [EG.X0=<n>] [EG.X1=<n>] [EG.X2=<n>] [EG.X3=<n>] [EG.X4=<n>]
    [EG.X5=<n>] [EG.X6=<n>] [EG.X7=<n>] [EG.X8=<n>] [EG.X9=<n>]
    [EG.X10=<n>] [EG.X11=<n>] [EG.X12=<n>] [EG.X13=<n>] [EG.X14=<n>]
    [AF.X0=<n>] [AF.X1=<n>] [AF.X2=<n>] [AF.X3=<n>] [AF.X4=<n>]
    [AF.X5=<n>] [AF.XL=<n>] [X1.AFFIN=<n>] [EGALX=<n>] [EGBEX=<n>]
    [EGGAX=<n>] [EGALL=<n>] [EGBEL=<n>] [EGGAL=<n>]
    [MEG=<n>] [MEG.X1=<n>] [MEX=<n>] [MEX.X1=<n>] [MEL=<n>]
    [MEL.X1=<n>] [MHO=<n>] [MHO.X1=<n>] [MLO=<n>] [MLO.X1=<n>]
        )
Insulator Parameters
    | ( {OXIDE | NITRIDE | SAPPHIRE | OXYNITRI | INSULATO | REGION=<c>}
        [PERMITTI=<n>] [AFFINITY=<n>] [EG300=<n>]
        [ECN.GC=<n>] [BARLN=<n>] [TUNLN=<n>]
        [ECP.GC=<n>] [BARLP=<n>] [TUNLP=<n>]
        [ME.DT=<n>] [MHH.DT=<n>] [MLH.DT=<n>]
```

(MATERIAL statement continued on next page)
(MATERIAL statement continued from previous page)

```
Lattice Temperature AAM Parameters for Insulators
                    [DENSITY=<n>]
                    [A.SP.HEA=<n>] [B.SP.HEA=<n>] [C.SP.HEA=<n>] [D.SP.HEA=<n>]
            [F.SP.HEA=<n>] [G.SP.HEA=<n>]
            [A.TH.CON=<n>]
                            [B.TH.CON=<n>] [C.TH.CON=<n>] [D.TH.CON=<n>]
                            [E.TH.CON=<n>]
                )
Electrode Parameters
            | ( ELECTROD=<C> [A.FN=<n>] [B.FN=<n>] [ME.DT=<n>] [BARR.DT=<n>]
                [MESC.DT]
            )
        }
    ]
```

Circuit Analysis AAM Parameters
[STRUCTUR=<C>]
Optical Device AAM Parameters
[PR.TABLE] [PR.ABSOR [WAVE.STA=<n>] [WAVE.END=<n>] [WAVE.INC=<n>]]
Optical Energy Gap
[EGO300=<n>] [EGOALPH=<n>] [EGOBETA=<n>]
Real Refractive Index
[\{(WAVE.RE=<a> INDEX.RE=<a>) | RRI.FILE=<C>\} [FIRST] [LAST]]
Imaginary Refractive Index or Absorption Coefficient
[\{ (\{ (WAVE.IM=<a> \{INDEX.IM=<a> | ABSORPTI=<a>\})
| (\{IRI.FILE=<C> | ABS.FILE=<C>\})
\}
[FIRST] [LAST]
)

\}
]
[BATA.AB [E1.BT=<n>] \{E.URBACH=<n> | G.BT=<n>\}]
[FRCA.AB [EL.EMAS $=<n>$] [HO.EMAS $=<n>$]]

Parameter	Type	Definition
PRINT	logical	Specifies that semiconductor and insulator material parameters for the structure are printed to the standard output.

Semiconductor Parameters

SILICON	logical	Specifies that the material parameters apply to all regions that were specified as SILICON with REGION statements.
GAAS	logical	Specifies that the material parameters apply to all regions that were specified as GAAS with REGION statements.
POLYSILI	logical	Specifies that the material parameters apply to all regions that were specified as POLYSILI with REGION statements.
SEMICOND	logical	Specifies that the material parameters apply to all regions that were specified as SEMICOND with REGION statements.
SIGE	logical	Specifies that the material parameters apply to all regions that were specified as SIGE with REGION statements.
ALGAAS	logical	Specifies that the material parameters apply to all regions that were specified as ALGAAS with REGION statements.
GERMANIU	logical	Specifies that the material parameters apply to all regions that were specified as GERMANIU with REGION statements.
SIC	logical	Specifies that the material parameters apply to all regions that were specified as SIC with REGION statements.
S.OXIDE	logical	Specifies that the material parameters apply to all regions that were specified as S. OXIDE with REGION statements.
HGCDTE	logical	Specifies that the material parameters apply to all regions that were specified as HGCDTE with REGION statements.
INGAAS	logical	Specifies that the material parameters apply to all regions that were specified as INGAAS with REGION statements.
INP	logical	Specifies that the material parameters apply to all regions that were specified as INP with REGION statements.
INAS	logical	Specifies that the material parameters apply to all regions that were specified as INAS with REGION statements.
DIAMOND	logical	Specifies that the material parameters apply to all regions that were specified as DIAMOND with REGION statements.
zNSE	logical	Specifies that the material parameters apply to all regions that were specified as ZNSE with REGION statements.
ZNTE	logical	Specifies that the material parameters apply to all regions that were specified as ZNTE with REGION statements.
A-SILICO	logical	Specifies that the material parameters apply to all regions that were specified as A-SILICO with REGION statements.
ALINAS	logical	Specifies that the material parameters apply to all regions that were specified as ALINAS with REGION statements
GAASP	logical	Specifies that the material parameters apply to all regions that were specified as GAASP with REGION statements

Parameter	Type	Definition	Default	Units
INGAP	logical	Specifies that the material parameters apply to all regions that were specified as INGAP with REGION statements	false	
INASP	logical	Specifies that the material parameters apply to all regions that were specified as INASP with REGION statements	false	
REGION	char	The name(s) of the regions for which the material parameters apply. If more than one name is given, the entire group should be surrounded by parentheses and the individual names should be separated with commas.	none	
PERMITTI	number	The relative dielectric permittivity of the material.	See tables	none
EG. MODEL	number	The energy bandgap model to use for the specified material or region: $=0==>$ use $\mathrm{E}_{\mathrm{g}}(300)$ $=1 \Rightarrow$ calculate dependence on lattice temperature only $=2 \Rightarrow=>$ use model for strained $\mathrm{Si}_{1-\mathrm{x}} \mathrm{Ge}_{\mathrm{x}}$ $=3=\Rightarrow$ use model for unstrained $\mathrm{Si}_{1-\mathrm{x}} \mathrm{Ge}_{\mathrm{x}}$ $=4==>$ use model for ternary III-V materials Specifying EG. MODEL=2, 3, or 4 requires that the Heterojunction Device AAM be enabled.	See tables	none
AFFINITY	number	The electron affinity for the material.	See tables	volts
EG300	number	The energy bandgap of the material at 300 K .	See tables	eV
EGALPH	number	The value of alpha used in calculating the energy bandgap as a function of temperature (the energy gap of band Γ if EM. MODEL set to 1).	See tables	eV/Kelvin
EGBETA	number	The value of beta used in calculating the energy bandgap as a function of temperature (the energy gap of band Γ if EM. MODEL set to 1).	See tables	Kelvins
EGGAMM	number	The value of gamma used in calculating the energy bandgap as a function of temperature (the energy gap of band Γ if EM. MODEL set to 1).	See tables	eV/Kelvins
NC300	number	The effective density of states in the conduction band of semiconductor at 300 K .	See tables	\#/cm ${ }^{3}$
NC.F	number	The exponent of temperature for describing the effective density of states in the conduction band.	See tables	none
NV300	number	The effective density of states in the valence band of semiconductor at 300 K .	See tables	\#/cm ${ }^{3}$
NV.F	number	The exponent of temperature for describing the effective density of states in the valence band.	See tables	none
GCB	number	The conduction band degeneracy factor.	See tables	none
GVB	number	The valence band degeneracy factor.	See tables	none
EDB	number	The donor ionization energy referenced to the conduction band energy. That is, $\operatorname{EDB}=\mathrm{E}_{\mathrm{C}}-\mathrm{E}_{\mathrm{D}}$.	See tables	eV
EAB	number	The acceptor ionization energy referenced to the valence band energy. That is, $\mathbf{E A B}=\mathrm{E}_{\mathrm{A}}-\mathrm{E}_{\mathrm{V}}$.	See tables	eV
tauno	number	The Shockley-Read-Hall electron lifetime.	See tables	s

Parameter	Type	Definition	Default	Units
NSRHN	number	The Shockley-Read-Hall concentration parameter for electrons.	See tables	\#/cm ${ }^{3}$
AN	number	The constant term in the concentration-dependent expression for electron lifetime.	See tables	none
BN	number	The linear term coefficient in the concentration-dependent expression for electron lifetime.	See tables	none
CN	number	The exponential term coefficient in the concentration-dependent expression for electron lifetime.	See tables	none
EN	number	The exponent in the concentration-dependent expression for electron lifetime.	See tables	none
TAUPO	number	The Shockley-Read-Hall hole lifetime.	See tables	s
NSRHP	number	The Shockley-Read-Hall concentration parameter for holes.	See tables	\#/cm ${ }^{3}$
AP	number	The constant term in the concentration-dependent expression for hole lifetime.	See tables	none
BP	number	The linear term coefficient in the concentration-dependent expression for hole lifetime.	See tables	none
CP	number	The exponential term coefficient in the concentration-dependent expression for hole lifetime.	See tables	none
EP	number	The exponent in the concentration-dependent expression for hole lifetime.	See tables	none
EXN.tau	number	The exponent of temperature for describing the electron lifetime dependence on lattice temperature. Specifying a non-zero value for this parameter invokes the lattice temperature-dependent electron lifetime model.	See tables	none
EXP.TAU	number	The exponent of temperature for describing the hole lifetime dependence on lattice temperature. Specifying a non-zero value for this parameter invokes the lattice temperature-dependent hole lifetime model.	See tables	none
EtRAP	number	The trap level $\left(\mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{i}}\right)$ used in determining the Shockley-ReadHall recombination rate.	See tables	eV
M.RTUN	number	The trap-assisted tunneling effective mass.	See tables	free electron rest mass m_{0}
B.RTUN	number	Band-to-band tunneling rate proportionality factor.	See tables	depends on S.RTUN
S.RTUN	number	Band-to-band field power ratio.	See tables	none
E.RTUN	number	Band-to-band reference electric field.	See tables	V/cm
C.DIRECT	number	The band-to-band recombination coefficient. The band-to-band recombination model is activated by specifying C.DIRECT > 0.0.	See tables	$\mathrm{cm}^{3} / \mathrm{s}$
AUGN	number	The Auger coefficient for electrons.	See tables	$\mathrm{cm}^{6} / \mathrm{s}$
AUGP	number	The Auger coefficient for holes.	See tables	$\mathrm{cm}^{6} / \mathrm{s}$
ARICHN	number	The effective Richardson constant for electrons.	See tables	$\begin{aligned} & \mathrm{amp} /(\text { Kelvins- } \\ & \mathrm{cm})^{2} \end{aligned}$

Parameter	Type	Definition	Default	Units
ARICHP	number	The effective Richardson constant for holes.	See tables	$\begin{aligned} & \mathrm{amp} /(\text { Kelvins- } \\ & \mathrm{cm})^{2} \end{aligned}$
NO. BGN	number	The concentration parameter used in Slotboom's band-gap narrowing model (BGN).	See tables	$1 / \mathrm{cm}^{3}$
vo. BGN	number	The voltage parameter used in the Slotboom's band-gap narrowing model (BGN).	See tables	volts
CON. BGN	number	The constant parameter used in the Slotboom's band-gap narrowing model (BGN).	See tables	eV
ANC. BGN	number	The constant parameter used in the Jain and Roulston's band-gap narrowing model (BGN2) for n-type semiconductors.	See tables	eV
BNC. BGN	number	The constant parameter used in the Jain and Roulston's band-gap narrowing model(BGN2) for n -type semiconductors.	See tables	eV
CNC. BGN	number	The constant parameter used in the Jain and Roulston's band-gap narrowing model(BGN2) for n-type semiconductors.	See tables	eV
ANV . BGN	number	The constant parameter used in the Jain and Roulston's band-gap narrowing model(BGN2) for n-type semiconductors.	See tables	eV
BNV.BGN	number	The constant parameter used in the Jain and Roulston's band-gap narrowing model(BGN2) for n-type semiconductors.	See tables	eV
CNV. BGN	number	The constant parameter used in the Jain and Roulston's band-gap narrowing model(BGN2) for n -type semiconductors.	See tables	eV
APC. BGN	number	The constant parameter used in the Jain and Roulston's band-gap narrowing model(BGN2) for p-type semiconductors.	See tables	eV
BPC. BGN	number	The constant parameter used in the Jain and Roulston's band-gap narrowing model(BGN2) for p -type semiconductors.	See tables	eV
CPC.BGN	number	The constant parameter used in the Jain and Roulston's band-gap narrowing model(BGN2) for p -type semiconductors.	See tables	eV
APV.BGN	number	The constant parameter used in the Jain and Roulston's band-gap narrowing model(BGN2) for p-type semiconductors.	See tables	eV
BPV.BGN	number	The constant parameter used in the Jain and Roulston's band-gap narrowing model(BGN2) for p-type semiconductors.	See tables	eV
CPV.BGN	number	The constant parameter used in the Jain and Roulston's band-gap narrowing model(BGN2) for p-type semiconductors.	See tables	eV
A. EHS	number	First electron-hole scattering parameter.	See tables	V-cm-s
B.EHS	number	Second electron-hole scattering parameter.	See tables	$1 / \mathrm{cm}^{3}$
C. EHS	number	Third electron-hole scattering parameter.	See tables	$1 / \mathrm{cm}^{3}$
N. IONIZA	number	The constant term in the multiplicative prefactor of the electron ionization coefficient. synonym: N. ION. 0	See tables	1/cm
N. ION. 1	number	The coefficient multiplying $T_{l a t}$ in the multiplicative prefactor of the electron ionization coefficient.	See tables	1/cm-K
N. ION. 2	number	The coefficient multiplying $\left(T_{l a t}\right)^{2}$ in the multiplicative prefactor of the electron ionization coefficient.	See tables	1/cm-K ${ }^{2}$

Parameter	Type	Definition	Default	Units
ECN.II	number	The critical electric field used in the exponential factor of the electron ionization coefficient.	See tables	volts/cm
EXN.II	number	The exponent of the ratio of the critical electrical field to the local electric field used in the exponential factor of the electron ionization coefficient.	See tables	none
P.IONIZA	number	The constant term in the multiplicative prefactor of the hole ionization coefficient. synonym: P.ION. 0	See tables	1/cm
P.ION. 1	number	The coefficient multiplying $T_{l a t}$ in the multiplicative prefactor of the hole ionization coefficient.	See tables	1/cm-k
P.ION. 2	number	The coefficient multiplying $\left(T_{\text {lat }}\right)^{2}$ in the multiplicative prefactor of the hole ionization coefficient.	See tables	$1 / \mathrm{cm}-\mathrm{k}^{2}$
ECP.II	number	The critical electric field used in the exponential factor of the hole ionization coefficient.	See tables	volts/cm
EXP.II	number	The exponent of the ratio of the critical electrical field to the local electric field used in the exponential factor of the hole ionization coefficient.	See tables	none
AON. VALD	number	Costant coefficient of parameter a(T) in Valdinoci impact ionization model for electrons	4.3383	V
A1N. VALD	number	Temperature coefficient of parameter $\mathrm{a}(\mathrm{T})$ in Valdinoci impact ionization model for electrons	-2.42e-12	V/K $\mathrm{K}^{\text {A2N }}$
A2N. VALD	number	Temperature exponent of parameter $\mathrm{a}(\mathrm{T})$ in Valdinoci impac ionization model for electrons	4.1233	none
BON.VALD	number	Costant coefficient of parameter $b(T)$ in Valdinoci impact ionization model for electrons	0.235	V
B1N.VALD	number	Temperature coefficient in the exponent of parameter $b(T)$ in Valdinoci impact ionization model for electrons	0.0	1/K
CON. VALD	number	Costant coefficient of parameter $\mathrm{c}(\mathrm{T})$ in Valdinoci impact ionization model for electrons	1.6831e4	V/cm
C1N.VALD	number	Temperature coefficient of parameter $\mathrm{c}(\mathrm{T})$ in Valdinoci impact ionization model for electrons	4.3796	$\mathrm{V} /\left(\mathrm{cm}-\mathrm{K}^{\mathrm{C} 2 \mathrm{~N}}\right)$
C2N.VALD	number	Temperature exponent of parameter $\mathrm{c}(\mathrm{T})$ in Valdinoci impac ionization model for electrons	1.0	none
C3N.VALD	number	Quadratic temperature coefficient of parameter $\mathrm{c}(\mathrm{T})$ in Valdinoci impact ionization model for electrons	0.13005	$\mathrm{V} /\left(\mathrm{cm}-\mathrm{K}^{2}\right)$
DON.VALD	number	Costant coefficient of parameter $\mathrm{d}(\mathrm{T})$ in Valdinoci impact ionization model for electrons	1.233735 e 6	V/cm
D1N.VALD	number	Linear temperature coefficient of parameter d(T) in Valdinoci impact ionization model for electrons	1.2039 e 3	$\mathrm{V} /(\mathrm{cm}-\mathrm{K})$
D2N.VALD	number	Quadratic temperature coefficient of parameter d(T) in Valdinoci impact ionization model for electrons	0.56703	$\mathrm{V} /\left(\mathrm{cm}-\mathrm{K}^{2}\right)$
AOP .VALD	number	Costant coefficient of parameter $\mathrm{a}(\mathrm{T})$ in Valdinoci impact ionization model for holes	2.376	V

Parameter	Type	Definition	Default	Units
A1P.VALD	number	Temperature coefficient of parameter $\mathrm{a}(\mathrm{T})$ in Valdinoci impact ionization model for holes	0.01033	V/K $\mathrm{K}^{\text {2 P }}$
A2P . VALD	number	Temperature exponent of parameter $\mathrm{a}(\mathrm{T})$ in Valdinoci impac ionization model for holes	1.0	none
BOP. VALD	number	Costant coefficient of parameter $b(T)$ in Valdinoci impact ionization model for holes	0.17714	V
B1P.VALD	number	Temperature coefficient in the exponent of parameter $b(T)$ in Valdinoci impact ionization model for holes	-0.002178	1/K
COP.VALD	number	Costant coefficient of parameter $\mathrm{c}(\mathrm{T})$ in Valdinoci impact ionization model for holes	0.0	V/cm
C1P.VALD	number	Temperature coefficient of parameter $\mathrm{c}(\mathrm{T})$ in Valdinoci impact ionization model for holes	0.00947	$\mathrm{V} /\left(\mathrm{cm}-\mathrm{K}^{\text {C2P }}\right.$)
C2P.VALD	number	Temperature exponent of parameter $\mathrm{c}(\mathrm{T})$ in Valdinoci impac ionization model for holes	2.4924	none
C3P.VALD	number	Quadratic temperature coefficient of parameter $\mathrm{c}(\mathrm{T})$ in Valdinoci impact ionization model for holes	0.0	$\mathrm{V} /\left(\mathrm{cm}-\mathrm{K}^{2}\right)$
DOP.VALD	number	Costant coefficient of parameter $\mathrm{d}(\mathrm{T})$ in Valdinoci impact ionization model for holes	1.4043 e 6	V/cm
D1P.VALD	number	Linear temperature coefficient of parameter $\mathrm{d}(\mathrm{T})$ in Valdinoci impact ionization model for holes	2.9744 e 3	$\mathrm{V} /(\mathrm{cm}-\mathrm{K})$
D2P.VALD	number	Quadratic temperature coefficient of parameter d(T) in Valdinoci impact ionization model for holes	1.4829	$\mathrm{V} /\left(\mathrm{cm}-\mathrm{K}^{2}\right)$
CN. IIGAP	number	Coefficient of electron impact ionization threshold energy	1.0	none
CP.IIGAP	number	Coefficient of hole impact ionization threshold energy	1.0	none
E1N.SOFT	number	The 1st threshold energy in soft-threshold electron impact ionization	See tables	eV
E2N.SOFT	number	The 2nd threshold energy in soft-threshold electron impact ionization	See tables	eV
E3N.SOFT	number	Termination energy in soft-threshold electron impact ionization	See tables	eV
C1N.SOFT	number	Energy scattering rate coefficent above the 1st threshold in softthreshold electron impact ionization	See tables	1/s
C2N. SOFT	number	Energy scattering rate coefficent above the 2nd threshold in softthreshold electron impact ionization	See tables	1/s
E1P.SOFT	number	The 1st threshold energy in soft-threshold hole impact ionization	See tables	eV
E2P.SOFT	number	The 2nd threshold energy in soft-threshold hole impact ionization	See tables	eV
E3P.SOFT	number	Termination energy in soft-threshold hole impact ionization	See tables	eV
C1P.SOFT	number	Energy scattering rate coefficent above the 1st threshold in softthreshold hole impact ionization	See tables	1/s
C2P.SOFT	number	Energy scattering rate coefficent above the 2nd threshold in softthreshold hole impact ionization	See tables	1/s

Parameter	Type	Definition	Default	Units
CN. IILAM	number	Coefficient of electron scattering mean free path in soft-threshold impact ionization model	See tables	none
CP.IILAM	number	Coefficient of hole scattering mean free path in soft-threshold impact ionization model	See tables	none
LAMHN	number	The hot-electron scattering mean-free path length in the semiconductor used in the gate current model.	See tables	cm
LAMRN	number	The electron re-direction scattering mean free path length used in the gate current model.	See tables	cm
LAMHP	number	The hot-hole scattering mean-free path length in the semiconductor used in the gate current model.	See tables	cm
LAMRP	number	The hole re-direction scattering mean free path length used in the gate current model.	See tables	cm
A. $\mathrm{BTBT}^{\text {d }}$	number	Coefficient of the pre-exponential term for the band-to-band tunneling model.	See tables	$\mathrm{eV}^{0.5} / \mathrm{cm-s-} \mathrm{~V}^{2}$
в. втвт	number	Coefficient of the exponential term for the band-to-band tunneling model.	See tables	$\mathrm{V} / \mathrm{cm}-\mathrm{el}^{1.5}$
A.FN	number	Coefficient of the pre-exponential term for the Fowler-Nordheim tunneling model.	See tables	$\mathrm{A} / \mathrm{V}^{2}$
B.FN	number	Coefficient of the exponential term for the Fowler-Nordheim tunneling model.	See tables	V/cm
DISt.sbt	number	Distance range used by SBT model.	See tables	cm
ME. SBT	number	Effective tunneling mass for electrons in the SBT model.	See tables	none
MH. SbT	number	Effective tunneling mass for holes in the SBT model.	See tables	none
MLDA. IN	number	Electron thermal wavelength used in the MLDA quantum model. A negative value deactivates the MLDA model for electrons in the specified material.	See tables	cm
MLDA. LP	number	Hole thermal wavelength used in the MLDA quantum model. A negative value deactivates the MLDA model for holes in the specified material.	See tables	cm
KAPPA. $\mathrm{QM}^{\text {M }}$	number	Multiplication factor for the band-gap widening expression when QM. PHILI model is used	See tables	none
KAPPA.N	number	Multiplication factor for the band-gap widening expression with the electron-inducing field when QM.PHILI model is used.	See tables	none
KAPPA.P	number	Multiplication factor for the band-gap widening expression with the hole-inducing field when QM.PHILI model is used.	See tables	none
n. ACCUM	number	Threshold concentration for the band-gap widening expression in electron accumulation regime when QM.PHILI model is used.	See tables	$1 / \mathrm{cm}^{3}$
P.ACCUM	number	Threshold concentration for the band-gap widening expression in hole accumulation regime when QM. PHILI model is used.	See tables	$1 / \mathrm{cm}^{3}$
DREF. QM	number	Reference distance used with the QM. PHILI model.	See tables	microns
QM. NORP	number	An integer that specifies whether quantum mechanical band-gap widening occurs in n-type regions ($\mathbf{Q M}$. NORP $=1$), p -type regions (Q . $\cdot \mathrm{NORP}=-1$), or both ($\mathrm{Q} \mathrm{M} \cdot \mathrm{NORP}=0$).	0	none

Parameter	Type	Definition	Default	Units
QM.EFIEL	number	An integer that specifies whether quantum mechanical band-gap widening occurs in regions where the normal electric field at the interface points into the semiconductor (QM.EFIEL=1), points into the insulator (\mathbf{Q}. EFIEL=-1), or both (\mathbf{Q}. EFIEL=0).	0	non
U.Stress	number	One of the deformation potential coefficients used in calculating the change in the conduction band edge with the STRESS model. For silicon only.	See tables	eV
D.Stress	number	One of the deformation potential coefficients used in calculating the change in the conduction band edge with the STReSS model. For silicon only.	See tables	eV
A.Stress	number	One of the deformation potential coefficients used in calculating the change in the valence band edge with the STRESS model. For silicon only.	See tables	eV
B.Stress	number	One of the deformation potential coefficients used in calculating the change in the valence band edge with the Stress model. For silicon only.	See tables	eV
C. Stress	number	One of the deformation potential coefficients used in calculating the change in the valence band edge with the STRESS model. For silicon only.	See tables	eV
ME. DT	number	The effective tunneling mass of electrons used in the direct tunneling model.	See tables	
MH\% . DT	number	The effective tunneling mass of heavy-holes used in the direct tunneling model.	See tables	
MLH. DT	number	The effective tunneling mass of light-holes used in the direct tunneling model.	See tables	
MESC.DT	number	The scale factor for the effective density-of-states mass of electrons used in the direct tunneling model.	See tables	
	number	The scale factor for the effective density-of-states mass of heavyholes used in the direct tunneling model.	See tables	
MLhSC.DT	number	The scale factor for the effective density-of-states mass of lightholes used in direct tunneling model.	See tables	

Energy Balance Equation Parameters

ELE.CQ	number	Electron thermal conductivity coefficient.	See tables	none
ELE. TAUW	number	Electron energy relaxation time.	See tables	s
WTN0	number	Coefficient appearing in the electron relaxation time model.	See tables	s
WTN1	number	Coefficient appearing in the electron relaxation time model.	See tables	s
WTN2	number	Coefficient appearing in the electron relaxation time model.	See tables	s
WTN3	number	Coefficient appearing in the electron relaxation time model.	See tables	s
WTN4	number	Coefficient appearing in the electron relaxation time model.	See tables	s
WTN5	number	Coefficient appearing in the electron relaxation time model.	See tables	s
WTNL	number	Coefficient appearing in the electron relaxation time model.	See tables	s

Parameter	Type	Definition
TNL	number	Coefficient appearing in the electron relaxation time model.
HOL.CQ	number	Hole thermal conductivity coefficient.
HOL . TAUW	number	Hole energy relaxation time.
WTP0	number	Coefficient appearing in the hole relaxation time model.
WTP1	number	Coefficient appearing in the hole relaxation time model.
WTP2	number	Coefficient appearing in the hole relaxation time model.
WTP3	number	Coefficient appearing in the hole relaxation time model.
WTP4	number	Coefficient appearing in the hole relaxation time model.
WTP5	number	Coefficient appearing in the hole relaxation time model.
WTPL	number	Coefficient appearing in the hole relaxation time model.
TPL	number	Coefficient appearing in the hole relaxation time model.

Lattice Temperature AAM Parameters for Semiconductors

DENSITY	number	Specific mass density for the material.	See tables	$\mathrm{Kg} / \mathrm{cm}^{3}$
DN. LIAT	number	Multiplication factor for the thermal diffusion term in the electron current density relation.	See tables	none
DP.LAT	number	Multiplication factor for the thermal diffusion term in the hole current density relation.	See tables	none
A. SP. HEA	number	First parameter for the specific heat model of the material.	See tables	$\mathrm{J} / \mathrm{Kg} / \mathrm{K}$
B.SP. HEA	number	Second parameter for the specific heat model of the material.	See tables	$\mathrm{J} / \mathrm{Kg} / \mathrm{K}^{2}$
C.SP.HEA	number	Third parameter for the specific heat model of the material.	See tables	J/Kg/K ${ }^{3}$
D. SP. HEA	number	Fourth parameter for the specific heat model of the material.	See tables	((J/Kg)K))
F.SP.HEA	number	Fifth parameter for the specific heat model of the material.	See tables	$\mathrm{J} / \mathrm{Kg} / \mathrm{K}^{4}$
G.SP. HEA	number	Sixth parameter for the specific heat model of the material.	See tables	$\mathrm{J} / \mathrm{Kg} / \mathrm{K}^{5}$
A.TH.CON	number	First parameter for the thermal conductivity model of the material.	See tables	(cm-K/W)
B.TH.CON	number	Second parameter for the thermal conductivity model of the material.	See tables	(cm/W)
C.TH.CON	number	Third parameter for the thermal conductivity model of the material.	See tables	(cm/W/K)
D.TH.CON	number	Fourth parameter for the thermal conductivity model of the material. Units: $\left(\mathrm{cm} / \mathrm{W} / \mathrm{K}^{(\mathrm{E} . \text { TH.CON-1) }}\right)$	See tables	See description
E.TH.CON	number	Fifth parameter for the thermal conductivity model of the material.	See tables	none
OP.PH.EN	number	Mean optical phonon energy used for the impact ionization model depending on lattice temperature.	See tables	eV
LAN300	number	Energy free path for electrons at 300 K , used for the impact ionization model depending on lattice temperature.	See tables	cm

Parameter	Type	Definition	Default	Units
LAP 300	number	Energy free path for holes at 300 K , used for the impact ionization model depending on lattice temperature.	See tables	cm
Heterojunction AAM Parameters				
X.MOLE	number	The mole fraction to use for compound materials in the specified region.	See tables	none
X. OTHER	char	The name of an OTHER quantity that was originally defined on the PROFILE statement that contains a two-dimensional mole fraction distribution to use for compound materials in the specified region.	none	none
EPS. $\mathrm{X1}$	number	Parameter used in the mole fraction dependent expression for permittivity.	See tables	none
EPS. X 2	number	Parameter used in the mole fraction dependent expression for permittivity.	See tables	none
NC. 0	number	Parameter used in the mole fraction dependent expression for the conduction band density of states.	See tables	none
NC.E	number	Parameter used in the mole fraction dependent expression for the conduction band density of states.	See tables	eV
NV. 0	number	Parameter used in the mole fraction dependent expression for the valence band density of states.	See tables	none
NV. E	number	Parameter used in the mole fraction dependent expression for the valence band density of states.	See tables	eV
EM. MODEL	number	The effective mass model to use for the specified material or region: $=0$ ==> use EL.EMAS, HO.EMAS $=1=\Rightarrow$ use model for ternary III-V materials Specifying EM. MODEL=1 requires that the Heterojunction Device AAM be enabled.	See tables	none
$\begin{aligned} & \text { EG. XO to } \\ & \text { EG. X14 } \end{aligned}$	numbers	The factors multiplying mole fraction raised to various powers in the expressions for energy bandgaps for three electron bands (see Chapter 2).	See tables	eV
$\begin{aligned} & \text { AF. X0 to } \\ & \text { AF. } \mathrm{X} 5 \end{aligned}$	number	The factors multiplying mole fraction raised to various powers in the expression for electron affinity (see Chapter 2).	See tables	eV
AF. XL	number	The value of the mole fraction at which Medici will switch from one affinity model to another (see Chapter 2).	See tables	eV
X1.AFFIN	number	Electron affinity parameter used with the electron affinity model specified with EG. MODEL=5.	See tables	volts
EGALX	number	The value of alpha used in calculating the energy bandgap of band X as a function of temperature.	See tables	eV/Kelvin
EGBEX	number	The value of beta used in calculating the energy bandgap of band X as a function of temperature.	See tables	Kelvins
EGGAX	number	The value of gamma used in calculating the energy bandgap of band X as a function of temperature.	See tables	eV/Kelvins
EGALL	number	The value of alpha used in calculating the energy bandgap of band L as a function of temperature.	See tables	eV/Kelvin

Parameter	Type	Definition	Default	Units
EGBEL	number	The value of beta used in calculating the energy bandgap of band L as a function of temperature.	See tables	Kelvins
EGGAL	number	The value of gamma used in calculating the energy bandgap of band L as a function of temperature.	See tables	eV/Kelvins
MEG	number	Coefficient used in calculating the effective mass of electrons from band Γ.	See tables	none
MEG. X 1	number	Coefficient used in calculating the effective mass of electrons from band Γ.	See tables	none
MEX	number	Coefficient used in calculating the effective mass of electrons from band X.	See tables	none
MEX . X1	number	Coefficient used in calculating the effective mass of electrons from band X.	See tables	none
MEL	number	Coefficient used in calculating the effective mass of electrons from band L .	See tables	none
MEL. X1	number	Coefficient used in calculating the effective mass of electrons from band L.	See tables	none
MHO	number	Coefficient used in calculating the effective mass of heavy holes.	See tables	none
MHO. X 1	number	Coefficient used in calculating the effective mass of heavy holes.	See tables	none
MLO	number	Coefficient used in calculating the effective mass of light holes.	See tables	none
MLO. X1	number	Coefficient used in calculating the effective mass of light holes.	See tables	none
Insulator Parameters				
OXIDE	logical	Specifies that the material parameters are to apply to all regions that were specified as OXIDE with REGION statements.	false	
NITRIDE	logical	Specifies that the material parameters are to apply to all regions that were specified as NITRIDE with REGION statements.	false	
SAPPHIRE	logical	Specifies that the material parameters are to apply to all regions that were specified as SAPPHIRE with REGION statements.	false	
OXYNITRI	logical	Specifies that the material parameters are to apply to all regions that were specified as OXYNITRI with REGION statements.	false	
INSULATO	logical	Specifies that the material parameters are to apply to all regions that were specified as INSULATO with REGION statements.	false	
S.OXIDE	logical	Specifies that the material parameters are to apply to all regions that were specified as S.OXIDE.	false	
REGION	char	The name(s) of the regions for which the material parameters are to apply. If more than one name is given, the entire group should be surrounded by parentheses and the individual names should be separated with commas.	none	
PERMITTI	number	The relative dielectric permittivity of the material.	See tables	none
AFFINITY	number	The electron affinity for the material.	See tables	volts
EG300	number	The energy bandgap of the material at 300 K .	See tables	eV

Parameter	Type	Definition	Default	Units
ECN. GC	number	The critical electric field for electron scattering in the insulator used in the gate current model.	See tables	volts/cm
BARLN	number	The coefficient for the potential barrier lowering term for electrons used in the gate current model.	See tables	$(\text { volts-cm) })^{(1 / 2)}$
TUNLN	number	The coefficient for the tunneling term for electrons used in the gate current model.	See tables	$\left(\text { volts }-\mathrm{cm}^{2}\right)^{(1 / 3)}$
ECP.GC	number	The critical electric field for hole scattering in the insulator used in the gate current model.	See tables	volts/cm
BARLP	number	The coefficient for the potential barrier lowering term for holes used in the gate current model.	See tables	$\left(\right.$ volts-cm) ${ }^{(1 / 2)}$
TUNLP	number	The coefficient for the tunneling term for holes used in the gate current model.	See tables	$\left(\text { volts }-\mathrm{cm}^{2}\right)^{(1 / 3)}$
ME. DT	number	The effective tunneling mass of electrons used in the direct tunneling model.	See tables	
MHH.DT	number	The effective tunneling mass of heavy-holes used in the direct tunneling model.	See tables	
MLH.DT	number	The effective tunneling mass of light-holes used in the direct tunneling model.	See tables	

Lattice Temperature AAM Parameters for Insulators

DENSITY	number	Specific mass density for the material.	See tables	$\mathrm{Kg} / \mathrm{cm}^{3}$
A.SP.HEA	number	First parameter for the specific heat model of the material.	See tables	J/Kg/K
B.SP. HEA	number	Second parameter for the specific heat model of the material.	See tables	$\mathrm{J} / \mathrm{Kg} / \mathrm{K}^{2}$
C.SP. HEA	number	Third parameter for the specific heat model of the material.	See tables	$\mathrm{J} / \mathrm{Kg} / \mathrm{K}^{3}$
D.SP.HEA	number	Fourth parameter for the specific heat model of the material.	See tables	((J/Kg)K))
F.SP.HEA	number	Fifth parameter for the specific heat model of the material.	See tables	$\mathrm{J} / \mathrm{Kg} / \mathrm{K}^{4}$
G.SP. HEA	number	Sixth parameter for the specific heat model of the material.	See tables	$\mathrm{J} / \mathrm{Kg} / \mathrm{K}^{5}$
A.TH.CON	number	First parameter for the thermal conductivity model of the material.	See tables	(cm-K/W)
B.TH.CON	number	Second parameter for the thermal conductivity model of the material.	See tables	(cm/W)
C.TH.CON	number	Third parameter for the thermal conductivity model of the material.	See tables	(cm/W/K)
D.TH.CON	number	Fourth parameter for the thermal conductivity model of the material. Units: $\left(\mathrm{cm} / \mathrm{W} / \mathrm{K}^{(\mathrm{E} . \mathrm{TH} . \mathrm{CON}-1)}\right)$	See tables	See description
E.TH.CON	number	Fifth parameter for the thermal conductivity model of the material.	See tables	none
Electrode	amete			

| Parameter | Type | Definition
 char | The name(s) of the electrodes for which the Fowler-Nordheim
 parameters are to apply. If more than one name is given, the entire
 group should be surrounded by parentheses and the individual
 names should be separated with commas. | none |
| :--- | :--- | :--- | :--- | :--- | :--- |

Circuit Analysis AAM Parameters

STRUCTUR

char
Selects the device in which the material parameters are altered.
all devices This parameter is only used with the Circuit Analysis AAM.

Optical Device AAM Parameters

PR. TABLE	logical	Print the wavelength-dependent tables for refractive index and absorption coefficient that are used for each material region.	false	
PR.ABSOR	logical	Print total absorption, absorption length (including contributions from physical models) and refractive index for each material region as a function of wavelength and energy.	false	
WAVE.STA	number	Starting wavelength value when PR.ABSOR is specified.	0.1	microns
WAVE.END	number	Ending wavelength value when PR. ABSOR is specified.	3.0	microns
WAVE. INC	number	Incremental wavelength value when PR. ABSOR is specified.	0.1	microns
Optical Energy Gap				
EGO300	number	The optical energy gap at 300 K .	See tables	eV
EGOALPH	number	The value of alpha used in calculating the temperature-dependent optical energy gap.	See tables	eV/Kelvin
EGOBETA	number	The value of beta used in calculating the temperature-dependent optical energy gap.	See tables	Kelvin
Real Refractive Index				
WAVE. RE	array	The wavelength values for which real refractive index values are specified. At most thirty values may be defined with this parameter.	none	microns
INDEX.RE	array	The values of the real refractive index corresponding to the wavelength values given by WAVE. RE. At most 30 values may be defined with this parameter.	none	none

Parameter	Type	Definition	Default	Units
RRI.FILE	char	The name of a formatted file containing real refractive index versus wavelength data. The first column should be the wavelength in microns and the second column should be the real refractive indices. The file must contain at least two lines and the maximum number of lines is 40 .	none	
FIRST	logical	Specifies that the minimum wavelength given by WAVE.RE or WAVE.IM, or the minimum wavelength found in the files specified with RRI.FILE, IRI.FILE, or ABS.FILE are used as the first row in the corresponding data table. Any entries in the relevant table with smaller values of wavelength are removed.	false	
LAST	logical	Specifies that the maximum wavelength given by WAVE.RE or WAVE. IM, or the maximum wavelength found in the files specified with RRI.FILE, IRI.FILE, or ABS.FILE are used as the last row in the corresponding data table. Any entries in the relevant table with larger values of wavelength are removed.	false	
	Imag	Refractive Index or Absorption Coefficient		
WAVE. IM	array	The wavelength values for which imaginary refractive index values or absorption coefficient values are specified. At most thirty values may be defined with this parameter.	none	microns
INDEX.IM	array	The values of the imaginary refractive index corresponding to the wavelength values given by WAVE. IM. At most 30 values may be defined with this parameter.	none	none
ABSORPTI	array	The values of the absorption coefficient corresponding to the wavelength values given by WAVE. IM. At most 30 values may be defined with this parameter.	none	cm^{-1}
IRI.FILE	char	The name of a formatted file containing imaginary refractive index versus wavelength data. The first column should be the wavelength in microns and the second column should be the imaginary refractive indices. The file must contain at least two lines and the maximum number of lines is 40 .	none	
ABS.FILE	char	The name of a formatted file containing absorption coefficient versus wavelength data. The first column should be the wavelength in microns and the second column should be the absorption coefficient. The file must contain at least two lines and the maximum number of lines is 40 .	none	
BtBt. AB	logical	Specifies that an absorption model accounting for band-to-band transitions is used instead of the empirical tables for absorption coefficient.	false	
B. BB	array	An array of coefficients used in the calculation of the band-toband portion of the absorption coefficient. A maximum of ten values can be specified.	none	transition dependent
E.PHONON	array	An array of phonon energies for indirect transitions in the calculation of the band-to-band portion of the absorption coefficient. A maximum of ten values can be specified.	none	eV
E1. BB	array	An array of energy gaps for indirect transitions used in the calculation of the band-to-band portion of the absorption coefficient. A maximum of ten values can be specified.	none	eV
EXP . BB	array	An array of exponents used in the calculation of the band-to-band portion of the absorption coefficient. A maximum of ten values can be specified.	none	none

Parameter	Type	Definition	Default	Units
BATA. AB	logical	Specifies that an absorption model accounting for band-to-tail transitions is included in the calculation of the absorption coefficient.	false	
E. URBACH	number	The Urbach energy used in the calculation of the band-to-tail portion of the absorption coefficient.	none	eV
E1.bt	number	The ending energy value used in the calculation of the band-to-tail portion of the absorption coefficient.	$E_{g, o p t}(T)$	eV
G.BT	number	A parameter used in the calculation of the Urbach tail in the band-to-tail portion of the absorption coefficient. If E. URBACH is specified, this parameter is ignored.	none	none
FRCA. AB	logical	Specifies that an absorption model accounting for free carrier transitions is included in the calculation of the absorption coefficient.	false	
El. EmAs	number	The relative electron effective mass.	See tables	none
Ho. EmAs	number	The relative hole effective mass.	See tables	none

Description

See Also... To further illustrate the material statement, refer to the following:

- Input file mdex2p in Chapter 5, "Simulation with Modified Emitter Region," p. 5-62
- Input file mdex5 in Chapter 7, "Generation of the Simulation Structure and

Input file mdex5 in Chapter 7,
Transient Solutions," p. 7-10

- Several other examples

Applicable Regions

The MATERIAL statement is used to modify the physical parameters associated with the materials in the device structure. If no MATERIAL statement is specified, the default parameter values are used.

Parameters from Solution Files

If a material name is specified (such as SILICON or OXIDE), then parameters specified on the MATERIAL statement will apply to all regions in the device structure that consist of that material. Otherwise, the REGION parameter can be used.

When a solution file is read in using the LOAD statement, material parameters stored in the file will replace the corresponding material parameters in the present setup. This makes it unnecessary to re-specify parameters that were modified in a previous simulation when continuing the simulation from a saved solution.

This section provides information and examples on how the MATERIAL statement is used with the Optical Device Advanced Application Module (ODAAM).

Optical Device AAM Parameters

This section provides information and examples on how the MATERIAL statement is used with the Optical Device Advanced Application Module (ODAAM).

Changing Table
Values

Complex indices of refraction for various materials are supplied as built-in wavelength dependent tables. These tables can be modified for your own particular needs. For example:

```
MATERIAL SILICON WAVE.RE=0.5 INDEX.RE=2.5
```

The above example adds (or replaces) an entry in the real refractive index table for all silicon regions at a wavelength of 0.5 microns. In this case, the real refractive index is set to a value of 2.5 . The entries for wavelengths other than 0.5 micron are unchanged from their previous values.

Data for absorption coefficients can be added by specifying either the imaginary refractive index or the absorption coefficient itself. For example:

MATERIAL REGION=Silicon1 WAVE.IM=0.6 ABSORPT=2500
The above statement adds (or replaces) an entry in the absorption coefficient table for the region named "Silicon1" at a wavelength of 0.6 microns. In this case, the absorption coefficient is set to a value of $2500 \mathrm{~cm}^{-1}$. The entries for wavelengths other than 0.6 micron are unchanged from their previous values.

It is also possible to specify a range of entries, as illustrated in the following example:

MATERIAL GAAS WAVE.RE=(0.4,0.5,0.6) INDEX.RE=(4.5,5.1,4.3)

+ WAVE.IM $=(0.5,0.6,0.7)$ INDEX.IM $=(1.8,1.0,0.6)$
The above statement adds or replaces entries in both the real and imaginary refractive index tables for all GaAs regions in the following way:
- For the real refractive index, the table entries in the wavelength range 0.4 microns to 0.6 microns are replaced by the specified values.
- For the imaginary refractive index, the table entries in the wavelength range 0.5 microns to 0.7 microns are replaced by the specified values.

Coefficient Files

In addition to specifying table entries directly as illustrated in the previous examples, it is possible to specify files that contain this information. The parameters RRI.FILE, IRI.FILE, or ABS .FILE. can be used to specify files that contain data for the real refractive index, the imaginary refractive index, or the absorption coefficient, respectively.

If such a data file is used, it should contain two columns as shown in the following example:

```
0.4 3.33
0.5 3.56
0.64.66
    .. ...
    .. ...
```

- The first column is for wavelength values.
- The second column is for the real or imaginary indices of refraction or the absorption coefficients.

The file should contain at least two entries, but no more than 40.

Physical Absorption Models

The MATERIAL statement can be used to specify region dependent physical absorption models and the parameters associated with these models. For example:

```
MATERIAL REG=Silicon2 BTBT.AB
+ B.BB=(7.5859e3,7.5859e3,7.5859e3,7.5859e3)
+ E.PHONON=(55.3e-3,55.3e-3,55.3e-3,55.3e-3)
+ E1.BB=(3.4,4.4,5.2,5.4)
+ EXP.BB=(2,2,2,2)
```

In this case,

- BTBT. AB specifies that the band-to-band absorption mechanism is used for the region named Silicon2.
- Nonzero E. PHONON values represent indirect transitions.
- Values of 2 for EXP . BB are characteristic of allowed transitions.
- The range of $\mathbf{E 1}$. $\mathbf{B B}$ values used above allows for a wide spectral response, while most semiconductors have peak absorption coefficients in the range 3.4 to 5.2 eV .

More than one absorption mechanism can be included in the analysis. For example:

```
MATERIAL A-SI BTBT.AB BATA.AB
+ B.BB=4.225E5 E.PHONON=0 E1.BB=0 EXP.BB=2
+ EGO300=2.2 E.URBACH=0.06
```

In this case,

- BTBT. AB and BATA. AB specify that both band-to-band and band-tail absorption are considered for all amorphous-silicon regions.
- E.PHONON=0 indicates a direct transition.
- EXP . $\mathrm{BB}=2$ indicates an allowed transition.
- EGO300 is the optical energy gap at 300 K .
- Below the optical gap, the absorption coefficient decreases exponentially, with a characteristic energy given by E.URBACH.

Default Parameters

The following tables contain the default material parameters available in Medici.

- Table 3-5, "Default Semiconductor Material Parameters," p. 3-298
- Table 3-6, "Default Semiconductor Material Parameters," p. 3-302
- Table 3-7, "Default Insulator Material Parameters," p. 3-304
- Table 3-8, "Default Electrode Region Material Parameters Used by Medici," p. 3-305
- For Parameters not included in the tables see "Other Semiconductor Parameters," p. 3-305.

Table 3-5 Default Semiconductor Material Parameters

Parameter	Units	SILICON	GAAS	POLYSILI	S.OXIDE	GERMANIU
PERMITTI		11.8	13.1	Si	3.9	Si
EPS. X 1		0.0	0.0	0.0	0.0	0.0
EPS. X 2		0.0	0.0	0.0	0.0	0.0
EG.MODEL		1	1	1	1	1
AFFINITY	V	4.17	4.07	Si	0.97	4
```AF.XO to AF. X5 and AF.XL```	V	0.0	0.0	Si	0.0	0.0
X1.AFFIN	V	0.0	0.0	0.0	0.0	0.0
EG300	eV	1.08	1.424	Si	9.0	0.66
$\begin{aligned} & \text { EG.XO } \\ & \text { to EG. X14 } \end{aligned}$	eV	0.0	0.0	Si	0.0	0.0
EGALPH	eV/K	$4.73 \mathrm{e}-4$	$5.405 \mathrm{e}-4$	Si	Si	$4.77 \mathrm{e}-4$
EGBETA	K	636	204	Si	Si	235
EGGAMM	eV/K	0	0	Si	Si	0
EGALX	eV/K	$4.73 \mathrm{e}-4$	4.6e-4	0	0	0
EGBEX	K	636	204	0	0	0
EGGAX	eV/K	0	0	0	0	0
EGALL	eV/K	0	$6.05 \mathrm{e}-4$	0	0	0
EGBEL	K	0	204	0	0	0
EGGAL	eV/K	0	0	0	0	0
NC300	$\mathrm{cm}^{-3}$	2.8 e 19	4.7 e 17	Si	Si	1.04 e 19
NC.F		1.5	1.5	Si	Si	Si
NC. 0		0.0	0.0	0.0	0.0	0.0
NC.E	eV	0.0	0.0	0.0	0.0	0.0
NV300	$\mathrm{cm}^{-3}$	1.04 e 19	7e18	Si	Si	6 e 18
NV.F		1.5	1.5	Si	Si	Si
NV. 0		0.0	0.0	0.0	0.0	0.0
NV.E	eV	0.0	0.0	0.0	0.0	0.0

Table 3-5 Default Semiconductor Material Parameters (Continued)

Parameter	Units	SILICON	GAAS	POLYSILI	S.OXIDE	GERMANIU
GCB		2	2	Si	Si	Si
GVB		4	2	Si	Si	Si
EDB	eV	0.044	0.005	Si	Si	Si
EAB	eV	0.045	0.005	Si	Si	Si
TAUNO	s	1e-7	1e-9	Si	2e-5	Si
NSRHN	$\mathrm{cm}^{-3}$	5 e 16	1	Si	Si	Si
AN		1	1	1	1	1
BN		1	0	1	1	1
CN		0	0	0	0	0
EN		2	0	2	2	2
TAUPO	S	$1 \mathrm{e}-7$	1e-9	Si	$2 \mathrm{e}-5$	Si
NSRHP	$\mathrm{cm}^{-3}$	5e16	1	Si	Si	Si
AP		1	1	1	1	1
BP		1	0	1	1	1
CP		0	0	0	0	0
EP		2	0	2	2	2
EXN.TAU		0	0	0	0	0
EXP.TAU		0	0	0	0	0
ETRAP	eV	0	0	0	0	0
M.RTUN	$m_{0}$	0.25	0.25	Si	Si	Si
B.RTUN	$(\mathrm{cm} / \mathrm{V})^{\mathrm{S} . \mathrm{RTUN} / \mathrm{cm}^{3} / \mathrm{s}}$	4.0 e 14	0	Si	Si	Si
S.RTUN		2.5	2	Si	Si	Si
E.RTUN	V/cm	1.9 e 7	0	Si	Si	Si
C. DIRECT	$\mathrm{cm}^{3} / \mathrm{s}$	0	0	0	0	0
AUGN	$\mathrm{cm}^{6} / \mathrm{s}$	$2.8 \mathrm{e}-31$	0	Si	Si	Si
AUGP	$\mathrm{cm}^{6} / \mathrm{s}$	$9.9 \mathrm{e}-32$	0	Si	Si	Si
ARICHN	$\mathrm{A} /(\mathrm{K}-\mathrm{cm})^{2}$	110	6.2857	Si	Si	Si
ARICHP	$\mathrm{A} /(\mathrm{K}-\mathrm{cm})^{2}$	30	105	Si	Si	Si
NO. BGN	$\mathrm{cm}^{-3}$	1 e 17	1 e 17	Si	Si	Si
VO. BGN	V	$9 \mathrm{e}-3$	0	Si	Si	Si
CON. BGN		0.5	0	Si	Si	Si
ANC. BGN	eV	-14.84e-3	-16.30e-3	Si	Si	-8.67e-3
BNC. BGN	eV	0.0	0.0	Si	Si	0.0
CNC. BGN	eV	$0.78 \mathrm{e}-3$	-18.13e-3	Si	Si	$-2.02 \mathrm{e}-3$
ANV. BGN	eV	0.0	0.0	Si	Si	0.0
BNV. BGN	eV	15.08e-3	$7.47 \mathrm{e}-3$	Si	Si	$8.14 \mathrm{e}-3$
CNV. BGN	eV	0.74e-03	72.52e-3	Si	Si	$2.29 \mathrm{e}-3$
APC. BGN	eV	0.0	-9.71e-3	Si	Si	-8.21e-3
BPC. BGN	eV	-16.27e-3	0.0	Si	Si	0.0
CPC. BGN	eV	-0.18e-3	-0.47e-3	Si	Si	$-2.19 \mathrm{e}-3$
APV.BGN	eV	18.46e-3	0.0	Si	Si	0.0
BPV.BGN	eV	0.0	$12.19 \mathrm{e}-3$	Si	Si	$9.18 \mathrm{e}-3$

Table 3-5 Default Semiconductor Material Parameters (Continued)

Parameter	Units	SILICON	GAAS	POLYSILI	S.OXIDE	GERMANIU
CPV. BGN	eV	-2.63e-03	3.41e-3	Si	Si	$3.58 \mathrm{e}-3$
A. EHS	V-cm-s	$1.35 \mathrm{e}-20$	0	Si	Si	Si
B. EHS	$\mathrm{cm}^{-3}$	$3.58 \mathrm{e}-18$	0	Si	Si	Si
C. EHS	$\mathrm{cm}^{-3}$	$2.86 \mathrm{e}-17$	0	Si	Si	Si
N. IONIZA	$\mathrm{cm}^{-1}$	7.03 e 5	2.994 e 5	Si	7.03 e 2	1.55 e 7
N. ION. 1	$(\mathrm{cm}-\mathrm{K})^{-1}$	0.0	0.0	0.0	0.0	0.0
N.ION. 2	$\left(\mathrm{cm}-\mathrm{K}^{2}\right)^{-1}$	0.0	0.0	0.0	0.0	0.0
ECN.II	V/cm	1.231 e 6	6.848 e 5	Si	1.11 e 8	1.56 e 6
EXN.II		1	1.6	Si	Si	Si
P.IONIZA	$\mathrm{cm}^{-1}$	1.528 e 6	2.215 e 5	Si	1.528 e 3	1.0 e 7
P.ION. 1	$(\mathrm{cm}-\mathrm{K})^{-1}$	0.0	0.0	0.0	0.0	0.0
P.ION. 2	$\left(\mathrm{cm}-\mathrm{K}^{2}\right)^{-1}$	0.0	0.0	0.0	0.0	0.0
ECP.II	V/cm	2.036 e 6	6.57 e 5	Si	1.83 e 8	1.28e6
EXP.II		1	1.75	Si	Si	Si
E1N.SOFT	eV	1.128	0	0	0	0
E2N.SOFT	eV	1.75	0	0	0	0
E3N.SOFT	eV	3.02	0	0	0	0
C1N. SOFT	1/s	1.7 e 12	0	0	0	0
C2N. SOFT	1/s	1.29 e 13	0	0	0	0
E1P.SOFT	eV	1.128	0	0	0	0
E2P. SOFT	eV	1.75	0	0	0	0
E3P. SOFT	eV	3.02	0	0	0	0
C1P. SOFT	1/s	3.695 e 12	0	0	0	0
C2P. SOFT	1/s	2.805 e 13	0	0	0	0
CN. IILAM	1.124	1	1	1	1	1
CP. IILAM	1.124	1	1	1	1	1
LAMHN	cm	9.2e-7	1	Si	Si	Si
LAMRN	cm	61.6e-7	1	Si	Si	Si
LAMHP	cm	$1 \mathrm{e}-7$	1	Si	Si	Si
LAMRP	cm	LAMRN	1	Si	Si	Si
A. BTBT	$\mathrm{eV}^{1 / 2} / \mathrm{cm} / \mathrm{s} / \mathrm{V}^{2}$	3.5 e 21	0	Si	Si	Si
B. BTBT	$\mathrm{V} / \mathrm{cm} / \mathrm{eV}^{3 / 2}$	22.5 e 6	0	Si	Si	Si
A.FN	$\mathrm{A} / \mathrm{V}^{2}$	$6.32 \mathrm{e}-7$	0	Si	Si	Si
B.FN	V/cm	2.21 e 8	0	Si	Si	Si
DIST.SBT	cm	1.0e-6	Si	Si	Si	Si
ME. SBT	cm	0.22	0.067	Si	Si	0.082
MH. SBT	cm	0.35	0.45	Si	Si	0.28
MLDA. LN	cm	$23.5 \mathrm{e}-8$	Si	Si	Si	Si
MLDA. LP	cm	$25.0 \mathrm{e}-8$	Si	Si	Si	Si
KAPPA. QM	none	1.0	0.0	0.0	0.0	0.0
KAPPA.N	none	1.0	0.0	0.0	0.0	0.0

Table 3-5 Default Semiconductor Material Parameters (Continued)

Parameter	Units	SILICON	GAAS	POLYSILI	S.OXIDE	GERMANIU
KAPPA.P	none	1.0	0.0	0.0	0.0	0.0
N. ACCUM	$\mathrm{cm}^{-3}$	2.85 e 19	0	0	0	0
P.ACCUM	$\mathrm{cm}^{-3}$	1.2e19	0	0	0	0
DREF.QM	microns	0.0025	0.0025	0.0025	0.0025	0.0025
QM.NORP	none	0	0	0	0	0
QM.EFIEL	none	0	0	0	0	0
U.STRESS	eV	10.5	0	Si	Si	0
D.STRESS	eV	1.1	0	Si	Si	0
A.STRESS	eV	2.1	0	Si	Si	0
B.STRESS	eV	-2.33	0	Si	Si	0
C.STRESS	eV	-4.75	0	Si	Si	0
ME. DT		0.35	Si	Si	Si	Si
MHH.DT		0.49	Si	Si	Si	Si
MLH. DT		0.16	Si	Si	Si	Si
MESC.DT		1.0	Si	Si	Si	Si
MHHSC.DT		1.0	Si	Si	Si	Si
MLHSC.DT		1.0	Si	Si	Si	Si
ELE.CQ		1	1	1	1	1
ELE.TAUW	s	2e-13	$1 \mathrm{e}-12$	Si	Si	Si
WTN0	S	$1.6852 \mathrm{e}-13$	$2.4 \mathrm{e}-12$	ELE. TAUW	ELE. TAUW	ELE. TAUW
WTN1	S	$1.0299 \mathrm{e}-13$	$4 \mathrm{e}-13$	0	0	0
WTN2	S	-5.1845e-15	0	0	0	0
WTN3	S	0	0	0	0	0
WTN4	S	0	0	0	0	0
WTN5	S	0	0	0	0	0
WTNL	s	$6.8 \mathrm{e}-13$	0	0	0	0
TNL	K	2979.8	1866.27	0	0	0
HOL. CQ		1	1	1	1	1
HOL.TAUW	S	ELE. TAUW	ELE.TAUW	Si	Si	Si
WTP0	S	-1.56e-14	0.0	0.0	0.0	0.0
WTP1	S	$1.38 \mathrm{e}-13$	0	0	0	0
WTP2	S	-2.5e-14	0	0	0	0
WTP 3	S	$2.31 \mathrm{e}-15$	0	0	0	0
WTP 4	S	-1.05e-16	0	0	0	0
WTP5	S	$1.82 \mathrm{e}-18$	0	0	0	0
WTPL	s	HOL. TAUW				
TPL	K	1 e 5	0	0	0	0
DENSITY	$\mathrm{kg} / \mathrm{cm}^{3}$	$2.32 \mathrm{e}-3$	$5.3176 \mathrm{e}-3$	Si	$2.26 \mathrm{e}-3$	$5.33 \mathrm{e}-3$
DN. LAT		1	1	1	1	1
DP. LAT		1	1	1	1	1
A.SP.HEA	J/kg/K	850.9	181.5	737	3000	310
B.SP.HEA	$\mathrm{J} / \mathrm{kg} / \mathrm{K}^{2}$	152.2e-3	0.8225	$442 \mathrm{e}-3$	0	0
C.SP.HEA	$\mathrm{J} / \mathrm{kg} / \mathrm{K}^{3}$	0	-0.00135	0	0	0

Table 3-5 Default Semiconductor Material Parameters (Continued)

Parameter	Units	SILICON	GAAS	POLYSILI	S.OXIDE	GERMANIU
D. SP. HEA	J-K/kg	-158.2e5	0	0	0	0
F.SP.HEA	$\mathrm{J} / \mathrm{kg} / \mathrm{K}^{4}$	0	$7.5 \mathrm{e}-7$	0	0	0
G.SP. HEA	$\mathrm{J} / \mathrm{kg} / \mathrm{K}^{5}$	0	0	0	0	0
A.TH.CON	cm-K/W	0.03	2.9644	0.437	71.4	1.6667
B.TH.CON	cm/W	$1.56 \mathrm{e}-3$	-0.0139255	0	0	0
C.TH.CON	cm/W/K	$1.65 \mathrm{e}-6$	$5.10475 \mathrm{e}-5$	0	0	0
D.TH.CON	$\mathrm{cm} / \mathrm{W} / \mathrm{K}^{\text {E.TH-1 }}$	0	-3.8075e-8	0	0	0
E.TH.CON		0	0	0	0	0
OP.PH.EN	eV	0.063	0.035	Si	Si	0.037
LAN300	cm	$10.4542 \mathrm{e}-7$	$3.5272 \mathrm{e}-6$	Si	$9.66151 \mathrm{e}-8$	6.88825e-7
LAP300	cm	$6.32079 \mathrm{e}-7$	$3.6765 \mathrm{e}-6$	Si	5.86026e-8	$8.39505 \mathrm{e}-7$
X. MOLE	0	0	0	0	0	0
EGO300	eV	EG300	1.424	Si	Si	Si
EGOALPH	eV/K	EGALPH	$5.405 \mathrm{e}-4$	Si	Si	Si
EGOBETA	K	EGBETA	204	Si	Si	Si
B. BB		None	None	None	None	None
E.PHONON	eV	None	None	None	None	None
E1. BB	eV	None	None	None	None	None
EXP.BB		None	None	None	None	None
E1. BT	eV	EG300	Si	Si	Si	Si
E. URBACH	eV	None	None	None	None	None
G. BT		None	None	None	None	None
EL. EMAS		0.31	0.067	Si	Si	Si
HO. EMAS		0.5	0.6915	Si	Si	Si
EM. MODEL		0	0	0	0	0
MEG		0	0.067	0	0	0
MEG. X1		0	0	0	0	0
MEL		0.3282	0.85	0	0	0
MEL. $\mathrm{X1}$		0	0	0	0	0
MEX		0	0.56	0	0	0
MEX. $\mathrm{X1}$		0	0	0	0	0
MHO		0.53	0.62	0	0	0
MH0. X 1		0	0	0	0	0
MLO		0.16	0.087	0	0	0
ML0. $\mathrm{X1}$		0	0	0	0	0

Table 3-6 Default Semiconductor Material Parameters

Parameter	Units	SIC	SIGE	ALGAAS
PERMITTI		9.72	Si	GaAs
EG.MODEL		1	2	4
EG300	eV	2.86	Si	GaAs
ECN. II	$\mathrm{V} / \mathrm{cm}$	1.77 e 7	Si	GaAs

Table 3-6 Default Semiconductor Material Parameters (Continued)

Parameter	Units	SIC	SIGE	ALGAAS
ECP.II	V/cm	1.4 e 7	Si	GaAs
NO. BGN	$\mathrm{cm}^{-3}$	Si	Si	GaAs
V0. BGN	V	Si	Si	GaAs
CON. BGN		Si	Si	GaAs
ANC. BGN	eV	-17.22e-3	Si	0.0
BNC. BGN	eV	0.0	Si	0.0
CNC. BGN	eV	-2.57e-3	Si	0.0
ANV. BGN	eV	0.0	Si	0.0
BNV. BGN	eV	$25.05 \mathrm{e}-3$	Si	0.0
CNV. BGN	eV	$8.01 \mathrm{e}-3$	Si	0.0
APC. BGN	eV	0.0	Si	0.0
BPC. BGN	eV	-16.18e-3	Si	0.0
CPC. BGN	eV	-0.52e-3	Si	0.0
APV. BGN	eV	26.36e-3	Si	0.0
BPV.BGN	eV	0.0	Si	0.0
CPV.BGN	eV	-4.28e-3	Si	0.0
DENSITY	$\mathrm{kg} / \mathrm{cm}^{3}$	$3.21 \mathrm{e}-3$	Si	GaAs
OP.PH.EN	eV	0.1042	Si	GaAs
LAN300	cm	$1.67425 \mathrm{e}-7$	Si	GaAs
LAP300	cm	$2.11673 \mathrm{e}-7$	Si	GaAs
N. IONIZA	cm	2.5 e 5	Si	GaAs
P.IONIZA	cm	5.18e6	Si	GaAs
E1N.SOFT	eV	0	0	0
E2N.SOFT	eV	0	0	0
E3N. SOFT	eV	0	0	0
C1N. SOFT	1/s	0	0	0
C2N. SOFT	1/s	0	0	0
E1P.SOFT	eV	0	0	0
E2P. SOFT	eV	0	0	0
E3P.SOFT	eV	0	0	0
C1P. SOFT	1/s	0	0	0
C2P. SOFT	1/s	0	0	0
CN. IILAM		1	1	1
CP.IILAM		1	1	1
EL.EMAS		0.59	Si	GaAs
HO. EMAS		1	Si	GaAs
AFFINITY	V	3.8	Si	GaAs
X1.AFFIN	V	0.0	0.0	3.883
NC300	$\mathrm{cm}^{-3}$	1.23 e 19	Si	GaAs
NV300	$\mathrm{cm}^{-3}$	4.58 e 18	Si	GaAs
DIST.SBT	cm	Si	Si	GaAs
ME.SBT	cm	Si	Si	GaAs
MH.SBT	cm	Si	Si	GaAs

Table 3-6 Default Semiconductor Material Parameters (Continued)

Parameter	Units	SIC	SIGE	ALGAAS
MLDA. LN	cm	Si	Si	Si
MLDA. LP	cm	Si	Si	Si
KAPPA. QM		0.0	Si	0.0
KAPPA. N		0.0	Si	0.0
KAPPA.P		0.0	Si	0.0
N. ACCUM	$\mathrm{cm}^{-3}$	0	Si	0
P.ACCUM	$\mathrm{cm}^{-3}$	0	Si	0
DREF. QM	$\mathrm{microns}^{\text {All }}$	0.0025	Si	0.0025
Others		Si	Si	GaAs

Table 3-7 Default Insulator Material Parameters

Parameter	Units	OXIDE	NITRIDE	SAPPHIRE	INSULATO	OXYNITRI
PERMITTI		3.9	7.5	12	Oxide	Oxide
AFFINITY	V	0.97	Oxide	Oxide	Oxide	Oxide
EG300	eV	9.0	4.7	4.7	Oxide	Oxide
ECN.GC	$\mathrm{V} / \mathrm{cm}$	1.65 e 5	8.79 e 4	Oxide	Oxide	Oxide
BARLN	$(\mathrm{V}-\mathrm{cm})^{1 / 2}$	$2.59 \mathrm{e}-4$	Oxide	Oxide	Oxide	Oxide
TUNLN	$\left(\mathrm{V}-\mathrm{cm}^{1 / 2}\right)^{1 / 3}$	4.0e-5	Oxide	Oxide	Oxide	Oxide
ECP. GC	$\mathrm{V} / \mathrm{cm}$	ECN. GC	Oxide	Oxide	Oxide	Oxide
BARLP	$(\mathrm{V}-\mathrm{cm})^{1 / 2}$	BARLN	Oxide	Oxide	Oxide	Oxide
TUNLP	$\left(\mathrm{V}-\mathrm{cm}^{1 / 2}\right)^{1 / 3}$	TUNLN	Oxide	Oxide	Oxide	Oxide
ME. DT		0.35	Oxide	Oxide	Oxide	Oxide
MHH.DT		0.35	Oxide	Oxide	Oxide	Oxide
MLH.DT		0.35	Oxide	Oxide	Oxide	Oxide
DENSITY	$\mathrm{kg} / \mathrm{cm}^{3}$	$2.26 \mathrm{e}-3$	Oxide	Oxide	Oxide	Oxide
A.SP. HEA	J/kg/K	3000	170	Oxide	Oxide	Oxide
B. SP . HEA	$\mathrm{J} / \mathrm{kg} / \mathrm{K}^{2}$	0	0	0	Oxide	Oxide
C. SP. HEA	$\mathrm{J} / \mathrm{kg} / \mathrm{K}^{3}$	0	0	0	Oxide	Oxide
D.SP.HEA	J-K/kg	0	0	0	Oxide	Oxide
F.SP. HEA	$\mathrm{J} / \mathrm{kg} / \mathrm{K}^{4}$	0	0	0	Oxide	Oxide
G. SP. HEA	$\mathrm{J} / \mathrm{kg} / \mathrm{K}^{5}$	0	0	0	Oxide	Oxide
A.TH.CON	cm-K/W	71.4	5.4054	Oxide	Oxide	Oxide
B.TH.CON	cm/W	0	0	0	Oxide	Oxide
C.TH.CON	cm/W/K	0	0	0	Oxide	Oxide
D.TH.CON	$\mathrm{cm} / \mathrm{W} / \mathrm{K}^{\text {E.TH-1 }}$	0	0	0	Oxide	Oxide
E.TH.CON		0	0	0	Oxide	Oxide

Table 3-8 Default Electrode Region Material Parameters Used by Medici

Parameter	Units	ELECTROD
DENSITY	$\mathrm{kg} / \mathrm{cm}^{3}$	$2.69 \mathrm{e}-3$
A.SP.HEA	$\mathrm{J} / \mathrm{kg} / \mathrm{K}$	737.0
B.SP.HEA	$\mathrm{J} / \mathrm{kg} / \mathrm{K}^{2}$	0.442
C.SP.HEA	$\mathrm{J} / \mathrm{kg} / \mathrm{K}^{3}$	0
D.SP.HEA	$\mathrm{J}-\mathrm{K} / \mathrm{kg}$	0
F.SP.HEA	$\mathrm{J} / \mathrm{kg} / \mathrm{K}^{4}$	
G.SP.HEA	$\mathrm{J} / \mathrm{kg} / / \mathrm{K}^{5}$	0.44
A.TH.CON	$\mathrm{cm}-\mathrm{K} / \mathrm{W}$	0
B.TH.CON	$\mathrm{cm} / \mathrm{W}$	0
C.TH.CON	$\mathrm{cm} / \mathrm{W} / \mathrm{K}$	0
D.TH.CON	$\mathrm{cm} / \mathrm{W} / \mathrm{K} / \mathrm{E} \cdot \mathrm{TH}-1$	0
E.TH.CON		0.35
ME.DT	eV	14.15
BARR.DT		1.0
MESC.DT		

Other For the remaining semiconductor materials, note the following:

Semiconductor Parameters

- In most cases, materials HGCDTE, INGAAS, INP, INAS, ZNSE, ZNTE use the same material parameters as GAAS.
- Materials A.SILICO, SEMICOND use the same material parameters as SILICON.
- For all the hetero junction materials, the coefficients of the BGN2 model are set to zero.
- Material DIAMOND has the same material parameters as SIC.

Some Remarks on BGN2 Model

The following materials use the parameters taken from reference [11] in Chapter 2 :

- Material SILICON uses the Si parameters given in the reference.
- The parameters of SIC is the same as that of $3 \mathrm{C}-\mathrm{SiC}$ in the reference.
- In order to simulate other SIC poly types such as $2 \mathrm{H}-, 4 \mathrm{H}-, 6 \mathrm{H}-\mathrm{SiC}$, one can specify SIC in MATERIAL statement but to choose the different parameters based on the reference.


## MOBILITY

The MOBILITY statement is used to modify parameters associated with the various carrier mobility models available in the program.

```
MOBILITY
 [SILICON] [GAAS] [POLYSILI] [SEMICOND] [SIGE] [ALGAAS]
Constant Mobility Parameters
 [MUNO=<n>] [MUPO=<n>]
Mobility Table Parameters
 [CONCENTR=<a> [ELECTRON=<a>] [HOLE=<a>] [FIRST] [LAST]] [PR.TABLE]
Analytic Mobility Model Parameters
 [MUN.MIN=<n>] [MUN.MAX=<n>] [NREFN=<n>]
 [NUN=<n>] [XIN=<n>] [ALPHAN=<n>]
 [MUP.MIN=<n>] [MUP.MAX=<n>] [NREFP=<n>]
 [NUP=<n>] [XIP=<n>] [ALPHAP=<n>]
III-V Compound Semiconductor Analytic Mobility Model Parameters
 [MIN. X1=<n>] [MIN. X2=<n>] [MAN.X1=<n>] [MAN.X2=<n>] [NREFN2=<n>]
 [MIP.X1=<n>] [MIP.X2=<n>] [MAP.X1=<n>] [MAP.X2=<n>] [NREFP2=<n>]
Arora Mobility Model Parameters
 [MUN1.ARO=<n>] [MUN2.ARO=<n>] [CN.ARORA=<n>] [AN.ARORA=<n>]
 [EXN1.ARO=<n>] [EXN2.ARO=<n>] [EXN3.ARO=<n>] [EXN4.ARO=<n>]
 [MUP1.ARO=<n>] [MUP2.ARO=<n>] [CP.ARORA=<n>] [AP.ARORA=<n>]
 [EXP1.ARO=<n>] [EXP2.ARO=<n>] [EXP3.ARO=<n>] [EXP4.ARO=<n>]
Carrier-Carrier Scattering Mobility Model Parameters
 [A.CCS=<n>] [B.CCS=<n>] [A.LIC=<n>] [B.LIC=<n>]
 [C.LIC=<n>] [EX.LIC=<n>]
 [MUNO.LAT=<n>] [EXN.LAT=<n>] [AN.IIS=<n>] [BN.IIS=<n>]
 [MUPO.LAT=<n>] [EXP.LAT=<n>] [AP.IIS=<n>] [BP.IIS=<n>]
Philips Unified Mobility Model Parameters
 [MMNN.UM=<n>] [MMXN.UM=<n>] [NRFN.UM=<n>] [ALPN.UM=<n>]
 [TETN.UM=<n>] [NRFD.UM=<n>] [CRFD.UM=<n>]
 [MMNP.UM=<n>] [MMXP.UM=<n>] [NRFP.UM=<n>] [ALPP.UM=<n>]
 [TETP.UM=<n>] [NRFA.UM=<n>] [CRFA.UM=<n>]
Effective Field Parameters
 [ETAN=<n>] [ZETAN=<n>] [ETAP=<n>] [ZETAP=<n>]
 Surface Degradation Factors
 [GSURFN=<n>] [GSURFP=<n>]
(MOBILITY statement continued on next page)
```

(MOBILITY statement continued from previous page)

```
Lombardi Surface Mobility Model Parameters
 [MUNO.LSM=<n>] [MUN1.LSM=<n>] [MUN2.LSM=<n>]
 [CRN.LSM=<n>] [CSN.LSM=<n>]
 [BN.LSM=<n>] [CN.LSM=<n>] [DN.LSM=<n>]
 [EXN1.LSM=<n>] [EXN2.LSM=<n>] [EXN3.LSM=<n>] [EXN4.LSM=<n>]
 [EXN8.LSM=<n>
 [MUP O.LSM=<n>] [MUP1.LSM=<n>] [MUP2.LSM=<n>]
 [CRP.LSM=<n>] [CSP.LSM=<n>]
 [BP.LSM=<n>] [CP.LSM=<n>] [DP.LSM=<n>]
 [EXP1.LSM=<n>] [EXP2.LSM=<n>] [EXP3.LSM=<n>] [EXP4.LSM=<n>] [EXP8.LSM=<n>]
 [PC.LSM=<n>]
Generalized Mobility Curve Model
 [BN.GMC=<n>] [CN.GMC=<n>] [DN.GMC=<n>]
 [D1N.GMC=<n>] [D2N.GMC=<n>]
 [EXN4.GMC=<n>] EXN5.GMC=<n>] EXN6.GMC=<n>] [EXN7.GMC=<n>]
 [EXN8.GMC=<n>]
 [BP.GMC=<n>] [CP.GMC=<n>] [DP.GMC=<n>]
 [D1P.GMC=<n>] [D2P.GMC=<n>]
 [EXP4.GMC=<n>] EXP5.GMC=<n>] EXP6.GMC=<n>] [EXP7.GMC=<n>]
 [EXP8.GMC=<n>]
Shirahata Mobility Model Parameters
 [E1N.SHI=<n>] [EX1N.SHI=<n>] [E2N.SHI=<n>] [EX2N.SHI=<n>]
 [E1P.SHI=<n>] [EX1P.SHI=<n>] [E2P.SHI=<n>] [RX2P.SHI=<n>]
Surface Mobility Model Parameters
 [EREFN=<n>] [EXN.SM=<n>] [MUREFN=<n>]
 [EREFP=<n>] [EXP.SM=<n>] [MUREFP=<n>]
Enhanced Surface Mobility Model Parameters
 [MUN1.SM=<n>] [MUN2.SM=<n>] [MUN3.SM=<n>]
 [EXN1.SM=<n>] [EXN2.SM=<n>] [EXN3.SM=<n>]
 [MUP1.SM=<n>] [MUP2.SM=<n>] [MUP3.SM=<n>]
 [EXP1.SM=<n>] [EXP2.SM=<n>] [EXP3.SM=<n>]
Universal Mobility Model Parameters
 [MUN.UNI=<n>] [ECN.UNI=<n>] [EXN.UNI=<n>] [EXNO.UNI=<n>]
 [MUP.UNI=<n>] [ECP.UNI=<n>] [EXP.UNI=<n>] [EXPO.UNI=<n>]
Perpendicular Field Mobility Parameters
 [ECN.MU=<n>] [ECP.MU=<n>]
Hewlett-Packard Mobility Model Parameters
 [MUNO.HP=<n>] [ECN.HP=<n>] [VSN.HP=<n>] [VCN.HP=<n>] [GN.HP=<n>]
 [NRFN.HP=<n>]
 [MUPO.HP=<n>] [ECP.HP=<n>] [VSP.HP=<n>] [VCP.HP=<n>] [GP.HP=<n>]
 [NRFP.HP=<n>]
Field Dependent Mobility Model Parameters
 [VSATN=<n>] [BETAN=<n>] [EON=<n>] [BETAN.HA=<n>]
 [VSATP=<n>] [BETAP=<n>] [EOP=<n>] [BETAP.HA=<n>]
 [FLDMOB=<n>]
```

(MOBILITY statement continued on next page)

```
Lucent Mobility Model Parameters
 [AN.LUC=<n>] [AP.LUC=<n>] [BN.LUC=<n>] [BP.LUC=<n>]
 [CN.LUC=<n>] [CP.LUC=<n>] [DN.LUC=<n>] [DP.LUC=<n>]
 [FN.LUC=<n>] [FP.LUC=<n>] [KN.LUC=<n>] [KP.LUC=<n>]
 [EXN4.LUC=<n>] [EXP4.LUC=<n>] [EXN9.LUC=<n>] [EXP9.LUC=<n>]
Inversion and Accumulation Layer Mobility Model Parameters
 [BN.IAL=<n>] [BP.IAL=<n>] [CN.IAL=<n>] [CP.IAL=<n>]
 [DN.IAL=<n>] [DP.IAL=<n>] [D1N.IAL=<n>] [D1P.IAL=<n>]
 [D2N.IAL=<n>] [D2P.IAL=<n>] [MASSN.IA=<n>] [MASSP.IA=<n>]
 [EXN4.IAL=<n>] [EXP4.IAL=<n>] [EXN5.IAL=<n>] [EXP5.IAL=<n>]
 [EXN6.IAL=<n>] [EXP6.IAL=<n>] [EXN7.IAL=<n>] [EXP7.IAL=<n>]
III-V Compound Semiconductor Field Dependent Mobility Model Parameters
 [VSN.X1=<n>] [VSN.X2=<n>] [EN.X1=<n>] [EN.X2=<n>]
Tranverse Field Dependent Mobility Model Parameters
 [TEMPN.UT=<n>] [PHONN.UT=<n>] [SURFN.UT=<n>] [COULN.UT=<n>]
 [TEMPP.UT=<n>] [PHONP.UT=<n>] [SURFP.UT=<n>] [COULP.UT=<n>]
 [ACC.N.UT=<n>] [ACC.P.UT=<n>] [INV.N.UT=<n>] [INV.P.UT=<n>]
Stress-Induced Mobility Model Parameters
 [MLT.STR=<n>] [MULO.STR=<n>]
Device Selection (Circuit Analysis AAM)
 [STRUCTUR=<c>]
```

Parameter	Type	Definition	Default	Units
SILİCon	logical	Specifies that the mobility parameters are to apply to all regions that were specified as SILICON with REGION statements.	false	
gAAS	logical	Specifies that the mobility parameters are to apply to all regions that were specified as GAAS with REGION statements.	false	
POLYSILI	logical	Specifies that the mobility parameters are to apply to all regions that were specified as POLYSILI with REGION statements.	false	
SEMICOND	logical	Specifies that the mobility parameters are to apply to all regions that were specified as SEMICOND with REGION statements.	false	
SIge	logical	Specifies that the mobility parameters are to apply to all regions that were specified as SIGE with REGION statements.	false	
ALGAAS	logical	Specifies that the mobility parameters are to apply to all regions that were specified as ALGAAS with REGION statements.	false	
germaniu	logical	Specifies that the mobility parameters are to apply to all regions that were specified as GERMANIU with REGION statements.	false	
SIC	logical	Specifies that the mobility parameters are to apply to all regions that were specified as SIC with REGION statements.	false	
s.oxide	logical	Specifies that the mobility parameters are to apply to all regions that were specified as S.OXIDE with REGION statements.	false	


Parameter	Type	Definition	Default	Units
HGCDTE	logical	Specifies that the mobility parameters are to apply to all regions that were specified as HGCDTE with REGION statements.	false	
INGAAS	logical	Specifies that the mobility parameters are to apply to all regions that were specified as INGAAS with REGION statements.	false	
INP	logical	Specifies that the mobility parameters are to apply to all regions that were specified as INP with REGION statements.	false	
INAS	logical	Specifies that the mobility parameters are to apply to all regions that were specified as INAS with REGION statements.	false	
DIAMOND	logical	Specifies that the mobility parameters are to apply to all regions that were specified as DIAMOND with REGION statements.	false	
zNSE	logical	Specifies that the mobility parameters are to apply to all regions that were specified as ZNSE with REGION statements.	false	
ZNTE	logical	Specifies that the mobility parameters are to apply to all regions that were specified as ZNTE with REGION statements.	false	
A-SILICO	logical	Specifies that the mobility parameters are to apply to all regions that were specified as A-SILICO with REGION statements.	false	
REGION	char	The name(s) of the regions for which the mobility parameters are to apply. If more than one name is given, the entire group should be surrounded by parentheses and the individual names should be separated with commas.	none	
PRINT	logical	Specifies that mobility parameters for the specified materials or regions are printed to the standard output.	false	
ALINAS	logical	Specifies that the spacing parameters should be applied to all regions of material AlInAs.	false	
GAASP	logical	Specifies that the spacing parameters should be applied to all regions of material GaAsP.	false	
INGAP	logical	Specifies that the spacing parameters should be applied to all regions of material InGaP.	false	
INASP	logical	Specifies that the spacing parameters should be applied to all regions of material InAsP.	false	
Constant Mobility Parameters				
MUNO	number	The low-field electron mobility. This value is only used when a con-centration-dependent mobility model is not selected on the MODELS statement.	See Table 3-9	$\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$
MUPO	number	The low-field hole mobility. This value is only used when a concentra-tion-dependent mobility model is not selected on the MODELS statement.	See Table 3-9	$\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$
Mobility Table Parameters				
CONCENTR	array	The impurity concentration values for which electron and/or hole mobility values are specified. At most 40 values may be defined with this parameter.	none	\#/cm ${ }^{3}$
ELECTRON	array	The values of electron mobility corresponding to the impurity concentration values given by CONCENTR. At most 40 values may be defined with this parameter.	none	$\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$



Parameter	Type	Definition	Default	Units
MAN. X 2	number	The quadratic term appearing in the expression of $\mu_{n}{ }^{\operatorname{Max}}(X)$ used in the analytic mobility model.		none
NREFN2	number	The reference impurity concentration used in the quadratic term of the analytic mobility model for electrons.		\#/cm3
MIP. X 1	number	The linear term appearing in the expression of $\mu_{p}{ }^{\text {Min }}(X)$ used in the analytic mobility model.		none
MIP. ${ }^{\text {2 }}$	number	The quadratic term appearing in the expression of $\mu_{p}^{\operatorname{Min}}(X)$ used in the analytic mobility model.		none
MAP . X1	number	The linear term appearing in the expression of $\mu_{p}^{\text {Max }}(X)$ used in the analytic mobility model.		none
MAP. X 2	number	The quadratic term appearing in the expression of $\mu_{p}^{\text {Max }}(X)$ used in the analytic mobility model.		none
NREFP2	number	The reference impurity concentration used in the quadratic term of the analytic mobility model for holes.		\#/cm3
Arora Mob	Iity Mod	I Parameters	See Table 3-12	
MUN1. ARO	number	The minimum electron mobility used in the Arora mobility model.		$\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$
MUN2 . ARO	number	The maximum electron mobility used in the Arora mobility model.		$\mathrm{cm}^{2} / \mathrm{V}$-s
CN. ARORA	number	The reference impurity concentration used in the Arora mobility model for electrons.		\#/cm ${ }^{3}$
AN. ARORA	number	Parameter used in the exponent of normalized impurity concentration in the Arora mobility model for electrons.		none
EXN1. ARO	number	Exponent of normalized temperature used in the Arora mobility model for electrons.		none
EXN2.ARO	number	Exponent of normalized temperature used in the Arora mobility model for electrons.		none
EXN3.ARO	number	Exponent of normalized temperature used in the Arora mobility model for electrons.		none
EXN4.ARO	number	Exponent of normalized temperature used in the Arora mobility model for electrons.		none
MUP1. ARO	number	The minimum hole mobility used in the Arora mobility model.		$\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$
MUP2 . ARO	number	The maximum hole mobility used in the Arora mobility model.		$\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$
CP . ARORA	number	The reference impurity concentration used in the Arora mobility model for holes.		\#/cm ${ }^{3}$
AP . ARORA	number	Parameter used in the exponent of normalized impurity concentration in the Arora mobility model for holes.		none
EXP1.ARO	number	Exponent of normalized temperature used in the Arora mobility model for holes.		none
EXP2.ARO	number	Exponent of normalized temperature used in the Arora mobility model for holes.		none
EXP3.ARO	number	Exponent of normalized temperature used in the Arora mobility model for holes.		none


Parameter	Type	Definition
EXP4.ARO	number	Exponent of normalized temperature used in the Arora mobility model   for holes.

## Carrier-Carrier Scattering Mobility Model Parameters

A. CCS	number	Parameter used in the carrier-carrier scattering term of the mobility model CCSMOB.
B. CCS	number	Parameter used in the carrier-carrier scattering term of the mobility model CCSMOB.
A. LIC	number	Parameter used in the mobility model CCSMOB.
B.LIC	number	Parameter used in the mobility model CCSMOB.
C. LIC	number	Parameter used in the mobility model CCSMOB.
EX.LIC	number	Exponent used in the mobility model CCSmOb.
MUNO.LAT	number	The room temperature mobility for electrons used in the lattice scattering term of the mobility model CCSMOB.
EXN. LAT	number	The exponent used in the lattice scattering term for electrons in the mobility model CCSMOB.
AN.IIS	number	Parameter used in the ionized impurity scattering term for electrons of the mobility model CCSMOB.
BN.IIS	number	Parameter used in the ionized impurity scattering term for electrons of the mobility model CCSMOB.
MUPO.LAT	number	The room temperature mobility for holes used in the lattice scattering term of the mobility model CCSMOB.
EXP.LAT	number	The exponent used in the lattice scattering term for holes in the mobility model CCSMOB.
AP.IIS	number	Parameter used in the ionized impurity scattering term for holes of the mobility model CCSMOB.
BP.IIS	number	Parameter used in the ionized impurity scattering term for holes of the mobility model CCSMOB.

## Philips Unified Mobility Model Parameters

MMNN. UM	number	Mobility parameter used in the Philips Unified mobility model to   determine electron mobility at high dopant and/or carrier levels.	$\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$
MMXN.UM	number	Maximum electron mobility in the Philips Unified mobility model.	$\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$
NRFN.UM	number	Reference impurity concentration for electron mobility, used with the   Philips Unified mobility model.	\#/cm
ALPN.UM	number	Exponent used for electron mobility in the Philips Unified mobility   model.	none
TETN.UM	number	Exponent used for temperature dependence of lattice scattering for   electrons in the Philips Unified mobility model.	none
NRFD.UM	number	Reference impurity concentration for donors to model ultra-high dop-   ing effects in the Philips Unified mobility model.	\#/cm ${ }^{3}$


Parameter	Type	Definition
CRFD.UM	number	Factor determining the ultra-high doping effects for donors in the   Philips Unified mobility model.
MMNP.UM	number	Mobility parameter used in the Philips Unified mobility model to   determine hole mobility at high dopant and/or carrier levels.
MMXP.UM	number	Maximum hole mobility in the Philips Unified mobility model.
NRFP.UM	number	Reference impurity concentration for hole mobility, used with the   Philips Unified mobility model.
ALPP.UM	number	Exponent used for hole mobility in the Philips Unified mobility model.
TETP.UM	number	Exponent used for temperature dependence of lattice scattering for   holes in the Philips Unified mobility model.
NRFA.UM	number	Reference impurity concentration for acceptors to model ultra-high   doping effects in the Philips Unified mobility model.
CRFA.UM	number	Factor determining the ultra-high doping effects for acceptors in the   Philips Unified mobility model.

Default | Units |
| :--- |
|  |
|  |
| $\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$ |
|  |
|  |
| $\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$ |
| $\# / \mathrm{cm}^{3}$ |
|  |
|  |
|  |
|  |
| none |
|  |
|  |
| $\# / \mathrm{cm}^{3}$ |
| none |

## Effective Field Parameters

ETAN	number	A factor used in determining the effective electric field at interfaces   used in the field-dependent mobility models for electrons.
ZETAN	number	A factor used in determining the effective electric field at interfaces   used in the field-dependent mobility models for electrons.
ETAP	number	A factor used in determining the effective electric field at interfaces   used in field-dependent mobility models for holes.
ZETAP	number	A factor used in determining the effective electric field at interfaces   used in field-dependent mobility models for holes.

## Surface Degradation Factors



See Table 3-15
none
none
none
none

See Table 3-16
none
none
See Table 3-17

$$
\begin{aligned}
& \mathrm{cm}^{2} / \mathrm{V}-\mathrm{s} \\
& \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s} \\
& \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s} \\
& \# / \mathrm{cm}^{3} \\
& \# / \mathrm{cm}^{3} \\
& \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

Parameter	Type	Definition	Default	Units
CN.LSM	number	Mobility parameter used in the acoustic term of the Lombardi surface mobility model for electrons.		$\begin{aligned} & (\mathrm{K}-\mathrm{cm} / \mathrm{s})(\mathrm{V} / \\ & \mathrm{cm})^{-2 / 3} \end{aligned}$
DN.LSM	number	Mobility parameter used in the acoustic term of the Lombardi surface mobility model for electrons.		$\begin{aligned} & \left(\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}\right) \\ & (\mathrm{V} / \\ & \mathrm{cm})^{\text {EXN } 8 . \operatorname{LSM}} \end{aligned}$
EXN1.LSM	number	Exponent used in the bulk term of the Lombardi surface mobility model for electrons.		none
EXN2.LSM	number	Exponent used in the bulk term of the Lombardi surface mobility model for electrons.		none
EXN3.LSM	number	Exponent used in the bulk term of the Lombardi surface mobility model for electrons.		none
EXN4.LSM	number	Exponent used in the acoustic term of the Lombardi surface mobility model for electrons.		none
EXN8.LSM	number	Exponent used in surface roughness term of the Lombardi surface mobility model for electrons.		none
MUPO.LSM	number	Mobility parameter used in the bulk term of the Lombardi surface mobility model for holes.		$\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$
MUP1.LSM	number	Mobility parameter used in the bulk term of the Lombardi surface mobility model for holes.		$\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$
MUP2.LSM	number	Mobility parameter used in the bulk term of the Lombardi surface mobility model for holes.		$\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$
CRP.LSM	number	Mobility parameter used in the bulk term of the Lombardi surface mobility model for holes.		\#/cm ${ }^{3}$
CSP.LSM	number	Mobility parameter used in the bulk term of the Lombardi surface mobility model for holes.		\#/cm ${ }^{3}$
BP.LSM	number	Mobility parameter used in the acoustic term of the Lombardi surface mobility model for holes.		cm/s
CP.LSM	number	Mobility parameter used in the acoustic term of the Lombardi surface mobility model for holes.		$\begin{aligned} & (\mathrm{K}-\mathrm{cm} / \mathrm{s})(\mathrm{V} / \\ & \mathrm{cm})^{-2 / 3} \end{aligned}$
DP.LSM	number	Mobility parameter used in the acoustic term of the Lombardi surface mobility model for holes.		$\begin{aligned} & \left(\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}\right) \\ & (\mathrm{V} / \\ & \mathrm{cm})^{\text {EXP8.LSM }} \end{aligned}$
EXP1.LSM	number	Exponent used in the bulk term of the Lombardi surface mobility model for holes.		none
EXP2.LSM	number	Exponent used in the bulk term of the Lombardi surface mobility model for holes.		none
EXP3.LSM	number	Exponent used in the bulk term of the Lombardi surface mobility model for holes.		none
EXP4.LSM	number	Exponent used in the acoustic term of the Lombardi surface mobility model for holes.		none
EXP8.LSM	number	Exponent used in surface roughness term of the Lombardi surface mobility model for holes.		none


Parameter	Type	Definition
PC.LSM	number	Mobility parameter used in the bulk term of the Lombardi surface   mobility model for holes.

## Generalized Mobility Curve Model Parameters

BN. GMC	number	Mobility parameter used in the acoustic term of the Generalized Mobility curve model for electrons.
CN. GMC	number	Mobility parameter used in the acoustic term of the Generalized Mobility curve model for electrons.
DN. GMC	number	Mobility parameter used in the acoustic term of the Generalized Mobility curve model for electrons.
D1N.GMC	number	Mobility parameter used in the "screened" term of the Generalized Mobility curve model for electrons.
D2N. GMC	number	Mobility parameter used in the "unscreened" term of the Generalized Mobility curve model for electrons.
EXN4.GMC	number	Exponent used in the Generalized Mobility curve model for electrons.
EXN5.GMC	number	Exponent used in the Generalized Mobility curve model for electrons.
EXN6. GMC	number	Exponent used in the Generalized Mobility curve model for electrons.
EXN7.GMC	number	Exponent used in the Generalized Mobility curve model for electrons.
EXN8. GMC	number	Exponent used in the Generalized Mobility curve model for electrons.
BP.GMC	number	Mobility parameter used in the acoustic term of the Generalized Mobility curve model for holes.
CP. GMC	number	Mobility parameter used in the acoustic term of the Generalized Mobility curve model for holes.
DP . GMC	number	Mobility parameter used in the acoustic term of the Generalized Mobility curve model for holes.
D1P.GMC	number	Mobility parameter used in the "screened" term of the Generalized Mobility curve model for holes.
D2P.GMC	number	Mobility parameter used in the "unscreened" term of the Generalized Mobility curve model for holes.
EXP 4.GMC	number	Exponent used in the Generalized Mobility curve model for holes.
EXP5.GMC	number	Exponent used in the Generalized Mobility curve model for holes.
EXP 6.GMC	number	Exponent used in the Generalized Mobility curve model for holes.
EXP7.GMC	number	Exponent used in the Generalized Mobility curve model for holes.
EXP8.GMC	number	Exponent used in the Generalized Mobility curve model for holes.
Shirahata Mobility Model Parameters		
E1N.SHI	number	The reference electric field in the weak surface field dependent term of Shirahata mobility model for electrons.

## Default <br> Units <br> $\# / \mathrm{cm}^{3}$

See Table 3-18
cm/s
(K-cm/s)(V/
$\mathrm{cm})^{-2 / 3}$
( $\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$ ) (V/ $\mathrm{cm})^{\text {EXN8.GMC }}$
none
none
none
none
none
$\mathrm{cm} / \mathrm{s}$
(K-cm/s)(V/
$\mathrm{cm})^{-2 / 3}$
( $\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$ )
(V/
$\mathrm{cm})^{\text {EXP } 8 . G M C}$
none
none
none
none
none

Parameter	Type	Definition
EX1N. SHI	number	The exponent in the weak surface field dependent term of Shirahara   mobility model for electrons.
E2N.SHI	number	The reference electric field in the strong surface field dependent term   of Shirahata mobility model for electrons.
EX2N.SHI	number	The exponent in the strong surface field dependent term of Shirahara   mobility model for electrons.
E1P.SHI	number	The reference electric field in the weak surface field dependent term of   Shirahata mobility model for holes.
EX1P.SHI	number	The exponent in the weak surface field dependent term of Shirahara   mobility model for holes.
E2P.SHI	number	The reference electric field in the strong surface field dependent term   of Shirahata mobility model for holes.
EX2P.SHI	number	The exponent in the strong surface field dependent term of Shirahara   mobility model for holes.

## Surface Mobility Model Parameters

EREFN	number	The reference electric field used in the surface mobility model for   electrons.
EXN.SM	number	The exponent used in the surface mobility model for electrons.
MUREFN	number	The reference mobility used in the surface mobility model for elec-   trons.
EREFP	number	The reference electric field used in the surface mobility model for   holes.
EXP.SM	number	The exponent used in the surface mobility model for holes.
MUREFP	number	The reference mobility used in the surface mobility model for holes.

## Enhanced Surface Mobility Model Parameters

MUN1 . SM	number	The first reference mobility used in the enhanced surface mobility   model for electrons.
MUN2. SM	number	The second reference mobility used in the enhanced surface mobility   model for electrons.
MUN3. SM	number	The third reference mobility used in the enhanced surface mobility   model for electrons.
EXN1.SM	number	The first exponent used in the enhanced surface mobility model for   electrons.
EXN2. SM	number	The second exponent used in the enhanced surface mobility model for   electrons.
EXN3. SM	number	The third exponent used in the enhanced surface mobility model for   electrons.
MUP1. SM	number	The first reference mobility used in the enhanced surface mobility   model for holes.
MUP2. SM	number	The second reference mobility used in the enhanced surface mobility   model for holes.

Default

## Units

See Table 3-20

$$
\begin{aligned}
& \mathrm{V} / \mathrm{cm} \\
& \text { none } \\
& \mathrm{cm}^{2} / \mathrm{V}-\mathrm{s} \\
& \mathrm{~V} / \mathrm{cm} \\
& \text { none } \\
& \mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}
\end{aligned}
$$

See Table 3-21

$$
\begin{aligned}
& \mathrm{cm}^{2} / \mathrm{V}-\mathrm{s} \\
& \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s} \\
& \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s} \\
& \text { none } \\
& \text { none } \\
& \text { none } \\
& \mathrm{cm}^{2} / \mathrm{V}-\mathrm{s} \\
& \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}
\end{aligned}
$$

Parameter	Type	Definition
MUP3.SM	number	The third reference mobility used in the enhanced surface mobility   model for holes.
EXP1.SM	number	The first exponent used in the enhanced surface mobility model for   holes.
EXP2.SM	number	The second exponent used in the enhanced surface mobility model for   holes.
EXP3.SM	number	The third exponent used in the enhanced surface mobility model for   holes.

Default | Units |
| :---: |
| $\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$ |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
|  |

See Table 3-22
$\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$
V/cm
none
none
$\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$
V/cm
none
none
See Table 3-23

V/cm

V/cm

See Table 3-24
$\mathrm{cm}^{2} / \mathrm{V}$-s

V/cm
$\mathrm{cm} / \mathrm{s}$
cm/s
none
\#/cm ${ }^{3}$
$\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$

V/cm

Parameter	Type	Definition
VSP.HP	number	Saturation velocity used in the Hewlett-Packard mobility model for   holes.
VCP.HP	number	Velocity parameter used in the Hewlett-Packard mobility model for   holes.
GP.HP	number	Parameter used in the Hewlet-Packard mobility model for holes.
NRFP.HP	number	Reference concentration used in the Hewlett-Packard mobility model   for holes.

## Field-Dependent Mobility Model Parameters

VSATN	number	The electron saturation velocity used in the calculation of field dependent mobilities.	cm/s
BETAN	number	The exponent used in the Caughey-Thomas field-dependent mobility model for electrons.	none
EON	number	The critical electric field used in the field-dependent mobility model for electrons in gallium arsenide.	V/cm
BETAN. HA	number	The exponent used in the Hansch field-dependent mobility model for electrons.	none
VSATP	number	The hole saturation velocity used in the calculation of field dependent mobilities.	cm/s
BETAP	number	The exponent used in the Caughey-Thomas field-dependent mobility model for holes.	none
EOP	number	The critical electric field used in the field-dependent mobility model for holes in gallium arsenide.	V/cm
BETAP. HA	number	The exponent used in the Hansch field-dependent mobility model for holes.	none
FLDMOB	number	Selects a parallel field-dependent mobility model. A value of 1 selects the Caughey-Thomas expression. A value of 2 selects a GaAs-like mobility model that produces a negative slope in the velocity vs. field curve for high electric field. A value of 3 selects a model that is similar to the Caughey-Thomas expression (see Chapter 2, "Alternative Parallel Field-Dependent Expression (Hansch Mobility)," p. 2-44). Any other value disables the parallel field-dependent mobility model for the specified materials or regions.	none

## Lucent Mobility Model Parameters

AN . LUC	number	The constant part of the exponent used in the surface roughness term   of the Lucent mobility model for electrons.
AP .LUC	number	The constant part of the exponent used in the surface roughness term   of the Lucent mobility model for holes.
BN. LUC	number	Mobility parameter used in the acoustic term of the Lucent mobility   model for electrons.
BP. LUC	number	Mobility parameter used in the acoustic term of the Lucent mobility   model for holes.
CN. LUC	number	Mobility parameter used in the acoustic term of the Lucent mobility   model for electrons.


Default	Units
	cm/s
	cm/s
	none
	\#/cm ${ }^{3}$

See Table 3-25

See Table 3-26
none
none
cm/s
cm/s

$\left(\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}\right)$
$(\mathrm{V} / \mathrm{cm})^{1 / 3}$
$\mathrm{~cm}^{3 \mathrm{ExN} 4 . \mathrm{LUC}}$

Parameter	Type	Definition	Default	Units
CP.LUC	number	Mobility parameter used in the acoustic term of the Lucent mobility model for holes.		$\begin{aligned} & \left(\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}\right) \\ & (\mathrm{V} / \mathrm{cm})^{1 / 3} \\ & \mathrm{~cm}^{3 \mathrm{EXNP} . \mathrm{LuC}} \end{aligned}$
DN.LUC	number	Mobility parameter used in the acoustic term of the Lucent mobility model for electrons.		$\begin{aligned} & \left(\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}\right) \\ & (\mathrm{V} / \mathrm{cm})^{\gamma_{\mathrm{n}}} \end{aligned}$
DP.LUC	number	Mobility parameter used in the acoustic term of the Lucent mobility model for holes.		$\begin{aligned} & \left(\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}\right) \\ & (\mathrm{V} / \mathrm{cm})^{\gamma} \mathrm{p} \end{aligned}$
FN.LUC	number	The factor multiplying total carrier concentration in the exponent used in the surface roughness term of the Lucent mobility model for electrons.		$\mathrm{cm}_{\text {ExN } 9 . \mathrm{LuC}}^{3(1-}$
FP.LUC	number	The factor multiplying total carrier concentration in the exponent used in the surface roughness term of the Lucent mobility model for holes.		$\mathrm{cm}_{\mathrm{EXP} \cdot \mathrm{LUC})}^{3(1-}$
KN.LUC	number	The exponent of temperature used in the acoustic term of the Lucent mobility model for electrons.		none
KP.LUC	number	The exponent of temperature used in the acoustic term of the Lucent mobility model for holes.		none
EXN4.LUC	number	The exponent of total impurity concentration used in the acoustic term of the Lucent mobility model for electrons.		none
EXP4.LUC	number	The exponent of total impurity concentration used in the acoustic term of the Lucent mobility model for holes.		none
EXN9.LUC	number	The exponent of total impurity concentration used in the surface roughness term of the Lucent mobility model for electrons.		none
EXP9.LUC	number	The exponent of total impurity concentration used in the surface roughness term of the Lucent mobility model for holes.		none
Inversion	nd Acc	mulation Layer Mobility Model Parameters	Table 3-27	
BN. IAL	number	Mobility parameter used in the two dimensional acousitic phonon scattering part of the IAL model for electrons.		cm/s
BP.IAL	number	Mobility parameter used in the two dimensional acousitic phonon scattering part of the IAL model for holes.		cm/s
CN. IAL	number	Mobility parameter used in the two dimensional acoustic phonon scattering part of the IAL mobility model for electrons.		$\begin{aligned} & \mathrm{K} / \mathrm{sV}^{2 / 3} \\ & \mathrm{~cm}^{3 / 2} \\ & \mathrm{~cm}^{3 \mathrm{EXN} 4 \cdot \mathrm{IAL}} \end{aligned}$
CP.IAL	number	Mobility parameter used in the two dimensional acoustic phonon scattering part of the IAL mobility model for holes.		$\begin{aligned} & \mathrm{K} / \mathrm{sV}^{2 / 3} \\ & \mathrm{~cm}^{3 / 2} \\ & \mathrm{~cm}^{3 \mathrm{EXP} 4 \cdot \mathrm{IAL}} \end{aligned}$
DN.IAL	number	Mobility parameter used in the surface roughness term of the IAL mobility model for electrons.		$\begin{aligned} & \mathrm{V} / \mathrm{s} \\ & \mathrm{~cm}^{3 \operatorname{ExN} 4 . \text { IAL }} \end{aligned}$
DP.IAL	number	Mobility parameter used in the surface roughness term of the IAL mobility model holes.		$\begin{aligned} & \mathrm{V} / \mathrm{s} \\ & \mathrm{~cm}^{3 \operatorname{ExP} 4 \cdot \text { IAL }} \end{aligned}$
D1N.IAL	number	Mobility parameter used in the carrier concentration independent term of the two dimensional Coulomb impurity scattering part of the IAL mobility model for electrons.		$\begin{aligned} & \mathrm{cm}^{\mathrm{x}} / \mathrm{V}-\mathrm{s} \\ & \mathrm{x}=2+3( \\ & \text { EXN5. IAL- } \\ & \text { EXN6. IAL }) \end{aligned}$


Parameter	Type	Definition	Default	Units
D1P.IAL	number	Mobility parameter used in the carrier concentration independent term of the two dimensional Coulomb impurity scattering part of the IAL model for holes.		$\begin{aligned} & \mathrm{cm}^{\mathrm{x}} / \mathrm{V}-\mathrm{s} \\ & \mathrm{x}=2+3( \\ & \text { EXN5 . IAL- } \\ & \text { EXN6. IAL }) \end{aligned}$
D2N. IAL	number	Mobility parameter used in the carrier dependent term of the two dimensional Coulomb impurity scattering term of the IAL mobility model for electrons.		$\begin{aligned} & \mathrm{cm}^{\mathrm{x}} / \mathrm{V}-\mathrm{s} \\ & \mathrm{x}=2-3 \\ & \text { EXN6. IAL } \end{aligned}$
D2P.IAL	number	Mobility parameter used in the carrier dependent term of the two dimensional Coulomb impurity scattering term of the IAL mobility model for holes.		$\begin{aligned} & \mathrm{cm}^{\mathrm{x}} / \mathrm{V}-\mathrm{s} \\ & \mathrm{x}=2-3 \end{aligned}$   EXN6.IAL
MASSN. IA	number	Electron mass entering the screening parameter P in the simplified Klaassen model for three dimensional Coulomb impurity scattering in the IAL mobility model.		$m_{0}$
MASSP.IA	number	Hole mass entering the screening parameter P in the simplified Klaassen model for three dimensional Coulomb impurity scattering in the IAL mobility model.		$m_{0}$
EXN4.IAL	number	The exponent of total impurity concentration used in the acoustic phonon scattering and surface roughness term of the IAL mobility model for electrons.		none
EXP 4. IAL	number	The exponent of total impurity concentration used in the acoustic phonon scattering and surface roughness term of the IAL mobility model for holes.		none
EXN5. IAL	number	The exponent of the electron density in the two dimensional Coulomb impurity scattering term of the IAL mobility model for electrons.		none
EXP5.IAL	number	The exponent of the hole density in the two dimensional Coulomb impurity scattering term of the IAL mobility model for holes.		none
EXN6.IAL	number	The exponent of donor/acceptor concentration in the carrier dependent two dimensional Coulomb impurity scattering term for accumulation/ inversion layers of the IAL mobility for electrons.		none
EXP6.IAL	number	The exponent of donor/acceptor concentration in the carrier dependent two dimensional Coulomb impurity scattering term for inversion/ accumulation layers of the IAL mobility for holes.		none
EXN7.IAL	number	The exponent of donor/acceptor concentration in the carrier dependent two dimensional Coulomb impurity scattering term for accumulation/ inversion layers of the IAL mobility for electrons.		none
EXP7.IAL	number	The exponent of donor/acceptor concentration in the carrier independent two dimensional Coulomb impurity scattering term for inversion/ accumulation layers of the IAL mobility for holes.		none
III-V Compound Semiconductor Field-Dependent Mobility Model Parameters			See Table 3-28	
VSN. X 1	number	Linear term used to calculate the mole fraction dependent electron saturation velocity, $v_{n}{ }^{\text {sat }}(X)$.		none
VSN. X 2	number	Quadratic term used to calculate the mole fraction dependent electron saturation velocity, $v_{n}{ }^{\text {sat }}(X)$.		none
EN. X 1	number	Linear term used to calculate the critical field for electrons, $E_{0}(X)$.		none



## Stress-Induced Mobility

MLT.STR number Ratio of the longitudinal to transverse effective mass in the ellipsoidal conduction band minima in silicon.

MULO.STR number Ratio of the unstressed light hole mobility to the total hole mobility in silicon.

## Device Selection (Circuit Analysis AAM)

STRUCTUR char

Selects the device where the mobility parameters is modified. This parameter is only used with the Circuit Analysis AAM.

## Description

The MOBILITY statement is used to modify parameters associated with the various carrier mobility models which are available in the program. The actual selection of one or more mobility models is accomplished on the MODELS statement.

By default, the specified mobility parameters apply to all semiconductor regions of the device. However, the mobility parameters can be requested to apply to only particular semiconductor regions by using the REGION parameter.

See Also... To further illustrate the mObility statement, refer to the following input files:

- mdex $2 p$ in Chapter 5, "Simulation with Modified Emitter Region," p. 5-62
- mdex17 in Chapter 14, "Material and Mobility Parameters," p. 14-9

Impurity
Dependent Mobility Tables

A table of values is used to define the dependence of electron and hole mobility on impurity concentration for the semiconductor. Interpolation is used to obtain values for impurity concentrations between the values in the table.

During the interpolation, the impurity concentration is assumed to vary exponentially and the mobility is assumed to vary linearly. For impurity concentrations outside of the range of values present in the table, the last value of mobility at the appropriate end of the table is used.

Default mobility tables for both silicon and gallium arsenide are given in Chapter 2, "Mobility Models," p. 2-22. These tables may be modified by using the parameters CONCENTR, ELECTRON, and HOLE.

If a table entry for a single impurity concentration is given, this entry is inserted directly into existing tables of values. If two or more entries are given, then all entries of the existing tables that have impurity concentration values that fall within the range of values specified with CONCENTR are replaced by the new entries. For example, the statement

```
MOBILITY CONCENTR=(1E15, 1E16, 1E17)
+ ELECTRON=(1305., 1000., 700.)
```

causes all entries for existing electron mobility tables with impurity concentration values within the range 1 e 15 through 1e17 to be replaced by the three values given above. There may be at most 60 rows in a table and each row corresponds to one impurity concentration.

Mobility
Parameters from Solution Files

Solution files that are read in using the LOAD statement replace the values of the mobility material parameters in the present setup, with the values of the corresponding mobility parameters stored in the file. This makes it unnecessary to re-specify parameters that were modified in a previous simulation when continuing the simulation from a saved solution.

## Default Mobility Parameters

The tables below list default values for the various mobility parameters for each material. In these tables, the following notations are used in the column headings::

SL "Silicon-like" materials. Parameters for these materials currently have the same values as parameters for SILICON (unless otherwise noted). Materials included in this group include POLYSILI, SEMICOND, SIGE, GERMANIU, SIC, DIAMOND, A-SILICO, and S.OXIDE.

GL "Gallium arsenide-like" materials. Parameters for these materials currently have the same default values as parameters for GAAS (unless otherwise noted). Materials in this group include: HGCDTE, INP, INAS, ZNSE, and ZNTE.

## Note:

When appropriate default parameters for materials defined as GAAS are unknown, SILICON values are often used instead.

Table 3-9 Constant Mobility Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	S.OXIDE	SIC	SL	GL
MUN0	1 e 3	8.5 e 3	9.89 e 3	2.73 e 4	2.4 e 4	2 e 2	2 e 2	2.4 e 4	20	300	Si	GaAs
MUP0	5 e 2	4 e 2	4 e 2	4.8 e 2	4.8 e 2	1.5 e 2	1.5 e 2	4.8 e 2	$2 \mathrm{e}-5$	50	Si	GaAs

Table 3-10 Analytic Mobility Model Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	S. OXIDE	SL	GL
MUN.MIN	55.24	0.0	2.37 e 3	4 e 3	4.97 e 2	9.5 e 1	9.5 e 1	4.97 e 2	1e1	Si	GaAs
MUN. MAX	1429.23	8.5 e 3	9.89 e 3	2.73 e 4	2.41e4	2 e 2	2 e 2	2.41 e 4	2 e 1	Si	GaAs
NREFN	1.07e17	1.69 e 17	3.63 e 17	3.63 e 17	1 e 17	3.63 e 17	1 e 17	1e17	Si	Si	GaAs
NUN	-2.3	-1.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	Si	GaAs
XIN	-3.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	Si	GaAs
ALPHAN	0.733	$4.36 \mathrm{e}-1$	1.0	1.0	1.0	1.0	1.0	1.0	Si	Si	GaAs
MUP . MIN	49.705	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1e-5	Si	GaAs
MUP . MAX	479.37	4 e 2	4 e 2	4.8 e 2	4.8 e 2	1.5 e 2	1.5 e 2	4.8 e 2	1e-5	Si	GaAs
NREFP	1.61 e 17	2.75 e 17	2.75 e 17	1 e 30	Si	Si	GaAs				
NUP	-2.2	-2.1	0.0	0.0	0.0	0.0	0.0	0.0	Si	Si	GaAs
XIP	-3.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	Si	GaAs
ALP HAP	0.70	$3.95 \mathrm{e}-1$	$3.95 \mathrm{e}-1$	1.0	1.0	1.0	1.0	1.0	Si	Si	GaAs

Table 3-11 III-V Compound Semiconductor Analytic Mobility Model Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
MIN. X1	0.0	0.0	$-9.83 \mathrm{e}-1$	-2.23 e 1	$-9.2 \mathrm{e}-1$	2.39 e 1	1.76 e 1	2.6	Si	GaAs

Table 3-11 III-V Compound Semiconductor Analytic Mobility Model Parameters (Continued)

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
MIN. X2	0.0	0.0	0.0	$-1.86 \mathrm{e}-1$	0.0	0.0	0.0	$-4.5 \mathrm{e}-2$	Si	GaAs
MAN. X1	0.0	0.0	$-9.5 \mathrm{e}-1$	-1.76	$-9.7 \mathrm{e}-1$	4.85 e 1	2.14 e 1	$-9.31 \mathrm{e}-1$	Si	GaAs
MAN. X2	0.0	0.0	0.0	1.12	0.0	0.0	0.0	$1.16 \mathrm{e}-1$	Si	GaAs
NREFN2	1 e 30	1 e 30	1.75 e 18	1.75 e 18	2.51 e 17	1.75 e 18	2.51 e 17	2.51 e 17	Si	GaAs
MIP. $\mathbf{X 1}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
MIP. X2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
MAP. X1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
MAP. X2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
NREFP2	1 e 30	Si	GaAs							

Table 3-12 Arora Mobility Model Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	S.OXIDE	SL	GL
MUN1. ARO	88.0	8.5 e 3	9.89 e 3	2.73 e 4	2.41 e 4	2 e 2	2 e 2	2.41 e 4	1e1	Si	GaAs
MUN2 . ARO	1252.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2 e 1	Si	GaAs
CN. ARORA	1.26 e 17	1.26 e 17	1 e 20	Si	Si	GaAs					
AN. ARORA	0.88	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Si	Si	GaAs
EXN1.ARO	-0.57	-5.7e-1	0.0	0.0	0.0	0.0	0.0	0.0	Si	Si	GaAs
EXN2 .ARO	-2.33	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	Si	GaAs
EXN3.ARO	2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	Si	GaAs
EXN4.ARO	-0.146	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	Si	GaAs
MUP1.ARO	54.3	4 e 2	4 e 2	4.8 e 2	4.8 e 2	1.5 e 2	1.5 e 2	4.8 e 2	1e-5	Si	GaAs
MUP2 . ARO	407.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2e-5	Si	GaAs
CP . ARORA	2.35 e 17	2.35 e 17	1 e 20	1 e 20	1 e 20	1 e 20	1e20	1 e 20	Si	Si	GaAs
AP . ARORA	0.88	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Si	Si	GaAs
EXP1.ARO	-0.57	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	Si	GaAs
EXP2.ARO	-2.23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	Si	GaAs
EXP3.ARO	2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	Si	GaAs
EXP4.ARO	-0.146	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	Si	GaAs

Table 3-13 Carrier-Carrier Mobility Model Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
A.CCS	1.04 e 21	1.04 e 21	1 e 22	Si	GaAs					
B.CCS	7.45 e 13	7.45 e 13	1 e 22	Si	GaAs					
A.LIC	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Si	GaAs
B.LIC	2.126	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
C.LIC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EX. LIC	0.715	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
MUNO. LAT	1430	8.50 e 3	9.89 e 3	2.73 e 4	2.414 e 4	2 e 2	2 e 2	2.414 e 4	Si	GaAs
EXN. LAT	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
AN. IIS	2.4 e 21	2.4 e 21	1 e 22	Si	GaAs					

Table 3-13 Carrier-Carrier Mobility Model Parameters (Continued)

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
BN. IIS	1.37 e 20	1.37 e 20	1 e 22	Si	GaAs					
MUPO. LAT	495	4 e 2	4 e 2	4.8 e 2	4.8 e 2	1.5 e 2	1.5 e 2	4.8 e 2	Si	GaAs
EXP. LAT	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
AP. IIS	5.2 e 20	5.2 e 20	1 e 22	Si	GaAs					
BP.IIS	5.63 e 19	5.63 e 19	1 e 22	Si	GaAs					

Table 3-14 Philips Unified Mobility Model Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
MMNN. UM	5.22 e 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
MMXN. UM	1.417 e 3	8.5 e 3	9.892 e 3	2.725 e 4	2.414 e 4	2 e 2	2 e 2	2.414 e 4	Si	GaAs
NRFN. UM	9.68 e 16	1 e 30	Si	GaAs						
ALPN. UM	$6.8 \mathrm{e}-1$	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Si	GaAs
TETN. UM	2.285	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
NRFD. UM	4 e 20	1 e 30	Si	GaAs						
CRFD. UM	$2.1 \mathrm{e}-1$	1 e 30	Si	GaAs						
MMNP. UM	4.49 e 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
MMXP. UM	4.705 e 2	4 e 2	4 e 2	4 e 2	4.8 e 2	1.5 e 2	1.5 e 2	4.8 e 2	Si	GaAs
NRFP. UM	2.23 e 17	1 e 30	Si	GaAs						
ALPP. UM	$7.19-1$	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Si	GaAs
TETP. UM	2.247	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
NRFA. UM	7.2 e 20	1 e 30	Si	GaAs						
CRFA. UM	$5 \mathrm{e}-1$	1 e 30	Si	GaAs						

Table 3-15 Effective Field Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
ETAN	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
ZETAN	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
ETAP	0.333	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
ZETAP	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs

Table 3-16 Surface Degradation Factors

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
GSURFN	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Si	GaAs
GSURFP	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Si	GaAs

Table 3-17 Lombardi Surface Mobility Model Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
MUNO . LSM	52.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
MUN1.LSM	43.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
MUN2 . LSM	1417.0	1 e 6	1e6	1 e 6	1 e 6	1e6	1 e 6	1 e 6	Si	GaAs
CRN. LSM	9.68 e 16	9.68 e 16	1 e 20	Si	GaAs					
CSN. LSM	3.43 e 20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
BN.LSM	4.75 e 7	1 e 10	1 e 10	1 e 10	1 e 10	1e10	1 e 10	1 e 10	Si	GaAs
CN. LSM	1.74e5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
DN.LSM	5.82e14	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	Si	GaAs
EXN1.LSM	0.680	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXN2.LSM	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXN3.LSM	2.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXN4.LSM	0.125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXN8.LSM	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
MUPO.LSM	44.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
MUP1. LSM	29.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
MUP2 . LSM	470.5	1.0	1e6	1e6	1e6	1 e 6	1e6	1e6	Si	GaAs
CRP . LSM	2.23 e 17	2.23 e 17	1e20	1 e 20	1 e 20	1 e 20	1e20	1 e 20	Si	GaAs
CSP . LSM	6.1e20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
BP.LSM	9.93 e 6	1 e 10	1 e 10	1 e 10	1e10	1e10	1 e 10	1e10	Si	GaAs
CP .LSM	8.84e5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
DP.LSM	2.05 e 14	1e6	1e6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	Si	GaAs
EXP1.LSM	0.719	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXP2.LSM	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXP3.LSM	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXP4.LSM	0.0317	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXP8.LSM	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
PC.LSM	9.23 e 16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs

Table 3-18 Generalized Mobility Curve Model Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
BN. GMC	8.95 e 5	1 e 20	Si	GaAs						
CN. GMC	3.23 e 6	1 e 20	Si	GaAs						
DN. GMC	8.29 e 14	1 e 20	Si	GaAs						
D1N. GMC	1.35 e 11	1 e 20	Si	GaAs						
D2N. GMC	2.89 e 8	1 e 20	Si	GaAs						
EXN4. GMC	$2.84 \mathrm{e}-2$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXN5. GMC	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXN6. GMC	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXN7. GMC	$3.5 \mathrm{e}-1$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXN8. GMC	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs

Table 3-18 Generalized Mobility Curve Model Parameters (Continued)

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
BP. GMC	8.95 e 5	1 e 20	Si	GaAs						
CP. GMC	3.23 e 6	1 e 20	Si	GaAs						
DP. GMC	8.29 e 14	1 e 20	Si	GaAs						
D1P.GMC	1.35 e 11	1 e 20	Si	GaAs						
D2P.GMC	2.89 e 8	1 e 20	Si	GaAs						
EXP4.GMC	$2.84 \mathrm{e}-2$	1 e 20	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXP5.GMC	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXP6.GMC	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXP7.GMC	$3.5 \mathrm{e}-1$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXP8.GMC	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs

Table 3-19 Shirahata Mobility Model Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
E1N.SHI	6.3 e 3	Si	GaAs							
EX1N. SHI	0.28	0.28	0.28	0.0	0.0	0.0	0.0	0.0	Si	GaAs
E2N. SHI	7.7 e 5	Si	GaAs							
EX2N. SHI	2.9	2.9	2.9	0.0	0.0	0.0	0.0	0.0	Si	GaAs
E1P.SHI	6.3 e 3	Si	GaAs							
EX1P. SHI	0.28	0.28	0.28	0.0	0.0	0.0	0.0	0.0	Si	GaAs
E2P.SHI	7.7 e 5	Si	GaAs							
EX2P.SHI	2.9	2.9	2.9	0.0	0.0	0.0	0.0	0.0	Si	GaAs

Table 3-20 Surface Mobility Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
EREFN	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	Si	GaAs
EXN. SM	0.285	$2.85 \mathrm{e}-1$	$2.85 \mathrm{e}-1$	0.0	0.0	0.0	0.0	0.0	Si	GaAs
MUREFN	389.0	2 e 3	2 e 3	2.73 e 4	2.73 e 4	2 e 2 Surf	2 e 2	2.414 e 4	Si	GaAs
EREFP	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	Si	GaAs
EXP.SM	0.315	$3.5 \mathrm{e}-1$	$3.15-1$	0.0	0.0	0.0	0.0	0.0	Si	GaAs
MUREFP	84.5	6.76 e 1	6.76 e 1	4.8 e 2	4.8 e 2	1.5 e 2	1.5 e 2	4.8 e 2	Si	GaAs

Table 3-21 Enhanced Surface Mobility Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
MUN1. SM	481.0	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	Si	GaAs
MUN2. SM	591.0	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	Si	GaAs
MUN3. SM	1270.0	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	Si	GaAs
EXN1. SM	0.160	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXN2 . SM	2.170	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs

Table 3-21 Enhanced Surface Mobility Parameters (Continued)

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
EXN3.SM	1.070	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
MUP1.SM	92.8	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	Si	GaAs
MUP2.SM	124.0	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	Si	GaAs
MUP3.SM	534.0	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	Si	GaAs
EXP1.SM	0.296	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXP2.SM	1.620	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXP3.SM	1.020	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs

Table 3-22 Universal Mobility Model Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
MUN. UNI	7.835 e 2	8.5 e 3	9.892 e 3	2.725 e 4	2.414 e 4	2 e 2	2 e 2	2.414 e 4	Si	GaAs
ECN. UNI	2.57 e 5	1 e 10	Si	GaAs						
EXN. UNI	1.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXNO. UNI	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	Si	GaAs
MUP. UNI	2.474 e 2	4 e 2	4 e 2	4.8 e 2	4.8 e 2	1.5 e 2	1.5 e 2	4.8 e 2	Si	GaAs
ECP. UNI	5.75 e 5	1 e 10	Si	GaAs						
EXP. UNI	0.95	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
EXPO.UNI	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	Si	GaAs

Table 3-23 Perpendicular Field Mobility Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
ECN. MU	6.49 e 4	1 e 8	1 e 8	1 e 8	1 e 8	1 e 8	1 e 8	1 e 8	Si	GaAs
ECP. MU	1.87 e 4	1 e 8	1 e 8	1 e 8	1 e 8	1 e 8	1 e 8	1 e 8	Si	GaAs

Table 3-24 Hewlett-Packard Mobility Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
MUNO. HP	774.0	8.5 e 3	9.89 e 3	2.73 e 4	2.41 e 4	2 e 2	2 e 2	2 e 2	Si	GaAs
ECN. HP	5.5 e 5	1 e 8	1 e 8	1 e 8	1 e 8	1 e 8	1 e 8	1 e 8	Si	GaAs
VSN. HP	1.036 e 7	1 e 10	Si	GaAs						
VCN. HP	4.9 e 6	1 e 10	Si	GaAs						
GN. HP	8.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Si	GaAs
NRFN. HP	5 e 17	5 e 17	1 e 30	Si	GaAs					
MUPO. HP	250	4 e 2	4 e 2	4.8 e 2	4.8 e 2	1.5 e 2	1.5 e 2	4.8 e 2	Si	GaAs
ECP. HP	2.78 e 5	1 e 8	1 e 8	1 e 8	1 e 8	1 e 8	1 e 8	1 e 8	Si	GaAs
VSP. HP	1.2 e 17	1 e 10	Si	GaAs						
VCP. HP	2.928 e 6	1 e 10	Si	GaAs						
GP. HP	1.6	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Si	GaAs
NRFP. HP	5 e 17	5 e 17	1 e 30	Si	GaAs					

Table 3-25 Field-Dependent Mobility Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
VSATN	1.035 e 7	6.5 e 6	6.35 e 6	1 e 7	1 e 7	6.92 e 6	6.92 e 6	1 e 7	Si	GaAs
BETAN	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Si	GaAs
EON	4 e 3	4 e 3	5.418 e 3	6 e 3	6 e 3	1.63 e 4	1.63 e 4	6 e 3	Si	GaAs
BETAN. HA	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	Si	GaAs
VSATP	1.035 e 7	7.7 e 6	6.352 e 6	1 e 7	1 e 7	6.92 e 6	6.92 e 6	1 e 7	Si	GaAs
BETAP	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Si	GaAs
EOP	4 e 3	4 e 3	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	1 e 6	Si	GaAs
BETAP.HA	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	Si	GaAs
FLDMOB	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	Si	GaAs

Table 3-26 Lucent Mobility Model Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
AN.LUC	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	Si	GaAs
AP.LUC	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	Si	GaAs
BN.LUC	3.61 e 7	Si	GaAs							
BP.LUC	1.51 e 7	Si	GaAs							
CN.LUC	1.70 e 4	Si	GaAs							
CP.LUC	4.18 e 3	Si	GaAs							
DN.LUC	3.58 e 18	Si	GaAs							
DP.LUC	4.10 e 15	Si	GaAs							
FN.LUC	$6.85 \mathrm{e}-21$	Si	GaAs							
FP.LUC	$7.82 \mathrm{e}-21$	Si	GaAs							
KN.LUC	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	Si	GaAs
KP.LUC	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	Si	GaAs
EXN4.LUC	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	0.0233	Si	GaAs
EXP4. LUC	0.0119	0.0119	0.0119	0.0119	0.0119	0.0119	0.0119	0.0119	Si	GaAs
EXN9.LUC	0.0767	0.0767	0.0767	0.0767	0.0767	0.0767	0.0767	0.0767	Si	GaAs
EXP9. LUC	0.123	0.123	0.123	0.123	0.123	0.123	0.123	0.123	Si	GaAs

Table 3-27 Inversion and Accumulation Layer Mobility Model Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
BN. IAL	9.0 e 5	Si	GaAs							
BP. IAL	9.0 e 5	Si	GaAs							
CN.IAL	1.32 e 6	Si	GaAs							
CP.IAL	1.32 e 6	Si	GaAs							
DN.IAL	3.97 e 13	Si	GaAs							
DP.IAL	3.97 e 13	Si	GaAs							
D1N. IAL	1.35 e 11	Si	GaAs							

Table 3-27 Inversion and Accumulation Layer Mobility Model Parameters (Continued)

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
D1P.IAL	1.35 e 11	Si	GaAs							
D2N. IAL	4.0 e 10	Si	GaAs							
D2P.IAL	4.0 e 10	4.0 e 10	4.0 e 10	4.0 e 10 e	4.0 e 10	4.0 e 10	4.0 e 10	4.0 e 10	Si	GaAs
$\begin{aligned} & \text { MASSN. } \\ & \text { IAL } \end{aligned}$	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	Si	GaAs
$\begin{aligned} & \text { MASSP. } \\ & \text { IAL } \end{aligned}$	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	Si	GaAs
EXN4.IAL	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	Si	GaAs
EXP4.IAL	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	Si	GaAs
EXN5.IAL	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	Si	GaAs
EXP5.IAL	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	Si	GaAs
EXN6.IAL	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	Si	GaAs
EXP6.IAL	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	Si	GaAs
EXN7.IAL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	Si	GaAs
EXP7.IAL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	Si	GaAs

Table 3-28 III-V Compound Semiconductor Field-Dependent Mobility Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
VSN. X1	0.0	0.0	$-5.304 \mathrm{e}-1$	-1.019	$-7.493 \mathrm{e}-1$	$-8.212 \mathrm{e}-2$	$-3.41 \mathrm{e}-2$	$-3.32 \mathrm{e}-1$	Si	GaAs
VSN. X2	0.0	0.0	$-748 \mathrm{e}-2$	$7.09 \mathrm{e}-1$	0.0	0.0	0.0	0.0	Si	GaAs
EN. X1	0.0	0.0	-2.471	$-7.956 \mathrm{e}-1$	4.169	$-6.677 \mathrm{e}-1$	1.533	5.883	Si	GaAs
EN. X2	0.0	0.0	7.194	$6.3 \mathrm{e}-1$	0.0	0.0	0.0	0.0	Si	GaAs

Table 3-29 Transverse Field-Dependent Mobility Model Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
TEMPN. UT	1.15 e 3	8.5 e 3	9.892 e 3	2.725 e 3	2.414 e 4	2 e 2	2 e 2	2.414 e 4	Si	GaAs
PHONN. UT	$3.20 \mathrm{e}-9$	$1 \mathrm{e}-20$	Si	GaAs						
SURFN. UT	6 e 14	1 e 30	Si	GaAs						
COULN. UT	1.1 e 21	1 e 30	Si	GaAs						
TEMPP.UT	2.7 e 2	4 e 2	4 e 2	4.8 e 2	4.8 e 2	1.5 e 2	1.5 e 2	4.8 e 2	Si	GaAs
PHONP. UT	$2.35 \mathrm{e}-9$	$1 \mathrm{e}-20$	Si	GaAs						
SURFP. UT	1 e 8	1 e 8	1 e 30	Si	GaAs					
COULP. UT	1.4 e 18	1 e 30	Si	GaAs						
ACC.N. UT	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Si	GaAs
ACC.P.UT	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Si	GaAs
INV.N.UT	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Si	GaAs
INV.P.UT	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Si	GaAs

Table 3-30 Stress-Induced Mobility Model Parameters

Parameter	SILICON	GAAS	ALGAAS	INGAAS	ALINAS	GAASP	INGAP	INASP	SL	GL
MLT.STR	5.158	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs
MULO.STR	2.79	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Si	GaAs

## IMPURITY

The IMPURITY statement defines the physical parameters associated with impurities used in the structure.

```
IMPURITY
 NAME=<C> [PRINT]
Material or Region Name
 [{ SILICON | GAAS | POLYSILI | SEMICOND | SIGE | ALGAAS
 | GERMANIU | SIC | S.OXIDE | HGCDTE | INGAAS | INP | INAS
 DIAMOND | ZNSE| ZNTE | A-SILICO | ALINAS | GAASP | INGAP
 INASP | REGION=<C>
 }
Incomplete Ionization Parameters
 [GB=<n>] [EBO=<n>] [ALPHA=<n>] [BETA=<n>] [GAMMA=<n>]
 [HDT.MIN=<n>] [HDT.MAX=<n>]
]
Circuit Analysis AAM Parameters
 [STRUCTUR=<c>]
```

Parameter	Type	Definition	Default	Units
NAME	char	The name of the impurity.	none	

## Material or Region Name

SILICON	logical	Specifies that the impurity parameters apply to all regions   that were specified as SILICON.	false
GAAS	logical	Specifies that the impurity parameters apply to all regions   that were specified as GAAS.	false
POLYSILI	logical	Specifies that the impurity parameters apply to all regions   that were specified as POLYSILI.	false
SEMICOND	logical	Specifies that the impurity parameters apply to all regions   that were specified as SEMICOND.	false
SIGE	logical	Specifies that the impurity parameters apply to all regions   that were specified as SIGE.	false
ALGAAS	logical	Specifies that the impurity parameters apply to all regions   that were specified as ALGAAS.	false
GERMANIU	logical	Specifies that the impurity parameters apply to all regions   that were specified as GERMANIU.	false
SIC	logical	Specifies that the impurity parameters apply to all regions   that were specified as SIC.	false


Parameter	Type	Definition	Default	Units
S.OXIDE	logical	Specifies that the impurity parameters apply to all regions that were specified as S.OXIDE.	false	
HGCDte	logical	Specifies that the impurity parameters apply to all regions that were specified as HGCDTE.	false	
ingans	logical	Specifies that the impurity parameters apply to all regions that were specified as INGAAS.	false	
INP	logical	Specifies that the impurity parameters apply to all regions that were specified as INP.	false	
INAS	logical	Specifies that the impurity parameters apply to all regions that were specified as INAS.	false	
DIAMOND	logical	Specifies that the impurity parameters apply to all regions that were specified as DIAMOND.	false	
zNSE	logical	Specifies that the impurity parameters apply to all regions that were specified as ZNSE.	false	
ZNTE	logical	Specifies that the impurity parameters apply to all regions that were specified as $\mathbf{Z N T E}$.	false	
A-SILICO	logical	Specifies that the impurity parameters apply to all regions that were specified as A-SILICO.	false	
ALINAS	logical	Specifies that the impurity parameters apply to all regions that were specified as ALINAS.	false	
GAASP	logical	Specifies that the impurity parameters apply to all regions that were specified as GAASP.	false	
INGAP	logical	Specifies that the impurity parameters apply to all regions that were specified as INGAP.	false	
INASP	logical	Specifies that the impurity parameters apply to all regions that were specified as INASP.	false	
Region	char	The name(s) of the regions for which the impurity parameters apply. If more than one name is given, the entire group should be surrounded by parentheses and the individual names should be separated with commas.	none	

## Incomplete lonization Parameters

GB	number	The band degeneracy factor.	See tables	none
EBO	number	The constant term used in the calculation of the band ion-   ization energy.	See tables	eV
ALPHA	number	The prefactor for the doping dependent term used in the   calculation of the band ionization energy.	See tables	none
BETA	number	The prefactor the temperature dependent term used in the   calculation of the band ionization energy.	See tables	none
GAMMA	number	The exponent of temperature used in the calculation of the   band ionization energy.	See tables	1/cm
HDT.MIN	number	The minimum impurity concentration for which the high   doping transition from incomplete ionization to complete   ionization applies.	See tables	


Parameter	Type	Definition	Default	Units
HDT .MAX	number	The maximum impurity concentration for which the high   doping transition from incomplete ionization to complete   ionization applies.	See tables	$1 / \mathrm{cm}^{3}$

## Circuit Analysis AAM Parameters

STRUCTUR char $\quad$| Selects the device in which the material parameters are |
| :--- |
| altered. This parameter is only used with the Circuit Analy- |
| sis AAM. |

## Description

The IMPURITY statement defines the physical parameters associated with impurities used in the structure. The recognized impurity names and the default parameter values associated with them are shown in the tables below.
Table 3-31 Impurity Parameters in Silicon and "Silicon-Like" Materials

Parameter	N-Type	P-Type	$\mathbf{B}$	$\mathbf{P}$	$\mathbf{A s}$	$\mathbf{S b}$	In	Al	Ga
Type	Donor	Acceptor	Acceptor	Donor	Donor	Donor	Acceptor	Acceptor	Acceptor
GB	2.0	4.0	4.0	2.0	2.0	2.0	4.0	4.0	4.0
EBO	0.044	0.045	0.045	0.045	0.054	0.039	0.160	0.067	0.072
ALPHA	$3.100 \mathrm{e}-8$	$3.037 \mathrm{e}-8$	$3.037 \mathrm{e}-8$	$3.100 \mathrm{e}-8$	$3.100 \mathrm{e}-8$	$3.100 \mathrm{e}-8$	$3.037 \mathrm{e}-8$	$3.037 \mathrm{e}-8$	$3.037 \mathrm{e}-8$
BETA	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0
GAMMA	1.000	0.950	0.950	1.000	1.000	1.000	0.950	0.950	0.950
HDT . MIN	1.0 e 18								
HDT . MAX	1.0 e 19								

Table 3-32 Impurity Parameters in GaAs and "GaAs-Like" Materials

Parameter	N-Type	P-Type
Type	Donor	Acceptor
GB	2.0	2.0
EBO	0.005	0.005
ALPHA	$3.100 \mathrm{e}-8$	$3.037 \mathrm{e}-8$
BETA	200.0	200.0
GAMMA	1.000	0.950
HDT . MIN	1.0 e 18	1.0 e 18
HDT . MAX	1.0 e 19	1.0 e 19

## CONTACT

The CONTACT statement defines the physical parameters associated with an electrode. Various types of boundary conditions are also specified with the CONTACT statement.

```
CONTACT
 {NAME=<C> | ALL} [PRINT]
 [{ NEUTRAL | ALUMINUM | P.POLYSI | N.POLYSI | MOLYBDEN | TUNGSTEN
 MO.DISIL | TU.DISIL | WORKFUNC=<n>
 }
 [PIN]
]
Charge Boundary Condition Parameters(1,2)
 [{ (CHARGE [CAPACITA=<n>] [V.CAPAC=<n>])
Current and Lumped Element Boundary Condition Parameters(1)
 | ([{ CURRENT
 | (RESISTAN=<n> [CAPACITA=<n>] [INDUCTAN=<n>])
 }
]
Surface Boundary Condition Parameters(2)
 [{ CON.RESI=<n>
 | (CRS.CON [A.CONRES=<n>] [B.CONRES=<n>] [C.CONRES=<n>])
 (SURF.REC [VSURFN=<n>] [VSURFP=<n>]
 [BARRIERL [ALPHA=<n>] [BETA=<n>] [GAMMA=<n>]]
)
 }
]
)
Voltage Boundary Condition Parameters
 | VOLTAGE
 }
]
Lattice Temperature AAM PArameters
 [R.THERMA=<n>] [C.THERMA=<n>]]
Circuit Analysis AAM Parameters
 [STRUCTUR=<c>]
Optical Device AAM Parameters
 [{TRANSELE | REFLECTI=<n>}]
```

(1) Not allowed when the contact is attached to a circuit
(2) Not allowed with majority carrier contacts

Parameter	Type	Definition	Default	Units
NAME	char	The name of a previously defined electrode for which the specified properties apply. The same properties can be assigned to more than one electrode by separating them with commas, and enclosing the entire set in parentheses. synonym: NUMBER	none	
ALL	logical	Specifies that the same properties apply to all electrodes.	false	
PRINT	logical	Specifies that the contact parameters for the structure are printed to the standard output.	false	
neutral	logical	Specifies that the work function potential for the electrode is calculated from the doping.	true	
Aluminum	logical	Specifies that the work function potential of aluminum ( 4.10 volts) is used for the electrode.	false	
P.POLYSI	logical	Specifies that the work function potential of $\mathrm{p}+$ polysilicon ( 5.25 volts) is used for the electrode.	false	
N. POLYSI	logical	Specifies that the work function potential of $n+$ polysilicon ( 4.17 volts) is used for the electrode.	false	
molybden	logical	Specifies that the work function potential of molybdenum ( 4.53 volts) is used for the electrode.	false	
tungsten	logical	Specifies that the work function potential of tungsten (4.63 volts) is used for the electrode.	false	
mo.dISIL	logical	Specifies that the work function potential of molybdenum disilicide ( 4.80 volts) is used for the electrode.	false	
TU.DISIL	logical	Specifies that the work function potential of tungsten disilicide ( 4.80 volts) is used for the electrode.	false	
workfunc	number	The value of the work function potential assigned to the specified electrode.	none	volts
PIN	logical	Specifies that a work function value that is less than the electron affinity, $\chi$, is pinned to $\chi$, and that a work function value that is greater than $\chi+E_{g}$ is pinned to $\chi+E_{g}$. If $\wedge^{\mathrm{P}}$ IN is specified, the program accepts any non-negative value for work function.	true	

## Charge Boundary Condition Parameters

CHARGE	logical	Specifies that a charge boundary condition is used at this contact. This parameter is only used with the Programmable Device AAM.	false
CAPACITA	number	The value of a lumped capacitance attached to the contact. The specified value should represent the true capacitance in Farads divided by the device width (direction perpendicular to the simulated cross-section) in microns.	0.0
v.cAPAC	number	The value of voltage applied to the terminal of the capacitor which is not attached to the device. This parameter is used only with the Programmable Device AAM.	0.0
Current	mpe	Element Boundary Condition Parameters	
CURRENT	logical	Specifies that a current boundary condition is used at this contact.	false


Parameter	Type	Definition
RESISTAN	number	The value of a lumped resistance attached to the contact.   The specified value should represent the true resistance in   Ohms multiplied by the device width (direction perpendic-   ular to the simulated cross-section) in microns.
INDUCTAN	number	The value of a lumped inductance attached to the contact.   The specified value should represent the true inductance in
Henrys multiplied by the device width (direction perpen-   dicular to the simulated cross-section) in microns.		


Default	Units
0.0	Ohm-microns
0.0	Henry-   microns

## Surface Boundary Condition Parameters

CON.RESI	number	The value used for the distributed contact resistance of the electrode. The specified value should represent the resistance of the contact in Ohms multiplied by the contact area in $\mathrm{cm}^{2}$.	0.0	Ohm- $\mathrm{cm}^{2}$
CRS.CON	logical	Specifies that a doping-dependent contact resistance model is used.	false	
A. CONRES	number	The value of prefactor in the doping-dependent contact resistance model.	$2.44 \mathrm{e}-9$	Ohm-cm ${ }^{2}$
B.CONRES	number	The value of the parameter for calculating the characteristic tunneling energy in the doping-dependent contact resistance model	$1.24 \mathrm{e}-11$	$\mathrm{eV}-\mathrm{cm}^{1.5}$
C. Conres	number	The metal-semiconductor barrier height for the dopingdependent contact resistance model	0.6	eV
SURF.REC	logical	Specifies that finite surface recombination velocities are used at the specified electrode.   synonym: SCHOTTKY	false	
VSURFN	number	The surface recombination velocity for electrons when SURF.REC is specified.	ARICHN*TEMPERAT ${ }^{2}$ $/ q / N c(T)$	cm/s
VSURFP	number	The surface recombination velocity for holes when SURF.REC is specified.	ARICHP*TEMPERAT ${ }^{2}$ $/ q / N v(T)$	$\mathrm{cm} / \mathrm{s}$
BARRIERL	logical	Specifies that the barrier lowering mechanism is used.	false	
ALPHA	number	The linear dipole barrier lowering coefficient.	0.0	cm
BETA	number	Prefactor of square root term in barrier lowering expression.	1.0	none
GAMMA	number	Exponent of electric field in barrier lowering expression.	1.0	none
Voltage Boundary Condition Parameters				
VOLTAGE	logical	Specifies that voltage boundary conditions are used at the contact. This parameter acts as a reset button for the electrode, removing any special boundary conditions that were previously specified.	false	
Lattice Temperature AAM Parameters				
R.THERMA	number	The value of the lumped thermal resistance which is placed in series with the thermal electrode.	0.0	K*micron/W
C. THERMA	number	The value of the lumped thermal capacitance which is connected to the thermal electrode.	none	J/K/micron

Parameter Type Definition Default Units

## Circuit Analysis AAM Parameters

STRUCTUR character Selects which device the CONTACT statement effects. This all devices parameter is only used with the Circuit Analysis AAM.

## Optical Device AAM Parameters

TRANSELE	logical	Specifies that the designated electrode is optically transparent during ray tracing analysis. This parameter has no effect on the electrode's electrical properties.	false	
REFLECTI	number	The reflectivity of optical power at the electrode/semiconductor or electrode/insulator interface.	1.0	none

## Description

The CONTACT statement defines the physical parameters associated with an electrode. The CONTACT statement also allows the specification of a number of special boundary conditions, including the following:

- Charge boundary conditions
- Current boundary conditions
- Lumped resistances, capacitances, and inductances
- Distributed contact resistance
- Schottky contacts

See Also... To further illustrate the Contact statement, refer to the following:

- mdexl in Chapter 4, "Potential Regrid," p. 4-49
- mdex3 in Chapter 6, "Lumped Resistance and Distributed Contact Resistance Example," p. 6-13
- Several other examples


## Note:

The Newton solution method is required when using resistive, capacitive, or inductive elements, contact resistance, current boundary conditions, or charge boundary conditions.

## Work Function Potentials

Work function potentials can be assigned to electrodes by specifying the electrode material, or alternatively, by indicating the desired value using the WORKFUNC parameter. If no CONTACT statement is supplied for an electrode, it is assumed to be NEUTRAL.

## Cautions

This section details areas in which the CONTACT statement should be used with caution, to ensure accurate results.

Contacts to P-type Regions

Care should be taken when specifying a contact material to a p-type region in Medici. If ALUMINUM (or material with a similar work function potential) is specified, severe band bending occurs at the contact, causing conduction to be effectively blocked. This is because of the large difference between the metal work function potential (approximately 4.10 v ) and the p-type semiconductor work function potential (approximately 5.25 v ).

It is recommended that either NEUTRAL contacts or P. POLYSI contacts be made to p-type materials in Medici.

Insulator
Care should be taken to ensure that all insulator contacts have a work function Contacts potential specified. Failure to do so results in, for example, unexpected threshold voltage shifts for MOS devices.

$\mathbf{N}^{+}$Poly Gate MOS Simulations

In the case of MOS simulations involving heavily-doped $\mathrm{n}^{+}$polysilicon gate structures, the material of the polycrystalline gate is known to behave in a way similar to that of a conductor.

For simulations involving $\mathrm{n}^{+}$polysilicon gate structures it is recommended that the work function value for the contact be set to 4.35 V , as shown below:

```
CONTACT NAME=Gate WORKFUNC=4.35
```


## Special Boundary Conditions

The CONTACT statement can also be used to specify special boundary conditions at the contact, as shown below:

- CURRENT indicates that current boundary conditions are used at the contact. The actual value of current to use is specified at solve time on the SOLVE statement.
- Lumped resistances and/or capacitances and/or inductances between applied biases and semiconductor device contacts can be specified by assigning values to the parameters RESISTAN, CAPACITA, and/or INDUCTAN respectively.
Note that the specified resistance, capacitance and inductance are connected in parallel.
- A value of CON.RESI may be specified to take into account the finite resistivity of contacts to the semiconductor. Alternatively, CRS . CON may be specified to use a doping-dependent contact resistance model characterized by parameters A. CONRES, B. CONRES and C. CONRES.
- If the electrode is a thermal electrode, then lumped thermal resistance and capacitance can be specified using the R.THERMA and C. THERMA parameters.
The temperature at the device contact $T_{d}$ is given by

$$
T_{d}=T_{0}+P^{*} \text { R.THERMA }-\mathbf{R} . \text { THERMA } * \mathbf{C} \cdot \text { THERMA } \frac{d T_{d}}{d t}
$$

where $T_{0}$ is the applied contact temperature and $P$ is the power flowing into the contact.

## Schottky Contacts

Schottky contacts can be specified by indicating that finite surface recombination velocities are to be used with the SURF. REC parameter. Default values for the recombination velocities are calculated using the following:

- Effective Richardson constant for electrons or holes
- Effective density of states in the conduction or valence bands if values are not specified here

The Schottky model also takes into account field-dependent barrier-lowering mechanisms if BARRIERL is specified. The coefficient of the linear dipole term, ALPHA, may optionally be specified.

## Mixing Boundary Conditions

Medici allows some of the special boundary condition options at a contact to be combined and used together in a simulation. The user has the option of choosing one boundary condition from the set of Current and Lumped Element Boundary Conditions and one boundary condition from the set of Surface Boundary Conditions. For the purpose of combining boundary conditions, attaching the contact to a circuit (when using the Circuit Analysis AAM) is equivalent to choosing a Current and Lumped Element Boundary Condition and using a majority carrier contact is equivalent to choosing a Surface Boundary Condition. The choices are summarized in the table below, where one boundary condition from each column can be selected.

Table 3-33 Combining Contact Boundary Conditions in Medici

Current and Lumped Element   Boundary Conditions	Surface Boundary Conditions
CURRENT	CON.RES
RESISTAN, CAPACITA,	
INDUCTAN	CRS.RES
Contact attached to circuit	SURF . REC

## INTERFACE

The INTERFACE statement allows the specification of interface parameters (recombination velocities and fixed and trapped charges) at any interface in the structure. It also allows fixed charges to be placed inside insulator regions.

```
[{MATERIAL=<C> | REGION=<C>}]
[X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
{ ([S.N=<n>] [S.P=<n>] [QF=<n>]
 [N.ACCEPT=<n>] [P.ACCEPT=<n>] [N.DONOR=<n>] [P.DONOR=<n>]
)
I
 (Q.INSULA=<n> [D.CHAR=<n>])
}
[CLEAR] [ALL.CLEA]
```

| Parameter | Type | Definition | Units |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MATERIAL | char | The material names of two adjacent materials. The interface <br> parameters specified with this statement applies to all interfaces <br> between these two materials. The two material names should be <br> enclosed in parentheses and separated by a comma. | none |


Parameter	Type	Definition	Default	Units
P. DONOR	number	The interface trapped charge density for the hole donors.	0.0	$\mathrm{cm}^{-2} / \mathrm{eV}$
Q.INSULA	number	The insulator fixed charge density. synonyms: ©INS	0.0	$\mathrm{cm}^{-3}$
D. Char	number	Parameter that describes the placement of insulator fixed charged within the insulator. The value of D. CHAR has the following meaning:   $=0: \mathbf{Q}$. INSULA is assigned to all the insulator nodes inside the bounding box.   $>0: \mathbf{Q}$. INSULA is assigned to all the insulator nodes inside the bounding box at a distance less than D. CHAR from the interface.   $<0$ : The charge density assigned to the insulator nodes inside the bounding box is given by   Q.INSULA $* \exp \left(-(\mathrm{d} / \mathrm{D} . \text { CHAR })^{2}\right)$ where d is the distance from the interface.	0.0	microns
CLear	logical	Specifies that the value of all interface parameters for all interfaces enclosed within the bounding box are cleared (set to zero) prior to processing any new parameters specified on this statement. If ${ }^{\wedge}$ Clear is specified, then the values of parameters specified on this statement are added to any previous values specified for interfaces enclosed within the bounding box.	true	
All . Clea	logical	Specifies that all preceding interface statements or statements read as part of a mesh or solution are to be completely removed.	false	

## Description

The INTERFACE statement allows the specification of the following:

- Recombination velocities at interfaces
- Fixed and trapped charges at interfaces
- Fixed charges inside insulator regions

See Also... To further illustrate the interface statement, refer to the following input files:

- mdexl in Chapter 4, "Generation of the Simulation Structure," p. 4-2
- mdexlf in Chapter 4, "Analysis Including Fast Interface States," p. 4-19

Interface
Selection

Interface parameters can be defined at interfaces between two materials or two regions. Specific interfaces can be selected by using the MATERIAL or REGION parameters. If neither MATERIAL nor REGION are specified, interfaces between semiconductor and insulator regions will be used.

Fixed and trapped charge and surface recombination velocities are defined at interfaces found within a box bounded by the device coordinates X.MIN, X. MAX, Y.MIN, Y.MAX. The default for the bounding box is the entire device.

## Insulator Charge

If $\mathbf{Q}$. INSULA is specified, charges will be placed at insulator nodes within the bounding box. The exact placement is dependent on the value of D.CHAR (see the description of the D. CHAR parameter).

Saving Interface
Parameters in Files

Parameters specified on the INTERFACE statement are saved in solution files, but not mesh files. An exception is the mesh files in Circuit Analysis AAM.

To use the interface parameters in continued simulations without respecifying them, it is necessary to obtain and save a solution at some point after the INTERFACE statement is specified. When the saved solution is loaded during a continued simulation, the previously specified INTERFACE parameters are used automatically.

For the Circuit Analysis AAM, the INTERFACE, MODEL, MATERIAL, and MOBILITY data can be written to and read from mesh files as well as solution files.

To save this data in a mesh file, the $\mathbf{W}$.MODELS parameter should be specified on a SAVE statement. Only data that has been specified prior to the SAVE statement in the input file is saved.

## ANISOTROPIC

The ANISOTROPIC statement allows you to specify anisotropic components for various physical models associated with materials.

This statement is also used to specify advanced band structure parameters that account for non-parabolicity and multiple bands in the calculation of the density of states.

```
ANISOTROPIC
 [PRINT]
Semiconductor Parameters
 { ({ SILICON | GAAS | POLYSILI | SEMICOND | SIGE | ALGAAS
 | GERMANIU | SIC
 }
Anisotropic Component Factors
 [PERMITTI=<a>] [MU.N=<a>] [MU.P=<a>] [II.N=<a>] [II.P=<a>]
 [TH.COND=<a>]
General Anisotropic Electron Impact Ionization
 [ANIIN [N.ION.O=<a>] [N.ION.1=<a>] [N.ION.2=<a>] [ECN.II=<a>]
 [EXN.II=<a>]
]
General Anisotropic Hole Impact Ionization
 [ANIIP [P.ION.O=<a>] [P.ION.1=<a>] [P.ION.2=<a>] [ECP.II=<a>]
 [EXP.II=<a>]
]
General Anisotropic Thermal Conductivity
 [ANTHCON [A.TH.CON=<a>] [B.TH.CON=<a>] [C.TH.CON=<a>] [D.TH.CON=<a>]
 [E.TH.CON=<a>]
]
Advanced Band Structure Parameters
 [ALPHO.N=<n>] [ALPHJ.N=<a>] [MJ.N=<a>] [EJ.N=<a>]
 [ALPHO.P=<n>] [ALPHJ.P=<a>] [MJ.P=<a>] [EJ.P=<a>]
)
Insulator Parameters
 { ({ OXIDE | NITRIDE | SAPPHIRE | OXYNITRI | INSULATO
 REGION=<c>
 }
 [PERMITTI=<a>] [TH.COND=<a>]
)
 }
Circuit Analysis AAM Parameters
 [STRUCTUR=<c>]
```

Parameter	Type	Definition	Defau
PRINT	logical	Specifies that the anisotropic tensor components for each region are printed to the standard output.	false
Semiconductor Parameters			
SILICON	logical	Specifies that the mobility parameters are to apply to all regions that were specified as SILICON with REGION statements.	false
GAAS	logical	Specifies that the mobility parameters are to apply to all regions that were specified as GAAS with REGION statements.	false
POLYSILI	logical	Specifies that the mobility parameters are to apply to all regions that were specified as POLYSILI with REGION statements.	false
SEMICOND	logical	Specifies that the mobility parameters are to apply to all regions that were specified as SEMICOND with REGION statements.	false
SIGE	logical	Specifies that the mobility parameters are to apply to all regions that were specified as SIGE with REGION statements.	false
ALGAAS	logical	Specifies that the mobility parameters are to apply to all regions that were specified as ALGAAS with REGION statements.	false
GERMANIU	logical	Specifies that the mobility parameters are to apply to all regions that were specified as GERMANIU with REGION statements.	false
SIC	logical	Specifies that the mobility parameters are to apply to all regions that were specified as SIC with REGION statements.	false
S.OXIDE	logical	Specifies that the mobility parameters are to apply to all regions that were specified as S.OXIDE with REGION statements.	false
HGCDTE	logical	Specifies that the mobility parameters are to apply to all regions that were specified as HGCDTE with REGION statements.	false
INGAAS	logical	Specifies that the mobility parameters are to apply to all regions that were specified as INGAAS with REGION statements.	false
INP	logical	Specifies that the mobility parameters are to apply to all regions that were specified as INP with REGION statements.	false


Parameter	Type	Definition	Default	Units
INAS	logical	Specifies that the mobility parameters are to apply to all regions that were specified as INAS with REGION statements.	false	
DIAMOND	logical	Specifies that the mobility parameters are to apply to all regions that were specified as DIAMOND with REGION statements.	false	
ZNSE	logical	Specifies that the mobility parameters are to apply to all regions that were specified as ZNSE with REGION statements.	false	
ZNTE	logical	Specifies that the mobility parameters are to apply to all regions that were specified as $\mathbf{Z N T E}$ with REGION statements.	false	
A-SILICO	logical	Specifies that the mobility parameters are to apply to all regions that were specified as A-SILICO with REGION statements.	false	
REGION	char	The region name for which the anisotropic parameters are to apply.	none	
PRINT	logical	Specifies that the anisotropic tensor components for each region are printed to the standard output.	false	
Anisotropic Component Factors				
PERMITTI	array	The diagonal components of the permittivity tensor. These components should be normalized by the isotropic permittivity for the region.	1.0, 1.0, 1.0	none
MU. N	array	The diagonal components of the electron mobility tensor. These components should be normalized by the isotropic electron mobility for the region.	1.0, 1.0, 1.0	none
MU.P	array	The diagonal components of the hole mobility tensor. These components should be normalized by the isotropic hole mobility for the region.	1.0, 1.0, 1.0	none
II.N	array	The diagonal components of the electron impact ionization coefficient tensor. These components should be normalized by the isotropic electron impact ionization coefficient for the region.	1.0, 1.0, 1.0	none
II.P	array	The diagonal components of the hole impact ionization coefficient tensor. These components should be normalized by the isotropic hole impact ionization coefficient for the region.	1.0, 1.0, 1.0	none
TH.COND	array	The diagonal components of the thermal conductivity tensor. These components should be normalized by the isotropic thermal conductivity for the region. This parameter is only used with the Lattice Temperature AAM.	1.0, 1.0, 1.0	none

## Parameter Type Definit General Anisotropic Electron Impact Ionization

ANIIN	logical	Specifies that impact ionization generation due to electrons is treated anisotropically. If this parameter is specified, the array parameters which follow are used instead of the corresponding parameters available on the MATERIAL statement.	false	
N. ION. 0	array	Coefficients used for impact ionization generation due to electrons when ANIIN is specified. These have the same meaning as N. IONIZA on the MATERIAL statement except that a separate component can be specified for each direction.	same as   N. IONIZA   on the   MATERIAL   statement for   each direction	$\mathrm{cm}^{-1}$
N. ION. 1	array	Coefficients used for impact ionization generation due to electrons when ANIIN is specified. These have the same meaning as $\mathbf{N}$. ION. 1 on the MATERIAL statement except that a separate component can be specified for each direction.	same as   N. ION. 1   on the   MATERIAL   statement for each direction	1/cm-K
N. ION. 2	array	Coefficients used for impact ionization generation due to electrons when ANIIN is specified. These have the same meaning as N. ION. 2 on the MATERIAL statement except that a separate component can be specified for each direction.	same as   N. ION. 2   on the   MATERIAL   statement for each direction	$1 / \mathrm{cm}-\mathrm{K}^{2}$
ECN. II	array	Coefficients used for impact ionization generation due to electrons when ANIIN is specified. These have the same meaning as ECN. II on the MATERIAL statement except that a separate component can be specified for each direction.	same as   ECN.II on the MATERIAL   statement for each direction	volts/cm
EXN.II	array	Coefficients used for impact ionization generation due to electrons when ANIIN is specified. These have the same meaning as EXN. II on the MATERIAL statement except that a separate component can be specified for each direction.	same as   EXN. II on the   MATERIAL   statement for each direction	none
General Anisotropic Hole Impact Ionization				
ANIIP	logical	Specifies that impact ionization generation due to holes is treated anisotropically. If this parameter is specified, the array parameters which follow are used instead of the corresponding parameters available on the MATERIAL statement.	false	
P.ION. 0	array	Coefficients used for impact ionization generation due to holes when ANIIP is specified. These have the same meaning as P. IONIZA on the MATERIAL statement except that a separate component can be specified for each direction.	same as P. IONIZA on the   MATERIAL   statement for each direction	$\mathrm{cm}^{-1}$


Parameter	Type	Definition	Default	Units
P.ION. 1	array	Coefficients used for impact ionization generation due to holes when ANIIP is specified. These have the same meaning as P.ION. 1 on the MATERIAL statement except that a separate component can be specified for each direction.	same as   P.ION. 1   on the   MATERIAL   statement for each direction	1/cm-K
P.ION. 2	array	Coefficients used for impact ionization generation due to holes when ANIIP is specified. These have the same meaning as P. ION. 2 on the MATERIAL statement except that a separate component can be specified for each direction.	same as   P.ION. 2   on the   MATERIAL   statement for each direction	$1 / \mathrm{cm}-\mathrm{K}^{2}$
ECP.II	array	Coefficients used for impact ionization generation due to holes when ANIIP is specified. These have the same meaning as ECP. II on the MATERIAL statement except that a separate component can be specified for each direction.	same as   ECP.II   on the   MATERIAL   statement for each direction	volts/cm
EXP.II	array	Coefficients used for impact ionization generation due to holes when ANIIP is specified. These have the same meaning as EXP.II on the MATERIAL statement except that a separate component can be specified for each direction.	same as   EXP.II   on the   MATERIAL   statement for each direction	none

## General Anisotropic Thermal Conductivity

ANTHCON	logicalSpecifies that thermal conductivity is treated anisotropically.   If this parameter is specified, the array parameters which fol-   low are used instead of the corresponding parameters avail-   able on the MATERIAL statement.
A.TH.CON $\quad$ array $\quad$Coefficients used for the anisotropic thermal conductivity   model when ANTHCON is specified. These have the same   meaning as A.TH.CON on the MATERIAL statement except   that a separate component can be specified for each direction.	
B.TH.CON $\quad$ array $\quad$Coefficients used for the anisotropic thermal conductivity   model when ANTHCON is specified. These have the same   meaning as B.TH.CON on the MATERIAL statement except   that a separate component can be specified for each direction.	

false
same as $\quad(\mathrm{cm}-\mathrm{K} / \mathrm{W})$
A. TH.CON
on the
MATERIAL
statement for
each direc-
tion
same as (cm/W)
B. TH. CON
on the
MATERIAL
statement for each direction

Parameter	Type	Definition	Default	Units
C. TH.CON	array	Coefficients used for the anisotropic thermal conductivity model when ANTHCON is specified. These have the same meaning as C.TH.CON on the MATERIAL statement except that a separate component can be specified for each direction.	same as   C.TH.CON on the   MATERIAL   statement for each direction	( $\mathrm{cm} / \mathrm{W} / \mathrm{K}$ )
D. TH.CON	array	Coefficients used for the anisotropic thermal conductivity model when ANTHCON is specified. These have the same meaning as D.TH.CON on the MATERIAL statement except that a separate component can be specified for each direction.	same as   D.TH.CON on the MATERIAL statement for each direction	$\begin{aligned} & (\mathrm{cm} / \mathrm{W} / \\ & \mathrm{K}^{\mathbf{E} \cdot \mathrm{TH} \cdot \mathrm{CoN}-} \\ & \left.{ }^{1)}\right) \end{aligned}$
E.TH.CON	array	Coefficients used for the anisotropic thermal conductivity model when ANTHCON is specified. These have the same meaning as E.TH.CON on the MATERIAL statement except that a separate component can be specified for each direction.	same as   E.TH.CON   on the   MATERIAL   statement for each direction	none
Advanced Band Structure Parameters				
ALPHO.N	number	First band structure parameter for electrons.	1.0	none
ALPHJ.N	array	Second band structure parameter for electrons. Up to 5 different values may be specified as an array.	0	1/eV
MJ. N	array	Third band structure parameter for electrons. Up to 5 different values may be specified as an array.	0	none
EJ.N	array	Fourth band structure parameter for electrons. Up to 5 different values may be specified as an array.	0	eV
ALPHO.P	number	First band structure parameter for holes.	1.0	none
ALPHJ. P	array	Second band structure parameter for holes. Up to 5 different values may be specified as an array.	0	1/eV
MJ. P	array	Third band structure parameter for holes. Up to 5 different values may be specified as an array.	0	none
EJ.P	array	Fourth band structure parameter for holes. Up to 5 different values may be specified as an array.	0	eV
Insulator Parameters				
OXIDE	logical	Specifies that the anisotropic parameters are to apply to all regions that were specified as OXIDE.	false	


Parameter	Type	Definition	Default	Units	
NITRIDE	logical	Specifies that the anisotropic parameters are to apply to all   regions that were specified as NITRIDE.	false		
SAPPHIRE	logical	Specifies that the anisotropic parameters are to apply to all   regions that were specified as SAPPHIRE.	false		
OXYNITRI	logical	Specifies that the anisotropic parameters are to apply to all   regions that were specified as OXYNITRI.	false		
INSULATO	logical	Specifies that the anisotropic parameters are to apply to all   regions that were specified as INSULATO.	false		
REGION	char	The region name for which the anisotropic parameters are to   apply.	none		
PERMITTI	array	The diagonal components of the permittivity tensor. These   components should be normalized by the isotropic permittiv-   ity for the region.	$1.0,1.0,1.0$	none	
TH.COND	array	The diagonal components of the thermal conductivity tensor.   These components should be normalized by the isotropic	$1.0,1.0,1.0$	none	

## Circuit Analysis AAM Parameters

Selects the device in which the anisotropic parameters are all devices altered. This parameter is only used with the Circuit Analysis AAM.

## Description

The ANISOTROPIC statement can be used to specify the diagonal components of tensors associated with physical models for materials that are to be treated as anisotropic. These tensors can either be simple multiplicative factors for the corresponding isotropic model. In the case of impact ionization and thermal conductivity, completely separate models can be specified for each direction.

The ANISOTROPIC statement should be specified before the first SOLVE statement, where it is desired to account for the anisotropic nature of the material. The specified parameters remain in effect until one of the following occurs:

- They are changed by you on another ANISOTROPIC statement
- A LOAD statement is used to read in a saved solution that may contain different values for the anisotropic parameters
- A MESH statement is encountered, which initializes all parameters back to their default values.

This statement is also used to specify advanced band structure parameters that account for non-parabolicity and multiple bands in the calculation of the density of states.

See Also... To further illustrate the ANISOTROPIC statement, refer to input file mdex22 in Chapter 17, "Anisotropic Block Example," p. 17-1.

## Simple Anisotropic Models

The components that are specified should be normalized by the corresponding isotropic quantity. For example, the permittivity tensor can be expressed as
$\varepsilon=\left(\begin{array}{ccc}\varepsilon_{x x} & 0 & 0 \\ 0 & \varepsilon_{y y} & 0 \\ 0 & 0 & \varepsilon_{z z}\end{array}\right)=\varepsilon_{m a t} \cdot\left(\begin{array}{ccc}\left(\frac{\varepsilon_{x x}}{\varepsilon_{m a t}}\right) & 0 & 0 \\ 0 & \left(\frac{\varepsilon_{y y}}{\varepsilon_{m a t}}\right) & 0 \\ 0 & 0 & \left(\frac{\varepsilon_{z z}}{\varepsilon_{m a t}}\right)\end{array}\right) \quad$ Equation 3-26

$$
=\varepsilon_{m a t} \cdot\left(\begin{array}{ccc}
\operatorname{PERM}(1) & 0 & 0 \\
0 & \operatorname{PERM}(2) & 0 \\
0 & 0 & \operatorname{PERM}(3)
\end{array}\right)
$$

where $\varepsilon_{\text {mat }}$ is the permittivity that is used by the program if the material is isotropic (that is, if $\operatorname{PERM}(1)=\operatorname{PERM}(2)=\operatorname{PERM}(3)=1$ )

The value of $\varepsilon_{\text {mat }}$ can be specified for each material using the PERMITTI parameter on the MATERIAL statement.

Anisotropic Properties of Materials

In addition to the anisotropic permittivity, the program provides for anisotropic properties for the following. Electron mobility, hole mobility, electron impact ionization coefficient, hole impact ionization coefficient, and thermal conductivity The following equations illustrate these functions.

Equation 3-27

$$
\underline{\underline{\mu_{n}}}=\left(\begin{array}{ccc}
\mu_{n_{x x}} & 0 & 0 \\
0 & \mu_{n_{y y}} & 0 \\
0 & 0 & \mu_{n_{z z}}
\end{array}\right)=\mu_{n_{\text {mat }}} \cdot\left(\begin{array}{ccc}
\mathbf{M U} \cdot \mathbf{N}(1) & 0 & 0 \\
0 & \mathbf{M U} \cdot \mathbf{N}(2) & 0 \\
0 & 0 & \mathbf{M U} \cdot \mathbf{N}(3)
\end{array}\right)
$$

Equation 3-28


Equation 3-29

$$
\xlongequal{\alpha_{n}}=\left(\begin{array}{ccc}
\alpha_{n_{x x}} & 0 & 0 \\
0 & \alpha_{n_{y y}} & 0 \\
0 & 0 & \alpha_{n_{z z}}
\end{array}\right)=\alpha_{n_{\operatorname{mat}}} \cdot\left(\begin{array}{ccc}
\text { II.N(1) } & 0 & 0 \\
0 & \text { II.N(2) } & 0 \\
0 & 0 & \text { II.N(3) }
\end{array}\right)
$$

Equation 3-30

$$
\xlongequal{\alpha_{p}}=\left(\begin{array}{ccc}
\alpha_{p_{x x}} & 0 & 0 \\
0 & \alpha_{p_{y y}} & 0 \\
0 & 0 & \alpha_{p_{z z}}
\end{array}\right)=\alpha_{p_{\text {mat }}} \cdot\left(\begin{array}{ccc}
\operatorname{II} . \mathrm{P}(1) & 0 & 0 \\
0 & \operatorname{II} . \mathrm{P}(2) & 0 \\
0 & 0 & \text { II.P(3) }
\end{array}\right)
$$

Equation 3-31
$\stackrel{\kappa}{=}=\left(\begin{array}{ccc}\kappa_{x x} & 0 & 0 \\ 0 & \kappa_{y y} & 0 \\ 0 & 0 & \kappa_{z z}\end{array}\right)=\kappa_{m a t} \cdot\left(\begin{array}{ccc}\mathbf{T H} \cdot \operatorname{COND}(1) & 0 & 0 \\ 0 & \mathrm{TH} \cdot \operatorname{CoND}(2) & 0 \\ 0 & 0 & \text { TH. } \operatorname{COND}(3)\end{array}\right)$
The specific models or parameters used to describe $\mu_{n_{\text {mat }}}, \mu_{p_{\text {mat }}}, \alpha_{n_{\text {mat }}}, \alpha_{p_{\text {mat }}}$, and $\kappa_{\text {mat }}$ can be specified on the MODELS, MATERIAL, and MOBILITY statements.

## Carrier Thermal Diffusivities

The Medici program accounts for anisotropic carrier thermal diffusion coefficients through the carrier mobility. That is, in the current density relations,

$$
\begin{align*}
& \overrightarrow{J_{n}}=q n \mu_{n} \vec{E}+q\left(\frac{k_{B} T}{q}\right) \mu_{n} \vec{\nabla} n+q n D_{n}^{T} \vec{\nabla} T \\
& \vec{J}_{p}=q n \mu_{p} \vec{E}-q\left(\frac{k_{B} T}{q}\right) \mu_{p} \vec{\nabla} p-q p D_{p}^{T} \vec{\nabla} T
\end{align*}
$$

the thermal diffusion terms are assumed to be proportional to mobility and are given by
$D_{n}^{T}=\mathrm{DN} \cdot \mathrm{L} \mathbf{A} T\left(\frac{k_{B}}{q}\right) \mu_{n}$
Equation 3-34
$D_{p}^{T}=\mathrm{DP} \cdot \mathbf{L A T}\left(\frac{k_{B}}{q}\right) \mu_{p}$
Equation 3-35

The factors DN. LAT and DP. LAT have been provided as user adjustable parameters and can be specified on the MATERIAL statement. The default values for these parameters are 1 .

Example For a previously created diode structure, specify an anisotropic electron mobility for all material regions that are defined as SIC such that $\mu_{N_{X X}}=0.5 \mu_{n}$ and $\mu_{n_{y y}}=\mu_{n}$ :

| MESH | IN.FILE=DIODE.MESH |  |  |
| :--- | :--- | :--- | :--- | :--- |
| MODELS | ANALYTIC FLDMOB CONSRH | AUGER BGN |  |
| ANISOTRO | SIC MU.N=(0.5,1.0,1.0) |  |  |
|  |  |  |  |
| SYMBOLIC | CARRIER=2 NEWTON |  |  |
| SOLVE | V1=0 ELEC=1 VSTEP=0.1 | NSTEP=10 |  |

## General Anisotropic Models

There are general anisotropic models for impact ionization and thermal conductivity in Medici.

## Impact lonization

General anisotropic models are available for both electron and hole impact ionization coefficients. Although the form of the impact ionization model is the same for each direction, all parameters used in the model expressions can have different values for each direction. The expressions for the electron impact ionization coefficients in $x$ direction are

$$
\alpha_{n, x x}=\operatorname{II.N(1)} \cdot \alpha_{n, x x}^{\infty}(T) \cdot \exp \left[-\left(\frac{E_{n, x x}^{c r i t}(T)}{E_{n, \|}}\right)^{\operatorname{ExN} \cdot \operatorname{II}(1)}\right] \text { Equation 3-36 }
$$

where
Equation 3-37
$E_{n, x x}^{c r i t}(T)=\frac{E_{g}(T)}{q \lambda_{n}(T)}($ default calculation), or ECN.II(1) (if specified)
and
Equation 3-38

$$
\alpha_{n, x x}^{\infty}=\mathrm{N} . \text { ION. } \mathrm{O}(1)+\mathrm{N} . \text { ION. } 1(1) \cdot T+\mathrm{N} . \text { ION. } 2(1) \cdot T^{2}
$$

For $\alpha_{n, y y}^{\infty}$ similar expressions apply but with the index of all of the array parameters used in the above expressions changed from " 1 " to " 2 ." Analogous expressions hold for hole impact ionization coefficients.

Thermal Conductivity

General anisotropic models are available for thermal conductivity. The same form of the thermal conductivity model is used for each direction. All parameters used in each direction can have different values. The expressions for thermal conductivity are

$$
\underline{\kappa}=\left[\begin{array}{ccc}
\kappa_{x x} & 0 & 0 \\
0 & \kappa_{y y} & 0 \\
0 & 0 & \kappa_{z z}
\end{array}\right]
$$

Equation 3-39
and
Equation 3-40

$$
\begin{aligned}
\kappa_{x x}= & {\left[\mathrm{A} \cdot \mathrm{TH} \cdot \operatorname{Con}(1)+\mathrm{B} \cdot \mathrm{TH} \cdot \operatorname{Con}(1) \cdot T+\mathrm{C} \cdot \mathrm{TH} \cdot \operatorname{CON}(1) \cdot T^{2}\right.} \\
& \left.+\mathrm{D} \cdot \mathrm{TH} \cdot \operatorname{CON}(1) \cdot T^{\mathrm{E} \cdot \mathrm{TH} \cdot \operatorname{Con}(1)}\right]^{-1}
\end{aligned}
$$

For $\kappa_{y y}$ and $\kappa_{z z}$ similar expressions apply but with the index of all of the array parameters used in the above expressions changed from " 1 " to " 2 " and " 3 ," respectively.

Examples The following statement specifies that general anisotropic impact ionization due to electrons should be used. Some parameters associated with the $\alpha_{n, y y}$ component of the electron impact ionization coefficient have been changed from their default values. The PRINT parameter requests that the values for all anisotropic parameters be printed to the standard output file.

```
ANISOTRO SIC ANIIN PRINT
+ N.ION.O(2)=8.0E5
+ N.ION.1(2)=2.OE3
+ ECN.II (2)=2.0E7
```

The following statement specifies the general anisotropic thermal conductivity in silicon carbide. Some parameters associated with the y-direction have been changed from their default values.

```
ANISOTRO SIC ANTHCON PRINT
+ A.TH.CON (2) =0.027
+ B.TH.CON(2)=-1.9E-6
+ C.TH.CON=(1.65E-6)
```


## Advanced Band Structure Parameters

The advanced band structure model is described by the following set of equations for electrons and holes. These parameters allow for non-parabolicity and multiple bands in the calculation of the density of states. The array parameters ALPHJ.n, MJ.N, EJ.N, ALPHJ. P, MJ. P and EJ.P, take on different values for each value of the summation index i. Up to five values may be specified for each array.

Equation 3-41
$N_{c}=N_{c}$ ALPHO.N $+\sum_{j}\left(\mathbf{M J} \cdot \mathbf{N}\left(1+\right.\right.$ ALPHJ. $\left.\left.\frac{15 k_{b} T}{4 q}\right) \exp \left(\frac{\text { EJ.N } q}{k_{b} T}\right)\right)$
Equation 3-42
$N_{v}=N_{v}$ ALPHO.P $+\sum_{j}\left(\operatorname{MJ.P}\left(1+\right.\right.$ ALPHJ.P $\left.\left.\frac{15 k_{b} T}{4 q}\right) \exp \left(\frac{\text { EJ.P } q}{k_{b} T}\right)\right)$

### 3.5 Circuit Analysis

The following statements create and simulate a circuit:

Statement	Definition	Page
START	Enters circuit mode.	3-364
C<name>	Creates a capacitor.	3-365
D <name>	Creates a diode.	3-365
$\mathbf{E}$ 〈name>	Creates a voltage controlled voltage source.	3-366
$\mathbf{F}$ <name>	Creates a current controlled current source.	3-367
G <name>	Creates a voltage controlled current source.	3-368
H <name>	Creates a current controlled voltage source.	3-368
I <name>	Creates an independent current source.	3-369
$\mathbf{K}$ <name>	Creates a coupling between inductors.	3-371
L<name>	Creates an inductor.	3-371
$\mathbf{M}$ <name>	Creates a MOS transistor.	3-372
P <name>	Creates a Medici numerical element.	3-373
Q<name>	Creates a bipolar transistor.	3-374
R 〈name>	Creates a resistor.	3-374
V <name>	Creates an independent voltage source.	3-375
W<name>	Creates a multiplier type voltage controlled current source.	3-378
. MODEL	Specifies parameters for the active models ( $\mathbf{D}, \mathbf{M}, \mathbf{Q}$ ) .	3-380
. NODESET	Specifies an initial guess for circuit voltages.	3-388
. IC	Specifies fixed node voltages during DC analysis of an initial guess during transient analysis.	3-389
. OPTIONS	Specifies solution and output control options.	3-390
. LOAD	Loads a solution or mesh.	3-392
FINISH	Exits circuit mode.	3-393

## Note:

The .DC, . SAVE, and .TRAN statements are documented in "3.7 Old Statements," p. 3-445. Although these statements can still be specified, their use is not recommended.

It is recommended that the circuit analysis statements be used for constructing while the actual simulation is done in the regular Medici mode. See Chapter 12 for examples.

## Circuit Mode Overview

The program enters circuit mode whenever a START CIRCUIT statement is encountered and returns to Medici mode when the FINISH CIRCUIT statement is read.

A circuit may contain the following:

- Maximum of 20 Medici elements (devices)
- Maximum of 500 circuit nodes
- Maximum of 500 circuit elements
- Maximum of 50 circuit models
- Maximum of 200 model parameters
- Maximum of 200 Medici terminals
- Maximum of 200 Medici device regions

The total number of nodes for all devices in the circuit must be less than or equal to the maximum number of nodes allowed for the version of Medici that is being used.

This section details the following:

- Syntax
- Statements
- Parameters
- Differences between Medici mode and circuit mode
- Elements


## Note:

Medici requires that the Newton method be specified when using circuit mode.

## Syntax and Use

Circuit mode syntax is different from standard Medici syntax. This section details the differences and provides instructive examples.


## Note:

The syntax in circuit mode is similar to that of SPICE programs. Except for some minor differences, users of SPICE will recognize the circuit mode syntax.

## Control Statements

Control statements, such as . IC, .DC, and . OPTIONS are distinguished since they start with a period.

## Order of Execution

Statements in the file are executed in the order given, so nodes must be defined before their voltages can be set. Once a simulation has been performed, no new elements can be added to the circuit. This differs from standard SPICE syntax, where . TRAN and . DC statements may be placed before the circuit elements.

## Circuit Elements

- Circuit element types are determined by the first character of the element name.

For example, R1 is a resistor because it begins with an "R" and CAXFGR is a a capacitor because it begins with a "C."

- Element names must be eight characters or less and must be unique.
- The names of all allowed elements are contained in the circuit analysis formatted key file $m d f k y 1$. Active elements ( $\mathbf{D}, \mathbf{Q}$, and $\mathbf{M}$ for diode, BJT, and MOSFET elements, respectively) have model parameters associated with them. These model parameters and their default values are also found in the file $m d f k y 1$. This file is extensible. New elements and model parameters can be added to the program or the default values can be altered.


## Punctuation and Case

The program does not distinguish between upper and lower case, however the case is preserved. For example, text is not converted to upper case as in some versions of SPICE.

- A space, comma, tab, left parenthesis, or right parenthesis may serve as a delimiter between statement names, element names, node names, or parameters.
- The dollar sign (\$) or asterisk (*) at the start of a line indicates that the line is a comment and the line is not processed.


## Circuit Nodes

- Node names are character parameters and can be any alphanumeric string less than or equal to eight characters in length.
- Node zero is always the datum node (or ground) and all circuits must contain node zero.
- All nodes must have a DC path to ground and every node must have at least two connections.


## Current Nodes

The names of voltage sources (dependent and independent) and inductors are in effect "current nodes". The current flowing in these elements can be plotted on a PLOT . 1D statement, or set to initial values using a. IC or .NODESET statement.

## Medici Devices

Unused terminals in a Medici device are connected to a ground (all terminals do not need to be connected to circuit nodes). Only Dirichlet contacts may be attached to circuit nodes. Schottky contacts, resistive contacts, lumped element, and charge and current boundary contacts may not be connected to circuit nodes, but they may be connected to other device terminals.

## Parameters

Circuit-mode parameters obey slightly different syntax rules than Medici parameters. The following table summarizes the differences in syntax rules between circuit-mode and Medici parameters:

Table 3-34 Circuit Mode Parameters

Parameter   Type	Mode	Use   Assigned   Names?	Use Unit   Identifier?	Type	Usage
num	Medici	YES	NO	Numeric	name=value
num	Circuit	YES	YES	Numeric	name=value
n	Circuit	YES	YES	Numeric	name
log	Medici	YES	NO	Logical	name
log	Circuit	NO	NO	Logical	name
char	Medici	YES	NO	Character	name=value
char	Circuit	NO	NO	Character	name=value
c	Circuit	NO	NO	Character	name

Numerical Parameters

The values of resistors and capacitors can be either of the following types:

- num-Type num parameters are similar to Medici numerical parameters. They are specified with the parameter name and value, separated by an " $=$ ".
- n -Type n parameters are position-dependent and have names surrounded by "<>". They are specified by replacing the parameter name in the statement syntax with the parameter value.


# Unit Identifiers 

The values of all circuit-mode numerical parameters can include the following unit identifiers as in SPICE:

$$
\begin{array}{lllll}
\mathrm{T}=1 \mathrm{e} 12 & \mathrm{G}=1 \mathrm{e} 9 & \mathrm{MEG}=1 \mathrm{e} 6 & \mathrm{~K}=1 \mathrm{e} 3 & \\
\mathrm{M}=1 \mathrm{e}-3 & \mathrm{U}=1 \mathrm{e}-6 & \mathrm{~N}=1 \mathrm{e}-9 & \mathrm{P}=1 \mathrm{e}-12 & \mathrm{~F}=1 \mathrm{e}-15
\end{array}
$$

Therefore the number 1000 can be represented in any one of the following ways:

$$
1000 \text { 1K 1e3 .001MEG } 1000.00
$$

Numerical
Numerical expressions and assigned names can be used to specify numerical values. The following statements produce a 1000 ohm resistor connected to a 20 volt DC source:

ASSIGN	NAME=RV1	N.VALUE=0.5	
ASSIGN	NAME=VV1	N.VALUE=20.0	
START CIRCUIT			
V1	dog	cat	$2 *[@ R V 1 * @ V V 1]$
R1	dog	cat	$[0.5+@ R V 1] k$
FINISH CIRCUIT			

## Note:

Left and right parentheses cannot be used as part of numerical expressions because they serve as delimiters in the SPICE syntax. Group them by using square brackets. See the example in 'Numerical Expressions," p. 3-361.

Logical
Parameters

Character Parameters

Circuit-mode logical parameters may not be specified by assigning a value to the parameter name with an " $=$ ", and the name cannot be specified with an assigned name.

Circuit-mode character parameters can be either of the following types:

- char-Type char parameters are similar to Medici character parameters and are specified with the parameter name and value, separated by an "=".
- c-Type c parameters are position-dependent and have names surrounded by "<>". They are specified by replacing the parameter name in the statement syntax with the parameter value.

The values of circuit-mode character parameters may not include assigned names.

Regional Parameters

All regional parameters, such as material coefficients, and mobility parameters are local to the Medici devices. That is, each Medici device can have its own parameters. The models used in the simulation and the temperature, however, are global. For example, if one Medici device uses CONSRH, all Medici devices will use CONSRH.

## Active Circuit Elements

Every active circuit element ( $\mathbf{D}, \mathbf{Q}, \mathbf{M}$ ) must have a .MODEL statement to define its parameters. However, every .MODEL statement need not be utilized and several active circuit elements may refer to the same . MODEL statement.

The . MODEL statement has the form
.MODEL <model-name> <model-type> <parameters>
where <model-name> is the user-selected name to associate with the current model specification, <model-type> is the identifier for a set of default model parameters to use from the circuit analysis formatted key file $m d f k y 1$, and <parameters> represents adjustments to the default parameter values for the particular model at hand.

Model Types Medici currently supports nine different model types that include d (diode model), npn and pnp (BJT models), nmos and pmos (MOSFET models), and hspice, hspice28, bsim3v3 and bsim3soi (Star-Hspice-specific MOSFET models). Parameters associated with these model types can be found in the file $m d f k y 1$.

The file $m d f k y l$ can be extended to include new model types and their parameters. The maximum number of model types currently allowed is 10 .

## Model Before Medici will recognize a parameter that is specified on the .MODEL

 statement, it must be included in the file $m d f k y l$. If there are model parameters that are not presently included in this file that are needed for your simulations, they can be added to the end of the list for the appropriate model type. The maximum number of parameters for a given model type is 200 , and the maximum number of parameters for all model types is 1000 .Every parameter in the file $m d f k y l$ must include a default value, a minimum value, and a maximum value. If a parameter value specified on the .MODEL statement does not fall within the range of the minimum and maximum values, Medici will issue a warning, but program execution will continue. Parameters which are not specified on the .MODEL statement will use the default values from $m d f k y 1$.

## Note:

For model types nmos and pmos, some parameters in the file mdfkyl have "def=-999."specified. This indicates that the default values are calculated from other parameters. For the Star-Hspice-specific model types (hspice, hspice28, bsim3v3), "def=-999."indicates that the Star-Hspice default value for this parameter should be used.

Using Your Own mdfky1 File

In some cases, you may want to modify the parameters in the circuit analysis formatted key file, $m d f k y 1$, for your own particular needs. This is easy to do with Medici. Simply copy mdfkyl to the directory where you want to keep or use it, make your desired changes, and then set the environment variable MDFKY1 so that Medici knows where to find it.

```
setenv MDFKY1 /my-directory/mdfky1
```

See Chapter 1 for more information regarding the use of environment variables and initially assigned names with Medici.

## MOSFET Models

Medici supports a number of different compact MOSFET model options. These include built-in SPICE models for levels 1, 2, and 3, and various Star-Hspice MOSFET models that are evaluated using Avant!'s Common Model Interface (CMI) functions. Table 3-35 lists the available choices.

## Note:

If level 1, 2, or 3 is specified, by default the Medici built-in models will be used. To use the Star-Hspice version of level 1, 2, or 3, the HSPICE parameter on the .OPTION statement should be specified.

Table 3-35 MOSFET Models Available in Medici

Level	MOSFET Model Description	Model specific   parameters   available in   mdfky1	Model type   selected with   nmos/pmos   specification
1	Schichman-Hodges model	yes	nmos/pmos or   hspice (if .OPTION   HSPICE is specified
2	MOS2 Grove-Frohman model (SPICE2G)	yes	nmos/pmos or   hspice (if .OPTION   HSPICE is specified
3	MOS3 empirical model (SPICE2G)	yes	nmos/pmos or   hspice (if .OPTION   HSPICE is specified
13	BSIM model	no	hspice
28	BSIM derivative; Avant! proprietary model	yes	hspice28
47	BSIM3 Version 2.0	no	hspice
49	BSIM3 Version 3 (Enhanced)	yes	bsim3v3
50	Philips MOS9	no	hspice
53	BSIM3 Version 3 (Berkeley)	yes	bsim3v3
55	EPFL-EKV Model Ver 2.6, R 11	no	hspice
57	UC Berkeley BSIM3-SOI (PD)	yes	bsim3soi
59	UC Berkeley BSIM3-SOI (FD)	yes	bsim3soi

## START

Causes Medici to enter circuit mode.

## START

CIRCUIT [INITIAL]

Name	Type	Definition	Default	Units
CIRCUIT	logical	Puts the program into circuit mode for circuit simulation.	true	
INITIAL	logical	Initializes the program for a new simulation.	false	

## Example

## START CIRCUIT

See Also... To further illustrate the START statement, refer to the following input files:

- mdexll in Chapter 12, "Generation of the Simulation Structure and Solutions," p. 12-2
- mdexl2b in Chapter 12, "Generation of the Simulation Structure and Solutions," p. 12-2
- mdexl3c in Chapter 12, "Structure," p. 12-26
- mdex13d and mdex13e in Chapter 12, "Transient Simulation of CMOS Pair with Compact Load," p. 12-26


## C<name>

Causes Medici to create a capacitive element.

```
C<name>
```

```
<node+> <node-> <value>
```

Name	Type		Definition	Default
<name>	c	The user chosen identifying name.	none	
<node	c	c	The positive circuit node where the capacitor is attached.	none
<node->	c	The negative circuit node where the capacitor is attached.	none	
<value>	n	The value of the capacitor, which must not be zero.	none	farads

## Example

## C1 24 1p

See Also... To further illustrate the $\mathbf{C}$ statement, refer to input file mdexl3c in Chapter 12, "Structure," p. 12-26.

Causes Medici to create a PN junction diode.
D<name>
<node+> <node-> <mname> [AREA=<n>]

Name	Type	Definition	Default	Units
<name>	c	The user chosen identifying name.	none	
<node $>$	c	The positive (P-type) node of the diode.	none	
<node->	c	The negative (N-type) node of the diode.	none	
<mname>	c	The name of the model used for the diode.	none	
AREA	num	An area factor that multiplies the currents of the diode.	1.0	none

## Example

D1 12 modela area=5

## $\mathbf{E}$ 〈name〉

Causes Medici to create a voltage controlled voltage source (VCVS).

```
E<name>
```

<node+> <node-> <cnode+> <cnode-> <value>

Name	Type	Definition	Default	Units
<name>	c	The user chosen identifying name.	none	
<node+>	c	The positive circuit node where the VCVS is attached.	none	
<node->	c	The negative circuit node where the VCVS is attached.	none	
<cnode+>	c	The positive control node where the VCVS is attached.	none	
<cnode->	c	The negative control node where the VCVS is attached.	none	
<value>	n	The value of the VCVS.	none	none

## Example

## $E 1 a b c d 2$

To further illustrate the $\mathbf{E}$ statement, refer to input file $m d e x 14 b$ in Chapter 13,
"Amplifier," p. 13-11.

## $\mathbf{F}$ <name>

Causes Medici to create a current controlled current source (CCCS).

```
F<name>
<node+> <node-> <vname> <value>
```

Name	Type	Definition	Default	Units
<name>	c	The user chosen identifying name.	none	
<node $+>$	c	The positive circuit node where the CCCS is attached.	none	
<node->	c	The negative circuit node where the CCCS is attached.	none	
<vname>	c	The voltage source whose current controls the CCCS.	none	none
<value>	n	The value of the CCCS.	none	

## Example

F1 a b Vdd 2.0

## $\mathbf{G}$ <name>

Causes Medici to create a voltage controlled current source (VCCS).
$\mathbf{G}<$ name $>$
<node $+>$ <node-> <cnode $+>$ <cnode-> <value>

Name	Type	Definition	Default
<name $>$	c	The user chosen identifying name.	none
<node $+>$	c	The positive circuit node where the VCCS is attached.	none
<node->	c	The negative circuit node where the VCCS is attached.	none
<cnode $+>$	c	The positive control node where the VCCS is attached.	none
<cnode $>$	c	The negative control node where the VCCS is attached.	none
<value $>$	n	The value of the VCCS.	none

## Example

## Gm a b c d 1m

## H <name>

Causes Medici to create a current controlled voltage source (CCVS).

## H<name>

<node+> <node-> <vname> <value>

Name	Type		Definition	Default
<name>	c	The user chosen identifying name.	none	
<node $+>$	c	The positive circuit node where the CCVS is attached.	none	
<node->	c	The negative circuit node where the CCVS is attached.	none	
<vname>	c	The voltage source whose current controls the CCVS.	none	
<value>	n	The value of the CCVS.	none	ohms

## Example

H1 a b Vdd 2

I<name>

## Causes Medici to create an independent current source.

```
I <name>
<node+> <node->
{ <value>
PULSE <iO> <ia> <td> <tr> <tf> <tp> <per>)
EXP <i0> <ia\rangle\langletdl> <taul> <td2> <tau2>)
SIN <iO\rangle <ia\rangle <freq> <tds> <theta>)
SFFM <iO> <ia> <fc> <mdi> <fs>)
}
```

Name	Type	Definition	Default	Units
<name>	c	The user chosen identifying name.	none	
<node+>	c	The positive circuit node to which the current source is attached.	none	
<node->	c	The negative circuit node to which the current source is attached.	none	
<value>	n	The value of the current source, if fixed.	none	amps
Exp	logical	Specifies that an exponential type current source is used.	false	
PULSE	logical	Specifies that a pulse type current source is used.	false	
SIN	logical	Specifies that a sinusoidal type current source is used.	false	
SFFM	logical	Specifies that a single frequency FM type current source is used.	false	
〈i0>	n	Initial value for the current source.	none	amps
〈ia>	n	Applied value for the current source.	none	amps
$\langle t d\rangle$	n	Delay time for the pulse type current source.	none	seconds
$\langle t r\rangle$	n	Rise time for the pulse type current source.	none	seconds
$\langle t f\rangle$	n	Fall time for the pulse type current source.	none	seconds
<tp>	n	Pulse width for the pulse type current source.	none	seconds
<per>	n	Period for the pulse type current source.	none	seconds
<tdl>	n	Delay time for the rising portion of the exponential waveform.	none	seconds
<taul>	n	Time constant for the rising portion of the exponential waveform.	none	seconds
<td2>	n	Delay time for the falling portion of the exponential waveform.	none	seconds
<tau2>	n	Time constant for the falling portion of the exponential waveform.	none	seconds
<freq>	n	Frequency of the sinusoidal source.	none	Hz
<tds>	n	Time delay for the sinusoidal source.	none	seconds
<theta>	n	Damping factor for the sinusoidal source.	none	1/seconds
$\langle f c\rangle$	n	Carrier frequency for the single frequency FM source.	none	Hz
<mdi>	n	Modulation index for the single frequency FM source.	none	none
$\langle f s\rangle$	n	Signal frequency for the single frequency FM source.	none	Hz

The value of an exponential type current source is given by the following equation:

Equation 3-43

$$
= \begin{cases}\langle i 0\rangle & 0.0<t<\langle t d 1\rangle \\ \langle i 0\rangle+(\langle i a\rangle-\langle i 0\rangle)\left[1-\exp \left(-\frac{t-\langle t d 1\rangle}{\langle\text { taul }\rangle}\right)\right] & \langle t d 1\rangle\langle t<\langle t d 2\rangle \\ \langle i 0\rangle+(\langle i a\rangle-\langle i 0\rangle) . & t>\langle t d 2\rangle\end{cases}
$$

The parameters of a pulse type current source are defined as follows. The value of a sinusoidal type current source is given by the following equation:


Figure 3-26 Pulse Type Current Source Parameters
$I=\left\{\begin{array}{lc}\langle i 0\rangle & 0.0<t<\langle t d s\rangle \\ \langle i 0\rangle+\langle\text { ia }\rangle \cdot \exp [-(t-\langle t d s\rangle)\langle t h e t a\rangle] . & \text { Equation 3-44 } \\ \sin [2 \pi\langle\text { freq }\rangle(t-\langle t d s\rangle)] & t>\langle t d s\rangle\end{array}\right.$
The value of a single frequency FM type current source is given by the following equation:

$$
I=\langle i 0\rangle+\langle i a\rangle \cdot \sin [2 \pi\langle f c\rangle t+\langle m d i\rangle \cdot \sin (2 \pi\langle f s\rangle t)] \text { Equation 3-45 }
$$

## Example

Ia 12 pulse $151 n 1 n 1 n 10 n 30 n$
Ii 345

See Also... To further illustrate the I statement, refer to the following input files:

- mdex11 in Chapter 12, "Generation of the Simulation Structure and Solutions," p. 12-2
- mdex14b in Chapter 13, "Current Source," p. 13-10


## $\mathrm{K}<$ name>

Causes Medici to create a mutual inductive coupling element.

## $\mathbf{K}$ <name>

<lname1> <lname 2 > <value>

Name	Type	Definition	Default	Units
<name>	c	The user chosen identifying name.	none	
<lname $>$	c	The name of the first inductor of the coupled pair.	none	
<lname $2>$	c	The name of the second inductor of the coupled pair.	none	none
<value>	n	The value of the mutual inductance. This value must be between   zero and one.	none	nen

## Example

```
K1 L1 L2 1.0
```


## L<name>

## Causes Medici to create an inductive element.

$\mathbf{L}<$ name $>$
<node+> <node-> <value>

Name	Type	Definition	Default	Units
<name>	c	The user chosen identifying name.	none	
<node $+>$	c	The positive circuit node where the inductor is attached.	none	
<node->	c	The negative circuit node where the inductor is attached.	none	
<value>	n	The value of the inductor. This value must not be zero.	none	henrys

## Example

## Lload $a b 1 n$

## $\mathbf{M}$ <name>

Causes Medici to create an MOS transistor.

```
M<name>
 <noded> <nodeg> <nodes> <nodeb> <mname>
 [W=<n>] [L=<n>] [AS=<n>] [AD=<n>] [PS=<n>] [PD=<n>]
```

Name	Type	Definition	Default	Units
<name>	c	The user chosen identifying name.	none	
<noded>	c	The drain node of the transistor.	none	
<nodeg>	c	The gate node of the transistor.	none	
<nodes>	c	The source node of the transistor.	none	
<nodeb>	c	The bulk node of the transistor.	none	
<mname>	c	The name of the model to be used for the transistor.	none	
W	num	The channel width of the transistor.	100.0	microns
L	num	The channel length of the transistor.	100.0	microns
AS	num	The area of the source diffusion of the transistor.	0.0	square microns
AD	num	The area of the drain diffusion of the transistor.	0.0	square microns
PS	num	The perimeter of the source diffusion of the transistor.	0.0	microns
PD	num	The perimeter of the drain diffusion of the transistor.	0.0	microns

## Example

M1 1234 modela L=5 W=1 AS=5 AD=5 PS=12 PD=12

# See Also... To further illustrate the $\mathbf{M}$ statement, refer to input file mdexl3c Chapter 12, "Transient Simulation of CMOS Pair with Compact Load," p. 12-26. 

## P <name >

Causes Medici to create a numerical Medici-type circuit element.

```
P<name>
 <node1>=<term1><node2>=<term2>
 FILE=<c> WIDTH=<n>
```

Name	Type	Definition	Default	Units
<name>	c	The user chosen identifying name.	none	
<nodex>	c	The circuit node where the terminal is connected. This name should not start with the letter " f " or the letter " w ".	none	
<termx>	char	The device terminal (electrode) which is connected to the circuit node.	none	inte-   ger
file	char	The file identifier for the mesh file that describes the Medici device. If this file is created using the SAVE statement with the W. MODELS parameter set, the device models, interface, material and mobility parameters are also transferred to Medici Keep in mind that the models apply globally. For example, if any one device has CONSRH enabled, CONSRH is enabled for all devices in the circuit. All other parameters, such as mobility, interface, and material, are local and apply only to the one device. To use TIF files, specify TIF on the .OPTIONS statement.	none	
WIDTH	num	The width of this device. This factor multiplies the terminal current.	1	micro   ns

## Example

```
P1 1=2 5=1 8=3 FILE=BJT.MSH WIDTH=2.0
```

In this example, the $P 1$ device has the following:

- Electrode 2 connected to circuit node 1
- Electrode 1 connected to node 5
- Electrode 3 connected to node 8

It is not necessary to connect a circuit node to every terminal of the device. Unused terminals are automatically connected to ground.

See Also... To further illustrate the $\mathbf{P}$ statement, refer to the following input files:

- mdex13c in Chapter 12, "Transient Simulation of CMOS Pair with Compact Load," p. 12-26
- mdexl4b in Chapter 13, "Bipolar Transistor Thermal Run-Away Analysis," p. 13-7


## $\mathbf{Q}<$ name $>$

The $\mathbf{Q}$ statement instructs Medici to create a bipolar junction transistor.

```
Q<name>
 <nodec><nodeb><nodee> <mname> [AREA=<n>]
```

| Name | Type |  | Definition | Default |
| :--- | :--- | :--- | :--- | :--- |$\quad$ Units

## Example

## Q1 123 modela area=5

$\mathbf{R}<$ name $>$
Causes Medici to create a resistive element.

```
R<name>
 <node+><node-> <value> [T1=<n>] [T2=<n>]
```

Name	Type	Definition	Default	Units
<name>	c	The user chosen identifying name.	none	
<node $+>$	c	The positive circuit nodewhere the resistor is attached.	none	
<node->	c	The negative circuit node the resistor is attached.	none	
<value>	n	The value of the resistor. This value must not be zero.	none	ohms


Name	Type	Definition	Default	Units
T1	num	Specifies the first temperature coefficient.	0.0	ohms $/ \mathrm{K}$
$\mathbf{T 2}$	num	Specifies the second temperature coefficient.	0.0	ohms $/ \mathrm{K}^{2}$

The value of the resistor is determined by the following equation:
$R=\langle$ value $\rangle\left[1+\mathbf{T 1} \cdot(T-\mathbf{T} \cdot \mathbf{N O M})+\mathbf{T 2} \cdot(T-\mathbf{T} \cdot \mathbf{N O M})^{2}\right]$ Equation 3-46 where $T$ is the analysis temperature and $\mathbf{T} . \mathbf{N O M}$ is the nominal temperature set on the .OPTIONS statement.

## Example

## Rpwr 12500 T1=. 01 T2=. 001

See Also... To further illustrate the $\mathbf{R}$ statement, refer to the following input files:

- mdexll in Chapter 12, "Generation of the Simulation Structure and Solutions," p. 12-2
- mdex12b in Chapter 12, "Generation of the Simulation Structure and Solutions," p. 12-2
- mdex13c in Chapter 12, "Transient Simulation of CMOS Pair with Compact Load," p. 12-26

V<name>
Causes Medici to create an independent voltage source.

```
V <name>
 <node+> <node->
 { <value>
 (PULSE <v0\rangle\langleva\rangle\langletd\rangle\langletr\rangle\langletf\rangle\langletp\rangle\langleper>)
 (EXP <v0\rangle\langleva\rangle\langletdl\rangle\langletaul\rangle\langletd2\rangle\langletau2\rangle)
 (SIN <vO\rangle\langleva\rangle\langlefreq\rangle\langletds\rangle\langletheta\rangle)
 (SFFM <v0\rangle\langleva\rangle\langlefc\rangle\langlemdi\rangle\langlefs\rangle)
 }
```

Name	Type	Definition	Default	Units
<name>	c	The user chosen identifying name.	none	
<node + >	c	The positive circuit node the voltage source is attached.	none	
<node >	c	The negative circuit node the voltage source is attached.	none	
<value>	n	The value of the voltage source, if fixed.	none	volts


Name	Type	Definition	Default	Units
EXP	logical	Specifies that an exponential type voltage source be used.	false	
PULSE	logical	Specifies that a pulse type voltage source is used.	false	
SIN	logical	Specifies that a sinusoidal type voltage source is used.	false	
SFFM	logical	Specifies that a single frequency FM type voltage source is used.	false	
<v0>	n	Initial value for the voltage source.	none	volts
<va>	n	Applied value for the voltage source.	none	volts
$\langle t d\rangle$	n	Delay time for the pulse type voltage source.	none	seconds
$\langle t r\rangle$	n	Rise time for the pulse type voltage source.	none	seconds
<tf>	n	Fall time for the pulse type voltage source.	none	seconds
<tp>	n	Pulse width for the pulse type voltage source.	none	seconds
<per>	n	Period for the pulse type voltage source.	none	seconds
<tdl>	n	Delay time for the rising portion of the exponential waveform.	none	seconds
<taul >	n	Time constant for the rising portion of the exponential waveform.	none	seconds
<td2>	n	Delay time for the falling portion of the exponential waveform.	none	seconds
<tau2>	n	Time constant for the falling portion of the exponential waveform.	none	seconds
<freq>	n	Frequency of the sinusoidal source.	none	Hz
<tds>	n	Time delay for the sinusoidal source.	none	seconds
<theta>	n	Damping factor for the sinusoidal source.	none	1/seconds
$\left\langle f_{c}\right\rangle$	n	Carrier frequency for the single frequency FM source.	none	Hz
<mdi>	n	Modulation index for the single frequency FM source.	none	none
<fs >	n	Signal frequency for the single frequency FM source.	none	Hz

The value of an exponential type voltage source is given by the following equation:

Equation 3-47
$V= \begin{cases}\langle v 0\rangle & 0.0\langle t\langle\langle t d 1\rangle \\ \langle v 0\rangle+(\langle v a\rangle-\langle v 0\rangle)\left[1-\exp \left(-\frac{t-\langle t d 1\rangle}{\langle\text { tau } 1\rangle}\right)\right] & \langle t d 1\rangle\langle t<\langle t d 2\rangle \\ \langle v 0\rangle+(\langle v a\rangle-\langle v 0\rangle) \cdot & \\ {\left[\exp \left(-\frac{t-\langle t d 2\rangle}{\langle\text { tan } 2\rangle}\right)-\exp \left(-\frac{t-\langle t d 1\rangle}{\langle\text { tau } 1\rangle}\right)\right]} & t\rangle\langle t d 2\rangle\end{cases}$

The parameters of a pulse type voltage source are defined as follows:


Figure 3-27 Pulse type voltage source
The value of a sinusoidal type voltage source is given by the following equation:
Equation 3-48
$V= \begin{cases}\langle v 0\rangle & 0.0<t<\langle t d s\rangle \\ \langle v 0\rangle+\langle v a\rangle \cdot \exp [-(t-\langle t d s\rangle)\langle t h e t a\rangle] \cdot & \\ \sin [2 \pi\langle\text { freq }\rangle(t+\langle t d s\rangle)] & t\rangle\langle t d s\rangle\end{cases}$

The value of a single frequency FM type voltage source is given by the equation:
Equation 3-49

$$
V=\langle v 0\rangle+\langle v a\rangle \cdot \sin [2 \pi\langle f c t\rangle+\langle m d i\rangle \cdot \sin (2 \pi\langle f s\rangle t)]
$$

## Example

```
Va 1 2 pulse 1 5 1n 1n 1n 1On 30n
Vi 3 45
```

See Also... To further illustrate the $\mathbf{v}$ statement, refer to the following input files:

- mdexll in Chapter 12, "Generation of the Simulation Structure and Solutions," p. 12-2
- mdex12b in Chapter 12, "Generation of the Simulation Structure and Solutions," p. 12-2
- mdex13c in Chapter 12, "Transient Simulation of CMOS Pair with Compact Load," p. 12-26


## W<name>

Causes Medici to create a multiplier type voltage controlled current source.

```
W<name>
<node+> <node-> <nodecl+> <nodecl-> <nodec2+> <nodec2-> <value>
```

| Name | Type |  | Definition | Default |
| :--- | :--- | :--- | :--- | :--- | Units

## Example

W1 1234561.0
The W element generates a current equal to the product of two control voltages:
I = <value> * (<nodec1+> - <nodec1->) * (<nodec2+> - <nodec2->)
To see the general use of the $\mathbf{W}$ statement, refer to Circuit Analysis Examples, Figure 12-22 on page 12-23.

One of the most common uses of the W element is to create a voltage controlled conductance (resistor). To create a voltage controlled conductance, simply make one of the control voltages the same as the W element output nodes.

In the following example, the voltage controlled conductance is connected between terminals 1 and 2 while the controlling voltage is between nodes 3 and 4 .
$\begin{array}{llllllll}W 1 & 1 & 2 & 1 & 2 & 3 & 4 & 1.0\end{array}$

If a time dependent voltage source is connected to nodes 3 and 4 in the above example, than a time dependent conductance (resistance) will be created.

For example to create a resistor (connected between nodes 1 and 2) which has a value of 2 ohms for 1 ms and 1 e 6 ohms the rest of the time (with rise, fall and delay times of 1 ns and period 1.0 sec ) use:

```
W1 1 2 1 1 2 3 4 1.0
Rdummy 3 4 le6
V1 3 4 pulse 1e-6 0.5 1e-9 1e-9 1e-9 1e-3 1.0
```


## .MODEL

Specifies models to be used for the active lumped elements.

```
.MODEL
 <mod.nam>
 { Diode Parameters
 (D
 [IS=<n>] [CJO=<n>] [M=<n>] [VJ=<n>] [N=<n>] [FC=<n>]
 [BV=<n>] [EG=<n>] [XTI=<n>] [TT=<n>]
)
 Bipolar Junction Transistor Parameters
 ({NPN | PNP}
 [IS=<n>] [BF=<n>] [BR=<n>] [TF=<n>] [TR=<n>] [CJC=<n>]
 [CJE=<n>] [VJC=<n>] [VJE=<n>] [MJC=<n>] [MJE=<n>]
 [IKF=<n>] [IKR=<n>] [NE=<n>] [NC=<n>] [NF=<n>] [NR=<n>]
 [VAF=<n>] [VAR=<n>] [ISC=<n>] [ISE=<n>] [FC=<n>] [FE=<n>]
 [VTF=<n>] [ITF=<n>] [XTF=<n>] [RB=<n>] [RBM=<n>]
 [XTI=<n>] [XTB=<n>] [EG=<n>]
)
 MOS Transistor Parameters (Medici Built-in Models)
 ({NMOS | PMOS}
 Common and Level }1\mathrm{ parameters
 [LEVEL=<n>] [LD=<n>] [TOX=<n>] [NSUB=<n>] [NSS=<n>] [UO=<n>]
 [PHI=<n>] [GAMMA=<n>] [TPG=<n>] [VTO=<n>] [KP=<n>] [JS=<n>]
 [XJ=<n>] [LAMBDA=<n>]
 Level }2\mathrm{ adds the following to the common set
 [UCRIT=<n>] [UEXP=<n>] [VMAX=<n>] [NFS=<n>] [NEFF=<n>]
 [DELTA=<n>]
 Level }3\mathrm{ adds the following to the common set
 [KAPPA=<n>] [DELTA=<n>] [THETA=<n>] [VMAX=<n>] [ETA=<n>]
 [NFS=<n>]
 Capacitance Parameters
 [CGSO=<n>] [CGDO=<n>] [CJ=<n>] [CJSW=<n>][MJ=<n>] [MJSW=<n>]
 [MCAP=<n>] [FC=<n>] [PB=<n>] [XQC=<n>] [K1=<n>]
)
 MOS Transistor Parameters (Star-Hspice Levels 1, 2, and 3)
| ({ (HSPICE TYPE=<n>) | NMOS | PMOS}
 LEVEL=<n> [COX=<n>] [KP=<n>] [LAMBDA=<n>] [TOX=<n>] [UO=<n>]
 [DEL=<n>] [LD=<n>] [LDAC=<n>] [LMLT=<n>] [WD=<n>] [WDAC=<n>]
 [WMLT=<n>] [XJ=<n>] [XL=<n>] [XW=<n>] [GAMMA=<n>] [NFS=<n>]
 [NSUB=<n>] [PHI=<n>] [VTO=<n>] [ECRIT=<n>] [NEFF=<n>] [VMAX=<n>]
 [LREF=<n>] [WREF=<n>] [DELTA=<n>] [LND=<n>] [LNO=<n>] [ND=<n>]
```

(.MODEL statement continued on next page)

```
 [NO=<n>] [WIC=<n>] [WND=<n>] [WNO=<n>] [MOB=<n>] [THETA=<n>]
 [UCRIT=<n>] [UEXP=<n>] [UTRA=<n>] [DERIV=<n>] [KAPPA=<n>]
 [ETA=<n>] [JS=<n>] [CAPOP=<n>] [CJ=<n>] [CJSW=<n>] [MJ=<n>]
 [MJSW=<n>] [FC=<n>] [PB=<n>] [CGBO=<n>] [CGSO=<n>] [CGDO=<n>]
 [XQC=<n>] [K1=<n>]
)
 MOS Transistor Parameters (Star-Hspice Level 28)
({ (HSPICE28 TYPE=<n>) | NMOS | PMOS}
 LEVEL=<n> [LD=<n>] [LDAC=<n>] [LMLT=<n>] [LREF=<n>] [XLREF=<n>]
 [WD=<n>] [WDAC=<n>] [WMLT=<n>] [XL=<n>] [XW=<n>] [WREF=<n>]
 [XWREF=<n>] [BEX=<n>] [FEX=<n>] [TCV=<n>] [B1=<n>] [LB1=<n>]
 [WB1=<n>] [B2=<n>] [LB2=<n>] [WB2=<n>] [CGBO=<n>] [CGDO=<n>]
 [CGSO=<n>] [ETAO=<n>] [LETA=<n>] [WETA=<n>] [ETAMN=<n>]
 [LETAMN=<n>] [WETAMN=<n>] [GAMMN=<n>] [LGAMN=<n>] [WGAMN=<n>]
 [K1=<n>] [LK1=<n>] [WK1=<n>] [K2=<n>] [LK2=<n>] [WK2=<n>]
 [MUZ=<n>] [LMUZ=<n>] [WMUZ=<n>] [NO=<n>] [LNO=<n>] [WNO=<n>]
 [NBO=<n>] [LNB=<n>] [WNB=<n>] [NDO=<n>] [LND=<n>] [WND=<n>]
 [PHIO=<n>] [LPHI=<n>] [WPHI=<n>] [TOXM=<n>] [UOO=<n>] [LUO=<n>]
 [WUO=<n>] [U1=<n>] [LU1=<n>] [WU1=<n>] [VDDM=<n>] [VFBO=<n>]
 [LVFB=<n>] [WVFB=<n>] [WFAC=<n>] [LWFAC=<n>] [WWFAC=<n>]
 [WFACU=<n>] [LWFACU=<n>] [WWFACU=<n>] [X2E=<n>] [LX2E=<n>]
 [WX2E=<n>] [X2M=<n>] [LX2M=<n>] [WX2M=<n>] [X2U0=<n>] [LX2U0=<n>]
 [WX2UO=<n>] [X2U1=<n>] [LX2U1=<n>] [WX2U1=<n>] [X33M=<n>]
 [LX33M=<n>] [WX33M=<n>] [X3E=<n>] [LX3E=<n>] [WX3E=<n>] [X3MS=<n>]
 [LX3MS=<n>] [WX3MS=<n>] [X3U1=<n>] [LX3U1=<n>] [WX3U1=<n>]
 [XPART=<n>]
)
 MOS Transistor Parameters (Star-Hspice Levels 49 and 53)
| ({ (BSIM3V3 TYPE=<n>) | NMOS | PMOS}
 LEVEL=<n> [VERSION=<n>] [HSPVER=<n>] [PARAMCHK=<n>] [APWARN=<n>]
 [BINFLAG=<n>] [MOBMOD=<n>] [CAPMOD<n>] [NOIMOD=<n>] [NLEV=<n>]
 [NQSMOD=<n>] [SFVTFLAG=<n>] [VFBFLAG=<n>] [VGSLIM=<n>] [TOX=<n>]
 [XJ=<n>] [NGATE=<n>] [VTHO=<n>] [NSUB=<n>] [NCH=<n>] [NLX=<n>]
 [K1=<n>] [K2=<n>] [K3=<n>] [K3B=<n>] [W0=<n>] [DVTOW=<n>]
 [DVT1W=<n>] [DVT2W=<n>] [DVT0=<n>] [DVT1=<n>] [DVT2=<n>]
 [ETAO=<n>] [ETAB=<n>] [DSUB=<n>] [VBM=<n>] [UO=<n>] [UA=<n>]
 [UB=<n>] [UC=<n>] [AO=<n>] [AGS=<n>] [B0=<n>] [B1=<n>] [KETA=<n>]
 [VOFF=<n>] [VSAT=<n>] [A1=<n>] [A2=<n>] [RDSW=<n>] [PRWG=<n>]
 [PRWB=<n>] [WR=<n>] [NFACTOR=<n>] [CIT=<n>] [CDSC=<n>] [CDSCD=<n>]
 [CDSCB=<n>] [PCLM=<n>] [PDIBLC1=<n>] [PDIBLC2=<n>] [PDIBLCB=<n>]
 [DROUT=<n>] [PSCBE1=<n>] [PSCBE2=<n>] [PVAG=<n>] [DELTA=<n>]
 [ALPHAO=<n>] [BETAO=<n>] [RSH=<n>] [XPART=<n>] [CGSO=<n>]
 [CGDO=<n>] [CGBO=<n>] [CGS1=<n>] [CGD1=<n>] [CKAPPA=<n>] [CF=<n>]
 [CLC=<n>] [CLE=<n>] [VFBCV=<n>] [WINT=<n>] [WLN=<n>] [WW=<n>]
 [WWN=<n>] [WWL=<n>] [DWG=<n>] [DWB=<n>] [LINT=<n>] [LL=<n>]
 [LLN=<n>] [LW=<n>] [LWN=<n>] [LWL=<n>] [DLC=<n>] [DWC=<n>]
 [KT1=<n>] [KT1L=<n>] [KT2=<n>] [UTE=<n>] [UA1=<n>] [UB1=<n>]
 [UC1=<n>] [AT=<n>] [PRT=<n>] [XTI=<n>] [LMIN=<n>] [LMAX=<n>]
```

(.MODEL statement continued on next page)

## (.MODEL statement continued from previous page)

```
 [WMIN=<n>] [WMAX=<n>] [BINUNIT=<n>] [GAMMA1=<n>] [GAMMA2=<n>]
 [VBX=<n>] [XT=<n>] [NOIA=<n>] [NOIB=<n>] [NOIC=<n>] [EM=<n>]
 [AF=<n>] [KF=<n>] [EF=<n>] [ACM=<n>] [JS=<n>] [JSW=<n>] [NJ=<n>]
 [N=<n>] [CJ=<n>] [CJSW=<n>] [CJSWG=<n>] [CJGATE=<n>] [PB=<n>]
 [PBSW=<n>] [PHP=<n>] [PBSWG=<n>] [MJ=<n>] [MJSW=<n>] [MJSWG=<n>]
 [ELM=<n>] [TOXM=<n>] [VFB=<n>] [NOFF=<n>] [VOFFCV=<n>] [IJTH=<n>]
 [ALPHA1=<n>] [ACDE=<n>] [MOIN=<n>] [TPB=<n>] [TPBSW=<n>]
 [TPBSWG=<n>] [TCJ=<n>] [TCJSW=<n>] [TCJSWG=<n>] [LLC=<n>]
 [LWC=<n>] [LWLC=<n>] [WLC=<n>] [WWC=<n>] [WWLC=<n>]
)
 SOI Transistor Parameters (Star-Hspice Levels 57 and 59)
 ({ (BSIM3SOI TYPE=<n>) | NMOS | PMOS}
 LEVEL=<n> [VERSION=<n>] [HSPVER=<n>] [PARAMCHK=<n>]
 [CAPMOD=<n>] [IGMOD=<n>] [MOBMOD=<n>] [NOIMOD=<n>] [SHMOD=<n>]
 [NCH=<n>] [NGATE=<n>] [NSUB=<n>] [TBOX=<n>] [TOX=<n>] [TSI=<n>]
 [XJ=<n>] [A0=<n>] [A1=<n>] [A2=<n>] [ABP=<n>] [ADICE0=<n>]
 [AELY=<n>] [AGIDL=<n>] [AGS=<n>] [AHLI=<n>] [AII=<n>] [ALPHAO=<n>]
 [ALPHA1=<n>] [B0=<n>] [B1=<n>] [BETA0=<n>] [BETA1=<n>] [BETA2=<n>]
 [BGIDL=<n>] [BII=<n>] [CDSC=<n>] [CDSCB=<n>] [CDSCD=<n>] [CII=<n>]
 [CIT=<n>] [DELP=<n>] [DELTA=<n>] [DII=<n>] [DROUT=<n>] [DSUB=<n>]
 [DVBDO=<n>] [DVBD1=<n>] [DVT0=<n>] [DVTOW=<n>] [DVT1=<n>]
 [DVT1W=<n>] [DVT2=<n>] [DVT2W=<n>] [DWB=<n>] [DWBC=<n>] [DWG=<n>]
 [EDL=<n>] [ESATI=<n>] [ETAO=<n>] [ETAB=<n>] [FBJTII=<n>]
 [ISJBT=<n>] [ISDIF=<n>] [ISREC=<n>] [ISTUN=<n>] [K1=<n>]
 [K1W1=<n>] [K1W2=<n>] [K2=<n>] [K3=<n>] [K3B=<n>] [KB1=<n>]
 [KB3=<n>] [KBJT1=<n>] [KETA=<n>] [KETAS=<n>] [LBJTO=<n>] [LII=<n>]
 [IINT=<n>] [LN=<n>] [MXC=<n>] [NBJT=<n>] [NDIODE=<n>]
 [NFACTOR=<n>] [NGIDL=<n>] [NLX=<n>] [NRECFO=<n>] [NRECRO=<n>]
 [NTUN=<n>] [PCLM=<n>] [PDIBL1=<n>] [PDIBL2=<n>] [PDIBLC1=<n>]
 [PDIBLC2=<n>] [PRWB=<n>] [PRWG=<n>] [PVAG=<n>] [RBODY=<n>]
 [RBSH=<n>] [RDSW=<n>] [RSH=<n>] [SIIO=<n>] [SII1=<n>] [SII2=<n>]
 [SIID=<n>] [TII=<n>] [UO=<n>] [UA=<n>] [UB=<n>] [UC=<n>]
 [VABJT=<n>] [VBSA=<n>] [VDSATIIO=<n>] [VOFF=<n>] [VREC0=<n>]
 [VSAT=<n>] [VTHO=<n>] [VTUNO=<n>] [W0=<n>] [WINT=<n>] [WR=<n>]
 [ACDE=<n>] [ASD=<n>] [CF=<n>] [CGDL=<n>] [CGDO=<n>] [CGEO=<n>]
 [CGSL=<n>] [CGSO=<n>] [CJSWG=<n>] [CKAPPA=<n>] [CLC=<n>] [CLE=<n>]
 [CSDESW=<n>] [CSDMIN=<n>] [DELVT=<n>] [DLBG=<n>] [DLC=<n>]
 [DLCB=<n>] [DWC=<n>] [FBODY=<n>] [LDIFO=<n>] [MJSWG=<n>]
 [MOIN=<n>] [NDIF=<n>] [PBSWG=<n>] [TT=<n>] [VSDFB=<n>] [VSDTH=<n>]
 [XPART=<n>] [AT=<n>] [CTH0=<n>] [KT1=<n>] [KT2=<n>] [KTIL=<n>]
 [NTRECF=<n>] [NTRECR=<n>] [PRT=<n>] [RTHO=<n>] [TCJSWG=<n>]
 [TNOM=<n>] [TPBSWG=<n>] [UA1=<n>] [UB1=<n>] [UC1=<n>] [UTE=<n>]
 [XBJT=<n>] [XDIF=<n>] [XREC=<n>] [XTUN=<n>]
)
}
```

Name	Type	Definition	Default	Units
<mod.nam>	c	The model name identifier.	none	
D	logical	Indicates this model is for a diode.	false	
NPN	logical	Indicates this model is for a NPN type bipolar transistor.	false	
PNP	logical	Indicates this model is for a PNP type bipolar transistor.	false	
nmos	logical	Indicates this model is for a N -channel MOS transistor.	false	
PMOS	logical	Indicates this model is for a P-channel MOS transistor.	false	
HSPICE	logical	Indicates this model is for a MOS transistor. This selection indicates that the parameter set is taken from the model type hspice in the file $m d f k y l$, which is appropriate for StarHspice levels 1, 2, or 3. If this parameter is specified instead of NMOS or PMOS, then the TYPE parameter should also be specified.	false	
HSPICE28	logical	Indicates this model is for a MOS transistor. This selection indicates that the parameter set is taken from the model type hspice 28 in the file $m d f k y l$, which is appropriate for Star-Hspice level 28. If this parameter is specified instead of NMOS or PMOS, then the TYPE parameter should also be specified.	false	
BSIM3v3	logical	Indicates this model is for a MOS transistor. This selection indicates that the parameter set is taken from the model type bsim3v3 in the file $m d f k y 1$, which is appropriate for StarHspice levels 49 or 53. If this parameter is specified instead of NMOS or PMOS, then the TYPE parameter should also be specified.	false	
BSIM3SOI	logical	Indicates this model is for a SOI transistor. This selection indicates that the parameter set is taken from the model type bsim3soi in the file $m d f k y l$, which is appropriate for Star-Hspice levels 57 or 59. If this parameter is specified instead of NMOS or PMOS, then the TYPE parameter should also be specified.	false	
TYPE	num	+1 for NMOS, -1 for PMOS	1.0	
IS	num	The diode saturation current.	le-14	amps
СЈo	num	The diode zero bias capacitance.	0.0	farads
M	num	The diode junction grading coefficient.	0.5	none
vJ	num	The diode built in potential.	1.0	volts
N	num	Emission coefficient for the diode junction.	1.0	none
FC	num	The diode coefficient for forward biased junction depletion capacitance.	0.5	none
BV	num	The diode breakdown voltage.	infinity	volts
EG	num	The diode energy gap.	1.11	volts
XTI	num	The diode saturation current temperature exponent.	3.0	none
TT	num	The diode transit time.	0.0	seconds


Name	Type	Definition	Default	Units
Bipolar Junction Transistor Parameters				
IS	num	The BJT saturation current.	le-16	amps
BF	num	The BJT forward current gain.	100.0	none
BR	num	The BJT reverse current gain.	1.0	none
TF	num	The BJT forward transit time.	0.0	seconds
TR	num	The BJT reverse transit time.	0.0	seconds
CJC	num	The BJT base collector zero bias junction capacitance.	0.0	farads
CJE	num	The BJT base emitter zero bias junction capacitance.	0.0	farads
vJc	num	The BJT base collector junction built in potential.	0.75	volts
vJE	num	The BJT base emitter junction built in potential.	0.75	volts
MJC	num	The BJT base collector junction grading coefficient.	0.33	none
MJE	num	The BJT base emitter junction grading coefficient.	0.33	none
IKF	num	The BJT forward knee current.	le6	amps
IKR	num	The BJT reverse knee current.	le6	amps
NE	num	The BJT base emitter junction leakage current emission coefficient.	1.5	none
NC	num	The BJT base collector junction leakage current emission coefficient.	1.5	none
NF	num	The BJT forward emission coefficient.	1.0	none
NR	num	The BJT reverse emission coefficient.	1.0	none
VAF	num	The BJT forward early voltage.	le6	volts
VAR	num	The BJT reverse early voltage.	le6	volts
ISC	num	The BJT base collector junction leakage saturation current.	0.0	amps
ISE	num	The BJT base emitter junction leakage saturation current.	0.0	amps
FC	num	The BJT base collector forward biased junction depletion capacitance coefficient.	0.5	none
FE	num	The BJT base emitter forward biased junction depletion capacitance coefficient.	0.5	none
VTF	num	The BJT parameter describing the dependence of parameter TF on the base collector voltage.	le6	volts
ITF	num	The BJT parameter describing the dependence of parameter TF on the collector current.	le6	amps
XTF	num	The BJT parameter describing the overall dependence of parameter TF on bias.	0.0	none
RB	num	The BJT zero bias base resistance.	0.0	ohms
RBM	num	The BJT minimum base resistance under bias.	0.0	ohms
XTI	num	The BJT saturation current temperature exponent.	3.0	none


Name	Type	Definition	Default	Units
XtB	num	The BJT temperature factor for parameter BF.	0.0	none
EG	num	The BJT energy gap.	1.11	volts
MOS Common and Level 1 Model Parameters				
LEVEL	num	The MOS model to use.	1	none
LD	num	The MOS lateral source and drain out diffusion.	0.0	microns
TOX	num	The MOS oxide thickness.	700	Angstroms
NSUB	num	The MOS substrate doping.	le15	$/ \mathrm{cm}^{3}$
NSS	num	The MOS surface state density.	0.0	$1 \mathrm{~cm}^{2}$
UO	num	The MOS low field mobility.	400	$\mathrm{cm}^{2} / \mathrm{V}$-sec
PHI	num	The MOS surface potential.	2*Vt* $\log$ (NSUB   $/ \mathrm{Ni}$ )	volts
GAMMA	num	The MOS bulk threshold parameter. Default: TOX/Eox*sqrt(2*Esi*q*NSUB)	See Definition	volts
TPG	num	The MOS gate type parameter. 1 for N-type silicon gate with NMOS transistor or P-type silicon gate with PMOS transistor. 0 for aluminum gate. -1 for P-type silicon gate with NMOS transistor or N-type silicon gate with PMOS transistor.	1	none
VTO	num	The MOS zero bias threshold voltage.	calculated	volts
KP	num	The MOS transconductance parameter.	U0*Eox/TOX	$\mathrm{amps} / \mathrm{volt}^{2}$
JS	num	The MOS saturation current for source and drain junctions.	0.0	$\mathrm{amps} / \mathrm{cm}^{2}$
XJ	num	The MOS source and drain junction depth.	0.0	microns
LAMBDA	num	The MOS channel modulation factor.	0.0	1/volt
MOS Level 2 Model Parameters				
UCRIT	num	The MOS vertical field mobility degradation factor.	le4	V/cm
UEXP	num	The MOS vertical field mobility degradation exponent.	0.0	none
Vmax	num	The MOS maximum carrier velocity.	0.0	$\mathrm{cm} / \mathrm{sec}$
NFS	num	The MOS fast surface state density.	0.0	$1 / \mathrm{cm}^{2}$
NEFF	num	The MOS total channel charge coefficient.	1.0	none
DELTA	num	Width effect on threshold voltage.	0.0	1/volt

## MOS Level 3 Model Parameters

KAPPA	num	The MOS saturation field factor.	0.2	none
THETA	num	The MOS mobility modulation factor.	0.0	$1 / \mathrm{volt}$
ETA	num	The MOS static feedback factor.	0.0	none
Common MOS Capacitance Parameters				
CGSO	num	The MOS gate source overlap capacitance parameter.	0.0	farads/cm


Name	Type	Definition	Default	Units
CGDO	num	The MOS gate drain overlap capacitance parameter.	0.0	farads/cm
CJ	num	The MOS source and drain area zero bias depletion capacitance parameter.	sqrt(q*Esi*NSUB/ PB)	farads/cm ${ }^{2}$
CJSW	num	The MOS source and drain perimeter zero bias depletion capacitance parameter.	CJ* XJ	farads/cm
MJ	num	The MOS source and drain bottom capacitance grading coefficient.	0.5	none
MJSW	num	The MOS source and drain perimeter capacitance grading coefficient.	0.333	none
MCAP	num	The MOS capacitance model to use: $1=$ BSIM, $2=$ MOS level 2.	1	none
FC	num	The MOS source and drain capacitance forward biased junction depletion capacitance parameter.	0.5	none
PB	num	The MOS source and drain junction built in potential.	1.0	none
XQC	num	The MOS coefficient of channel charge attributed to the drain.	0.5	none
K1	num	The MOS BSIM capacitance body effect coefficient.	0.63	none

## Star-Hspice MOSFET Model Parameters

| <param> | num | Descriptions, default values, and units of all Star-Hspice <br> parameters can be found in the Star-Hspice User's Manual, | Star-Hspice <br> Volume III-MOSFET Models | Star-Hspice <br> default |
| :--- | :--- | :--- | :--- | :--- | | units |
| :--- |

## Description

Medici contains built-in models for diodes, BJTs, and MOSFETs (levels 1, 2, and 3). For MOSFETs, various Star-Hspice models can also be selected (levels 1, 2, $3,13,28,47,49,50,53,55,57$ and 59). Star-Hspice models are evaluated using Avant!'s Common Model Interface (CMI) functions.

If a MOSFET model is selected with LEVEL > 3, the appropriate Star-Hspice model is automatically selected. If LEVEL $=1,2$, or 3 , the Medici built-in SPICE models are used by default. To use the Star-Hspice versions for levels 1, 2, and 3, include a .OPTION statement in the circuit mode input with the HSPICE parameter specified.

See Also... To further illustrate the .MODEL statement, refer to the following input files:

- mdex12b in Chapter 12, "Generation of the Simulation Structure and Solutions," p. 12-2
- mdex 13c in Chapter 12, "Transient Simulation of CMOS Pair with Compact Load," p. 12-26


## Examples

Create a diode model named "MD":

```
.MODEL MD D IS=1e-14 CJO=1e-12
```

Create a n-channel MOSFET model named "NMD2" using Medici's built-in level 2 SPICE model:
.MODEL NMD2 NMOS LEVEL=2 TOX=250.
Create a n-channel MOSFET model named "NHS2" using Star-Hspice's level 2 :
.OPTION HSPICE
.MODEL NHS2 NMOS LEVEL=2 TOX=250E-10
Create a n-channel MODEL model named "NHS28" using Star-Hspice's level 28:
.MODEL NHS28 NMOS LEVEL=28 TOXM=0.0250

## SPICE Capacitance Models

The built-in MOSFET model differs from the one in standard SPICE 2G. 6 in that the BSIM capacitance model is used as the default. This model was the most reliable and gives the best convergence.

The Meyer model was not included because it requires trapezoidal time integration and does not conserve charge, which can harm convergence.

The level 2 MOSFET capacitance model (Ward-Dutton) conserves charge but has discontinuous capacitance derivatives. This frequently produces the "Time-Step Too Small" error. This model is available in Medici, but is not recommended.

The SPICE LEVEL 3 MOSFET capacitance model, upon examination of the code, is nonfunctional and is not included.

## .NODESET

The . NODESET statement specifies voltages at nodes used as an initial guess for a DC solution.

## . NODESET

$$
\mathrm{V}(<\text { node } 1>)=<\mathrm{n}>\mathrm{V}(<\text { node } 2>)=<\mathrm{n}>\ldots . . . .
$$

Name	Type	Definition	Default	Units
$<$ nodex $>$	c	The node where the voltage is specified.	none	

## Example

$$
. \operatorname{NODESET} \mathrm{V}(\mathrm{~A})=5.0 \quad \mathrm{~V}(\mathrm{~B})=0.0 \quad \mathrm{~V}(\mathrm{D})=1.0
$$

See Also... To further illustrate the . NODESET statement, refer to the following input files:

- mdexll in Chapter 12, "Generation of the Simulation Structure and Solutions," p. 12-2
- mdex12b in Chapter 12, "Generation of the Simulation Structure and Solutions," p. 12-2
- mdex13c in Chapter 12, "Transient Simulation of CMOS Pair with Compact Load," p. 12-26


## . IC

Specifies voltages at nodes that remain fixed during DC solutions or used as a starting point for a transient solution.
.IC
$\mathrm{V}(\langle$ nodel $>)=<\mathrm{n}>\mathrm{V}(\langle$ node $2>)=<\mathrm{n}>\ldots . . .$.

Name	Type	Definition	Default	Units
<nodex	c	The node where the voltage is to be specified.	none	

## Example

. $1 \mathrm{C} V(1)=5.0 \mathrm{~V}(2)=0.0 \mathrm{~V}(3)=1.0$

Sets options for the solution process.

```
.OPTIONS
 [T.TOL=<n>] [T.MIN=<n>] [P.TOL=<n>] [C.TOL=<n>] [ITLIM=<n>]
 [DELVMAX=<n>] [G.FORCE=<n>] [G.MIN=<n>] [T.NOM=<n>]
 [V.MIN=<n>] [V.MAX=<n>]
 [2ND] [AUTO] [ALT] [ILUCGS] [LAT.TEMP] [COUP.LAT] [ELE.TEMP]
 [HOL.TEMP] [TIF] [HSPICE]
```

Parameter	Type	Definition	Default	Units
т.tol	num	The target local truncation error for the automatic time step control. This is the same as the TOL. TIME parameter on the METHOD statement.	0.01	none
т.MIN	num	The minimum allowed time step. If the time step is reduced to less than $\mathbf{T}$. MIN, the program halts.	le-15	seconds
P.tol	num	The potential update tolerance. This is the same as the PX.TOLER parameter on the METHOD statement.	le-5	kT/q
C.tol	num	The carrier concentration update tolerance. This is the same as the CX. TOLER parameter on the METHOD statement.	le-5	kT/q
itlim	num	The maximum number of Newton or Gummel iterations. This is the same as the ITLIMIT parameter on the METHOD statement.	20	none
delvmax	num	The maximum potential update allowed during one Newton iteration. This parameter can aid convergence by damping the Newton iteration process.	0.5	volts
G. Force	num	The value of the conductance used to force circuit nodes to a fixed potential.	10	mhos
G.min	num	The value of the conductance to the ground attached to the circuit nodes that have no apparent DC path to the ground.	1.e-12	mhos
т. мом	num	The nominal temperature used in the resistor, MOSFET, diode and BJT models.	300	degrees K
vmin	num	The minimum voltage allowed at a circuit node during Newton iteration or projection. Specifying an appropriate value for VMIN can aid convergence by constraining the node voltages to reasonable values.	-9999	volts
vmax	num	The maximum voltage allowed at a circuit node during Newton iteration or projection. Specifying an appropriate value for VMAX can aid convergence by constraining the node voltages to reasonable values.	9999	volts
2ND	logical	Causes Medici to use the first/second variable order time discretization method rather than the fixed first order method.	ue	
Auto	logical	Enables Newton-Richardson iterations rather than standard Newton iterations.	true	
ALt	logical	Causes Medici to use alternating solution file names rather incrementing the file names. If this option is true, the last character of the filename alternates between zero and one. For example, if the original file name was data, the filenames generated for saving the solution alternates between dat0 and datl	false	
Ilucgs	logical	Causes Medici to use ILUCGS as the linear solver rather than the direct method. ILUCGS may be faster on very large problems.	false	
Lat.temp	logical	Causes Medici to solve the lattice temperature equation, as well as the Poisson and continuity equations.	false	
cour. LAT $^{\text {a }}$	logical	Causes Medici to solve all four equations (Poisson, electron continuity, hole continuity, and lattice temperature) as a coupled set rather than using the decoupled block approach.	false	


Parameter	Type	Definition	Default Units
ELE.TEMP	logical	Causes Medici to solve the electron energy balance equation, as well as the Poisson and continuity equations.	false
HOL. TEMP	logical	Causes Medici to solve the hole energy balance equation, as well as the Poisson and continuity equations.	false
TIF	logical	Specifies that all mesh files and solution files will be read and written in the TIF format. This also applies to mesh files read by " p " elements.	true
HSPICE	logical	Specifies that a Star-Hspice model will be used for MOS levels 1, 2, and 3.	false

## Example

```
.OPTIONS ILUCGS ^AUTO ^2ND P.TOL=.01 T.TOL=.01
```

See Also... To further illustrate the .options refer to the following input files:

- mdexll in Chapter 12, "Generation of the Simulation Structure and Solutions," p. 12-2
- mdex14b in Chapter 12, "Bipolar Transistor With Resistive Load," p. 12-1
. LOAD
Specifies files from which to load data.

```
. LOAD
 [MESH=<C>] [[SOLUTION=<C>] [STRUCTUR=<C>]] [ASCII]
```

Name	Type	Definition	Default
MESH	char	The identifier for the mesh file to be read.	Units
SOLUTION	char	The identifier for the solution file to be read.	none
STRUCTUR	char	The name of the device into which the solution information is   read. The use of this parameter implies that the solution file   being read contains information for only one device.	none
ASCII	logical	Indicates that the specified file(s) are formatted files.	false

## Example

See Also... To further illustrate the . LOAD statement, refer to the following input files:

- mdex13d and mdex13e in Chapter 12, "Transient Simulation of CMOS Pair with Compact Load," p. 12-26
- mdexl4b in Chapter 13, "Bipolar Transistor Thermal Run-Away Analysis," p. 13-7


## FIdNISH

## Causes Medici to exit circuit mode. <br> FINISH <br> CIRCUIT

Name	Type	Definition	Default	Units
CIRCUIT	logical	Puts the program back into Medici mode.	true	

## Example

## FINISH CIRCUIT

See Also... To further illustrate the FINISH statement, refer to the following input files:

- mdexll in Chapter 12, "Generation of the Simulation Structure and Solutions," p. 12-2
- mdex12b in Chapter 12, "Generation of the Simulation Structure and Solutions," p. 12-2
- mdexl3c in Chapter 12, "Structure," p. 12-26
- mdex13c in Chapter 12, "Transient Simulation of CMOS Pair with Compact Load," p. 12-26


### 3.6 Documentation and Control

## The following statements document the input file and control execution of

 Medici:| Statement | Definition | Page |
| :---: | :---: | :---: |
| title | Documents the input file and program output. | 3-402 |
| COMMENT | Documents the input file. | 3-402 |
| OPTION | Controls program output and function. | 3-404 |
| HELP | Prints information describing statements and parameters. | 3-405 |
| CALL | Enters statements into the input from files. | 3-406 |
| INTERACTIVE | Starts interactive input mode. | 3-411 |
| BATCH | Terminates interactive input mode. | 3-413 |
| I.PRINT | Prints input statements. | 3-414 |
| I. SAVE | Saves input statements in a file. | 3-416 |
| IF | Begins a sequence of one or more conditionally processed input statement blocks. | 3-419 |
| ElSE | Terminates a conditionally processed input statement block and begins an alternative conditionally processed input statement block. | 3-421 |
| IF.END | Terminates a sequence of one or more conditionally processed input statement blocks. | 3-422 |
| LOOP | Begins an input statement loop. | 3-423 |
| L. MODIFY | Modifies processing of an input statement loop. | 3-429 |
| L. END | Terminates input statement loops. | 3-431 |
| ASSIGN | Assigns values to an assigned name. | 3-433 |
| ECHO | Outputs text to your terminal. | 3-441 |
| RETURN | Terminates further processing of input statements in a file. | 3-442 |
| STOP | Terminates program execution. | 3-442 |
| IGNORE | Prevents processing of subsequent input statements in a file. | 3-443 |

## Control Statements

The control statements provide extended capabilities for controlling program execution including the following:

- Interactive operation
- Insertion of input statements from other files
- Saving of interactively entered input statements in output files


## Obtaining Help

The HELP statement prints information describing a statement and its associated parameters. It is typically used during interactive input mode to determine valid parameter names and combinations of parameters.

The available information consists of the following:

- Statement syntax
- Default parameter values
- Units used for numerical and array parameters
- Synonyms for parameter names


## Interactive and Batch Input Modes

The program runs in either of the following modes:

- Batch input mode-In batch mode the program reads input statements from the batch input file.
- Interactive input mode-In interactive input mode the program reads input statements entered interactively from your terminal.

At the beginning of program execution you must provide a file specification for the command input file, also referred to as the batch input file. If this file specification is blank, the program immediately enters interactive input mode and input statements must be entered from your terminal. Otherwise, the file specification is used to read the command input file.

The INTERACTIVE and BATCH statements provide the ability to switch between batch and interactive input modes.

## Statement Line Numbers

Input statements are numbered with sequentially increasing line numbers. Input statements obtained from the batch input file are numbered using integers that start with 1 for the first statement. For each group of input statements entered interactively, the statements are numbered using the format "xxx/yyy", as shown below:

- "xxx" is the line number of the statement preceding the first statement in the group.
- "yyy" starts with " 001 " for the first statement in the group and increases with successive statements in the group.


## Processing

 OrderInput statements are processed in the order of increasing line number. The statement with line number "xxx/001" is processed immediately after the statement with line number "xxx". For a group of "yyy" input statements entered interactively, the statement with line number "xxx/yyy" is processed immediately before the statement with line number " $x x x$ " +1 .

Example The following example illustrates the statements and line numbers printed on the standard output for a case including interactive input:

```
1... STMT1 PARM1=1
2... INTERACTIVE
3... STMT3 PARM3=3
2/001... STMT2 PARM2=2
2/002 ... BATCH
```

where:

- STMT1, INTERACTIVE, and STMT3 statements are obtained from the batch input file
- STMT2 and BATCH statements are entered interactively

The statements obtained from the batch input file are printed first, followed by the statements entered interactively. The statements are processed in the following order:

STMT1, INTERACTIVE, STMT2, BATCH, AND STMT3

## Currently Available Input Statements

The program may obtain input statements by the following:

- Reading the batch input file
- Reading interactive input from your terminal
- Processing CALL statements

CALL statements read input statements from files or from the set of previously obtained input statements. At the beginning of program execution the batch input file is read completely and, where possible, CALL statements are processed. Interactive input is read when interactive input mode is entered.

At any time during program execution, all input statements that have been read are considered currently available. These statements are available for processing by the CALL, I .PRINT, and I.SAVE statements. Statements are currently available even if they follow the input statement currently being processed.

## Output of Statement Information

The I.PRINT statement prints a range of the currently available input statements. This statement is used during interactive input mode to determine which statements have been previously entered.

The I.SAVE statement saves input statements, including those entered interactively, in output files. These files are suitable for use as command input files during subsequent program execution.

## Output to Terminal

The ECHO statement outputs text to your terminal. This statement is used with the PROMPT parameter on the ASSIGN statement to provide interactive terminal input and output.

## Controlling Program Execution

This section describes the statements that control various aspects of program execution. The following statements are discussed:

- CALL
- IF, ELSE, and IF . END
- LOOP, L. MODIFY, and L.END
- ASSIGN
- RETURN
- STOP
- IGNORE currently available input statements. It can be used to repeatedly input groups of statements.

CALL can also be combined with ASSIGN statements to produce template files containing variable input values in the form of assigned names.

## Conditional Statements

## LOOP Statements

ASSIGN Statement

RETURN Statement

## STOP Statement

IGNORE Statement

The IF, ELSE, and IF. END statements control conditional processing of input statement blocks. These statements are used to choose one block of statements for processing from a sequence of alternative statement blocks.

The choice of which statement block to process depends on the values of the following:

- Assigned names
- Numerical expressions
- Character expressions

The LOOP, L. MODIFY and L.END statements control repeated processing of input statements in loops. These statements are used to efficiently specify a variety of different conditions for program execution.

Statement loops contain arbitrary combinations of input statements and control the variation of numerical and array parameters and assigned names.

The ASSIGN statement assigns numerical and character values to assigned names. The values of assigned names can be varied during statement looping. Assigned names can appear in numerical expressions which define the values of numerical and array parameters.

They can also be used in character expressions to define the following:

- Titles
- Labels
- File specifications

The RETURN statement terminates further processing of input statements in a file. This statement is used to prevent processing of statements at the end of the command input file or a file read with a CALL statement.

The STOP statement terminates execution of the program. It is used to terminate program execution from the command input file or a file read with a CALL statement.

The IGNORE statement prevents processing of subsequent input statements in a file. This statement is used to ignore statements at the end of the command input file or a file read with a CALL statement.

## Optimization

## Optimization <br> Process

The following statements specify the optimization process:

- The LOOP statement is used to perform optimization by specifying the OPTIMIZE parameter.
- The assigned names which are varied, are defined by using the OPTIMIZE parameter on the ASSIGN statement.
- The targets are defined with the EXTRACT statement.

An optimization process does the following:

- The statements in the optimization loop are processed repeatedly, varying the values of assigned names until the error in the specified targets is minimized.
- The state of the simulation is saved before the first pass through an optimization loop.
The simulation is restored to this saved state at the beginning of each pass through the loop.
- When the optimization is complete, the following is printed:
- The number of function evaluations
- The total RMS error
- The final values of assigned names
- The final values and RMS error for each target
- The derivatives of each target with respect to each assigned name


## Sensitivity Analysis

The following statements are used to specify sensitivity analysis:

- The LOOP statement is used to perform sensitivity analysis by specifying the SENSITIV parameter.
- The assigned names which are varied, are defined by using the SENSITIV parameter on the ASSIGN statement.
- The targets are defined with the EXTRACT statement.


## Sensitivity Analysis Process

A sensitivity analysis does the following:

- The statements in the sensitivity analysis loop are processed repeatedly, varying the value of each assigned name to calculate the variation in each target value.
- The state of the simulation is saved before the first pass through a sensitivity analysis loop.
The simulation is restored to this saved state at the beginning of each pass through the loop.
- When the sensitivity analysis is complete, the following is printed:
- The number of function evaluations
- The values of assigned names and targets
- The derivatives of each target with respect to each assigned name


## TITLE

The TITLE statement specifies character strings which document your input and the program output.

```
TITLE
 [<c>]
```


## Description

The character string associated with the first line of the TITLE statement is used in documenting printed output. The character string is also used as the default title string for output requested in subsequent PLOT .1D, PLOT . 2D, or PLOT . 3D statements.

There may be any number of TITLE statements present, and they may be located at any point in the input file.

See Also... To further illustrate the title statement, refer to the following:

- Input file mdex 1 in Chapter 4, "Generation of the Simulation Structure," p. 42
- Input file mdex2 in Chapter 5, "Generation of the Simulation Structure," p. 551
- Several other examples


## COMMENT

The COMMENT statement is used to specify character strings which document your input and the program output.

```
COMMENT
 [<c>]
OR
$
 [<c>]
```


## Description

The character strings associated with COMMENT statements serve only to document the input file and are ignored by the program.

There can be any number of COMMENT statements present, and they can be located at any point in the input file. Note that blank lines can also be used to improve readability of the input.

See Also... To further illustrate the COMMENT statement, refer to the following:

- Input file mdex1 in Chapter 4, "Generation of the Simulation Structure," p. 42
- Input file mdex2 in Chapter 5, "Generation of the Simulation Structure," p. 551
- Other examples


## OPTION

The OPTION statement allows you to set flags to obtain debugging information and CPU statistics, and to determine how the Medici version in use is configured.

OPTION
[G.DEBUG] [N.DEBUG] [ CPU.STAT [CPU.FILE=<C>] ] [I.ERROR]
[MAXNODES] [ SAVE.SOL [SOL.FILE=<C>] ]

Parameter	Type	Definition	Default
G. DEBUG	logical	Specifies that general debugging information is printed to the standard output.	The current value; initially false.
N. DEBUG	logical	Specifies that numerical parameter debugging information is printed to the standard output.	The current value; initially false.
CPU.STAT	logical	Specifies that a CPU profile of the solution process is being printed to the file specified by CPU.FILE.	The current value; initially false.
CPU.FILE	char	Specifies the identifier for the file to receive printed CPU information when the CPU . STAT parameter is specified.	<base>.cpu See   Chapter 1, "Execution Time   Files," p. 1-13.
I. ERROR	logical	Specifies that interactive input mode is entered if a fatal error occurs during program execution. This option allows diagnosis of the simulation to determine the cause of the error. The simulation should not be continued because the state of the simulation may not be reliable.	The current value; initially false.
MAXNODES	logical	Specifies that information is printed on the configuration of the program and the limits this configuration places on the number of nodes that can be simulated.	false
SAVE. SOL	logical	Specifies that the two most recent solutions are automatically saved in files, whose identifiers are specified by SOL FILE. However, SOLVE statements with OUT FFILE specified save only the solutions identified by OUT.FILE.	The current value; initially false.
SOL.FILE	char	The identifier for the files that are saved when the SAVE . SOL parameter is specified. The characters " 1 " and " 2 " are alternately appended to this identifier whenever a new solution is available.	<base>.sav

## Description

Specifying MAXNODES causes the program to write the following information to the standard output:

- The maximum nodes available
- How the program is configured
- The maximum number of nodes available for various types of analysis based on this configuration


## HELP

The HELP statement prints information describing a statement and its associated parameters. A question mark (?) is a synonym for the HELP statement.

HELP

```
[NAME=<C>] [{PARAMETE=<C> | VERBOSE}]
```

Parameter	Type	Definition	Default
NAME	char	Specifies the name of the statement for which information is printed.	none
PARAMETE	char	Specifies the name of the parameter for which information is printed describing the   units, default values, and synonyms.	none
VERBOSE	logical	Specifies that information is printed describing the units, default values, and synonyms   for all parameters in the statement.	false

## Description

A HELP statement without parameters prints general information describing the HELP statement and the statements for which help is available.

If the NAME parameter is specified, information is printed describing the specified statement and its associated parameters. For example, the following statement prints help information describing the ASSIGN statement:

HELP NAME=ASSIGN

Either the PARAMETE or VERBOSE parameter can be specified to print information describing the units, default values, and synonyms for parameters. If the PARAMETE parameter is specified, information is printed for the specified parameter. For example, the following statement prints help information for the NAME parameter on the ASSIGN statement:

## HELP NAME=ASSIGN PARAMETE=NAME

If the VERBOSE parameter is specified, information is printed for all parameters in the statement. For example, the following statement prints help information describing the ASSIGN statement and all of its parameters:

## HELP NAME=ASSIGN PARAMETE=VERBOSE

If the HELP statement is entered interactively, the help information is printed on your terminal. If the HELP statement is entered through the batch input file or through a CALL statement, the help information is printed on the standard output.

For more information see "Obtaining Help," p. 3-396.

## CALI

		The CALI statement enters additional statements into the input by ei them from a file or copying them from the currently available input These additional statements are called CALL contents.	r reading tements.
	$\begin{aligned} & \text { CALL } \\ & \{\text { FILE=<C> } \end{aligned}$	\| ([FIRST=<C>] [LAST=<C>] [EXPAND] )\} [ONCE] [PRIN	
Parameter	Type	Definition	Default
FILE	char	Specifies the identifier for the formatted input file from which the input statements are read.	none
FIRST	char	Specifies the line number of the first input statement being copied.	The current CALL statement.
LAST	char	Specifies the line number of the last input statement being copied.	The current CALL statement.
EXPAND	logical	Specifies that CALL statements being copied are converted to comments and the CALL contents associated with these CALL statements are copied. If the value of this parameter is false, CALL statements are copied in their original form and the CALL contents associated with these CALL statements are not copied.	true
ONCE	logical $\begin{array}{ll}\text { Sp } \\ & \text { p } \\ & \text { this } \\ & \mathrm{p} \\ & \mathrm{c} \\ & \mathrm{t}\end{array}$	Specifies that input statements are only entered the first time the CALL statement is processed during statement looping and remain unchanged afterward. If the value of this parameter is false, input statements are reentered each time the CALL statement is processed. This allows the input statements entered during a statement loop to be changed by varying the identifier or contents of the input file in the loop. This parameter has no effect if the CALL statement is not in a statement loop.	true
PRINT	logical $\begin{array}{ll}\text { Sp } \\ & \text { S } \\ & \text { f }\end{array}$	Specifies that the input statements entered by the CALL statement are printed on the standard output as part of the list of input statements. If the value of this parameter is false, only the CALL statement itself is printed.	true

## Reading a CALL File

Specifying the FILE parameter causes the CALL contents to be read from the file identified by this parameter. For example, the following CALL statement reads input statements from the file FILE1 and enters them after the CALL statement:

CALL FILE=FILE1

## Range Parameters

Specifying either or both of the FIRST and LAST parameters causes the CALL contents to consist of a range of statements. These are the currently available input statements between and including the statements identified by these parameters.

These statements must be located entirely before or after the current CALL statement. The current CALL statement cannot be included in the CALL contents.

The I.PRINT statement can be used to print the currently available input statements with their associated line numbers.

The FIRST and LAST parameters are intended primarily for use when the CALL statement is entered interactively. This allows previously entered statements to be easily repeated. For example, the following CALL statement copies the input statements from line 1/005 through line 1/008 and enters them after the CALL statement:

```
CALL FIRST=1/5 LAST=1/8
```


## Default Values

## Statement Modification

The default values for the FIRST and LAST parameters are chosen to simplify copying groups of statements immediately preceding or following the current CALL statement. Only the FIRST parameter is necessary to copy a group of statements immediately preceding the current CALI statement.

The following CALL statement copies the input statements from line 1/005 through the statement immediately preceding the CALL statement. It then enters them after the CALL statement:

CALL FIRST=1/5

Only the LAST parameter is necessary to copy a group of statements immediately following the current CALL statement. If you do not specify either the FIRST or LAST parameter, the FILE parameter must be specified. If the value of the FIRST parameter is greater than the value of the LAST parameter, the values of these parameters are interchanged.

Using the FIRST and LAST parameters to specify a range of statements to be copied causes some of these statements to be modified or removed in the following ways:

- INTERACTIVE and BATCH statements are converted to comments

They help identify which statements in the CALL contents were entered interactively, however they are only processed the first time they are encountered.

- HELP and I.PRINT statements are removed

They do not serve a useful purpose in the CALL contents and are only processed the first time they are encountered.

- CALL statements are converted to comments and the CALL contents are copied if any of the following conditions is satisfied:
- The value of the EXPAND parameter is true.
- The statement range does not include the CALL statement.
- The statement range includes a portion, but not all, of the CALL contents.
- The CALL contents are not copied and the CALL statement is copied in its original form if all of the following conditions are satisfied:
- The value of the EXPAND parameter is false.
- The statement range includes the CALL statement.
- The statement range includes either all or none of the CALL contents.


## Nesting CALL Statements

The CALL contents entered CALL can contain other CALL statements. They may be nested in this way to a maximum of 15 levels, as long as the available input storage is not exceeded.

Any of these CALL statements can obtain input statements by reading them from files or by copying them from the currently available input statements.

The CALL statement can be used to simplify the repetition of groups of statements. A group of statements placed in a file can be entered through the CALL statement multiple times in a single input file or repeatedly in different input files.

The following is an example of a file named FILE1:

```
STMT1 PARM1=1
STMT2 PARM2=2
```

The following input statements enter the statements in FILE1 at two locations in the same input file:

```
STMT3 PARM3=3
 CALL FILE=FILE1
STMT4 PARM4=4
 CALL FILE=FILE1
STMT5 PARM5=5
```

The statements in the above example are equivalent to the following input statements:

```
STMT3 PARM3=3
 STMT1 PARM1=1
 STMT2 PARM2=2
STMT4 PARM4=4
 STMT1 PARM1=1
 STMT2 PARM2=2
STMT5 PARM5=5
```


## Generating Template Files

CALL can be combined with the ASSIGN statement and assigned names to generate template files with variable input values.

Construction Methods

Template files are constructed by replacing portions of the input with assigned names and numerical expressions including assigned names.

Examples of input that may be replaced are shown below:

- Character strings
- Parameter names
- Parameter values

Example The following is an example of a template file named FILE2:

```
STMT1 PARM1=@VAL1
```

The following input statements assign values to the assigned name VAL1 and call the template file FILE2:

```
ASSIGN NAME=VAL1 N.VALUE=5
CALL FILE=FILE2
ASSIGN NAME=VAL1 N.VALUE=10
CALL FILE=FILE2
```

The preceding statements are equivalent to the following input statements:

```
STMT1 PARM1=5
STMT1 PARM1=10
```


## Using Template

Files
An input file that uses the template file must first include ASSIGN statements. The values of assigned names in the template file are established by the ASSIGN statements preceding the CALL statement in the input file.

The ASSIGN statement sets the values of assigned names appearing in the template file, and includes a CALL statement. CALL then enters the statements from the template file.

See Also... To further illustrate the CALL statement, refer to the following input files:

- $m d e x 7 b$ in Chapter 8, "Bipolar Structure Template," p. 8-13
- mdex7n in Chapter 8, "N-Channel LDD MOSFET Example," p. 8-1
- $\quad m d e x 7 p$ in Chapter 8, "P-Channel MOSFET Example," p. 8-7
- mdex8a in Chapter 9, "Substrate Current Simulation in an LDD MOSFET," p. 9-1
- mdex8b in Chapter 9, "Bipolar Junction Transistor Example," p. 9-8
- mdexll in Chapter 12, "Generation of the Simulation Structure and Solutions," p. 12-2
- mdexl4b in Chapter 13, "Bipolar Transistor Thermal Run-Away Analysis," p. 13-7


## INTERACTIVE

The INTERACTIVE statement starts interactive input mode, allowing statements to be entered interactively from your terminal. For more information see "Interactive and Batch Input Modes," p. 3-396.

## INTERACTIVE

[ONCE]

Parameter	Type	Definition	Default Units
ONCE	logical	Specifies that interactive input mode is only started the first time the   INTERACTIVE statement is processed during statement looping. This   parameter has no effect if the INTERACTIVE statement is not in a state-   ment loop.	False

## Starting Interactive Mode

Interactive input mode may be started through any of the following methods:

- An INTERACTIVE statement is entered through the batch input file.

In this case, the program resumes processing statements from the batch input file when interactive input is terminated.

- A blank file specification is given for the command input file when prompted at the beginning of program execution.
In this case, an INTERACTIVE statement is automatically added as the first input statement. All statements are entered interactively, and the program terminates when interactive input is terminated.
- A program execution error is encountered subsequent to the occurrence of an OPTION statement that specifies a true value for the I. ERROR parameter.
In this case, the program resumes processing statements from the batch input file when interactive input is terminated.

The program indicates when interactive input mode is started by doing the following:

- Printing a message on the terminal
- Printing a three-character interactive input prompt identifying the program
- Awaiting input of statements


## Terminating Interactive Mode

Interactive input mode can be terminated either by entering a BATCH statement or by entering an end-of-file during interactive input from your terminal. Typical end-of-file characters are CONTROL-D (EOT) and CONTROL-Z (SUB).

## Entering Long Statements

A statement can be continued on a subsequent line by ending the current input line with a plus character $(+)$. Continuation can be used repeatedly to generate input statements consisting of any number of input lines. The program indicates that continuation lines are expected by changing the interactive input prompt to " $+>$ " until the statement is complete. A continued statement can be completed by not ending the last line with a plus or by the input of a blank line.

## Entering Statements in Loops

When an INTERACTIVE statement is processed during statement looping, statements can be entered in either of the following two modes:

1. If the ONCE parameter is specified-One set of statements can be entered interactively the first time the INTERACTIVE statement is processed. These same statements are processed during subsequent passes through the loop.
2. If the ONCE parameter is not specified-A new set of statements can be entered interactively each time the INTERACTIVE statement is processed. The input statements entered interactively during the previous pass through the loop are replaced with the new set of interactively entered statements.

## BATCH

The BATCH statement terminates interactive input mode.

BATCH
[ <c>]

## Description

The BATCH statement can only be entered by direct interactive input. It cannot be entered through the batch input file or interactively through a CALL statement.

A BATCH statement is automatically added to the input when an end-of-file is encountered during interactive input from the terminal. Typical end-of-file characters are CONTROL-D (EOT) and CONTROL-Z (SUB). Interactive input mode can be terminated either with a BATCH statement or an end-of-file character.

The character strings associated with the BATCH statement are ignored by the program and serve only to document your input.

For more information see "Interactive and Batch Input Modes," p. 3-396.

## I.PRINT

The I.PRINT statement prints the currently available input statements with their associated line numbers.

```
I.PRINT
 {([FIRST=<C>] [LAST=<C>]) | [ALL]} [EXPAND]
```

Parameter	Type	Definition	Default
FIRST	char	Specifies the line number of the first input statement being printed.	10 statements before the current I.PRINT statement.
LAST	char	Specifies the line number of the last input statement being printed.	10 statements after the current I. PRINT statement.
ALL	logical	Specifies that all input statements are printed.	false
EXPAND	logical	Specifies that CALL statements being printed are converted to comments and the CALL contents associated with these CALL statements are printed. If the value of this parameter is false, CALL statements are printed in their original form and the CALL contents associated with these CALL statements are not printed.	true

## Range Parameters

The FIRST, LAST, and ALL parameters specify the range of statements printed by the I.PRINT statement. For example, the following statement prints the input statements from line $1 / 005$ through line $1 / 008$ :

```
I.PRINT FIRST=1/5 LAST=1/8
```

For more information see "Output of Statement Information," p. 3-398.

## CALL Statements

CALL statements are converted to comments and the CALL contents are printed if any of the following conditions is satisfied:

- The value of the EXPAND parameter is true.
- The statement range does not include the CALL statement.
- The statement range includes a portion, but not all, of the CALL contents.

The CALL contents are not printed and the CALL statement is printed in its original form if all of the following conditions are satisfied:

- The value of the EXPAND parameter is false.
- The statement range includes the CALL statement.
- The statement range includes either all or none of the CALL contents.


## Output

The output from the I.PRINT statement consists of the following:

- Current line number
- Loop counters
- Input statements with their associated line numbers.

The output may be printed on the terminal or the standard output. This is determined by which method the I.PRINT statement is entered, as shown below:

- Terminal output-The I.PRINT statement is entered interactively.
- Standard output-The I .PRINT statement is entered through the batch input file or through a CALL statement.


## I.SAVE

The I. SAVE statement saves input statements in a file.

```
I.SAVE
 FILE=<C> [NOW] [FIRST=<C>] [LAST=<C>] [EXPAND]
```

Parameter	Type	Definition	Default
FILE	char	Specifies the identifier for the formatted output file in which the input statements are saved.	none
NOW	logical	Specifies that the input statements are saved immediately. If the value of this parameter is false, the input statements are saved when program execution terminates.	True if FIRST or LAST is specified; otherwise, false.
FIRST	char	Specifies the line number of the first input statement being saved.	The first available statement.
LAST	char	The line number of the last input statement being saved.	The last available statement.
EXPAND	logical	Specifies that CALL statements being saved are converted to comments and the CALL contents associated with these CALL statements are saved. If the value of this parameter is false, CALL statements are saved in their original form and the CALL contents associated with these CALL statements are not saved.	true

## Description

The primary use for the I.SAVE statement is to save input statements that are entered interactively.

The I. SAVE output file can be used later as a batch input file or can be input using the CALL statement. These files can be used in the same program execution or in a subsequent execution.

For more information see "Output of Statement Information," p. 3-398.

## Saving Input Statements

When the I. SAVE statement is entered with a false value for the NOW parameter, the FILE parameter specifies the identifier of a single file in which part or all of the input statements are saved when program execution terminates.

For example, the following statement saves all input statements in the FILE1 file when program execution terminates:

```
I.SAVE FILE=FILE1
```

When the I. SAVE statement is entered with a true value for the NOW parameter, part or all of the currently available input statements are saved in the file identified by the FILE parameter.

For example, the following statement immediately saves the input statements from line 1/005 through line 1/010 in the FILE1 file:

```
I.SAVE FILE=FILE1 FIRST=1/5 L_AST=1/10
```


## Saving a Range of Statements

The default values of FIRST and LAST parameters save all the input statements. They can be modified to a range of statements to be saved.

## Repeated I. SAVE

Repeated I.SAVE statements with a false value for the NOW parameter merely replace the file identifier and the statement range. At the termination of program execution, the specified range of input statements are saved in the file identified by 356
the last I. SAVE statement.
For example, the following statement saves the input statements from line 1/005 through line $1 / 010$ in the FILE1 file when program execution terminates:
I.SAVE FILE=FILE1 FIRST=1/5 LAST=1/10 ^NOW

## Statement Modification

Some statements are modified or removed before being saved in the following ways:

- INTERACTIVE and BATCH statements are converted to comments.

They help to identify which statements in the saved output were entered interactively, but they are only processed when they are encountered in the original input.

- HELP and I.PRINT statements are removed.

They do not serve a useful purpose in the saved output and are only processed when they are encountered in the original input.

- CALL statements are converted to comments and the CALL contents are saved if any of the following conditions is satisfied:
- The value of the EXPAND parameter is true.
- The statement range does not include the CALL statement.
- The statement range includes a portion, but not all, of the CALL contents.
- The CALL contents are not saved and the CALL statement is saved in its original form if all of the following conditions are satisfied:
- The value of the EXPAND parameter is false.
- The statement range includes the CALL statement.
- The statement range includes either all or none of the CALL contents.


## IF

## Parameter Type

COND logical
The IF statement begins a sequence of one or more conditionally processed input statement blocks and its first block.

IF
[COND]

## Specifying Block Sequence

- The IF statement defines the beginning of a sequence of conditionally processed blocks of statements.
- An IF . END statement is used to indicate the end of the sequence of statement blocks.
- The first statement block in the sequence begins with the IF statement, while subsequent statement blocks begin with ELSE statements.
- Each statement block ends with either an ELSE statement or the IF . END statement.

Matching and Nesting

- Each IF statement must be paired with a matching IF . END statement, with possibly intervening ELSE statements.
- IF and IF . END statements must independently match in statement loops, outside of statement loops, in input entered while in interactive input mode, and in input entered through the batch input file.
- Pairs of IF and IF . END statements can be nested to a maximum depth of 20 levels.


## Processing

At most, one statement block in a sequence of blocks is processed. The statement block processed is the first in the sequence with a true value for the COND parameter on the IF or ELSE statement that begins the block. None of the statement blocks in a sequence is processed if the IF statement and all ELSE statements in the sequence have a false value for the COND parameter.

## Example

The following example illustrates the use of the IF, ELSE, and IF . END statements to enter the name of an object, test for recognized names, and output information regarding the object:

```
ECHO "Specify the object shape"
ASSIGN NAME=SHAPE C.VALUE="none" PROMPT="shape="
IF COND=(@SHAPE="triangle")
 ECHO "3 sides"
ELSE COND=(@SHAPE="none")
 ECHO "shape not specified"
ELSE
 ECHO "invalid shape"
IF.END
```

The following output is generated for various inputs provided to the ASSIGN statement:

```
shape=triangle
3 sides
shape=
shape not specified
shape=rectangle
invalid shape
```

See Also... To further illustrate the $\boldsymbol{I F}$ statement, refer to the following input files:

- mdexlf in Chapter 4, "Analysis Including Fast Interface States," p. 4-19
- mdexlt in Chapter 4, "Analysis Including Band-to-Band Tunneling," p. 4-25
- mdex8a in Chapter 9, "Substrate Current Simulation in an LDD MOSFET," p. 9-1
- mdex8b in Chapter 9, "Bipolar Junction Transistor Example," p. 9-8


## ELSE

The ELSE statement terminates a conditionally processed input statement block began with a previous IF or a previous ELSE statement and begins a new conditionally processed input statement block.

ELSE
[COND]

Parameter Type
COND logical

Definition

Specifies that the block of input statements between the ELSE true statement, and the next ELSE statement or IF. END statement are being processed. If the value of this parameter is false, the block of input statements is not processed.

## Description

The ELSE statement defines the beginning of one statement block in a sequence of conditionally processed blocks of statements begun by an IF statement. The statement block is terminated either by another ELSE statement or by the IF . END statement that terminates the sequence of statement blocks.

The block of statements is processed if the value of the COND parameter is true and no previous statement blocks in the sequence have been processed.

See Also... To further illustrate the ELSE statement, refer tothe following input files:

- mdexlf in Chapter 4, "Analysis Including Fast Interface States," p. 4-19
- mdexlt in Chapter 4, "Analysis Including Band-to-Band Tunneling," p. 4-25
- mdex8a in Chapter 9, "Substrate Current Simulation in an LDD MOSFET," p. 9-1
- mdex8b in Chapter 9, "Bipolar Junction Transistor Example," p. 9-8


## IF.END

The IF. END statement terminates sequences of conditionally processed input statement blocks associated with the IF statement.

## IF.END

[<c>]

The character strings associated with the IF . END statement are ignored by the program and serve only to document your input.

## See Also...

To illustrate the IF . END statement, refer to the following input files:

- mdexlf in Chapter 4, "Analysis Including Fast Interface States," p. 4-19
- mdexlt in Chapter 4, "Analysis Including Band-to-Band Tunneling," p. 4-25
- mdex8a in Chapter 9, "Substrate Current Simulation in an LDD MOSFET," p. 9-1
- mdex8b in Chapter 9, "Bipolar Junction Transistor Example," p. 9-8


## LOOP

The LOOP statement begins an input statement loop and specifies the number of times to process the statements in the loop. Optimization or sensitivity analysis can be performed by a single loop. The values of numerical and array parameters and assigned names can be varied on statements in loops.

LOOP
[STEPS=<n>] [PRINT] [ \{OPTIMIZE | SENSITIV\} ]

Parameter	Type	Definition	Default
STEPS	number	Specifies the maximum number of passes through the loop. The statements between the LOOP statement and its matching L. END statement are processed once during each pass through the loop. The loop terminates when the number of passes equals the value of the STEPS parameter. If OPTIMIZE or SENSITIV is specified, the loop also terminates when the optimization or sensitivity analysis is completed. The value of the STEPS parameter must be a positive integer.	100 if OPTIMIZE or SENSITIV are specified, otherwise 1
PRINT	logical	Specifies that the values of parameters and assigned names that vary under control of this loop level are printed each time they are varied. For numerical and array parameters, the statement name, line number, loop level, loop counter, parameter name, and parameter value are printed before processing the statement containing the varied parameter value. For assigned names, the assigned name, line number, loop level, loop counter, and assigned value are printed after processing the ASSIGN statement defining the varied assigned name value.	false
OPTIMIZE	logical	Specifies that this loop performs optimization of assigned name values that are defined by ASSIGN statements specifying the OPTIMIZE parameter. Only one loop in a nest of loops can specify the OPTIMIZE or SENSITIV parameters.	false
SENSITIV	logical	Specifies that this loop performs sensitivity analysis for assigned name values that are defined by ASSIGN statements specifying the SENSITIV parameter. Only one loop in a nest of loops can specify the OPTIMIZE or SENSITIV parameters.	false

## Statement Looping

The LOOP statement defines the beginning of a sequence of statements to be processed repeatedly. An L. END statement is used to indicate the end of the statement sequence

Loop Processing
The statement sequence is processed the number of times specified by one of the following:

- The STEPS parameter is specified

The L. MODIFY statement can be used to modify the original values of the STEPS and PRINT parameters specified in the LOOP statement.

- If either OPTIMIZE or SENSITIV is specified

In this case, the processing continues until the optimization or sensitivity analysis is completed.

Repeated processing of a statement sequence is similar to when the sequence of statements is explicitly repeated multiple times in the program input. The difference is that during statement looping a statement in the sequence is referenced by the same input line number during each pass through the loop.

Each LOOP statement must be paired with a matching L. END statement. LOOP and L.END statements must match input entered while in interactive input mode and also must independently match input entered through the batch input file.

## Matching and Nesting

Nested statements have the following properties:

- Pairs of LOOP and L. END statements can be nested to a maximum depth of ten levels.
- Nested loop levels are numbered starting with 1 at the outer loop and increasing to a value less than or equal to 10 at the inner loop.

The current loop level associated with a statement is the level of the innermost loop which contains that statement. Only one loop in a nest of loops may specify the OPTIMIZE or SENSITIV parameters.

## Loop Counters

Each loop uses a unique counter which varies from 1 to the value specified by the STEPS parameter for that loop. The loop counters are processed by Medici through the following steps:

1. Before the first LOOP statement is processed, the loop level is initialized to zero.
2. When a LOOP statement is processed, the loop level is incremented by one and the counter associated with the loop is initialized to one.
If optimization or sensitivity analysis is being performed, the state of the simulation is saved.
3. The counter remains constant during processing of all statements following the LOOP statement until the matching L . END statement is encountered.
4. When the matching L. END statement is processed, the counter is incremented by one and compared to the STEPS parameter specified on the matching LOOP statement.
5. If the counter exceeds STEPS or if optimization or sensitivity analysis is completed, the following occurs:
a. The loop terminates.
b. The loop level is decremented by one.
c. The next statement processed is that following the L. END statement.

If the loop does not terminate, refer to Step 6.
6. If the loop does not terminate, the following occurs:
a. The loop level remains unchanged
b. The next statement processed is that following the matching LOOP statement.
c. If optimization or sensitivity analysis is being performed, the previously saved state of the simulation is restored.

## Parameter Values in Loops

The values of numerical and array parameters on statements in loops may be varied by either a constant difference or a constant ratio between successive passes through a loop. This is specified by using a more general form for a parameter value as follows:
<start>:<increment>:<level>
where:

- <start> is the initial value of the parameter for the first pass through the loop
- <increment> is the difference or ratio between the parameter values for successive passes
- <level> identifies the loop level which controls variation of the parameter.

Syntax The colon (:) is used to separate portions of the value specification and can be preceded or followed by any number of spaces. The first colon can only be used if the <increment> is specified and the second colon can only be used if the <level> is specified.

Parameter values which are varied in this manner cannot be controlled by a loop level that is performing optimization or sensitivity analysis.

## Parameter Varying Loop

The variation of a parameter value may be controlled by any loop at a level less than or equal to the current loop level. The counter associated with the controlling loop determines the value of the parameter.

For example, in the following input, the PARM1, PARM2, and PARM3 parameters are controlled by loop levels 1,2 , and 3 , respectively:

```
LOOP STEPS=2
 LOOP STEPS=2
 LOOP STEPS=2
 STMT PARM1=0:1:1 PARM2=0:1:2 PARM3=0:1:3
 L.END
 L.END
L.END
```

Parameters in Value Specification

The <start> is the only required portion of the parameter value specification and can consist of any valid numerical expression. If the <increment> is not specified, the parameter value remains constant and the <level> cannot be specified. The <increment> is ignored if the parameter value occurs outside of loops. In this case, the <level> can only be specified if its value is zero or negative.

The <increment> can consist of any valid numerical expression. If the parameter value is to vary by a constant ratio, the <increment> must be nonzero and its first character must be an asterisk (*). In this case, the parameter value is determined by:

```
value = <start>* <increment>**(count-1)
```

where count is the counter for the loop level specified by <level>. If the asterisk is not present, the parameter value varies by a constant difference and the <increment> can be any value. In this case, the parameter value is determined by:

```
value = <start> + <increment>*(count-1).
```

Value <level>

The <level> can consist of any valid numerical expression. The <level> is truncated to an integer, after which it must be less than or equal to the current loop level. The following table illustrates the values which may be used for <level>, and the effects those values have on the process.

## Table 3-36 Values and Effects for <level>

Value	Effect
Not specified	The value defaults to the current loop level, causing the parameter value to be varied each   time the statement is processed.
0 (Zero)	The parameter variation is disabled and the parameter remains constant. This allows the   variation of a parameter to be disabled without requiring deletion of the <increment $>$.
Positive	This value directly specifies the loop level which controls the parameter value.
Negative	The loop level which controls the parameter value is the sum of the current loop level and   <level>. If this sum is not positive the parameter variation is disabled as if the <level> were   zero. This feature allows a parameter to be controlled by a loop one or more levels lower   than the current loop level without explicitly specifying the loop level.

## Single Loop

 ExampleThe following example illustrates the use of statement looping for a single loop and a statement containing the numerical parameters PARM1 and PARM2:

```
LOOP STEPS=3
 STMT PARM1=0:5 PARM2=1:*-1
L.END
```

where under control of the loop:

- The parameter PARM1 assumes values of 0,5 , and 10 .
- The parameter PARM2 assumes values of $1,-1$, and 1 .

The following example illustrates a more complex use of statement looping for a statement containing the numerical parameter PARM1 and the array parameter PARM2:

```
LOOP STEPS=3
 LOOP STEPS=2
 ASSIGN NAME=BASE N.VALUE=10 RATIO=2
 STMT PARM1=0:5 PARM2=(10:*2:1 , @BASE+10:10:-1)
 L.END
L.END
```

where:

- The assigned name BASE starts with the value of 10 and varies by a constant ratio of 2 under control of the inner loop.
- The numerical parameter PARM1 starts with the value of 0 and varies by a constant difference of 5 under control of the inner loop.
- Element 1 of the array parameter PARM2 starts with the value of 10 and varies by a constant ratio of 2 under control of the outer loop. (The loop level is specified explicitly as 1.)
- Element 2 of the array parameter PARM2 starts with the value of BASE+10 and varies by a constant difference of 10 under control of the outer loop. (The loop level is specified as 1 less than the current level of 2.)
- The variation of the value of the assigned name BASE under control of the inner loop causes the starting value for element 2 of the array parameter PARM2 to vary between 20 and 30 .

The values of the loop counters and varied parameter values, and assigned names during the statement processing are as follows:

| count \#1 | count \#2 | PARM1 | PARM2 | (1) | BASE | PARM2 (2) |
| :---: | :---: | :---: | :---: | ---: | :---: | ---: | :---: |
| 1 | 1 | 0 | 10 | 10 | 20 |  |
| 1 | 2 | 5 | 10 | 20 | 30 |  |
| 2 | 1 | 0 | 20 | 10 | 30 |  |
| 2 | 2 | 5 | 20 | 20 | 40 |  |
| 3 | 1 | 0 | 40 | 10 | 40 |  |
| 3 | 2 | 5 | 40 | 20 | 50 |  |

See Also... To further illustrate the LOOP statement refer to the following input files:

- mdexlf in Chapter 4, "Analysis Including Fast Interface States," p. 4-19
- mdexlt in Chapter 4, "Analysis Including Band-to-Band Tunneling," p. 4-25
- mdex8a in Chapter 9, "Substrate Current Simulation in an LDD MOSFET," p. 9-1
- mdex8b in Chapter 9, "Bipolar Junction Transistor Example," p. 9-8


## L.MODIFY

The L.MODIFY statement modifies the processing of a currently active statement loop associated with a LOOP statement.

## L. MODIFY <br> [LEVEL=<n>] [STEPS=<n>] [ \{NEXT | BREAK\} ] [PRINT]

Parameter	Type	Definition	Default
LEVEL	number	Specifies the loop level associated with the LOOP statement for which processing is being modified. The value of this parameter must be less than or equal to the current loop level. If the value of this parameter is zero, the modification of statement processing is disabled. If the value of this parameter is negative, the loop level used is the sum of this parameter value and the current loop level.	The current loop level.
STEPS	number	Specifies the number of times the statements between the LOOP statement and its matching L. END statement are processed for the specified loop level. The value of this parameter must be a positive integer and may be less than or equal to the current value of the loop counter for the specified loop level. A value of 1 prevents any subsequent passes through the loop from being performed.	The current value for the specified loop level.
NEXT	logical	Specifies that the next statement processed is the L.END statement for the specified loop level. The statements between the L. MODIFY statement and the L. END statement for the specified loop level are not processed during this pass through the loop.	false
BREAK	logical	Specifies that the next statement processed is the statement following the L. END statement for the specified loop level. No subsequent passes through the loop are performed. The statements between the L. MODIFY statement and the L. END statement for the specified loop level are not processed during this pass through the loop.	false
PRINT	logical	Specifies that the values of parameters and assigned names which vary under control of the specified loop level are printed each time they are varied. For numerical and array parameters, the statement name, line number, loop level, loop counter, parameter name, and parameter value are printed before processing the statement containing the varied parameter value. For assigned names, the assigned name, line number, loop level, loop counter, and assigned value are printed after processing the ASSIGN statement defining the varied assigned name value.	The current value for the specified loop level.

## Description

The L.MODIFY statement modifies the processing of a currently active statement loop associated with a LOOP statement.The L. MODIFY statement can be used to modify the number of passes through a loop and whether values of parameters and assigned names which vary under control of a loop are printed. The L. MODIFY statement can also be used to skip the remaining statements (NEXT) or terminate the specified loop (BREAK).

## Modifying Passes Through the Loop

Based on the results of previous statements, you may choose to modify the number of subsequent passes through the loop.

An L. MODIFY statement specifying the STEPS parameter can be used to increase or decrease the total number of passes through the loop. If the value of the STEPS parameter is modified so it is less than or equal to the current value of the loop counter, no subsequent passes through the loop are performed.

For example, the following statement sets the number of passes through the current loop level to 5:
L.MODIFY STEPS=5

## L. END

The L . END statement terminates input statement loops associated with the LOOP statement.

## L. END <br> [BREAK] [ALL]

Parameter	Type		Definition
BREAK	logical	Specifies that the loop terminates after the first pass.	Default
ALL	logical	Specifies that all loops currently available for termination are terminated. false	

## Preventing Subsequent Passes

The BREAK parameter can be used to disable multiple passes through a loop. It is intended primarily for use when the L. END statement and statements in the loop are entered interactively.

Based on the results of the first time the statements in the loop are processed, you can choose to prevent subsequent passes through the loop by specifying the BREAK parameter when the $\mathbf{L}$. END statement is entered.

## Terminating All Loops

The ALI parameter can be used to terminate all loops currently in effect with a single L. END statement.

LOOP and L. END statements must independently match in input entered while in the following modes:

- Interactive input mode
L. END statements specifying the $\mathbf{A L L}$ parameter entered while in interactive input mode terminate only loops entered while in interactive input mode.
- Batch input file
L. END statement specifying the ALL parameter entered through the batch input file, cause all loops currently in effect to be terminated.

The following example illustrates the termination of three loop levels with a single L. END statement:

```
LOOP STEPS=2
 LOOP STEPS=2
 LOOP STEPS=2
 STMT
 L.END ALL
```

If the ALL parameter is not specified, three consecutive L. END statements are required.

See Also... To further illustrate the L. END statement, refer to the following input files:

- mdexlf in Chapter 4, "Analysis Including Fast Interface States," p. 4-19
- mdexlt in Chapter 4, "Analysis Including Band-to-Band Tunneling," p. 4-25
- mdex8a in Chapter 9, "Substrate Current Simulation in an LDD MOSFET," p. 9-1
- mdex8b in Chapter 9, "Bipolar Junction Transistor Example," p. 9-8


## ASSIGN

The ASSIGN statement assigns values to an assigned name.

```
ASSIGN
{ (NAME=<C> [PRINT]
 { (N.VALUE=<a> [{DELTA=<n> | RATIO=<n>}])
 (N.VALUE=<a> {OPTIMIZE | SENSITIV} LOWER=<n> UPPER=<n>)
 (L.VALUE=<a>)
 (C.VALUE=<C> [DELTA=<n>])
 ([C1=<C>] [C2=<C>] [C3=<C>] [C4=<C>] [C5=<C>]
 [C6=<c>] [C7=<c>] [C8=<c>] [C9=<c>] [C10=<c>]
)
 }
 [E.NAME=<C>] [PROMPT=<C>] [LEVEL=<n>]
)
 (PRINT [INITIAL] [NAME=<C>])
}
```

Parameter	Type	Definition	Default
NAME	char	Specifies the assigned name to which a value is being assigned or for which the current value is printed. The name must consist only of letters, digits, and periods (.), and cannot exceed eight characters.	none
PRINT	logical	Specifies that the current values of assigned names are printed. If the NAME parameter is specified, only the value of the specified assigned name is printed. If the INITIAL parameter is specified, only the values of initially assigned names are printed.	false
n. value	array	Specifies the numerical value(s) assigned to the assigned name. If a single value is specified and neither OPTIMIZE nor SENSITIV is specified, the DELTA or RATIO parameters can be specified to vary the value of the assigned name. If multiple values are specified, the value of the assigned name is varied by choosing successive values from the list of values specified with this parameter. Only a single value can be specified if OPTIMIZE or SENSITIV is specified. At most 100 values can be defined with this parameter. The value(s) specified with this parameter can be replaced by one or more values specified with the PROMPT or E. NAME parameters.	none
DELTA	number	Specifies the constant difference by which the value of the assigned name is varied. This parameter is only allowed if the C.VALUE parameter is specified or if a single value is specified with the $\mathbf{N}$. VALUE parameter and neither OPTIMIZE nor SENSITIV is specified.	none
RAtio	number	Specifies the constant ratio by which the value of the assigned name is varied. The value of this parameter must be nonzero. This parameter is only allowed if a single value is specified with the N. VALUE parameter and neither OPTIMIZE nor SENSITIV is specified.	none


Parameter	Type	Definition	Default
OPTIMIZE	logical	Specifies that the value of the assigned name is controlled by an optimization loop.	false
SENSITIV	logical	Specifies that the value of the assigned name is controlled by a sensitivity analysis loop.	false
LOWER	number	Specifies the lower bound for the value of the assigned name during optimization or sensitivity analysis.	none
UPPER	number	Specifies the upper bound for the value of the assigned name during optimization or sensitivity analysis.	none
L. VALUE	array	Specifies the logical value or values assigned to the assigned name. If multiple values are specified, the value of the assigned name is varied by choosing successive values from the list of values specified with this parameter. At most 100 values may be defined with this parameter. The value(s) specified with this parameter may be replaced by one or more values specified with the PROMPT or E.NAME parameters.	none
C. VALUE	char	Specifies the character value assigned to the assigned name. The value specified with this parameter may be replaced by a value specified with the PROMPT or E.NAME parameters.	none
C1	char	Specifies the first in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.	none
C2	char	Specifies the second in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.	none
C3	char	Specifies the third in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.	none
C4	char	Specifies the fourth in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.	none
C5	char	Specifies the fifth in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.	none
C6	char	Specifies the sixth in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.	none
C7	char	Specifies the seventh in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.	none


Parameter	Type	Definition	Default
C8	char	Specifies the eighth in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.	none
C9	char	Specifies the ninth in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.	none
C10	char	Specifies the tenth in a list of character values assigned to the assigned name. The value of the assigned name is varied by choosing successive values from the list of values specified with the parameters C1 through C10.	
E. NAME	char	Specifies the name of an environment variable containing an alternative to the value specified by the N. VALUE, L. VALUE, or C.VALUE parameter. If the environment variable is not set or its value is blank, the value specified by the N.VALUE, L. VALUE, or C. VALUE parameter is used. This parameter is only allowed with the N.VALUE, L.VALUE, and C.VALUE parameters. The value(s) specified with this parameter can be replaced by one or more values specified with the PROMPT parameter.	none
PROMPT	char	Specifies the character string used to prompt you for interactive input of an alternative to the value specified by the N.VALUE, L. VALUE, C.VALUE, or E. NAME parameter. If this character string is blank, ">" is used instead. This character string is output on your terminal and the alternative value is read from the terminal input. If the character string read from the terminal input is blank, the value specified by the N. VALUE, L. VALUE, C. VALUE, or E.NAME parameter is used. This parameter is only allowed with the N.VALUE, L. VALUE, and C.VALUE parameters.	none
LEVEL	number	Specifies the loop level which controls variation of the value of the assigned name. The value of this parameter must be less than or equal to the current loop level. If the value of this parameter is zero the variation of the assigned name is disabled. If the value of this parameter is negative the loop level used is the sum of this parameter value and the current loop level.	The current loop level.
INITIAL	logical	Specifies that the values of initially assigned names are printed.	false

## Description

## See Also... To further illustrate the ASSIGN statement, refer to the following:

- Input file mdexla in Chapter 4, "Generation of the Simulation Structure," p. 4-2
- Input file mdexlf in Chapter 4, "Analysis Including Fast Interface States," p. 4-19
- Input file mdexlt in Chapter 4, "Analysis Including Band-to-Band Tunneling," p. 4-25
- Several other examples


## Definitions

The definition of an assigned name can be repeatedly changed using successive ASSIGN statements. The definition established by execution of an ASSIGN statement remains in effect until the one of the following occurs:

- The definition is changed by execution of another ASSIGN statement.
or
- By execution of the same ASSIGN statement during a subsequent pass through a statement loop


## Values

An assigned name can be given one of the following type of values:

- Numerical
- Logical
- Character

These values can be constant or can vary in statement loops. If the value of an assigned name is varied during statement looping, it is given a new value during each pass through the loop that controls its variation.

Mixed Type Assigned names with different types of values can be used in the following ways:
Usage

- Assigned names with numerical and logical values can be used interchangeably in numerical and character expressions.
- Assigned names with character values can be used in numerical expressions as arguments to relational operators, logical functions, and conversion functions.
- Assigned names with character values can also be used to specify statement names and one or more complete parameter name/value pairs.
This is illustrated in the last example at the end of this section.


## Numerical Values

The $\mathbf{N}$. VALUE parameter is used to assign numerical values to the assigned name. There are two methods of specifying numerical values, each of which have different effects on the program. Numerical values may be specified in the following ways:

- If a single value is specified-The value of the assigned name can be varied during statement looping either by a constant increment by specifying the DELTA parameter or by a constant ratio by specifying the RATIO parameter.
- If multiple values are specified-The DELTA and RATIO parameters can not be specified. In this case the $\mathbf{N}$. VALUE parameter specifies a list of values from which successive values are taken during each pass through a statement loop. After the last value in the list is taken, the sequence begins again with the first value in the list.


## Logical Values

## Character Values

Incrementing

The L. VALUE parameter is used to assign logical values to the assigned name.

- If multiple values are specified-The L. VALUE parameter specifies a list of values from which successive values are taken during each pass through a statement loop. After the last value in the list is taken, the sequence begins again with the first value in the list.

The C.VALUE parameter is used to assign a character value to the assigned name.

- If DELTA parameter is not specified-The value of the assigned name is constant.
- If DELTA parameter is specified-Its value is truncated to an integer and used to increment the value of the assigned name during statement looping.

The incrementing of character values is primarily useful for varying file identifiers and title strings during statement looping. The increment processes are described in the following:

- The increment value is specified by the DELTA parameter.
- When a character value is incremented, characters in any of the character sequences " $0-9$ ", "a-z", and "A-Z" can be changed, while other characters are left unchanged.
- A character is always changed to another character in the same character sequence.
- A character value is incremented by starting with the rightmost character in the value and moving forward or backward through the character sequence containing it.
- Each time either end of the sequence is passed, the next character to the left in the value is changed by moving forward or backward by one character.

Increment Example

For example, the following input statements assign character values using an increment of 4 to the NAME1 assigned name:

```
LOOP STEPS=6
 ASSIGN NAME=NAME1 C.VALUE=aa.0 DELTA=4
L. END
```

The above input statements result in the NAME1 assigned name assuming the following sequence of character values:

```
aa. }
aa. }
aa. }
ab. }
ab. }
ac. }
```

The parameters C1 through C10 are used to assign one of a list of character values to the assigned name. These parameters specify a list of from 1 to 10 values from which successive values are taken during each pass through a statement loop. After the last value in the list is taken, the sequence begins again with the first value in the list.

## Assigned Names in Optimization

A maximum of 20 assigned names can be defined using the OPTIMIZE o SENSITIV parameters in one optimization or sensitivity analysis loop.

- If OPTIMIZE or SENSITIV is specified-The initial value of the assigned name is specified with the N. VALUE parameter. The optimization or sensitivity analysis loop determines appropriate values for the assigned name for all passes through the loop except the first.
- LOWER and UPPER parameters specify the range of allowed values for the assigned name
It is important to choose values for these parameters that are as close as possible to the value specified for N. VALUE. This maximizes the efficiency and accuracy of the optimization and sensitivity analysis.


## Overriding Assigned Values

The program provides two ways to override specified values.

Environment Variable

The E.NAME parameter specifies the name of an environment variable. If the specified environment variable is set, its value is used instead of the value specified by the following parameters:

- N. VALUE, L . VALUE, or C. VALUE

For example, the following input statement assigns the value "original" to the NAME1 assigned name if the NEWNAME environment variable is not set:

```
ASSIGN NAME=NAME1
C.VALUE="original"
E. NAME=NEWNAME
```

Assigning the NEWNAME environment variable to "new" before executing Medici, causes the above input statement to assign the value "new" to the assigned name NAME1.

## Interactive Input Prompt

The PROMPT parameter specifies a character string being used to prompt you for interactive input of the assigned name value from your terminal. If the input string is not blank, its value is used instead of the value specified by the following parameters:

- N. VALUE, L . VALUE, C. VALUE, Or E . NAME

For example, the following input statement uses the "INPUT>" character string to prompt for the value of the NAME1 assigned name:

```
ASSIGN NAME=NAME1 C.VALUE="original" PROMPT="INPUT>"
```

if:

- The input provided in response to the prompt is blank, the statement assigns the value "original" to the NAME1 assigned name
- The response to the prompt is "new", then the above statement assigns the value "new" to the NAME1 assigned name


## Examples

## Simple Example

A maximum of 200 assigned names can be defined. An assigned name is referenced in an input statement by preceding the name with "@."

The following input statements assign values to the NAME1 and NAME2 assigned names and use these assigned names to define the values of the parameters PARM1 and PARM2:

ASSIGN	NAME=NAME1	C.VALUE=" String"
ASSIGN NAME=NAME2	N.VALUE=5	
STMT PARM1=@NAME1	PARM2=@NAME2	

The above input statements are equivalent to the following input statement:

```
STMT PARM1="String" PARM2=5
```

Complex The following input statements illustrate the use of ASSIGN statements in a loop: Example

```
ASSIGN NAME=NAME2 C.VALUE="PARM2=2"
LOOP STEPS=2
 ASSIGN NAME=NAME1 C1="STMT1 PARM1=1" C2="STMT2 PARM1=2"
 LOOP STEPS=3
 ASSIGN NAME=NAME3 C.VALUE="String0" DELTA=1
 ASSIGN NAME=NAME4 N.VALUE=5 RATIO=2
 ASSIGN NAME=NAME5 N.VALUE=(10,20)
 @NAME1 @NAME2 PARM3=@NAME3 PARM4=@NAME4 PARM5=@NAME5
 L.END
L. END
```

where:

- NAME2 assigned name is given a character value which specifies the parameter name and value for the numerical parameter PARM2.
- NAME1 assigned name is given a list of 2 character values from which successive values are taken during each pass through the outer loop to specify the value for the statement name and the parameter name and value for the PARM1 numerical parameter.
- NAME3 assigned name is given a character value which is incremented by 1 during each pass through the inner loop to specify the value for the PARM3 character parameter.
- NAME4 assigned name is given a single numerical value which is multiplied by 2 during each pass through the inner loop to specify the value for the PARM4 numerical parameter.
- NAME5 assigned name is given a list of 2 numerical values from which successive values are taken during each pass through the inner loop to specify the value for the PARM5 numerical parameter.

The above statement loops are equivalent to the following input statements:

STMT1	PARM1=1	PARM2=2	PARM3="String0"	PARM4=5	PARM5=10
STMT1	PARM1=1	PARM2=2	PARM3="String1"	PARM4=10	PARM5=20
STMT1	PARM1=1	PARM2=2	PARM3="String2"	PARM4=20	PARM5=10
STMT2	PARM1=2	PARM2=2	PARM3="String0"	PARM4=5	PARM5=10
STMT2	PARM1=2	PARM2=2	PARM3="String1"	PARM4=10	PARM5=20
STMT2	PARM1=2	PARM2=2	PARM3="String2"	PARM4=20	PARM5=10

## ECHO

The ECHO statement outputs text to your terminal.
ECHO [<c>]

## Description

The character strings associated with the first 15 lines of the ECHO statement are output to your terminal. The ECHO statement is used with the PROMPT parameter on the ASSIGN statement to provide interactive terminal input and output.

## Example

Steps Not These statements produce the following output if you do not specify a number of Specified

The following statements prompt you for the number of loop steps and output the specified value:

```
ECHO Input the number of loop steps
+ (default:10)
ASSIGN NAME=TYPE N.VALUE=10 PROMPT="steps="
ECHO " "
+ @TYPE" steps were requested"
```

steps:

```
Input the number of loop steps
(default:10)
steps=
1 0 \text { steps were requested}
```

Steps Specified
If you specify 20 steps, the following output is produced:

```
Input the number of loop steps
(default:10)
steps=20
2 0 \text { steps were requested}
```


## RETURN

The RETURN statement terminates further processing of input statements in a file.
RETURN
[<c>]

## Description

Input statements following a RETURN statement are not executed. This statement is used to prevent processing of statements at the end of the command input file or a file read with a CALI statement.

The RETURN statement is equivalent to a STOP statement when it occurs in the command input file, because no further statement processing occurs, causing program execution to terminate.

The character strings associated with the RETURN statement are ignored by the program and serve only to document your input.

## STOP

The STOP statement terminates the execution of the program. EXIT and QUIT are synonyms for this statement.

STOP
[<c>]

## Description

Input statements following a STOP statement are not executed. This statement is used to terminate program execution from the command input file or a file read with a CALL statement.

The character strings associated with the STOP statement are ignored by the program and serve only to document your input. A STOP statement is not necessary to terminate program execution.

## IGNORE

```
The IGNORE statement prevents processing of subsequent input statements in a file.
IGNORE [<c>]
```


## Description

Any input statements following a IGNORE statement are printed, but are not checked for proper syntax and are not executed. This statement is used to ignore statements at the end of the command input file or a file read with a CALL statement.

The IGNORE statement is equivalent to a STOP statement when it occurs in the command input file, because no further statement processing occurs, causing program execution to terminate.

The character strings associated with the IGNORE statement are ignored by the program and serve only to document your input.

### 3.7 Old Statements

The functions performed by the following statements have been superseded by new additions to the program.

## CAUTION

The statements in this section are presently supported, but their use is discouraged since they are likely to be eliminated from further versions of the program.

Statement	Definition	Page
CALCULATE	Calculates derived quantities from terminal data.   Replaced by more general capabilities on the EXTRACT   statement.	$3-446$
CHECK	Compares specified solutions. Replaced by more gen-   eral capabilities on the EXTRACT statement.	$3-449$
DEPOSITION	Deposits carriers within a specified device cross-sec-   tion. Use the PHOTOGEN statement instead.	$3-450$
	Calculates steady state solution in circuit mode. Use   parameters on the normal SOLVE statement:	$3-452$
	ELEMENT, V.ELEMENT, VSTEP, NSTEP.	
. SAVE	Saves solutions in circuit mode. Use the normal SAVE   statement instead.	$3-458$
	Calculates transient solution in circuit mode. Use	$3-459$
. TRAN	parameters on the normal SOLVE statement, i.e.,   TSTEP and TSTOP.	

## CALCULATE

The CALCULATE statement is used to define and calculate derived quantities involving I-V and AC terminal data.

## CALCULATE

NAME=<c> ( $A=<c>$ [SQRTA] ) [ $\{B=<c>\mid C=<n>\}$ [SQRTB] ] [ \{SUM | DIFFEREN | RATIO | PRODUCT\} ] [UNITS=<C>]

Parameter	Type	Definition	Default	Units
NAME	char	The name assigned to the derived quantity.	none	
A	char	The name of the $\mathbf{A}$-quantity used in calculating a value for name. The choices include any of the available I-V or AC quantities (such as I2, Y31, Time, etc.) or any NAME defined on a previous CALCULATE statement.	none	
SQRTA	logical	Specifies that the square root of the $\mathbf{A}$-quantity is calculated prior to performing any specified operation. To avoid taking the square root of a negative number, the absolute value of the $\mathbf{A}$-quantity is used as the argument to the square root function.	false	
B	char	The name of the B-quantity used in calculating a value for NAME. The choices include any of the available I-V or AC quantities (such as I2, Y31, Time, etc.) or any NAME defined on a previous CALCULATE statement.	none	
C	number	A constant value that is used in place of the B-quantity.	none	arbitrary
SQRTB	logical	Specifies that the square root of the B-quantity or $\mathbf{C}$-value is calculated prior to performing any specified operation. To avoid taking the square root of a negative number, the absolute value of the B-quantity or $\mathbf{C}$-value is used as the argument to the square root function.   synonyms: SQRTC	false	
SUM	logical	Specifies that the value assigned to NAME is calculated from $\mathbf{A}+\mathbf{B}$ or $\mathbf{A}+\mathbf{C}$.	false	
DIFFEREN	logical	Specifies that the value assigned to NAME is calculated from $\mathbf{A - B}$ or $\mathbf{A}-\mathbf{C}$.	false	
RATIO	logical	Specifies that the value assigned to NAME is calculated from $\mathbf{A} / \mathbf{B}$ or $\mathbf{A} / \mathbf{C}$.	false	


Parameter	Type	Definition	Default		
PRODUCT	logical	$\begin{array}{l}\text { Specifies that the value assigned to NAME is calculated from } \\ \mathbf{A} * \mathbf{B} \text { or } \mathbf{A} * \mathbf{C} .\end{array}$	$\begin{array}{l}\text { false }\end{array}$		
UNITS	char	$\begin{array}{l}\text { The units to assign to NAME. These are used to label axes } \\ \text { when NAME is plotted. }\end{array}$	$\begin{array}{l}\text { Same as the units of } \\ \text { the } \mathbf{A} \text {-quantity if SUM, }\end{array}$		
DIFFEREN, or no					
operation is specified;				$]$	otherwise, none.
:---					

## Description

The CALCULATE statement allows derived quantities to be calculated from I-V and AC terminal data. At the conclusion of each bias or time point in a simulation, the value of all quantities defined to this point is calculated and printed to the standard output. The quantities defined on the CALCULATE statement can also be plotted in subsequent PLOT . 1D statements.

## Specifying Quantities

Quantities to be calculated are defined by specifying NAME and at least the Aquantity.

A Quantity If no B-quantity or $\mathbf{C}$-value is specified, the statement merely serves as a redefinition. For example, the statement

CALCULATE NAME=Idrain $A=I 4$
where:

- I4 is redefined to be Idrain.

In subsequent PLOT . 1D statements, Idrain may be used instead of I4.

B Quantity If the B-quantity and one of the operations SUM, DIFFEREN, RATIO, or PRODUCT is specified, then NAME is calculated from $\mathbf{A}+\mathbf{B}, \mathbf{A}-\mathbf{B}, \mathbf{A} / \mathbf{B}$, or $\mathbf{A} * \mathbf{B}$, respectively.

C Quantity If a C-value is given instead of the B-quantity, then NAME is calculated from $\mathbf{A}+\mathbf{C}$, $\mathbf{A}-\mathbf{C}, \mathbf{A} / \mathbf{C}$, or $\mathbf{A}^{*} \mathbf{C}$ for the four operations.

Calculating
Square Roots
Square roots are calculated prior to performing any operation which may be specified. The following parameters are used to calculate square roots:

A quantity-SQRTA
B quantity or C value-SQRTB

Previous Quantities can also be defined in terms of previous definitions as shown in the folDefinitions lowing example:

CALCULATE	NAME=Icoll	A=I1	B=I2	SUM
CALCULATE	NAME=Ibase	A=I3	B=I4	SUM
CALCULATE	NAME=Beta	A=Icoll	B=Ibase	RATIO

There may be up to 20 quantities defined with the CALCULATE statement.

## CHECK

The CHECK statement compares a specified solution against the current solution, returning the maximum and average difference in electrostatic and quasi-Fermi potentials.

CHECK
IN.FILE=<C> [IN.MESH=<C>]

Parameter Type
Definition
Default
Units

IN.FILE	char	The identifier for the binary solution file to compare against   the current solution.	none
IN.MESH	char	The identifier for the binary file containing the mesh corre-   sponding to the solution specified by IN. FILE.	current mesh

## Description

The CHECK statement is useful for comparing solutions that have been obtained on different generations of regrids. The comparison is made only for those grid points that are common to both meshes.

## DEPOSITION

The DEPOSITION statement is used to deposit excess electrons and holes over a specified cross-section of the device.

## DEPOSITION

X.START=<n> Y.START=<n> ANGLE=<n>

CONCENTR=<a> LENGTH=<a> WIDTH=<a> [ELECTRON] [HOLE]

Parameter	Type	Definition	Default	Units
X.Start	number	The x coordinate of the beginning of the line along which excess carriers are deposited.   synonyms: X .0	0.0	microns
Y.START	number	The $y$ coordinate of the beginning of the line along which excess carriers are deposited.   synonyms: Y. 0	0.0	microns
ANGLE	number	The angle of the line along which excess carriers are deposited. A value of 0 is parallel to the positive horizontal axis. Angles increase in the clockwise direction.	90.	degrees
CONCENTR	array	The carrier concentrations to deposit in up to 20 contiguous boxes located along the line described with $\mathbf{X} . \mathbf{S T A R T}$, Y.START, and ANGLE. CONCENTR refers to the concentrations of both electrons and holes unless indicated otherwise by specifying ^electron or ^HOLE.	none	\#/cm ${ }^{3}$
LENGTH	array	The lengths of up to 20 contiguous boxes in which excess carriers are deposited.	none	microns
WIDTH	array	The widths of up to 20 contiguous boxes in which excess carriers are deposited.	none	microns
ELECTRON	logical	Specifies that the deposited carriers are electrons.	true	
HOLE	logical	Specifies that the deposited carriers are holes.	true	

## Description

The DEPOSITION statement is used to deposit excess carriers over a specified cross-section of the device. This statement is used, for example, to model the presence of excess carriers due to the passage of ionizing particles through the device. A transient simulation is performed after the deposition to study the effect of the deposited carriers on the device behavior.

Before a DEPOSITION statement is used, a valid solution must be available. The specified carrier concentrations are added to those of the available solution before the next solution is performed.

## Specifying Density of Carrier Boxes

The excess carriers are specified by giving the density of carriers (CONCENTR) in up to 20 contiguous boxes along a specified line through the device. The line and box dimensions are defined by the following parameters:

- The line begins at the location specified with $\mathbf{X}$.START and Y.START.
- The line is oriented in the direction specified with ANGLE.

Both the length and width of the boxes may vary along the line.

- The box lengths are specified with LENGTH, and are measured parallel to the line.
- The box widths are specified with WIDTH, and are measured perpendicular to this line and are bisected by it.


## Examples

The following statement specifies a region for deposited carriers that deposits $1 \mathrm{e} 18 / \mathrm{cm}^{3}$ electrons and holes in a box 0.5 microns wide and 3.0 microns long beginning at $x=5$ microns and $y=0$ microns. By default, the box is directed vertically downward (positive y-direction):

```
DEPOSIT X.START=5 Y.START=0 CONCEN=1E18 LENGTH=3
WIDTH=. 5
```

The following example has the same overall size and orientation as the example above, but the concentration of electrons and holes is varied along the length of the region:

```
DEPOSIT X.START=5 Y.START=0 CONCEN=(1E18,8E17,6E17)
+ LENGTH=(0.5, 1.0, 1.5)
+ WIDTH=(0.5, 0.5, 0.5)
```


## .DC

Causes Medici to perform a steady-state analysis.

[ <srcname> VSTART=<n> VSTOP=<n> VINCR=<n> [UIC] [MULT=<n>] [RESET]]				
Parameter	Type	Definition	Default	Units
<srcname>	c	The voltage or current source which is to be stepped.	none	
VStart	number	The starting voltage or current.	none	volts or amps
VSTOP	number	The ending voltage or current.	none	volts or amps
VINCR	number	The voltage or current increment to use.	none	volts or amps
UIC	logical	Causes Medici to force the voltages at certain nodes to specified values. These nodes and their values are specified using the . IC statement.	false	
MULT	number	Multiplicative factor for VINCR. After each bias step, VINCR is increased by the factor MULT. This parameter is useful when a range of bias points covering several orders of magnitude must be simulated (for example from 1e-9 Amps to $1 \mathrm{e}-2 \mathrm{Amps}$ ).	1.0	none
ReSET	logical	Causes the value of the voltage or current source being stepped to return to its original value after the present .DC statement finishes. If this parameter is false, the DC value remains at its final value reached on the present .DC statement.	true	

## SPICE Compatibility

To preserve SPICE compatibility, . OP is a synonym for .DC.

## Example

```
. OP
.DC Vin VSTART=-1.0 VSTOP=1.0 VINCR=0.1 UIC
```

See Also... To further illustrate the .DC statement refer to input file mdex14b in Chapter 13, "Bipolar Transistor Thermal Run-Away Analysis," p. 13-7.

## Different Bias Point Densities

Several .DC statements may follow one another to create different densities of bias points. For example, the following sequence

```
.DC Vin VSTART=O.O VSTOP=2.0 VINCR=.2
.DC Vin VSTART=2.0 vSTOP=3.0 VINCR=.1
.DC Vin VSTART=3.0 VSTOP=5.0 VINCR=.2
```

places a higher density of bias points between 2.0 and 3.0 volts. Such an arrangement of bias points might be used to examine the switching behavior of a 5 V CMOS inverter.

## Fixed Voltages and Nodes

The following parameters and statements are used to fix voltages at specified nodes:

- UIC parameter-Forces the voltages at certain nodes to remain fixed regardless of the input voltage.
- .IC statement—Specifies which nodes are fixed and the voltage to use.

The program effectively connects a small resistor between the node to be fixed and the desired voltage.

## Procedures

The . DC statement is a composite statement which performs a series of steps to obtain a solution. In terms of Medici statements, the procedure is as follows:

```
Vin=VSTART
if (no solution in memory)
 {
 SYMBOLIC GUMMEL CARRIERS=0
 SOLVE INIT V1=Va V2=Vb V3=Vc
 }
SYMBOLIC NEWTON CARRIERS=2
while (Vin <= VSTOP)
 {
 SOLVE OUTFILE=Outf
 Vin=Vin + VINCR
 Outf=Outf + 1
 }
```

- The voltages $V a, V b, V c$ etc. are obtained from the user-specified guess on the . nODESET statement. These are applied to the Medici element terminals during the zero carrier solution.
- During the two carrier solution, the circuit voltages determine the Medici terminal voltages. This procedure of using a zero carrier solution as an initial guess works in a wide range of problems, with a wide range of bias conditions.
- When the first bias point has been obtained, the program uses either PREVIOUS or PROJECT to obtain an initial guess for subsequent bias points. If a bias point fails, the program halves the bias step and continues automatically.


## Troubleshooting

This section details possible solutions to the following problems:

- First bias point failure
- Failure to converge

The recombination models AUGER and CONSRH help convergence in general and should always be turned on if appropriate.

First Bias Point Failure

When continuation is used, most convergence problems which occur on later bias points are dealt with automatically. If the first bias point fails, however, the program aborts since the bias step cannot be reduced. If a "Pivot Approximately Equal to Zero" error occurs check the following:

1. Double check the circuit connections and Medici terminals.

Often a simple coding error generates a circuit very different than what you expected.
2. Check for voltage source / inductor loops.

In this condition a loop is formed containing voltage sources and or inductors and no other elements. Since in general, no solution exists for such a connection of elements, the circuit matrix is singular and a pivot equal to zero error results.

```
EXAMPLE:(V1, V2, and L1 form a loop)
 V1 1 0 5
 V2 2 0 3
 L1 1 2 1
 R1 1 0 3
```

3. Check for isolated nodes or nodes without a path to ground.

This condition occurs if a node is connected only to capacitors (or capacitive elements like the gate of a MOSFET). Or if a portion of the circuit has no path to ground (Node 0). Since the voltage at such a node (in steady state) may be assigned any value, the circuit matrix is singular.

EXAMPLE 1: (Node 2 is floating)
V1 105
R1 10100
C1 121 u
C2 $202 u$

EXAMPLE 2: (Nodes 2 and 3 have no path to ground)
V1 105
R1 10100
V2 235
R2 23100

Failure to Converge: Too Many Iterations

If the simulation fails to converge (too many iterations) try the following:

1. Double check the circuit connections and Medici terminals.

Often a simple coding error generates a circuit very different than what you expected.
2. Make sure that an initial guess is specified for all nodes with non-zero voltage and that the values specified are reasonable.

The values don't have to be exact but they should be within 0.5 V on a 5 V circuit.
3. Adjust the DELVMAX parameter on the . OPTIONS statement (see Chapter 3, ".OPTIONS," p. 3-390).
a. If you are sure that your initial guess is correct use a smaller value for DELVMAX to increase the stability of the solution.

Limiting the change in voltage stabilizes the solution process by preventing wild fluctuations in voltage which can cause the solution to oscillate or generate physically unrealistic voltages.
b. If you are unsure of the initial guess you might try a larger DELVMAX. If the initial guess is too far off, many iterations may be needed to reach the correct solution. For example, if an initial guess of 1 V is specified, DELVMAX is 0.5 and the correct voltage at a node is 20 V a minimum of $(20-1) / 0.5=38$ Newton iterations is needed.
4. Solve the devices separately and load their solutions.
5. Ramp the different voltage or current sources up from zero by:
a. Setting all the voltage or current sources to zero in the circuit
b. Use .DC statements to ramp them to their final values one at a time.

If the RESET parameter on the .DC statements is set false (^RESET) then each source remains at its final ramped value after the .DC statement finishes. Similar results can be obtained by exiting circuit mode and using SOLVE statements.
6. If the lumped MOS models are being used, connect a large resistor (1e8 ohms) from the drain to ground.
This is especially true of CMOS stages when VDD $<\mathrm{VTH}$.
7. Increase the maximum number of iterations allowed using the ITLIM parameter on the . OPTIONS statement.
This helps if the iterations are converging (i.e. if the error norms, particularly the Poisson error, is going down). If the error norms are not decreasing this will probably not help.
8. Turn off some of the physical models and solve. If convergence is obtained, turn the models back on and solve again.
To turn the models off, you must exit circuit mode.

## Failure to Converge: Impact lonization

Impact ionization in particular causes convergence problems. These problems are observed at voltages well below the breakdown voltage for the device since at low voltages, what little current there is may be dominated by the impact ionization current.

It is normally impossible to jump directly to a voltage above breakdown. You must gradually ramp the applied voltage into the breakdown region.

## . SAVE

Specifies files in which to save data.
.SAVE
[MESH=<C>] [SOLUTION=<C>] [IVFILE=<C>] [ASCII]

Parameter	Type	Definition	Default	Units
MESH	char	The identifier for the file where the mesh information is written.	none	
SOLUTION	char	The identifier for the file where the solution information is written.	none	
IVFILE	char	The identifier for the file where the terminal currents, voltages, and circuit variables are written. This file is always written as a formatted file.	<base>.ivl	
ASCII	logical	Indicates that the specified file(s) are formatted files.	false	

## Example

# Causes Medici to perform a transient (time dependent) simulation. 

$\mathrm{DT}=<\mathrm{n}>\mathrm{TSTOP}=<\mathrm{n}>\mathrm{TMAX}=<\mathrm{n}>\mathrm{UIC}$

Parameter	Type	Definition	Default	Units
DT	number	The initial time step to use. Subsequent steps are selected   automatically.	none	seconds
TSTOP	number	The length of the simulated interval.	none	seconds
TMAX	number	The maximum timestep to use.	seconds	
UIC	logical	Causes Medici to force the voltages at certain nodes to speci-   fied values during the DC solution which is used as the initial   guess for the transient solution. These nodes and their values   are specified using the. IC statement.		

## Example

$$
. T R A N D T=1 \mathrm{p} \text { TSTOP=1n }
$$

## Failed Convergence

The . TRAN statement is in effect a composite statement. If no solution is present, .TRAN first performs a DC solution to obtain the initial conditions.

If convergence problems occur, they are most likely in the DC phase of the solution (refer to the comments for the . DC statement).

## Failed Time Points

Time points may occasionally fail during the time dependent portion of the simulation. Medici handles these by halving the times step and resolving.

Switching Failed time points are particularly common near the edges of switching waveWaveforms forms but do not present any real problems. To reduce wasting CPU time on failed time points it may help to reduce the number of Newton iterations the program tries before failing.

This is controlled by the ITLIM parameter on the .OPTIONS statement (or on the METHOD statement in Medici mode).

MOSFET Models
In circuits with compact MOSFET models, a series of time points may occasionally fail in succession causing the time step to be reduced to a very small value. At this point the program usually terminates with the message "Time step too small" or "Too Many Time Point Reductions". The cause of this problem is usually the discontinuity in the MOS capacitance and I-V curves where the MOSFET switches from triode to saturation.

To correct this type of convergence problem try another MOS capacitance model (the default BSIM capacitance model used is usually the best).

### 3.8 Statement Summary

This section summarizes the input statements recognized by Medici. The format used for the parameter list associated with a statement is identical to that used in the detailed statement descriptions.

The special characters < >, [ ], |, \{ \}, and () are used to indicate parameter types, optional parameters, and valid parameter combinations. See Chapter 3, "Input Statements," p. 3-1 for detailed descriptions of parameter syntax.

The summaries are organized alphabetically by statement name and include references to the chapter and page number of the manual where a detailed description of the statement can be found.

3D. SURFACE - p. 3-230

```
[HIDDEN] [VISIBLE] [LOWER] [UPPER] [X.LINE] [Y.LINE] [MASK]
[Z.MIN=<n>] [Z.MAX=<n>] [C.AUTO] [LINE.TYP=<n>] [COLOR=<n>] [PAUSE]
```

ABC.MESH - p. 3-38

```
Local Spacing Control
 { ([X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
 { (ALIGN REGION1=<c> REGION2=<c> REGION3=<C> REGION4=<C>)
 | ([{ REGION=<C> | (BOUNDARY REGION1=<C> REGION2=<C>)
 | { SIlicon | gais | polysill | germaniu | SIC | SIge
 | AlgAAS | A-SIlico | DiAmond | hgCdte | inAS | ingaAS
 INP | S.OXIDE | ZNSE | ZNTE | AlINAS | GAASP | INGAP
 inASP | OXIDE | NItride | SAPphire | oxynitri
 }
 }
]
 [CRITICAL=<n>] [H1=<n>] [H2=<n>]
 [{GRDRIGHT | GRDLEFT | GRDUP | GRDDOWN | GRDCNTR}]
 [NEIGHBOR=<c>] [{NORMAL=<n> | (NORMAL1=<n> NORMAL2=<n>)}]
 [NORMGROW=<n>] [LATERAL=<n>]
)
 }
)
Automatic MOSFET Meshing
 | (mosfet
 [N.CHANN=<n>] [N.JUNC=<n>] [N.GATEOX=<n>] [N.POLY=<n>]
 [MAX.CHAN]=<n> [MAX.SD=<n>] [SI.NFACT=<n>] [GATE.NFA=<n>]
 [RATIO=<n>]
)
 }
```

```
ANISOTROP IC - p. 3-344
 [PRINT]
Semiconductor Parameters
 { ({ SILICON | GAAS | POLYSILI | SEMICOND | SIGE | ALGAAS
 GERMANIU | SIC | S.OXIDE | HGCDTE | INGAAS | INP | INAS
 }
Anisotropic Component Factors
 [PERMITTI=<a>] [MU.N=<a>] [MU.P=<a>] [II.N=<a>] [II.P=<a>]
 [TH.COND=<a>]
General Anisotropic Electron Impact Ionization
 [ANIIN [N.ION.O=<a>] [N.ION.1=<a>] [N.ION.2=<a>] [ECN.II=<a>]
 [EXN.II=<a>]
]
General Anisotropic Hole Impact Ionization
 [ANIIP [P.ION.O=<a>] [P.ION.1=<a>] [P.ION.2=<a>] [ECP.II=<a>]
 [EXP.II=<a>]
]
General Anisotropic Thermal Conductivity
 [ANTHCON [A.TH.CON=<a>] [B.TH.CON=<a>] [C.TH.CON=<a>] [D.TH.CON=<a>]
 [E.TH.CON=<a>]
]
Advanced Band Structure Parameters
 [ALPHO.N=<n>] [ALPHJ.N=<a>] [MJ.N=<a>] [EJ.N=<a>]
 [ALPHO.P=<n>] [ALPHJ.P=<a>] [MJ.P=<a>] [EJ.P=<a>]
)
Insulator Parameters
 { ({ OXIDE | NITRIDE | SAPPHIRE | OXYNITRI | INSULATO
 REGION=<C>
 }
 [PERMITTI=<a>] [TH.COND=<a>]
)
 }
Circuit Analysis AAM Parameters
 [STRUCTUR=<c>]
```

```
ASSIGN - p. 3-433
 { (NAME=<C> [PRINT]
 { (N.VALUE=<a> [{DELTA=<n> | RATIO=<n>}])
 (N.VALUE=<a> {OPTIMIZE | SENSITIV} LOWER=<n> UPPER=<n>)
 (L.VALUE=<a>)
 (C.VALUE=<c> [DELTA=<n>])
 ([C1=<C>] [C2=<c>] [C3=<C>] [C4=<C>] [C5=<c>]
 [C6=<c>] [C7=<c>] [C8=<c>] [C9=<c>] [C10=<c>]
)
 }
 [E.NAME=<C>] [PROMPT=<C>] [LEVEL=<n>]
)
 | (PRINT [INITIAL] [NAME=<C>])
}
```

BATCH - p. 3-413
[<c>]

BOUNDARY - p. 3-56
IN.FILE=<C> [ASCII.IN] [ \{2D.PROC | TSUPREM4\} ]
[ OUT.FILE=<C> [ASCII.OU] ]
[X.SCALE=<n>] [Y.SCALE=<n>] [X.OFFSET=<n>] [Y.OFFSET=<n>]
[X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
[X.TOLER=<n>] [Y.TOLER=<n>] [X.AVERAG] [Y.AVERAG]
[ SHARP [ANGLE.CR=<n>] ] [ ASPECT [LOW.ASPE=<n>] [HIGH.ASP=<n>] ]

CALCULATE - p. 3-446
NAME=<c> ( $A=<c>$ [SQRTA] ) [ $\{B=<c>\mid C=<n>\}$ [SQRTB] ] [ \{SUM | DIFFEREN | RATIO | PRODUCT\} ] [UNITS=<C>]

CAIL - p. 3-406
$\{F I L E=<C>$ | ( [FIRST=<C>] [LAST=<C>] [EXPAND] )\} [ONCE] [PRINT]

C<name>-p. 3-365
<node+> <node-> <value>

```
CHECK - p. 3-449
IN.FILE=<c> [IN.MESH=<c>]
```

COMMENT - p. 3-402
[<c>]
or
\$
[ <c>]
CONTACT - p. 3-335
\{NAME=<C> | ALL\} [PRINT]
[ \{ NEUTRAL | ALUMINUM \| P.POLYSI \| N.POLYSI \| MOLYBDEN | TUNGSTEN
MO.DISIL | TU.DISIL | WORKFUNC=<n>
\}
[PIN]
]
The following set may NOT presently be used with the Circuit Analysis
AAM if the terminal is attached to the circuit:
[ \{ CURRENT
CON.RESI=<n>
( CHARGE [CAPACITA=<n>] [V.CAPAC=<n>] )
( RESISTAN=<n>] [CAPACITA=<n>] [INDUCTAN=<n>] )
( SURF.REC [VSURFN=<n>] [VSURFP=<n>] [ BARRIERL [ALPHA=<n>] ] )
VOLTAGE
\}
]
Lattice Temperature AAM PArameters
[ R.THERMA=<n>] [C.THERMA=<n>] ]
Circuit Analysis AAM Parameters
[STRUCTUR=<c>]
Optical Device AAM Parameters
[ \{TRANSELE | REFLECTI=<n>\} ]

CONTOUR - p. 3-232

```
Contour Quantities
 { POTENTIA | QFN | QFP | VALENC.B | CONDUC.B | VACUUM | E.FIELD
 | DOPING | ELECTRON | HOLES | NIE | NET.CHAR | NET.CARR
 J.CONDUC | J.ELECTR | J.HOLE | J.DISPLA | J.TOTAL | FLOWLINE
 RECOMBIN | N.RECOMB | P.RECOMB | II.GENER | BB.GENER | PHOTOGEN
 ELE.TEMP | HOL.TEMP | ELE.VEL | HOL.VEL | J.EFIELD
 G.GAMN | G.GAMP | G.GAMT | G.IN | G.IP | G.IT
 ARRAY1 | ARRAY2 | ARRAY3 | ({TRAPS | TRAP.OCC} [LEVEL=<n>])
 N.MOBILI | P.MOBILI | SIGMA
 IMPURITY=<C> | OTHER=<C> | QPOTN | QPOTP
Lattice Temperature AAM Parameters
 LAT.TEMP
Heterojunction Device AAM Parameters
 X.MOLE
 }
AC Small-Signal Analysis Quantity Parameters
 [{AC.REAL | AC.IMAG | AC.MAGN | AC.PHAS}]
Contour Controls
 [MIN.VALU=<n>] [MAX.VALU=<n>] [WINDOW] [DEL.VALU=<n>] [NCONTOUR=<n>]
 [FILL [C.START=<n>] [C.INCREM=<n>]]
 [ABSOLUTE] [LOGARITH] [X.COMPON] [Y.COMPON]
 [LINE.TYP=<n>] [COLOR=<n>] [PAUSE]
```

. DC - p. 3-452
[ <srcname> VSTART=<n> VSTOP=<n> VINCR=<n> [UIC] [MULT=<n>][RESET]]

DEPOSITION - p. 3-450
X.START=<n> Y.START=<n> ANGLE=<n>

CONCENTR=<a> LENGTH=<a> WIDTH=<a> [ELECTRON] [HOLE]

D<name> - p. 3-365
<node+> <node-> <mname> [AREA=<n>]

ECHO - p. 3-441
[<c>]

```
ELECTRODE - p. 3-77
 NAME=<C> [VOID]
 { ([{TOP | BOTTOM | LEFT | RIGHT | INTERFAC | PERIMETE}]
 [{X.MIN=<n> | IX.MIN=<n>}] [{X.MAX=<n> | IX.MAX=<n>}]
 [{Y.MIN=<n> | IY.MIN=<n>}] [{Y.MAX=<n> IY.MAX=<n>}]
 [{ (ROTATE X.CENTER=<n> Y.CENTER=<n> R.INNER=<n> R.OUTER=<n>)
 | (POLYGON X.POLY=<a> Y.POLY=<a>)
 }
]
)
 [X=<n> Y=<n>]
 [REGION=<c>]
 }
 [MAJORITY]
Lattice Temperature AAM Parameters
 [THERMAL]
```

ELIMINATE - p. 3-51
\{ROWS | COLUMNS \}

[ \{Y.MIN=<n> | IY.MIN=<n>\} ] [ \{Y.MAX=<n> | IY.MAX=<n>\} ]

```
E.LINE - p. 3-248
 { ([POTENTIA] [QFN] [QFP] [VALENC.B] [CONDUC.B] [VACUUM]
 [ARRAY1] [ARRAY2] [ARRAY3]
)
 [E.FIELD [ANGLE=<n>]]
 ([DOPING] [ELECTRON] [HOLES] [NET.CHAR] [NET.CARR])
 ([J.CONDUC] [J.ELECTR] [J.HOLE] [J.DISPLA] [J.TOTAL]
 [ANGLE=<n>]
)
 [RECOMBIN] [II.GENER] [BB.GENER] | [PHOTOGEN]
 [ELE.TEMP] | [HOL.TEMP] [ELE.VEL] | [HOL.VEL] | [J.EFIELD]
 [G.GAMN] | [G.GAMP] | [G.GAMT] | [G.IN] | [G.IP] | [G.IT]
Lattice Temperature AAM Parameters
 [LAT.TEMP]
Heterojunction Device AAM Parameters
 [X.MOLE]
 }
Control Parameters
 X.START=<n> Y.START=<n> [S.DELTA=<n>] [N.LINES=<n>] [HORZ.STA=<n>]
 [I.ELECTR] [I.HOLES] [E.MARK=<n>] [M.SIZE=<n>] [INSULATO]
 [LINE.TYP=<n>] [COLOR=<n>] [FILE=<C>] [SUMMARY] [PLOT] [PAUSE]
```

ELSE - p. 3-421
[COND]

```
E<name> - p. 3-366
 <node+> <node-> <cnode+> <cnode-> <value>
```


## EXTRACT - p. 3-180

```
Extraction Using Names and Expressions
 { (EXPRESSI=<c> NAME=<c> [UNITS=<c>] [CONDITIO=<c>] [INITIAL=<n>]
 [{AT.BIAS | NOW}] [OUT.FILE=<C> TWB] [CLEAR] [PRINT]
Optimization Using Targets and Expressions
 [TARGET=<n> [WEIGHT=<n>] [MIN.REL=<n>] [MIN.ABS=<n>]
 [TARTOL=<n>] [TARREL=<n>]
]
)
Extract Physical Quantities from Solution
 | ({ NET.CHAR | NET.CARR | ELECTRON | HOLE | RECOMBIN | IONIZATI
 RESISTAN | N.RESIST | P.RESIST | (METAL.CH CONTACT=<C>)
 ({N.CURREN | P.CURREN} {CONTACT=<C> | REGIONS=<C>})
 II.GENER | (SHEET.RE X.POINT=<n> [TOP])
 }
 [X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
 [OUT.FILE=<C> [TWB [NAME=<C>]]]
Device to Extract (Circuit Analysis AAM)
 [STRUCTUR=<c>]
)
Extract MOS Device Parameters
 | (MOS.PARA [DRAIN=<c>] [GATE=<c>] [IN.FILE=<C>] [I.DRAIN=<n>]
 [OUT.FILE=<C> [TWB]] [CONDITIO=<C>] [APPLIED]
)
 }
```

FILL - p. 3-245

```
[REGION=<C>] [SET.COLO] [N-TYPE] [P-TYPE] [PAUSE]
{ [COLOR=<n>]
 ([C.SILIC=<n>] [C.GAAS=<n>] [C.POLYSI=<n>] [C.GERMAN=<n>]
 [C.SIC=<n>] [C.SEMI=<n>] [C.SIGE=<n>] [C.ALGAAS=<n>]
 [C.A-SILI=<n>] [C.DIAMON=<n>] [C.HGCDTE=<n>] [C.INAS=<n>]
 [C.INGAAS=<n>] [C.INP=<n>] [C.S.OXID=<n>] [C.ZNSE=<n>]
 [C.ZNTE=<n>]
 [C.OXIDE=<n>] [C.NITRID=<n>] [C.SAPPHI=<n>] [C.OXYNIT=<n>]
 [C.INSUL=<n>] [C.ELECTR=<n>]
 [NP.COLOR] [C.NTYPE=<n>] [C.PTYPE=<n>]
)
}
```


## FINISH - P. 3-393

CIRCUIT
$\mathbf{F}<$ name> - p. 3-367
<node+> <node-> <vname> <value>

G<name>- p. 3-368
<node +> <node-> <cnode +> <cnode-> <value>

## HELP - p. 3-405

[NAME=<c>] [ \{PARAMETE=<c> | VERBOSE\} ]

H〈name> - p. 3-368
<node+> <node-> <vname> <value>
. IC - p. 3-389

V(<node1>) $=<n>$ V $(<$ node2> $)=<n>$. . . . . . . .

IF - p. 3-419
[COND]

IF.END - p. 3-422
[<c>]

IGNORE - p. 3-443
[<c>]

```
IMPURITY - p. 3-332
 NAME=<C> [PRINT]
Material or Region Name
 [{ SILICON | GAAS | POLYSILI | SEMICOND | SIGE | ALGAAS
 | GERMANIU | SIC | S.OXIDE | HGCDTE | INGAAS | INP | INAS
 DIAMOND | ZNSE | ZNTE | A-SILICO | ALINAS | GAASP | INGAP
 INASP | REGION=<C>
 }
Incomplete Ionization Parameters
 [GB=<n>] [EBO=<n>] [ALPHA=<n>] [BETA=<n>] [GAMMA=<n>]
 [HDT.MIN=<n>] [HDT.MAX=<n>]
]
Circuit Analysis AAM Parameters
 [STRUCTUR=<c>]
```

I<name>-p. 3-369
<node+> <node->
\{ <value>
( PULSE <iO> <ia> <td> <tr> <tf> <tp> <per> )
( EXP <iO> <ia> <td1> <tau1> <td2> <tau2> )
( SIN <iO> <ia> <freq> <tds> <theta> )
( SFFM <iO> <ia> <fc> <mdi> <fs> )
\}

INTERACTIVE - p. 3-411

```
 [ONCE]
```

INTERFACE - p. 3-341
[ \{MATERIAL=<C> | REGION=<C>\} ]
[X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
\{ ( [S.N=<n>] [S.P=<n>] [QF=<n>]
[N.ACCEPT=<n>] [P.ACCEPT=<n>] [N.DONOR=<n>] [P.DONOR=<n>]
)
I
( Q.INSULA=<n> [D.CHAR=<n>] )
\}
[CLEAR] [ALL.CLEA]

```
I.PRINT - p. 3-414
 {([FIRST=<C>] [LAST=<C>]) | [ALL]} [EXPAND]
I .SAVE - p. 3-416
 FILE=<C> [NOW] [FIRST=<C>] [LAST=<C>] [EXPAND]
```

$\mathbf{K}<$ name $>-$ p. 3-371
<lname1> <lname2> <value>
LABEL - p. 3-254
[LABEL=<C>] [SYMBOL=<n>] [X=<n>] [Y=<n>] [ANGLE=<n>]
[ \{START.LE | START.CE | START.RI\} ] [ARROW]
[LX.START $=<n>$ ] [LY.START=<n>]
[LX.FINIS $=<n>$ ] [LY.FINIS $=<n>$ ]
[CM] [C.SIZE=<n>] [LINE.TYP=<n>] [COLOR=<n>] [PAUSE]

```
L. END - p. 3-431
 [BREAK] [ALL]
```

L. MODIFY - p. 3-429
[LEVEL=<n>] [STEPS=<n>] [ \{NEXT | BREAK\} ] [PRINT]
L<name>- p. 3-371
<node+> <node-> <value>

LOAD - p. 3-267
[ IN.FILE=<C> [ASCII.IN] ] [ IN.PREV=<C> [DIFFEREN] ]
[ OUT.FILE=<C> [ASCII.OU] ] [CHECK.ER] [TIF]
Circuit Analysis AAM Parameters
[STRUCTUR=<c>]

```
. LOAD - p. 3-392
 [MESH=<c>] [[SOLUTION=<c>] [STRUCTUR=<c>]] [ASCII]
LOG - p. 3-259
 { ([OUT.FILE=<C> [TIF]] [CLOSE])
 | ([{ (AURORA [LENGTH=<n>] [WIDTH=<n>] [DEVID=<n>] [REGION=<n>]
 [P.CHANNE]
)
 | (ICCAP [MDM] [I.MIN=<n>] [V.MIN=<n>] [REFERENC=<C>]
[SCALE=<n>]
 [INP1=<c> [LIST1]] [INP2=<c> [LIST2]]
 [INP3=<c> [LIST3]] [INP4=<c> [LIST4]]
 [INP5=<c> [LIST5]]
 { ([OUT1=<c>] [OUT2=<c>] [OUT3=<c>] [OUT4=<c>]
 [OUT5=<c>] [OUT6=<c>] [OUT7=<c>] [OUT8=<c>]
 [SWAP.CGY]
)
 | ([{S.PARAM | Y.PARAM | H.PARAM} TERMINAL=<c>])
 }
)
 STANFORD
 }
 IN.FILE=<C> OUT.FILE=<C>
 [GATE=<C>] [SOURCE=<C>] [DRAIN=<C>] [SUBSTRAT=<C>]
 [BASE=<C>] [EMITTER=<C>] [COLLECT=<C>] [EXTRA=<C>]
]
)
 }
```

LOOP - p. 3-423
[STEPS=<n>] [PRINT] [ \{OPTIMIZE | SENSITIV\} ]

MATERIAL - p.3-278
[PRINT]

Semiconductor Parameters
[ $\{1$ \{ SILICON | GAAS | POLYSILI | SEMICOND | SIGE | ALGAAS | GERMANIU | SIC | S.OXIDE | HGCDTE | INGAAS | INP | INAS | DIAMOND | ZNSE | ZNTE | A-SILICO | ALINAS | GAASP | INGAP | INASP | REGION=<C>
\}
(MATERIAL, continued next page)

MATERIAI - p.3-278

```
 [PRINT]
Semiconductor Parameters
 [{ ({ SILICON | GAAS | POLYSILI | SEMICOND | SIGE | ALGAAS
 GERMANIU | SIC S.OXIDE | HGCDTE | INGAAS | INP | INAS
 DIAMOND | ZNSE | ZNTE | A-SILICO | ALINAS | GAASP | INGAP
 INASP | REGION=<C>
 }
 [PERMITTI=<n>] [EG.MODEL=<n>] [AFFINITY=<n>] [EG300=<n>]
 [EGALPH=<n>] [EGBETA=<n>] [EGGAMM=<n>]
 [NC300=<n>] [NC.F=<n>] [NV300=<n>] [NV.F=<n>]
 [GCB=<n>] [GVB=<n>] [EDB=<n>] [EAB=<n>]
 [TAUNO=<n>] [NSRHN=<n>] [AN=<n>] [BN=<n>] [CN=<n>] [EN=<n>]
 [TAUP0=<n>] [NSRHP=<n>] [AP=<n>] [BP=<n>] [CP=<n>] [EP=<n>]
 [EXN.TAU=<n>] [EXP.TAU=<n>]
 [ETRAP=<n>] [M.RTUN=<n>] [B.RTUN=<n>] [S.RTUN=<n>]
 [E.RTUN=<n>] [C.DIRECT=<n>]
 [AUGN=<n>] [AUGP=<n>] [ARICHN=<n>] [ARICHP=<n>]
 [NO.BGN=<n>] [VO.BGN=<n>] [CON.BGN=<n>]
 [ANC.BGN=<n>] [BNC.BGN=<n>] [CNC.BGN=<n>]
 [ANV.BGN=<n>] [BNV.BGN=<n>] [CNV.BGN=<n>]
 [APC.BGN=<n>] [BPC.BGN=<n>] [CPC.BGN=<n>]
 [APV.BGN=<n>] [BPV.BGN=<n>] [CPV.BGN=<n>]
 [A.EHS=<n>] [B.EHS=<n>] [C.EHS=<n>]
 [N.IONIZA=<n>] [N.ION.1=<n>] [N.ION.2=<n>] [ECN.II=<n>] [EXN.II=<n>]
 [P.IONIZA=<n>] [P.ION.1=<n>] [P.ION.2=<n>] [ECP.II=<n>] [EXP.II=<n>]
 [AON.VALD=<n>] [A1N.VALD=<n>] [A2N.VALD=<n>] [BON.VALD=<n>]
 [B1N.VALD=<n>] [CON.VALD=<n>] [C1N.VALD=<n>] [C2N.VALD=<n>]
 [C3N.VALD=<n>] [DON.VALD=<n>] [D1N.VALD=<n>] [D2N.VALD=<n>]
 [AOP.VALD=<n>] [A1P.VALD=<n>] [A2P.VALD=<n>] [BOP.VALD=<n>]
 [B1P.VALD=<n>] [COP.VALD=<n>] [C1P.VALD=<n>] [C2P.VALD=<n>]
 [C3P.VALD=<n>] [DOP.VALD=<n>] [D1P.VALD=<n>] [D2P.VALD=<n>]
 [CN.IIGAP=<n>] [CP.IIGAP=<n>]
 [E1N.SOFT=<n>] [E2N.SOFT=<n>] [E3N.SOFT=<n>]
 [C1N.SOFT=<n>] [C2N.SOFT=<n>]
 [E1P.SOFT=<n>] [E2P.SOFT=<n>] [E3P.SOFT=<n>]
 [C1P.SOFT=<n>] [C2P.SOFT=<n>]
 [CN.IILAM=<n>] [CP.IILAM=<n>]
 [LAMHN=<n>] [LAMRN=<n>] [LAMHP=<n>] [LAMRP=<n>]
 [A.BTBT=<n>] [B.BTBT=<n>] [A.FN=<n>] [B.FN=<n>]
 [MLDA.LN=<n>] [MLDA.LP=<n>]
 {[KAPPA.QM=<n>] | ([KAPPA.N=<n>] [KAPPA.P=<n>])}
 [N.ACCUM=<n>] [P.ACCUM=<n>] [DREF.QM=<n>]
 [QM.NORP=<n>] [QM.EFIEL=<n>]
 [U.STRESS=<n>] [D.STRESS=<n>] [A.STRESS=<n>]
 [B.STRESS=<n>] [C.STRESS=<n>]
 [ME.DT=<n>] [MHH.DT=<n>][MLH.DT=<n>]
Energy Balance Equation Parameters
 [ELE.CQ=<n>] [ELE.TAUW=<n>] [WTNO=<n>] [WTN1=<n>]
 [WTN2=<n>] [WTN3=<n>] [WTN4=<n>] [WTN5=<n>] [WTNL=<n>] [TNL=<n>]
 [HOL.CQ=<n>] [HOL.TAUW=<n>] [WTPO=<n>] [WTP1=<n>]
 [WTP2=<n>] [WTP3=<n>] [WTP4=<n>] [WTP5=<n>] [WTPL=<n>] [TPL=<n>]
```

(MATERIAL, continued next page)
(MATERIAL, continued from previous page)

```
Lattice Temperature AAM Parameters for Semiconductors
 [DENSITY=<n>] [DN.LAT=<n>] [DP.LAT=<n>]
 [A.SP.HEA=<n>] [B.SP.HEA=<n>] [C.SP.HEA=<n>] [D.SP.HEA=<n>]
 [F.SP.HEA=<n>] [G.SP.HEA=<n>]
 [A.TH.CON=<n>] [B.TH.CON=<n>] [C.TH.CON=<n>] [D.TH.CON=<n>]
 [E.TH.CON=<n>]
 [OP.PH.EN=<n>] [LAN300=<n>] [LAP300=<n>]
Heterojunction Device AAM Parameters
 [{X.MOLE=<n> | X.OTHER=<C>}] [EPS.X1=<n>] [EPS.X2=<n>]
 [NC.O=<n>] [NC.E=<n>] [NV.O=<n>] [NV.E=<n>] [EM.MODEL=<n>]
 [EG.XO=<n>] [EG.X1=<n>] [EG.X2=<n>] [EG.X3=<n>] [EG.X4=<n>]
 [EG.X5=<n>] [EG.X6=<n>] [EG.X7=<n>] [EG.X8=<n>] [EG.X9=<n>]
 [EG.X10=<n>] [EG.X11=<n>] [EG.X12=<n>] [EG.X13=<n>] [EG.X14=<n>]
 [AF. X0=<n>] [AF.X1=<n>] [AF.X2=<n>] [AF.X3=<n>] [AF.X4=<n>]
 [AF.X5=<n>] [AF.XL=<n>] [X1.AFFIN=<n>] [EGALX=<n>] [EGBEX=<n>]
 [EGGAX=<n>] [EGALL=<n>] [EGBEL=<n>] [EGGAL=<n>]
 [MEG=<n>] [MEG.X1=<n>] [MEX=<n>] [MEX.X1=<n>] [MEL=<n>]
 [MEL.X1=<n>] [MHO=<n>] [MHO.X1=<n>] [MLO=<n>] [MLO.X1=<n>]
)
Insulator Parameters
 ({OXIDE | NITRIDE | SAPPHIRE | OXYNITRI | INSULATO | REGION=<c>}
 [PERMITTI=<n>] [AFFINITY=<n>] [EG300=<n>]
 [ECN.GC=<n>] [BARLN=<n>] [TUNLN=<n>]
 [ECP.GC=<n>] [BARLP=<n>] [TUNLP=<n>]
 [ME.DT=<n>]
```

```
Lattice Temperature AAM Parameters for Insulators
 [DENSITY=<n>]
 [A.SP.HEA=<n>] [B.SP.HEA=<n>] [C.SP.HEA=<n>] [D.SP.HEA=<n>]
 [F.SP.HEA=<n>] [G.SP.HEA=<n>]
 [A.TH.CON=<n>] [B.TH.CON=<n>] [C.TH.CON=<n>] [D.TH.CON=<n>]
 [E.TH.CON=<n>]
)
```

Electrode Parameters
( ELECTROD=<C> [A.FN=<n>] [B.FN=<n>] [ME.DT=<n>] [BARR.DT=<n>])
\}
]
Circuit Analysis AAM Parameters
[STRUCTUR=<C>]
Optical Device AAM Parameters
[PR.TABLE]
Optical Energy Gap
[EGO300=<n>] [EGOALPH=<n>] [EGOBETA=<n>]
(MATERIAL, continued next page)
(MATERIAL, continued from previous page)

```
Real Refractive Index
 [{(WAVE.RE=<a> INDEX.RE=<a>) | RRI.FILE=<C>} [FIRST] [IAST]]
 Imaginary Refractive Index or Absorption Coefficient
 [{ ({ (WAVE.IM=<a> {INDEX.IM=<a> | ABSORPTI=<a>})
 | ({IRI.FILE=<C> | ABS.FILE=<C>})
 }
 [FIRST] [LAST]
)
 | (BTBT.AB B. BB=<a> E.PHONON=<a> E1.BB=<a> EXP.BB=<a>)
 }
]
 [BATA.AB [E1.BT=<n>] {E.URBACH=<n> | G.BT=<n>}]
 [FRCA.AB [EL.EMAS=<n>] [HO.EMAS=<n>]]
```

```
METHOD - p. 3-147
 [ITLIMIT=<n>] [XNORM] [RHSNORM] [XRNORM [NODE.ERR=<n>]]
 [PX.TOLER=<n>] [CX.TOLER=<n>] [PR.TOLER=<n>] [CR.TOLER=<n>]
 [XRI.NORM [XRI.TOLE=<n>] [XRI.THXV=<n>] [XRI.THXC=<n>]
 [XRI.THI=<n>]
]
 [NO.CARR=<C>] [LIMIT] [PRINT] [FIX.QF] [ITER.TTY] [ASMB.OLD]
ILUCGS Solver Parameters
 [ILU.ITER=<n>] [ILU.TOL=<n>] [ILU.XTOL=<n>]
Gummel's Method Parameters
 { ([{ DVLIMIT=<n>
 (DAMPED [DELTA=<n>] [DAMPLOOP=<n>] [DFACTOR=<n>])
 }
]
 [ICCG [LU1CRIT=<n>] [LU2CRIT=<n>] [MAXINNER=<n>]]
 [SINGLEP
 [ACCELERA [ACCSTART=<n>] [ACCSTOP=<n>] [ACCSTEP=<n>]]
]
)
Newton's Method Parameters
 | ([AUTONR [NRCRITER=<n>] [ERR.RAT=<n>]]
 [VC.COUPL [C.VCOUP=<n>] [TH.VCOUP=<n>]
 [ELEC.VCP=<c> [VO.VCOUP=<n>]]
]
 [CONT.RHS [ITRHS=<n>]] [CONT.PIV] [{CONT.ITL | STOP.ITL}]
 [CONT.STK] [STACK=<n>] [ACONTINU=<n>]
 [TAUTO] [2NDORDER] [TOL.TIME=<n>] [L2NORM] [DT.MIN=<n>]
 [EXTRAPOL] [DT.DC.UP=<n>] [DT.DC.LO=<n>]
 [CARR.MIN=<n>] [CARR.FAC=<n>] [N.DVLIM=<n>] [N.DVMAX]
 [{N.DAMP | (DAMP.ONE [TH.DAMP1=<n>] [TH.DAMP2=<n>])}]
 [DAMP.CON]
)
 }
Energy Balance Parameters
 [ETX.TOLE=<n>] [ETR.TOLE=<n>] [N.MAXBL=<n>] [N.MAXEB=<n>]
Lattice Temperature AAM Parameters
 [LTX.TOLE=<n>] [LTR.TOLE=<n>] [LTX.FACT=<n>] [LTR.FACT=<n>]
 [MAX.TEMP=<n>]
Direct Tunneling Parameter
 [DT.JACOB]
```


## $\mathbf{M}<$ name $>-$ p. 3-372

<noded> <nodeg> <nodes> <nodeb> <mname>


MOBILITY-p. 3-306
[SILICON] [GAAS] [POLYSILI] [SEMICOND] [SIGE] [ALGAAS] [GERMANIU] [SIC] [S.OXIDE] [HGCDTE] [INGAAS] [INP] [INAS] [DIAMOND] [ZNSE] [ZNTE] [A-SILICO] [REGION=<C>] [PRINT] [ALINAS] [GAASP] [INGAP] [INASP]

Constant Mobility Parameters [MUNO $=<n>$ ] [MUPO=<n>]

Mobility Table Parameters [ CONCENTR=<a> [ELECTRON=<a>] [HOLE=<a>] [FIRST] [LAST] ] [PR.TABLE]

Analytic Mobility Model Parameters
[MUN.MIN $=<n>$ ] [MUN. MAX=<n>] [NREFN=<n>]
[NUN=<n>] [XIN=<n>] [ALPHAN=<n>]
[MUP.MIN $=<n>$ ] [MUP. MAX $=<n>$ ] [NREFP $=<n>$ ]
[NUP $=<n>$ ] [XIP=<n>] [ALPHAP=<n>]

III-V Compound Semiconductor Analytic Mobility Model Parameters
 [MIP. X1 $=<n>$ ] [MIP. X2 $=<n>$ ] [MAP. X1 $=<n>$ ] [MAP. X2 $=<n>$ ] [NREFP2=<n>]

Arora Mobility Model Parameters
[MUN1. ARO $=<n>$ ] [MUN2 . ARO $=<n>$ ] [CN.ARORA=<n>] [AN.ARORA=<n>]

[MUP1. ARO $=<n>$ ] [MUP2 $\cdot \mathrm{ARO}=<\mathrm{n}>$ ] [CP.ARORA $=<n>$ ] [AP. ARORA $=<n>$ ]
[EXP1.ARO $=<n>$ ] [EXP2.ARO $=<n>$ ] [EXP3.ARO $=<n>$ ] [EXP4.ARO=<n>]

Carrier-Carrier Scattering Mobility Model Parameters
[A.CCS=<n>] [B.CCS=<n>] [A.IIC=<n>] [B.LIC=<n>]
[C.LIC $=<n>$ ] [EX.LIC $=<n>$ ]
[MUNO.LAT=<n>] [EXN.LAT=<n>] [AN.IIS=<n>] [BN.IIS=<n>]
[MUPO.LAT=<n>] [EXP.LAT=<n>] [AP.IIS=<n>] [BP.IIS=<n>]

Philips Unified Mobility Model Parameters
[MMNN. UM=<n>] [MMXN. UM=<n>] [NRFN. UM=<n>] [ALPN. UM=<n>]
[TETN. UM=<n>] [NRFD. UM=<n>] [CRFD. UM=<n>]
[MMNP. UM $=<n>$ ] [MMXP. UM $=<n>$ ] [NRFP. UM $=<n>$ ] [ALPP. UM $=<n>$ ]
[TETP. $\mathrm{UM}=<\mathrm{n}>$ ] [NRFA. $\mathrm{UM}=<\mathrm{n}>$ ] [CRFA. $\mathrm{UM}=<\mathrm{n}>$ ]

Effective Field Parameters
[ETAN=<n>] [ZETAN=<n>] [ETAP=<n>] [ZETAP=<n>]

Surface Degradation Factors
[GSURFN=<n>] [GSURFP=<n>]
Lombardi Surface Mobility Model Parameters [MUNO.LSM=<n>] [MUN1.LSM=<n>] [MUN2.LSM=<n>] [CRN. LSM $=<n>$ ] [CSN. LSM $=<n>$ ] [BN. LSM $=<\mathrm{n}>$ ] [CN. LSM $=<\mathrm{n}>$ ] [DN. LSM $=<\mathrm{n}>$ ] [EXN1.LSM=<n>] [EXN2.LSM=<n>] [EXN3.LSM=<n>] [EXN4.LSM=<n>]
(MOBILITY, continued next page)

```
(MOBILITY, continued from previous page)
 [EXN8.LSM=<n>
 [MUPO.LSM=<n>] [MUP1.LSM=<n>] [MUP2.LSM=<n>]
 [CRP.LSM=<n>] [CSP.LSM=<n>]
 [BP.LSM=<n>] [CP.LSM=<n>] [DP.LSM=<n>]
 [EXP1.LSM=<n>] [EXP2.LSM=<n>] [EXP3.LSM=<n>] [EXP4.LSM=<n>] [EXP8.LSM=<n>]
 [PC.LSM=<n>]
Generalized Mobility Curve Model
 [BN.GMC=<n>] [CN.GMC=<n>] [DN.GMC=<n>]
 [D1N.GMC=<n>] [D2N.GMC=<n>]
 [EXN4.GMC=<n>] EXN5.GMC=<n>] EXN6.GMC=<n>] [EXN7.GMC=<n>]
 [EXN8.GMC=<n>]
 [BP.GMC=<n>] [CP.GMC=<n>] [DP.GMC=<n>]
 [D1P.GMC=<n>] [D2P.GMC=<n>]
 [EXP4.GMC=<n>] EXP5.GMC=<n>] EXP6.GMC=<n>] [EXP7.GMC=<n>]
 [EXP8.GMC=<n>]
Shirahata Mobility Model Parameters
 [E1N.SHI=<n>] [EX1N.SHI=<n>] [E2N.SHI=<n>] [EX2N.SHI=<n>]
 [E1P.SHI=<n>] [EX1P.SHI=<n>] [E2P.SHI=<n>] [RX2P.SHI=<n>]
Surface Mobility Model Parameters
 [EREFN=<n>] [EXN.SM=<n>] [MUREFN=<n>]
 [EREFP=<n>] [EXP.SM=<n>] [MUREFP=<n>]
Enhanced Surface Mobility Model Parameters
 [MUN1.SM=<n>] [MUN2.SM=<n>] [MUN3.SM=<n>]
 [EXN1.SM=<n>] [EXN2.SM=<n>] [EXN3.SM=<n>]
 [MUP1.SM=<n>] [MUP2.SM=<n>] [MUP3.SM=<n>]
 [EXP1.SM=<n>] [EXP2.SM=<n>] [EXP3.SM=<n>]
Universal Mobility Model Parameters
 [MUN.UNI=<n>] [ECN.UNI=<n>] [EXN.UNI=<n>] [EXNO.UNI=<n>]
 [MUP.UNI=<n>] [ECP.UNI=<n>] [EXP.UNI=<n>] [EXPO.UNI=<n>]
Perpendicular Field Mobility Parameters
 [ECN.MU=<n>] [ECP.MU=<n>]
Hewlett-Packard Mobility Model Parameters
 [MUNO.HP=<n>] [ECN.HP=<n>] [VSN.HP=<n>] [VCN.HP=<n>] [GN.HP=<n>]
 [NRFN.HP=<n>]
 [MUPO.HP=<n>] [ECP.HP=<n>] [VSP.HP=<n>] [VCP.HP=<n>] [GP.HP=<n>]
 [NRFP.HP=<n>]
Field Dependent Mobility Model Parameters
 [VSATN=<n>] [BETAN=<n>] [EON=<n>] [BETAN.HA=<n>]
 [VSATP=<n>] [BETAP=<n>] [EOP=<n>] [BETAP.HA=<n>]
 [FLDMOB=<n>]
(MOBILITY, continued next page)
```

```
(MOBILITY, continued from previous page)
III-V Compound Semiconductor Field Dependent Mobility Model Parameters
 [VSN. X1=<n>] [VSN. X2=<n>] [EN.X1=<n>] [EN.X2=<n>]
Tranverse Field Dependent Mobility Model Parameters
 [TEMPN.UT=<n>] [PHONN.UT=<n>] [SURFN.UT=<n>] [COULN.UT=<n>]
 [TEMPP.UT=<n>] [PHONP.UT=<n>] [SURFP.UT=<n>] [COULP.UT=<n>]
 [ACC.N.UT=<n>] [ACC.P.UT=<n>] [INV.N.UT=<n>] [INV.P.UT=<n>]
Stress-Induced Mobility Model Parameters
 [MLT.STR=<n>] [MULO.STR=<n>]
Device Selection (Circuit Analysis AAM)
 [STRUCTUR=<c>]
```

.MODEL - p. 3-380

```
<mod.nam>
{ Diode Parameters
 (D
 [IS=<n>] [CJO=<n>] [M=<n>] [VJ=<n>] [N=<n>] [FC=<n>]
 [BV=<n>] [EG=<n>] [XTI=<n>] [TT=<n>]
)
 Bipolar Junction Transistor Parameters
 ({NPN | PNP}
 [IS=<n>] [BF=<n>] [BR=<n>] [TF=<n>] [TR=<n>] [CJC=<n>]
 [CJE=<n>] [VJC=<n>] [VJE=<n>] [MJC=<n>] [MJE=<n>]
 [IKF=<n>] [IKR=<n>] [NE=<n>] [NC=<n>] [NF=<n>] [NR=<n>]
 [VAF=<n>] [VAR=<n>] [ISC=<n>] [ISE=<n>] [FC=<n>] [FE=<n>]
 [VTF=<n>] [ITF=<n>] [XTF=<n>] [RB=<n>] [RBM=<n>]
 [XTI=<n>] [XTB=<n>] [EG=<n>]
)
 MOS Transistor Parameters (Medici Built-in Models)
 ({NMOS | PMOS}
 Common and Level 1 parameters
 [LEVEL=<n>] [LD=<n>] [TOX=<n>] [NSUB=<n>] [NSS=<n>] [UO=<n>]
 [PHI=<n>] [GAMMA=<n>] [TPG=<n>] [VTO=<n>] [KP=<n>] [JS=<n>]
 [}\textrm{XJ}=<\textrm{n}>] [LAMBDA=<n>
 Level 2 adds the following to the common set
 [UCRIT=<n>] [UEXP=<n>] [VMAX=<n>] [NFS=<n>] [NEFF=<n>]
 [DELTA=<n>]
```

( .MODEL, continued on next page)
( .MODEL, continued from previous page)

```
 [K1=<n>] [K2=<n>] [K3=<n>] [K3B=<n>] [W0=<n>] [DVTOW=<n>]
 [DVT1W=<n>] [DVT2W=<n>] [DVT0=<n>] [DVT1=<n>] [DVT2=<n>]
 [ETAO=<n>] [ETAB=<n>] [DSUB=<n>] [VBM=<n>] [UO=<n>] [UA=<n>]
 [UB=<n>] [UC=<n>] [A0=<n>] [AGS=<n>] [BO=<n>] [B1=<n>] [KETA=<n>]
 [VOFF=<n>] [VSAT=<n>] [A1=<n>] [A2=<n>] [RDSW=<n>] [PRWG=<n>]
 [PRWB=<n>] [WR=<n>] [NFACTOR=<n>] [CIT=<n>] [CDSC=<n>] [CDSCD=<n>]
 [CDSCB=<n>] [PCLM=<n>] [PDIBLC1=<n>] [PDIBLC2=<n>] [PDIBLCB=<n>]
 [DROUT=<n>] [PSCBE1=<n>] [PSCBE2=<n>] [PVAG=<n>] [DELTA=<n>]
 [ALPHAO=<n>] [BETAO=<n>] [RSH=<n>] [XPART=<n>] [CGSO=<n>]
 [CGDO=<n>] [CGBO=<n>] [CGS1=<n>] [CGD1=<n>] [CKAPPA=<n>] [CF=<n>]
 [CLC=<n>] [CLE=<n>] [VFBCV=<n>] [WINT=<n>] [WLN=<n>] [WW=<n>]
 [WWN=<n>] [WWL=<n>] [DWG=<n>] [DWB=<n>] [LINT=<n>] [LL=<n>]
 [LLN=<n>] [LW=<n>] [LWN=<n>] [LWL=<n>] [DLC=<n>] [DWC=<n>]
 [KT1=<n>] [KT1L=<n>] [KT2=<n>] [UTE=<n>] [UA1=<n>] [UB1=<n>]
 [UC1=<n>] [AT=<n>] [PRT=<n>] [XTI=<n>] [LMIN=<n>] [LMAX=<n>]
 [WMIN=<n>] [WMAX=<n>] [BINUNIT=<n>] [GAMMA1=<n>] [GAMMA2=<n>]
 [VBX=<n>] [XT=<n>] [NOIA=<n>] [NOIB=<n>] [NOIC=<n>] [EM=<n>]
 [AF=<n>] [KF=<n>] [EF=<n>] [ACM=<n>] [JS=<n>] [JSW=<n>] [NJ=<n>]
 [N=<n>] [CJ=<n>] [CJSW=<n>] [CJSWG=<n>] [CJGATE=<n>] [PB=<n>]
 [PBSW=<n>] [PHP=<n>] [PBSWG=<n>] [MJ=<n>] [MJSW=<n>] [MJSWG=<n>]
 [ELM=<n>] [TOXM=<n>] [VFB=<n>] [NOFF=<n>] [VOFFCV=<n>] [IJTH=<n>]
 [ALPHA1=<n>] [ACDE=<n>] [MOIN=<n>] [TPB=<n>] [TPBSW=<n>]
 [TPBSWG=<n>] [TCJ=<n>] [TCJSW=<n>] [TCJSWG=<n>] [LLC=<n>]
 [LWC=<n>] [LWLC=<n>] [WLC=<n>] [WWC=<n>] [WWLC=<n>]
)
 }
(.MODEL, continued on next page)
```

MODELS - p. 3-108

```
[{SRH | CONSRH} [R.TUNNEL]] [AUGER] [BGN]
[{FN.CUR | (DT.CUR [DT.METH=<n>] [DT.CBET] [DT.VBET] [DT.VBHT])}]
[{BOLTZMAN | FERMIDIR} [REGION=<C>]]
[IMPACT.I] [II.VALDI] [{II.NLOC=<n> | II.NODE=<n>}] [II.TEMP]
[INCOMPLE [ENERGY.L] [HIGH.DOP] [IMPURITY=<C>]]
[BTBT [BT.MODEL=<n>] [BT.LOCAL=<n>]
 [BT.QUAD [BT.ATOL=<n>] [BT.RTOL=<n>] [BT.TINY=<n>]]
]
[{ CONMOB | ANALYtiC | ARORA | CCSmOB | PhumOB | LSMMOB
 Gmсмов | Shiramob | lucmob | ialmob
 }
]
[{ SRFmOb | SRFmOb2 | unimob | prpmob | lSmmob
 | GMCMOB | Shiramob | trldmob | hPmob | lucmob | ialmob
 }
]
[{HPMOB | Fldmob | lucmob | IAlmob | тмPmOB}
 [{ND.MOB | C.ND.MOB=<n>}]
]
[E.EFFECT] [EJ.MOBIL] [EHSCAT] [STRMOB]
[{ MLDA
 | (QM.PHILI [QM.AC] [QM.OLD] [QM.METHO=<n>] [QM.NORP=<n>]
 [QM.EFIEL=<n>] [QM.EMIN=<n>] [QM.EXTEN] [QM.FERMI]
)
 }
]
[{GATE1 | (GATE2 [GATE.SUR])} [GATE.GEN=<n>] [GATE.tem]]
[TMPDIFF] [ET.MODEL] [EF.TMP] [EFI.TMP] [COMP.ET] [EBLT.HT]
[TMPTAUWN] [TMPTAUWP] [EB.SRH.G] [TEMPERAT=<n>] [3KT.LT] [ECII.LAT]
[{HJSC2 | (HJTEM [HJTUN])}] [STRESS] [Y.ORIENT=<n>] [PRINT]
```

. NODESET - p. 3-388

```
V(<nodel>)=<n> V(<node2>)=<n>
```

OPTION - p. 3-404

```
[G.DEBUG] [N.DEBUG] [CPU.STAT [CPU.FILE=<C>]] [I.ERROR]
```

[MAXNODES] [ SAVE.SOL [SOL.FILE=<C>] ]
.OPTIONS - p. 3-390

```
[T.TOL=<n>] [T.MIN=<n>] [P.TOL=<n>] [C.TOL=<n>] [ITLIM=<n>]
[DELVMAX=<n>] [G.FORCE=<n>] [T.NOM=<n>] [V.MIN=<n>] [V.MAX=<n>]
[2ND] [AUTO] [ALT] [ILUCGS] [LAT.TEMP] [COUP.LAT] [ELE.TEMP]
[HOL.TEMP] [TIF] [HSPICE]
```

PHOTOGEN - p. 3-118

```
 [X.START=<n>] [Y.START=<n>] X.END=<n> Y.END=<n>
 [X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
 [ELECTRON] [HOLES]
 Spatial Terms
 [R.CHAR=<n>]
 [A1=<n>] [A2=<n>] [A3=<n>] [A4=<n>]
 [C1=<n>] [C2=<n>] [C3=<n>] [C4=<n>]
 [RECO=<n>] [IN.FILE=<C> [RD.CHAR]] [PC.UNITS] [CLEAR]
 [G.INTEG] [N.INTEG=<n>]
Temporal Terms
 { UNIFORM
 (GAUSSIAN TC=<n> [TO=<n>])
 (DELTA [TO=<n>])
 (PULSE TRS=<n> TPD=<n> TFS=<n> TPRD=<n> [T0=<n>])
 }
Circuit Analysis AAM Parameters
 [STRUCTUR=<C>]
Optical Device AAM Parameters
 Incident Ray Quantities
 [RAYTRACE X.ORG=<n> Y.ORG=<n> [ANGLE=<n>] [SPLIT.RA]
 { (WAVELENG=<n> {FLUX=<n> | INTENSIT=<n>})
 | ({SP.FILE=<C> | (BB.RADIA [BB.TEMP=<n>]) }
 WAVE.STA=<n> WAVE.END=<n> WAVE.NUM=<n>
)
 }
 [RAY.WIDT=<n>] [RAY.NUM=<n>]
 [WAVE.SCA=<n>] [INT.SCAL=<n>]
 { ([POLARIZA=<n>] [PHASE.DI=<n>])
 ([A.ELLIPS=<n>] [R.ELLIPS=<n>])
 }
]
Ray-Tracing Quantities
 [{INT.RATI=<n> | INT.LIMI=<n>}]
 [BOT.RFLT=<n>] [TOP.RFLT=<n>] [SID.RFLT=<n>] [SID.INCI] [TRANSPAR]
 [AMB.REFR=<n>] [WIDTH.CH] [QUAN.EFF=<n>] [PRINT.AB]
Film Quantities
 [FILM.REG=<c>]
```

```
PLOT.1D - p. 3-199
Distance Plot Quantities
 { ({ POTENTIA | QFN | QFP | VALENC.B | CONDUC.B | VACUUM
 E.FIELD | ARRAY1 | ARRAY2 | ARRAY3
 Q.FIX | ({TRAPS | TRAP.OCC} [LEVEL=<n>])
 DOPING | ELECTRON | HOLES | NIE | NET.CHAR | NET.CARR
 J.CONDUC | J.ELECTR | J.HOLE | J.DISPLA | J.TOTAL
 RECOMBIN | N.RECOMB | P.RECOMB | II.GENER | BB.GENER
 (PHOTOGEN [WAVE.NUM=<n>]) | N.MOBILI | P.MOBILI | SIGMA
 ELE.TEMP | HOL.TEMP | ELE.VEL | HOL.VEL | J.efield
 G.GAMN | G.GAMP | G.GAMT | G.IN | G.IP | G.IT
 IMPURITY=<C> | OTHER=<C> | QF | S.N | S.P | Q.INSULA
 | ({N.ACCEPT | P.ACCEPT | N.DONOR | P.DONOR} [PER.CM2])
 | QPOTN | QPOTP
Lattice Temperature AAM Parameters
 LAT.TEMP
Heterojunction Device AAM Parameters
 | X.MOLE
 }
AC Small-Signal Analysis Quantity Parameters
 [{AC.REAL | AC.IMAG | AC.MAGN | AC.PHAS}]
Line Plot Parameters
 [{X.COORD | Y.COORD}] [{X.COMPON | Y.COMPON}] [HORZ.OFF=<n>]
 { ([X.START=<n>] [Y.START=<n>] [X.END=<n>] [Y.END=<n>])
 | ([INTERFAC [{MATERIAL=<C> | REGION=<C>}]
 [IX.MIN=<n>] [IX.MAX=<n>] [IY.MIN=<n>] [IY.MAX=<n>]
]
)
 }
 [{FIND.MIN | FIND.MAX} [SEMICOND] [INSULATO] [FIND.DIS=<n>]]
)
Terminal Characteristics Plot Parameters
 | (X.AXIS=<C> Y.AXIS=<C> [ORDER] [IN.FILE=<C>]
 [X.MIN=<n>] [X.MAX=<n>] [CONDITIO=<c>]
)
 }
```

( PLOT.1D statement continued on next page)

```
(PLOT.1D statement continued from previous page)
Plot Controls
 [SPLINE [NSPLINE=<n>]]
 [LEFT=<n>] [RIGHT=<n>] [BOTTOM=<n>] [TOP=<n>] [UNCHANGE]
 [{Y.LOGARI | S.LOGARI | INTEGRAL}] [ABSOLUTE] [NEGATIVE]
 [CLEAR] [AXES] [LABELS] [MARKS] [TITLE=<C>] [T.SIZE=<n>]
 [X.OFFSET=<n>] [X.LENGTH=<n>] [X.SIZE=<n>] [X.LOGARI]
 [Y.OFFSET=<n>] [Y.LENGTH=<n>] [Y.SIZE=<n>]
 [CURVE] [{SYMBOL=<n> | POINTS}] [C.SIZE=<n>]
 [IINE.TYP=<n>] [COLOR=<n>] [DEVICE=<C>] [PAUSE]
 [PLOT.OUT=<C>] [PLOT.BIN=<C>] [PRINT] [OUT.FILE=<C>]
 [TIMESTAM [TIME.SIZ=<n>]]
Circuit Analysis AAM Parameters
 [STRUCTUR=<c>]
```

PLOT . 2D - p. 3-215

```
 [BOUNDARY [REGION]] [JUNCTION] [DEPLETIO] [LUMPED] [CON.RESI]
 [GRID [ELEM.NUM] [NODE.NUM] [REG.NUM] [N.SIZE=<n>] [OBTUSE]]
 [CROSSES] [FILL] [SCALE]
 [X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
 [CLEAR] [LABELS] [MARKS] [TOP.MARK] [TITLE=<C>] [T.SIZE=<n>]
 [L.BOUND=<n>] [L.JUNCT=<n>] [L.DEPLE=<n>] [L.GRID=<n>] [L.ELECT=<n>]
 [C.BOUND=<n>] [C.JUNCT=<n>] [C.DEPLE=<n>] [C.GRID=<n>] [C.ELECT=<n>]
 [X.OFFSET=<n>] [X.LENGTH=<n>] [X.SIZE=<n>]
 [Y.OFFSET=<n>] [Y.LENGTH=<n>] [Y.SIZE=<n>]
 [DEVICE=<C>] [PLOT.OUT=<C>] [PLOT.BIN=<C>] [PAUSE]
 [TIMESTAM [TIME.SIZ=<n>]]
Circuit Analysis AAM Parameters
 [STRUCTUR=<c>]
Optical Device AAM Parameter
 [RAYPLOT [WAVE.NUM=<n>]]
```

PLOT . 3D-p. 3-221

```
Plot Quantities
 { POTENTIA | QFN | QFP | valenc.b | Conduc.b | vacuum | e.field
 | doping | electron | holes | nie | net.char | Net.carr
 J.conduc | J.electr | J.hole | J.displa | J.total
 RECOMBIN | N.RECOMB | P.recomb | II.GENER | bb.GENER | Photogen
 ele.temp | hol.temp | ele.vel | hol.vel | J.efield
 G.gAMN | G.gAMP | G.GAMT | G.in | G.ip | G.it
 ARRAY1 | ARRAY2 | ARRAY3 | ({TRAPS | TRAP.OCC} [LEVEL=<n>])
 N.mObili | P.mobili | SIGMA | lat.temp | x.mole
 IMPURITY=<C> | OTHER=<C>
 }
AC Small-Signal Analysis Quantity Parameters
 [{AC.REAL | AC.IMAG | AC.MAGN | AC.PHAS}]
Plot Controls
 [X.COMPON] [Y.COMPON] [Z.MIN=<n>] [Z.MAX=<n>] [ABSOLUTE] [LOGARITH]
Device Bounds
 [X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
Viewing Parameters
 [THETA=<n>] [PHI=<n>] [X.LINES=<n>] [Y.LINES=<n>] [EQUIDIST]
Axis and Labels
 [AXES] [LABELS] [MARKS] [TITLE=<c>] [T.SIZE=<n>]
 [X.LENGTH=<n>] [Y.LENGTH=<n>] [Z.LENGTH=<n>]
 [X.LABEL=<C>] [Y.LABEL=<C>] [Z.LABEL=<C>]
 [X.SIZE=<n>] [Y.SIZE=<n>] [Z.SIZE=<n>]
Display Parameters
 [CLEAR] [FRAME] [CENTER] [FILL.VIE]
 [XV.LENGT=<n>] [XV.OFFSE=<n>] [YV.LENGT=<n>] [YV.OFFSE=<n>]
 [X.OFFSET=<n>] [Y.OFFSET=<n>]
 [DEVICE=<C>] [L.BOX=<n>] [C.BOX=<n>] [PAUSE]
 [TIMESTAM [TIME.SIZ=<n>]]
File Output
 [PLOT.OUT=<C>] [PLOT.BIN=<C>]
Circuit Analysis AAM Parameters
 [STRUCTUR=<C>]
```

P<name>- p. 3-373
<node1>=<term1><node2>=<term2>.......... .
FILE=<c> WIDTH=<n>

```
PRINT - p. 3-196
 [{ ([X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>])
 | ([IX.MIN=<n>] [IX.MAX=<n>] [IY.MIN=<n>] [IY.MAX=<n>])
 }
]
 [POINTS] [ELEMENTS] [GEOMETRY] [INTERFAC] [IMPURITY] [OTHER]
 [SOLUTION] [CURRENT [{X.COMPON | Y.COMPON}]] [E.FIELD]
 [NET.CHAR] [RECOMBIN] [II.GENER] [II.EJG] [CONC.DEP]
 [BB.GENER] [BB.EG] [TEMPERAT] [BAND.STR]
Circuit Analysis AAM Parameters
 [STRUCTUR=<c>]
```

PROFILE-p. 3-83

```
 [REGION=<C>]
 [X.MIN=<n>] [{WIDTH=<n> | X.MAX=<n>}]
 [Y.MIN=<n>] [{DEPTH=<n> | Y.MAX=<n>}]
 Output Doping File
 [OUT.FILE=<C>]
Uniform Profile
 { (UNIFORM {N-TYPE | P-TYPE | IMPURITY=<C> | OTHER=<C>} N.PEAK=<n>
)
```

```
Analytic Profiles
```

Analytic Profiles
| ( {N-TYPE | P-TYPE | IMPURITY=<C> | OTHER=<C>} {N.PEAK=<n> |
| ( {N-TYPE | P-TYPE | IMPURITY=<C> | OTHER=<C>} {N.PEAK=<n> |
DOSE=<n>}
DOSE=<n>}
{Y.CHAR=<n> | Y.JUNCTI=<n>} {X.CHAR=<n> | XY.RATIO=<n>} [X.ERFC]
{Y.CHAR=<n> | Y.JUNCTI=<n>} {X.CHAR=<n> | XY.RATIO=<n>} [X.ERFC]
)
)
Analytic Polygonal Profiles
Analytic Polygonal Profiles
| ( POLYGON {N-TYPE | P-TYPE | IMPURITY=<c> | OTHER=<C>} N.PEAK=<n>
| ( POLYGON {N-TYPE | P-TYPE | IMPURITY=<c> | OTHER=<C>} N.PEAK=<n>
X.POLY=<a> Y.POLY=<a> N.CHAR=<n> [N.ERFC]
X.POLY=<a> Y.POLY=<a> N.CHAR=<n> [N.ERFC]
)
)
Analytic Rotated Profiles
Analytic Rotated Profiles
| ( ROTATE {N-TYPE | P-TYPE | IMPURITY=<C> | OTHER=<C>} N.PEAK=<n>
| ( ROTATE {N-TYPE | P-TYPE | IMPURITY=<C> | OTHER=<C>} N.PEAK=<n>
X.CENTER=<n> Y.CENTER=<n> R.INNER=<n> R.OUTER=<n> R.CHAR=<n>
X.CENTER=<n> Y.CENTER=<n> R.INNER=<n> R.OUTER=<n> R.CHAR=<n>
[R.ERFC]
[R.ERFC]
)
)
One-Dimensional Profiles from Data Files
One-Dimensional Profiles from Data Files
| ( IN.FILE=<C> [N.OFFSET=<n>] [Y.OFFSET=<n>]
| ( IN.FILE=<C> [N.OFFSET=<n>] [Y.OFFSET=<n>]
{ ( 1D.PROC [N-TYPE] [P-TYPE] )
{ ( 1D.PROC [N-TYPE] [P-TYPE] )
( SUPREM2 [N-TYPE] [P-TYPE] )
( SUPREM2 [N-TYPE] [P-TYPE] )
( 1D.ASCII [Y.COLUMN=<n>]
( 1D.ASCII [Y.COLUMN=<n>]
{ ( [N.COLUMN=<n>] [P.COLUMN=<n>] )
{ ( [N.COLUMN=<n>] [P.COLUMN=<n>] )
| ( D.COLUMN=<n> {IMPURITY=<c> | OTHER=<c>} )
| ( D.COLUMN=<n> {IMPURITY=<c> | OTHER=<c>} )
}
}
)
)
}
}
{X.CHAR=<n> | XY.RATIO=<n>} [X.ERFC]
{X.CHAR=<n> | XY.RATIO=<n>} [X.ERFC]
)

```
)
```

(PROFILE statement continued on next page)
((PROFILE statement continued from previous page)

```
Two-Dimensional Profiles from Data Files
 | (IN.FILE=<C> [N.OFFSET=<n>] [X.OFFSET=<n>] [Y.OFFSET=<n>]
 { (2D.PROC [N-TYPE] [P-TYPE])
 | (SUPRA [N-TYPE] [P-TYPE])
 (TSUPREM4 [N-TYPE] [P-TYPE])
 (2D.ASCII [X.COLUMN=<n>] [Y.COLUMN=<n>]
 { ([N.COLUMN=<n>] [P.COLUMN=<n>])
 | (D.COLUMN=<n> {IMPURITY=<C> | OTHER=<c>})
 }
)
 | (TIF [{IMPURITY=<C> | ([N-TYPE] [P-TYPE])}]
 [OTHER=<C> [INSULATO]]
)
 | (MEDICI [{IMPURITY=<C> | ([N-TYPE] [P-TYPE])}] [OTHER=<C>])
 }
 [X.CHAR=<n>] [X.ERFC] [Y.CHAR=<n>] [Y.ERFC]
)
 }
```

Q<name>- p. 3-374
<nodec> <nodeb> <nodee> <mname> [AREA=<n>]

## REGION - p. 3-71

```
NAME=<c>
 Semiconductor Materials
{ ({ SILICON | GAAS | POLYSILI | GERMANIU | SIC | SEMICOND
 | SIGE | ALGAAS | A-SILICO | DIAMOND | HGCDTE | INAS | INGAAS |
 | INP | S.OXIDE | ZNSE | ZNTE | ALINAS | GAASP | INGAP | INASP
 }
 Semiconductor Material Parameters
 [X.MOLE=<n>]
 [{X.END=<n> | X.SLOPE=<n>} {X.LINEAR | Y.LINEAR}]
)
 Insulator Materials
 OXIDE | NITRIDE | SAPPHIRE | OXYNITRI | INSULATO
}
 Location
{ ([{X.MIN=<n> | IX.MIN=<n>}] [{X.MAX=<n> | IX.MAX=<n>}]
 [{Y.MIN=<n> | IY.MIN=<n>}] [{Y.MAX=<n> | IY.MAX=<n>}]
 [{ (ROTATE R.INNER=<n> R.OUTER=<n> X.CENTER=<n> Y.CENTER=<n>)
 (POLYGON X.POLY=<a> Y.POLY=<a>)
 }
]
)
 [X=<n> Y=<n>]
}
[VOID]
```

```
REGRID - p. 3-71
Regrid Criteria
 { POTENTIA | (E.FIELD [{X.COMPON | Y.COMPON}]) | QFN | QFP
 | DOPING | ELECTRON | HOLES | NET.CHAR | NET.CARR
 (MIN.CARR [LOCALDOP]) | II.GENER | BB.GENER | PHOTOGEN
 ELE.TEMP | HOL.TEMP | TRUNC | ARRAY1 | ARRAY2 | ARRAY3
 IMPURITY=<C> | OTHER=<C>
Lattice Temperature AAM Parameters
 LAT.TEMP
 }
Regrid Controls
 (RATIO=<n> | FACTOR=<n>) [IN.FILE=<C>]
 [CHANGE] [ABSOLUTE] [LOGARITH] [MAX.LEVE=<n>] [SMOOTH.K=<n>]
 [X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
 [REGION=<c>] [IGNORE=<c>] [COS.ANGL=<n>]
 [OUT.FILE=<C> [NO.TTINF] [ASCII]]
Quadtree Regrid Controls
 [BOUNDARY]
 [MAXDEL=<n>] [MAXDEL.X=<n>] [MAXDEL.Y=<n>]
 [MINDEL=<n>] [MINDEL.X=<n>] [MINDEL.Y=<n>]
 [ASINH] [UNREFINE=<n>]
```

RENAME - p. 3-82
\{ELECTROD | REGION | T.ELECTR\} OLDNAME=<C> NEWNAME=<C>
RETURN - p. 3-442
[<c>]
$\mathbf{R}<$ name > - p. 3-374
<node+> <node-> <value> [T1=<n>] [T2=<n>]

```
SAVE - p. 3-270
 OUT.FILE=<C> [QT.FILES=<C>]
 { (SOLUTION [STRUCTUR=<C>] [ASCII])
 | (MESH [W.MODELS] [ASCII])
Technology Interchange Format
 | (TIF [ALL] [BANDS] [CURRENTS] [GENERATI] [COMPONEN]
 [AC.POTEN] [AC.CN] [AC.CP] [AC.TN] [AC.TP] [AC.TL]
 [AC.JDISP] [AC.JN] [AC.JP] [AC.JCOND] [AC.JTOT]
 [AC.COMP] [AC.SCOMP])
Structure Parameters
 [MESH] [BOUND]
Scalar Quantities
 [POTENTIA] [QFN] [QFP] [VALENC.B] [CONDUC.B] [VACUUM]
 [DOPING] [ELECTRON] [HOLES] [NET.CHAR] [NET.CARR]
 [RECOMBIN] [II.GENER] [BB.GENER] [PHOTOGEN]
 [ELE.TEMP] [HOL.TEMP] [ELE.VEL] [HOL.VEL] [J.EFIELD]
 [G.GAMN] [G.GAMP] [G.GAMT] [G.IN] [G.IP] [G.IT]
Vector Quantities
 [J.CONDUC] [J.ELECTR] [J.HOLE] [J.DISPLA] [J.TOTAL] [E.FIELD]
Lattice Temperature AAM Parameters
 [LAT.TEMP]
Heterojunction Device AAM Parameters
 [X.MOLE]
)
 }
```

SAVE - p. 3-458
[MESH=<c>] [SOLUTION=<c>] [IVFILE=<c>] [ASCII]

SOLVE - p. 3-161

```
Initial Guesses, Biasing, and Fermi Potentials
 [{INITIAL | PREVIOUS | PROJECT | LOCAL | P.LOCAL | P2QFN | P2QFP}]
 [{V(namel)=<n> | I (namel)=<n> | T(namel)=<n> | Q (namel)=<n>}]....
 [{V (name200)=<n> | I (name200)=<n> | T (name200)=<n> | Q (name200)=<n>}]
 [N.REGION=<C>] [N.BIAS=<a>]
 [P.REGION=<C>] [P.BIAS=<a>]
Steady State Analysis Parameters
 [{ (ELECTROD=<c> {VSTEP=<n> | ISTEP=<n>} NSTEPS=<n>)
Continuation Method Parameters
 (CONTINUE ELECTROD=<C> C.VSTEP=<n> [C.AUTO [C.TOLER=<n>]]
 [C.VMIN=<n>] [C.VMAX=<n>] [C.IMIN=<n>] [C.IMAX=<n>]
 [C.DVMAX=<n>] [C.DVMIN=<n>] [C.RMAX=<n>]
)
Transient Analysis Parameters
 (TSTEP=<n> [TMULT=<n>] [DT.MAX=<n>]
 {TSTOP=<n> | TD.STOP=<n> | T.INCREM = <n> | NSTEPS=<n>}
 [{ RAMPTIME=<n>
 ENDRAMP=<n>
 (SINE ELECTROD=<C> S.FREQ=<n> S.AMPLIT=<n>
 [S.PHASE=<n>] [TO=<n>]
)
 }
]
)
 }
]
Hot Carrier and Parasitic Analysis Parameters
 [IMPACT.I] [GATE.CUR] [DQDV]
Programmable Device AAM Parameters
 [FN.CUR]
Direct Tunneling Analysis Parameters
 [DT.CUR] [DT.METH=<n>] [DT.CBET] [DT.VBET] [DT.VBHT]
AC Small-Signal Analysis Parameters
 [AC.ANALY FREQUENC=<n> [FSTEP=<n> NFSTEP=<n> [MULT.FRE]]
 [VSS=<n>] [TERMINAL=<C>]
 [S.OMEGA=<n>] [MAX.INNE=<n>] [TOLERANC=<n>] [HI.FREQ]
 [S.PARAM [R.SPARA=<n>]]
]
AC Charge-Partition Analysis Parameters
 [AC.CHARG [TERMINAL=<C>]]
```

(SOLVE statement continued on next page)
(SOLVE statement continued from the previous page)

```
Circuit Analysis AAM Parameters
 [ELEMENT=<C> V.ELEMEN=<n> [VSTEP=<n> NSTEPS=<n>]] [UIC]
AC Analysis with a Circuit
 [AC.ANALY FREQUENC=<n> AC.SOURC=<C>
 [FSTEP=<n> NFSTEP=<n> [MULT.FRE]]
]
Output Choices
 [OUT.FILE=<C> [SAVE.BIA]
 [{ (TIF [ALL] [BANDS] [CURRENTS] [GENERATI] [COMPONEN])
 | ([CURRENTS] [ASCII] [STRUCTUR=<C>])
 }
]
]
Optical Device AAM Parameters
 [{ ({ WAVE=<n>
 | ([WAVE.STA=<n>] [WAVE.END=<n>])
 | SPECTR
 }
)
 | ([FLUX=<n>]
 { [LAMBDA=<n>]
 | (LAMBDA.S=<n> LAMBDA.E=<n> LAMBDA.N=<n>)
 }
)
 | (INTENSIT=<n> [INT.STEP=<n>])
 }
]
 [L.MODULA LSS=<n>]
```

SPREAD - p. 3-53
\{LEFT | RIGHT\} WIDTH=<n> UPPER=<n> LOWER=<n> [ENCROACH=<n>]
\{Y.LOWER=<n> | FIX.LOWE | ( THICKNES=<n> [VOL.RAT=<n>] )\}
[GRADING=<n>] [ MIDDLE=<n> Y.MIDDLE=<n> [GR1=<n>] [GR2=<n>] ]

START - p. 3-364
CIRCUIT [INITIAL]

```
STITCH - p. 3-103
IN.FILE=<C> [ASCII.IN] [{TIF | TSUPREM4} [POLY.ELE]]
{ TOP | BOTTOM | LEFT | RIGHT } [X.OFFSET=<n>] [Y.OFFSET=<n>]
[FLIP.X] [FLIP.Y] [ELEC.MER] [REG.MERG]
STOP - p. 3-442
[<c>]
```

```
SYMBOLIC - p. 3-144
```

SYMBOLIC - p. 3-144
{NEWTON | GUMMEL}
{NEWTON | GUMMEL}
CARRIERS=<N> [ {ELECTRON | HOLES} ]
CARRIERS=<N> [ {ELECTRON | HOLES} ]
[ ELE.TEMP [COUP.ELE] ] [ HOL.TEMP [COUP.HOL] ] [EB.POST]
[ ELE.TEMP [COUP.ELE] ] [ HOL.TEMP [COUP.HOL] ] [EB.POST]
[ LAT.TEMP [COUP.LAT] ]
[ LAT.TEMP [COUP.LAT] ]
[MIN.DEGR] [ {[ILUCGS] | [BICGS]} ] [STRIP] [VIRTUAL]
[MIN.DEGR] [ {[ILUCGS] | [BICGS]} ] [STRIP] [VIRTUAL]
[BLOCK.MA] [PRINT]

```
[BLOCK.MA] [PRINT]
```

TITLE - p. 3-402
[<c>]
. TRAN - p. 3-459

```
DT=<n> TSTOP=<n> TMAX=<n> UIC
```

TRAPS - p. 3-136

```
Energy Level Creation
 { (DISTRIB [N.LEVEL=<n>] [OUT.FILE=<C> X.PLOT=<n> Y.PLOT=<n>])
 | ([E1=<n>] ... [E50=<n>])
 }
 [MIDGAP] [CHARGE1] . . [CHARGE50] [ALL.CHAR] [DGEN1=<n>] ...
[DGEN50=<n>]
Trap Parameters
 [[TAUN=<C>] [TAUP=<C>] [N.TOTAL=<C>] [Q.FIX=<C>] [CONDITIO=<C>]
 [FREEZE]
]
Transient Parameter
 [TIME.DEP]
```

TSUPREM4－p．3－68

```
IN.FILE=<C>
[X.LEFT=<n>] [X.RIGHT=<n>] [Y.TOP=<n>] [Y.BOT=<n>]
[X.MIN=<n>] [X.MAX=<n>] [Y.MIN=<n>] [Y.MAX=<n>]
[X.OFFSET=<n>] [Y.OFFSET=<n>] [X.INTERF=<n>]
[IMPURITY] [FLIP] [SYMMETRI]
```

VECTOR－p．3－240
f J．conduc｜J．electr｜J．hole｜J．displa｜J．total｜e．field ｜AC．poten｜AC．CN｜AC．CP｜AC．tn｜AC．tp｜AC．tl

Optical Device AAM Parameters
｜（ RAYTRACE［INCIDENT］［INTERNAL］［EXITING］） \}

```
AC Small-Signal Analysis Vector Quantity Parameters
 [{ AC.vECT | AC.xCOMP | AC.yCOMP | AC.reAL | AC.tMAG
 AC.MAGN | AC.PHAS
 }
]
Plot Control Parameters
 [LOGARITH [NORM.LOG=<n>]] [V.SIZE=<n>] [CLIPFACT=<n>]
 [MINIMUM=<n>] [MAXIMUM=<n>] [LINE.TYP=<n>] [COLOR=<n>] [PAUSE]
```

```
\(\mathbf{V}\) <name>- p. 3-375
 <node+> <node->
 \{ <value>
 (PULSE <v0> <va><td><tr><tf><tp><per>)
 (\(\operatorname{EXP}\langle v 0\rangle\langle v a\rangle\langle t d 1\rangle\langle t a u l\rangle\langle t d 2\rangle\langle t a u 2\rangle\))
 | (SIN <v0> <va> <freq> <tds><theta>)
 (SFFM 〈v0〉〈va><fc><mdi><fs>)
\}
```

W＜name＞－p．3－378
＜node＋＞＜node－＞＜nodec1＋＞＜nodec1－＞＜nodec2＋＞＜nodec2－＞＜value＞

## X.MESH - p. 3-32

```
\{ LOCATION=<n> | (\{WIDTH=<n> | X.MAX=<n>\} [X.MIN=<n>]) \}
[\(\{\) NODE \(=<n>\mid \mathrm{N}\). SPACES \(=<n>\}\)]
[\(\{\) SPACING \(=<n>\mid\) H2 \(=\langle n>\}\)] [H1=<n>] [H3=<n>]
[RATIO \(=<n>\)] [MIN.SPAC=<n>] [SUMMARY]
```

Y.MESH - p. 3-35

```
{ LOCATION=<n> | ({DEPTH=<n> | Y.MAX=<n>} [Y.MIN=<n>]) }
[{NODE=<n> | N.SPACES=<n>}]
[{SPACING=<n> | H2=<n>}] [H1=<n>] [H3=<n>]
[RATIO=<n>] [MIN.SPAC=<n>] [SUMMARY]
```


## N-Channel MOSFET Examples

## Example Specifications

This chapter illustrates some of the analysis that might be performed on an N channel MOS device. The specifications for most of the examples are listed below:

- The channel length is 1.5 microns.
- The input file $m d e x l$ develops the simulation structure.
- The input files mdexlg and mdexld simulate the gate and drain characteristics, respectively.
- The input file mdexli calculates gate current and substrate current due to impact ionization.
This file also shows an efficient means for applying moderate to high biases to a structure.
- The effect of fast interface states on the gate characteristics of the device is studied using the input file mdexlf.
- An analysis of current leakage caused by band-to-band tunneling is considered using the input file mdexlt.
- The input file mdexla performs an avalanche breakdown analysis using ionization integrals.
- The input file mdexlb performs an avalanche breakdown simulation when a gate bias just above threshold is applied to the device.
For this simulation, the impact ionization generated current is included selfconsistently in the solution.
- The input file $m d e x l d t$ performs an analysis of the gate leakage current produced by direct tunneling in a MOSCAP with a $15 \AA$ gate oxide.
- The input file mdexlqt illustrates how to use the quadtree mesh option to regrid a MOSFET.


## Generation of the Simulation Structure

The input file mdexl creates the simulation structure for the n-channel MOS device. The output associated with the execution of Medici for the input file mdexl is shown in Figures 4-1 through 4-8.

```
1... TITLE Synopsys MEDICI Example 1 - 1.5 Micron N-Channel MOSFET
 2... COMMENT Specify a rectangular mesh
 3... MESH SMOOTH=1
 4... X.MESH WIDTH=3.0 H1=0.125
 5... Y.MESH N=1 L=-0.025
 6... Y.MESH N=3 L=0.
 7... Y.MESH DEPTH=1.0 H1=0.125
 8... Y.MESH DEPTH=1.0 H1=0.250
 9... COMMENT Eliminate some unnecessary substrate nodes
10... ELIMIN COLUMNS Y.MIN=1.1
11... COMMENT
12... SPREAD
13... SPREAD
14... COMMENT
15... SPREAD
 LEFT WIDTH=100 UP=3 LO=4 Y.LO=0.125
16... COMMENT Specify oxide and silicon regions
17... REGION SILICON
18... REGION OXIDE IY.MAX=3
19... COMMENT Electrode definition
20... ELECTR NAME=Gate X.MIN=0.625 X.MAX=2.375 TOP
21... ELECTR NAME=Substrate BOTTOM
22... ELECTR NAME=Source X.MAX=0.5 IY.MAX=3
23... FIECTR NAME=Drain X.MIN=2 5 IY MAX=3
24... COMMENT Specify impurity profiles and fixed charge
25... PROFILE P-TYPE N.PEAK=3E15 UNIFORM OUT.FILE=MDEX1DS
26... PROFILE P-TYPE N.PEAK=2E16 Y.CHAR=.25
27... PROFILE N-TYPE N.PEAK=2E20 Y.JUNC=.34 X.MIN=0.0 WIDTH=.5
 ... + XY.RAT=.75
28... PROFILE N-TYPE N.PEAK=2E20 Y.JUNC=.34 X.MIN=2.5 WIDTH=.5
 ... +
29... INTERFAC
30... PLOT.2D
31... COMMENT
32... REGRID DOPING LOG IGNORE=OXIDE RATIO=2 SMOOTH=1
 ... + IN.FILE=MDEX1DS
33... PLOT.2D GRID TITLE="Example 1 - Doping Regrid" FILL SCALE
```

Figure 4-1 First portion of the listing of file mdex1


Figure 4-2 Second portion of the listing of file mdex1

## Mesh

The device structure is created by use of the mesh. Various regions of the device, i.e., semiconductor, insulator, and electrodes, are defined in terms of the mesh. Distortions of the mesh are then used to give the device its designed surface topography.

Defining the Initial Mesh

Initiating and Smoothing

## Dimensions and Properties

The first step in creating a device structure is to define an initial mesh. This is shown in lines 3 through 8 of the input file in Figure 4-1. At this point the initial mesh does not need to be fine enough for a simulation. It only needs to be fine enough to define the regions of the device. The mesh is refined at a later stage (see "Grid Refinement," p. 4-6).

The mesh generation is initiated by specifying a MESH statement. The MESH statement is also used to request smoothing. Smoothing minimizes problems caused by obtuse triangles that may be generated as the result of subsequent SPREAD statements.

The $\mathbf{X}$.MESH and $\mathbf{Y}$.MESH statements specify how the mesh is generated.

## Horizontal

The horizontal spacing of mesh lines is specified with the $\mathbf{x}$.MESH statements. The $\mathbf{X}$.MESH statement at line 4 creates a grid section extending from $x=0$ microns (the default starting location) to $x=3$ microns.

Specifying the single parameter $\mathbf{H 1}=0.125$ creates a uniform mesh in the horizontal direction with a grid spacing of 0.125 microns.

## Vertical

The vertical spacing of mesh lines is specified with the Y.MESH statements. The first three horizontal mesh lines are intended to define a surface oxide with a thickness of 0.025 microns (the gate oxide thickness for this device).

Use Y.MESH statements to explicitly place the first line of nodes at $y=-0.025$ microns and the third line of nodes at $y=0$ microns. (It is convenient to set up a grid that places the insulator-semiconductor interface at $y=0$, although this is not required by the program.)

## Grid Sections

The next Y.MESH statement adds a grid section to the structure with a depth of 1 micron and a uniform spacing between mesh lines of 0.125 microns. The final Y. MESH statement adds another 1 micron grid section that has a uniform spacing of 0.250 microns.

## Triangular Grid

A rectangular grid is inefficient because a requirement of fine grid in one region of the device propagates fine grid throughout the device. A triangular grid does not suffer from this limitation, and has the advantage that a fine mesh is only needed near the surface and not deep in the bulk.

The ELIMIN statement in line 10 terminates many of the vertical grid lines within the device by removing every other column of nodes in the structure for values of y greater than 1.1 microns. This is possible because Medici uses a triangular grid.

Distorting the Oxide Grid Lines

A nonuniform oxide thickness is achieved by distorting the grid lines that define the oxide. This is done by using the following parameters:

- The first two SPREAD statements change the thickness of the first three grid lines from their original 0.025 micron thickness to 0.1 micron over the source and drain regions of the device.
- The ENCROACH parameter determines the characteristic length of the transition from the thicker to unchanged grid regions. WIDTH refers to the half-way point of the transition, measured from the LEFT or RIGHT edge of the device. The spread is accomplished by moving the upper lines up and the lower lines down.
- The ratio of the movement of the bottom line to the net oxide thickness change is controlled by VOL. RAT. VOL. RAT defaults to 0.44 , an appropriate value for thermally grown oxide.
- The mesh above and below the specified region is also distorted by the spread operation. To maintain a rectangular grid in the substrate, the third SPREAD statement places the fourth grid line at the vertical coordinate 0.125 microns, its original location.
- A very large WIDTH is given to place the transition region outside the device. Placing the first nonspread grid line at its original location prevents any distortion of the rest of the grid.

Device Regions
The regions of the device are defined with the REGION statements. The first REGION statement defines the entire structure to be silicon. The second REGION statement then redefines the three uppermost grid lines to be oxide.

Electrode The ELECTR statements specify the location of the electrodes within the device. In this Locations example:

- The gate is placed at the top surface of the oxide.
- The substrate contact is placed along the bottom of the device.
- The source and drain contacts are placed along the oxide-silicon interface at the left and right edges of the device.


## Impurity Profiles

Output File Specification


Initial Grid Plot

The impurity profiles are created analytically from Gaussian functions. Alternatively, they could also have been read in from Synopsys SUPREM-3, TSUPREM-4, or 1D and 2D formatted files. In this example:

- Because an n-channel enhancement device is being created:
- The first Profile statement specifies that a uniform p-type substrate is to be used.
- The second PROFILE statement introduces a p-type threshold adjustment profile.
- The remaining PROF ILE statements define the $\mathrm{n}+$ source and drain regions.

The source and drain are specified to have a junction depth of 0.34 microns with a lateral extent that is 0.75 times their vertical extent.

- The INTERFAC statement places a uniform fixed charge along the entire oxide-silicon interface.

The output file specification on the first PROFILE statement saves the profile information so that whenever the grid is refined, the impurity distribution can be regenerated from the original profile specification.

## Note:

If the output file specification is not done, the doping at the nodes of the refined mesh are interpolated from the doping at the nodes of the unrefined mesh. An output file should be specified when possible to avoid interpolation errors.

Figure 4-3 shows the device structure and the initial grid before any refinement is done.


Figure 4-3 Initial grid from рцот. 2D at line 30 in file mdex1, Figures 4-1 and 4-2

Grid Refinement
At this point the device structure has been defined. It is now necessary to refine the grid so that it is adequate for a simulation.

Doping Regrid
The first phase of grid refinement is requested with the REGRID statement on line 32 in Figure 4-1.

## Triangulation

The REGRID statement causes an existing triangle to be subdivided into four congruent triangles whenever the impurity concentrations at the nodes of the triangle differ by more than two orders of magnitude.

## Smoothing

Smoothing is specified to minimize the adverse effects caused by obtuse triangles. The IGNORE parameter is set equal to the oxide region so that neither grid refinement nor smoothing are done in the oxide.

## Profile File

The saved profile file is used for finding the impurity concentrations on the new grid.

## Doping Regrid Plot The resulting grid is shown in Figure $4-4$ where the junction locations are clearly

 discernible with the increased grid density.

Figure 4-4 Doping regrid from рцот.2D statement at line 33 in file mdex1, Figures 4-1 and 4-2

## Potential Regrid

The second phase of grid refinement is based on the potential difference between nodes and therefore requires a solution be obtained on the existing grid.

## Material and Contact

The gate material is selected to be $\mathrm{n}+$ polysilicon with the CONTACT statement at line 35 .

## Models

Various models are chosen before beginning a solution.

- Concentration and electric field dependent mobility models are chosen with the parameters CONMOB and FLDMOB, respectively.
- Surface mobility reduction is accounted for by specifying SRFMOB2.


## Solution

- A Poisson-only solution is selected by setting CARRIERS equal to zero on the SYMB statement, because only the potential is needed at this point
- In most cases, specifying ICCG and DAMPED on the METHOD statement results in the most efficient zero-carrier simulation.
- The SOLVE statement is used to generate the solution. The initial biases are defaulted to zero.


## Absolute Change in Potential

The grid refinement based on potential (line 42), is performed in much the same way as the refinement based on impurity concentration. The absence of the LOG parameter means that refinement is based on the absolute change in potential which is specified with RATIO to be 0.2 V .

## Triangulation

The MAX parameter is set to 1 to prevent the triangles of the original mesh from being subdivided more than once. MAX refers to the maximum number of times the grid can be subdivided relative to the original grid. It defaults to 1 more than the current maximum level of the grid.

The most efficient grid refinement occurs when MAX is 1 more than the previous maximum for a refinement based on the same quantity. Because this is the first potential refinement, MAX should start at 1.

## Output File

This is the last refinement, so the mesh is saved in an output file for subsequent simulations.

Potential Regrid
The final mesh is plotted in Figure 4-5.
Example 1 - Potential Regrid


Figure 4-5 Potential regrid from Рцот. 2D at line 43 in file mdex1, Figures 4-1 and 4-2

## Saving Zero Bias Solution

To provide a starting point for subsequent simulations, a zero bias solution is obtained and saved for the final mesh.

The SYMB statement must be specified again before using the SOLVE statement to obtain the next solution. This is because the number of nodes in the mesh has changed since the last solution was obtained.

The current level in the device is expected to be very low with no bias applied, so it is sufficient to obtain and save a zero-carrier solution.

Impurity

## Distribution Plots

Figures 4-6 through 4-8 show the impurity distribution for this device as a consequence of the plot statements at the end of the input file.


Figure 4-6 Source impurity profile from PLOT.1D at line 48 in file mdex1, Figures 4-1 and 4-2


Figure 4-7 Gate impurity profile from PLOT.1D at line 49 in file mdex1, Figures 4-1 and 4-2


Figure 4-8 Impurity contours from PLOT . 2D and CONTOUR at lines 50 through 52 in file mdex1, Figures 4-1 and 4-2

## Simulation of Gate Characteristics

The device structure and initial solution that were created and saved by the input file mdexl are read by the input file mdex1 $g$. Simulations are performed for a drain bias of 0.1 V , and gate biases of 0 V to 2 V . Figures 4-9 and 4-10 contain the output associated with the execution of Medici for the input file mdexlg.

```
1... TITLE Synopsys MEDICI Example 1G - 1.5 Micron N-Channel MOSFE]
2... COMMENT Calculate Gate Characteristics
3... COMMENT Read in simulation mesh
4... MESH IN.FILE=MDEX1MS
5... COMMENT Read in saved solution
6... LOAD IN.FILE=MDEX1S
7... COMMENT Use Newton's method for the solution
8... SYMB NEWTON CARRIERS=1 ELECTRONS
9... COMMENT Setup log file for IV data
10... LOG OUT.FILE=MDEX1GI
11... COMMENT Solve for Vds=0.1 and then ramp gate
12... SOLVE V (Drain)=.1
13... SOLVE V (Gate)=.2 ELEC=Gate VSTEP=.2 NSTEP=9
```

Figure 4-9 Output of the simulation input file mdex1g

## Calculating Gate Characteristics

The simulation of gate characteristics uses the following inputs.
Initialization Because the solution file does not contain mesh information, both the mesh and the solution files must be loaded using the LOAD statement on line 6 .

Solve Options Newton's method is chosen as the most efficient solution technique on the SYMB statement. Because this is an n-channel MOSFET, it is only necessary to solve Poisson's equation and the electron continuity equation. This is accomplished by specifying CARRIERS $=1$ and ELECTRONS on the SYMB statement.

Log File Before performing the solutions, a $\log$ file is specified to save the I-V data for later plotting.

Gate   Characteristics	In obtaining the solutions, 0.1 V is applied to the drain and then the
	to 2 V in 0.2 V increments. The resulting I-V curve, which is plotted in Figure
	10 , is useful in determining the threshold voltage. The threshold voltage can also
	be extracted directly using the EXTRACT statement with the MOS.PARA
	parameter.



Figure 4-10 Gate characteristics from plot .1d and label at lines 15 and 16 file mdex1g, Figure 4-9

## Simulation of Drain Characteristics

The device structure and initial solution that were created and saved by the input file mdexl are read by the input file mdexld. Simulations are performed for the following:

- A gate bias of 3 V
- Drain biases of 0 V to 3 V

Figures 4-11 through 4-13 contain the output associated with the execution of Medici for the input file mdexld.

```
1... TITLE Synopsys MEDICI Example 1D - 1.5 Micron N-Channel MOSFET
2... COMMENT Calculate Drain Characteristics
3... COMMENT Read in simulation mesh
4... MESH IN.FILE=MDEX1MS
5... COMMENT Read in initial solution
6... LOAD IN.FILE=MDEX1S
7... COMMENT Do a Poisson solve only to bias the gate
8... SYMB CARRIERS=0
9... METHOD ICCG DAMPED
10... SOLVE V (Gate)=3.0
11... COMMENT Use Newton's method and solve for electrons
12... SYMB NEWTON CARRIERS=1 ELECTRON
13... COMMENT Setup log file for IV data
14... LOG OUT.FILE=MDEX1DI
15... COMMENT Ramp the drain
16..S SOLVE V(Drain)=0.0 ELEC=Drain VSTEP=.2 NSTEP=15
17... COMMENT Plot Ids vs. Vds
18... PLOT.1D Y.AXIS=I(Drain) X.AXIS=V(Drain) POINTS COLOR=2
 ... + TITLE="Example 1D - Drain Characteristics"
19... LABEL LABEL="Vgs = 3.0v" X=2.4 Y=0.1E-4
```

Figure 4-11 Output of the simulation input file mdex1d

## Procedures

The simulation of drain characteristics uses the following procedures.

Initial Solution To bias the gate before generating the drain characteristics, first perform a zerocarrier solution where 3 V is applied directly to the gate, without stepping the gate bias up from 0 V .

Solve Options After obtaining the solution, use Newton's method to solve for electrons.
Log File Before performing the final solution sequence, line 14 uses the LOG statement to specify a $\log$ file to save the I-V data for later plotting.

Drain In line 16, the drain ramps to 3 V in steps of 0.2 V . The resulting I-V curve is Characteristics plotted in Figure 4-12.

## Potential Contours Plot

Figure 4-13 shows the potential contours for the final bias point.


Figure 4-12 Drain characteristics from PLOT.1D and LABEL at lines 18 and 19 in file mdex1d, Figure 4-11

Example 1D - Potential Contours


Figure 4-13 Potential contours from plot .2D, CONTOUR, and label at lines 21 through 24 in file mdex1d, Figure 4-11

## Substrate and Gate Current Calculation

The device structure and initial solution that were created and saved by the input file $m d e x l$ are read by the input file $m d e x l$.

- Simulations are performed for a drain bias of 5 V and gate biases of 0 V to 7.5 V .
- An impact ionization and gate current analysis are performed after each solution.

Figures 4-14 through 4-17 contain the output associated with the execution of Medici for the input file mdexli.

```
1... TITLE Synopsys MEDICI Example 1I - 1.5 Micron N-Channel MOSFET
2... COMMENT Substrate and Gate Current Calculation
3... COMMENT Read in simulation mesh
4... MESH IN.FILE=MDEX1MS
5... COMMENT Read in saved solution
6... LOAD IN.FILE=MDEX1S
7... COMMENT Perform a zero carrier solution to bias the drain
8... SYMB CARR=0
9... METHOD DVLIMIT=1 ICCG
10... COMMENT Solve for Vds=5.
11... SOLVE V(Drain)=5. LOCAL
12... COMMENT Switch to 1-Carrier Newton
13... SYMB NEWTON CARRIERS=1 ELECTRONS
14... COMMENT Setup log file for IV data
15... LOG OUT.FILE=MDEXIII
16... COMMENT Ramp the gate, performing an impact ionization
17...$ and gate current analysis at each bias.
18... SOLVE V (Gate)=0. ELEC=Gate VSTEP=.5 NSTEP=15
 .. + IMPACT.I GATE.CUR
19... COMMENT Plot substrate current versus gate bias
20... PLOT.1D Y.AXIS=II X.AXIS=V(Gate) Y.LOG POINTS COLOR=2
 ... +
 TITLE="Example 1I - Substrate Current vs. Vgs"
21... LABEL LABEL="Vds = 5.0v" X=6.0 Y=4E-12
22... COMMENT Plot gate current versus gate bias
23... PLOT.1D Y.AXIS=HE (Gate) X.AXIS=V(Gate) Y.LOG POINTS COLOR=2
 ... + LEFT=0. BOT=1E-19 TOP=1E-13
 ... + TITLE="Example 1I - Gate Current vs. Vgs"
24... LABEL LABEL="Vds = 5.0v" X=.4 Y=3E-14
```

Figure 4-14 Output of the simulation input file mdex1i

## Procedures

The simulation of substrate and gate current calculation uses the following procedures.

Sometimes initial biases applied to a structure are such that only small amounts of current flow in the device (for example, when junctions are reverse biased and/or the device is turned off). It is often possible to apply these biases directly to the structure (that is, without stepping the bias to its final value). This can be accomplished by first performing a zero-carrier solution at the desired bias and then performing a solution with carriers.

In this example, it is desired to apply 5 V to the drain of the device with 0 V applied to the gate. This is accomplished by first specifying a zero-carrier solution on the SYMB statement.

For large bias changes, it is often advantageous to specify the maximum potential update allowed at a node during an iteration (DVLIMIT). In line 9, DVLIMIT is increased from its default of 0.1 V to 1 V .

On the SOLVE statement in line 11, in addition to specifying the applied drain bias of 5 V , LOCAL is also specified. This causes Medici to use the previous solution as the initial guess, but modifies the quasi-Fermi potential in the drain region to be equal to the applied bias.

After the zero-carrier solution is obtained, the example uses Newton's method and solve for electrons. Since this is an MOS device, it is only necessary to solve for the channel carrier.

Log File Before performing the solutions, a log file is specified to save the I-V data for later plotting.

Impact lonization and Gate Current

Substrate Current vs. Vgs Plot

In line 18 the gate bias is ramped from 0 V to 7.5 V in steps of 0.5 V . The parameters IMPACT . I and GATE. CUR request that an impact ionization analysis and gate current analysis, respectively, be performed after each solution.

Figure 4-15 plots the resulting substrate current obtained from the impact ionization analysis. The figure shows that the substrate current rises very rapidly as the device is turned on due to the increase of channel current.

As the gate bias is increased, the electric field in the drain region of the device decreases. The trade-off between increasing current density and decreasing electric field as gate bias is increased causes the substrate current to be peaked. In this case, the peak value occurs at a gate bias of approximately 2.5 V .


Figure 4-15 Substrate current vs. Vgs from PLot .1D and LABEL at lines 20 and 21 in file mdexii, Figure 4-14

Gate Current vs. Vgs Plot

Figure 4-16 plots gate current as a function of gate bias obtained from the gate current analysis. At low gate biases the electric field in the drain region of the device is high, but the oxide electric field near the drain is such that electron injection into the gate is inhibited. This causes the gate current for low values of $V_{g s}$ to be extremely small.

As $V_{g s}$ is increased towards $V_{d s}$, the oxide electric field becomes more favorable for electron injection and there is a rapid rise in the gate current. As in the substrate current case described above, the decreasing electric field in the drain region as $V_{g s}$ is increased causes the gate current curve to be peaked.

In this example, the peak value occurs at a gate bias of approximately 4.0 V . Also note that the peak value of gate current is approximately eight orders of magnitude smaller than the peak value of substrate current.


Figure 4-16 Gate current vs. Vgs from plot. 1d and label at lines 23 and 24 in file mdex1i, Figure 4-14

## Generation Rate

 Contours PlotContours of the total impact ionization generation rate for the last bias point ( $V_{g s}=7.5 \mathrm{~V}$ ) are plotted in Figure 4-17. The interval between contours is one order of magnitude. This figure shows that most of the impact ionization occurs at the silicon-oxide interface in the vicinity of the channel-drain region.


Figure 4-17 Generation rate contours from plot . 2D, CONTOUR, and LABEL at lines 26 through 32 in file mdex1i, Figure 4-14

## Analysis Including Fast Interface States

The device structure and initial solution that were created and saved by the input file $m d e x 1$ are read by the input file $m d e x l f$. Gate characteristic simulations are performed for the following three separate cases:

- No interface charge
- Fast positive interface states
- Fast negative interface states

Figures 4-18 through 4-23 contain the output associated with the execution of Medici for the input file mdexlf.

```
1... TITLE Synopsys MEDICI Example 1F - 1.5 Micron N-Channel MOSFET
2... COMMENT Gate Characteristics Including Fast Interface States
3... COMMENT Read in saved mesh
4...MESH IN.FILE=MDEX1MS
5... COMMENT Read solution to get models
6... LOAD IN.FILE=MDEX1S
7... INTERFAC CLEAR
8... COMMENT 0-carrier solution with Vg=-0.6v, Vd=0.1v
9...SYMB CARRIERS=0
10... SOLVE INIT V(Gate)=-0.6 V(Drain)=0.1 OUT.FILE=TEMPSOL
11... COMMENT Switch to 1-carrier
12... SYMB NEWTON CARRIERS=1 ELECTRON
13... COMMENT
Gate characteristics with zero, positive, and negative
... fast interface states (Vd=0.1v)
14... LOOP STEPS=3
15... ASSIGN NAME=NDON N.VALUE=(0.0, 5E11, 0.0)
16... ASSIGN NAME=NACC N.VALUE=(0.0, 0.0, 5E11)
17... ASSIGN NAME=LOGFIL C1="MDE1FIZ" C2="MDE1FIP" C3="MDE1FIN"
18... ASSIGN NAME=SOLFIL C1="MDE1SZ" C2="MDE1SP" C3="MDE1SN"
19... LOAD IN.FILE=TEMPSOL
```

Figure 4-18 First part of the simulation input file mdex 1f

```
26... COMMENT Plot log(drain current) versus Vgs
27... PLOT.1D IN.FILE=MDE1FIP Y.AXIS=I(Drain) X.AXIS=V(Gate) Y.LOG
 ... +
 ... +
28... PLOT.1D
 ... +
29... PLOT.1D
 ... +
30... LABEL
 ... +
31. X=-0.3
31... LABEL LAB="Zero Charge" COL=3 SYMB=2 START.LE LX.FIN=-. 5
32... LABEL LAB="Negative States" COL=4 SYMB=3 START.LE LX.FIN=-. 5
33... COMMENT
34... LOOP
35... ASSIGN
STEPS=3
36... ASSIGN
 NAME=TITLE C1="Zero Charge" C2="Positive States"
 C3="Negative States"
 ... +
37... LOOP
 STEPS=2
38... ASSIGN NAME=NUM N.VALUE=(1, 2)
39... ASSIGN NAME=XOFF N.VALUE=(2.0,11.0)
40... ASSIGN NAME=CLEAR L.VALUE=(T,F)
41... ASSIGN NAME=BIAS C1="Vg = -0.6v" C2="Vg = 2.0v"
42.. LOAD IN.FILE=@SOLFIL@NUM
43... IF COND=@CLEAR
44... PLOT.1D CONDUC COL=4 BOT=2 TOP=-2 X.LEN=7 X.OFF=@XOFF
 .. + X.ST=1.5 X.EN=1.5 Y.ST=0 Y.EN=0.5 TITLE=@TITLE
45... ELSE
46... PLOT.1D CONDUC COL=4 BOT=2
46... PLOT.1D CONDUC COL=4 BOT=2 TOP=-2 N.LEN=7 X.OFF=@XOFF
 lll
47... IF.END
48... PLOT.1D VALENC COL=4 UNCHANGE X.LEN=7 X.OFF=@XOFF
 ... + X.ST=1.5 X.EN=1.5 Y.ST=0 Y.EN=0.5
49... PLOT.1D POTEN COL=3 UNCHANGE X.LEN=7 X.OFF=@XOFF
 ... + X.ST=1.5 X.EN=1.5 Y.ST=0 Y.EN=0.5
50.. PLOT.1D QFN COL=2 UNCHANGE X.LEN=7 X.OFF=@XOFF LINE=2
```

Figure 4-19
Second part of simulation input file mdex1f

## Procedures

The analysis with fast interface states uses the following procedures.

> Removing the Interface Charge

The simulation structure created by the input file $m d e x 1$ and shown in Figures 4-1 and 4-2 specifies a fixed charge to be placed at the interface. In preparation for studying the effect of fast interface states on the results of a simulation, this interface charge should be removed before creating any new solutions. This is accomplished by the INTERFAC statement at line 7 in the input file mdexlf shown in Figures 4-18 and 4-19, which is specified after the device structure and initial solution are read in.

Note:
Parameters associated with interfaces are stored in solution files (such as MDEX1S) and not in mesh files.

Initial Solution

Interface State Parameters

## Three Interface

 State CasesAt line 10 in the input file mdexlf, a 0 -carrier solution is performed at the starting bias which is used for each of the subsequent gate sweeps. The drain voltage is specified to be 0.1 V and the gate voltage is specified to be -0.6 V , which is low enough to allow subthreshold characteristics to be studied.

This initial solution is stored in a temporary solution file, and is used as the initial guess for the first solution of each of the three gate sweeps to follow.

After specifying that 1-carrier solutions for electrons (using Newton's method) are desired, the input statement loop from lines 14 through line 25 is used to sweep the gate bias for the three cases of interest. Within this loop, the assigned names NDON and NACC are used to specify values that are used for the INTERFAC statement parameters $\mathbf{N}$. DONOR and $\mathbf{N}$. ACCEPT, respectively.

- The parameter $\mathbf{N}$. DONOR represents the density of fast electron-donor states. These states are positively charged above the electron quasi-Fermi potential and neutral below.
- The parameter $\mathbf{N} . \mathbf{A C C E P T}$ represents the density of fast electron-acceptor states.
These states are neutral above the electron quasi-Fermi potential and negatively charged below.

The program now processes the following three passes through the loop:

- For the first pass through the loop, the values for both N. DONOR and n. ACCEPT are set to 0.0.

This pass represents the "zero charge" case.

- The second pass specifies a state density of $5 \times 10^{11} / \mathrm{cm}^{2}-\mathrm{eV}$ for $\mathbf{N}$. DONOR. This corresponds to the "positive states" case.
- The third pass specifies a state density of $5 \times 10^{11} / \mathrm{cm}^{2}-\mathrm{eV}$ for $\mathbf{N}$. ACCEPT. This corresponds to the "negative states" case.

Within the loop, the gate bias is swept from -0.6 V to 2.0 V .

Log File A separate log file for storing the I-V characteristics is created for each gate sweep. The statements within the loop also specify that the solutions corresponding to the first and last bias point of each gate sweep should be saved in files.

## Graphical Output

The results of this simulation are plotted using the PLOT. 1D and LABEL statements at lines 27 through 32 . The graphical output generated by these lines is shown in Figure 4-20.

Subthreshold As might be expected, the inclusion of fast positive states shifts the $\log \left(I_{\text {Drain }}\right)$ vs. Characteristics $V_{\text {Gate }}$ curve to the left, and the inclusion of fast negative states shifts this curve to the right.

It is also evident that the subthreshold slope changes when fast interfaces states are included. This can be understood by studying the band diagrams associated with different bias conditions for each of the cases. This is explained in the following paragraphs.

Band Diagrams The doubly nested input statement loop beginning at line 37 and ending at line 57 is used to plot band diagrams for all three cases considered (zero charge, positive states, and negative states) for two different bias conditions ( $V_{\text {Gate }}=-0.6 \mathrm{~V}$ and 2.0 V ). The output generated by the statements within this loop are shown in Figures 4-21 through 4-23.

## Positive States Case

Consider first the positive states case (Figure 4-22). The N. DONOR states are positively charged above the electron quasi-Fermi potential. This results in the total positive charge that is included at the interface to be proportional to the potential difference between the electron quasi-Fermi potential and the conduction band potential.

As the gate bias is increased, the band-bending occurring at the surface causes this potential difference to become smaller. Consequently, a smaller amount of positive charge is included at the interface. This causes the "positive states" curve shown in Figure 4-20 to be shifted farther to the left of the "zero charge" curve at lower gate biases than at higher gate biases.

Negative States Case

For the negative states case (Figure 4-23), a similar explanation can be given. As mentioned previously, the N.ACCEPT states are negatively charged below the electron quasi-Fermi potential. This results in the total negative charge that is included at the interface to be proportional to the potential difference between the electron quasi-Fermi potential and the valence band potential.

As the gate bias is increased, the band bending occurring at the surface causes this potential difference to become larger. Consequently, a larger amount of negative charge is included at the interface. This causes the "negative" states curve shown in Figure 4-20 to be shifted farther to the right of the "zero charge" curve at higher gate biases than at lower gate biases.


Figure 4-20 Log(Id) vs. Vgs from plot . 1D and label at lines 27 through 32 in file mdex1f, Figure 4-19


Figure 4-21 First pass through the outermost loop from PLOT.1D and labei at lines 34 through 57 in file mdexif, Figure 4-19


Figure 4-22 Second pass through the outermost loop from PLOT.1D and label at lines 34 through 57 in file mdex1f, Figure 4-19


Figure 4-23 Third pass through the outermost loop from PLOT .1D and LABEL at lines 34 through 57 in file mdex1f, Figure 4-19

## Analysis Including Band-to-Band Tunneling

The device structure and initial solution that were created and saved by the input file mdexl are read by the input file mdexlt.

Simulations are then performed to study the leakage current generated as a result of band-to-band tunneling when a 10 V drain bias and negative gate biases are applied to the n-channel MOSFET. Figures 4-24 through 4-27 contain the output associated with the execution of Medici for the input file mdexlt.

```
```

1... TITLE Synopsys MEDICI Example 1T - 1.5 Micron N-Channel MOSFET

```
```

1... TITLE Synopsys MEDICI Example 1T - 1.5 Micron N-Channel MOSFET
2... COMMENT Simulation Including Band-to-Band Tunneling
2... COMMENT Simulation Including Band-to-Band Tunneling
3... COMMENT Read in saved mesh
3... COMMENT Read in saved mesh
4... MESH IN.FILE=MDEX1MS
4... MESH IN.FILE=MDEX1MS
5... COMMENT Read solution to get models
5... COMMENT Read solution to get models
6... LOAD IN.FILE=MDEX1S
6... LOAD IN.FILE=MDEX1S
7... COMMENT Regrids on band-to-band tunneling rate with Vd=10v, Vg=-4v
7... COMMENT Regrids on band-to-band tunneling rate with Vd=10v, Vg=-4v
8... LOOP STEPS=3
8... LOOP STEPS=3
9... ASSIGN NAME=INITIAL L.VALUE=(T,F,F)
9... ASSIGN NAME=INITIAL L.VALUE=(T,F,F)
10... SYMB CARRIERS=0
10... SYMB CARRIERS=0
11... METHOD ICCG DAMPED
11... METHOD ICCG DAMPED
12... IF COND=@INITIAL
12... IF COND=@INITIAL
13... SOLVE V (Gate)=-4 V (Drain)=10 INITIAL
13... SOLVE V (Gate)=-4 V (Drain)=10 INITIAL
14... ELSE
14... ELSE
15... SOLVE V (Gate)=-4 V(Drain)=10
15... SOLVE V (Gate)=-4 V(Drain)=10
16... IF.END
16... IF.END
17... ASSIGN NAME=BBRATE N.VALUE=(6,10,14)
17... ASSIGN NAME=BBRATE N.VALUE=(6,10,14)
18... REGRID BB.GENER IGNORE=OXIDE LOG ^CHANGE RATIO=@BBRATE
18... REGRID BB.GENER IGNORE=OXIDE LOG ^CHANGE RATIO=@BBRATE
.. + SMOOTH=1 IN.FILE=MDEX1DS
.. + SMOOTH=1 IN.FILE=MDEX1DS
19... L.END
19... L.END
20... COMMENT Plot the simulation grid
20... COMMENT Plot the simulation grid
21... PLOT.2D GRID FILL SCALE
21... PLOT.2D GRID FILL SCALE
... + TITLE="Example 1T - BTBT Simulation Grid"
... + TITLE="Example 1T - BTBT Simulation Grid"
22... COMMENT Turn on band-to-band tunneling model
22... COMMENT Turn on band-to-band tunneling model
23... MODELS BTBT
23... MODELS BTBT
24... COMMENT Initial 0-carrier solution with Vd=10v, Vg=0v
24... COMMENT Initial 0-carrier solution with Vd=10v, Vg=0v
25... SYMB CARRIERS=0
25... SYMB CARRIERS=0
26... SOLVE INITIAL V(Gate)=0 V(Drain)=10
26... SOLVE INITIAL V(Gate)=0 V(Drain)=10
27... COMMENT Switch to 2-carriers and then ramp the gate
27... COMMENT Switch to 2-carriers and then ramp the gate
28... SYMB NEWTON CARRIERS=2
28... SYMB NEWTON CARRIERS=2
29... METHOD ^AUTONR
29... METHOD ^AUTONR
30... LOG OUT.FILE=MDEX1TI
30... LOG OUT.FILE=MDEX1TI
31... SOLVE V (Gate)=0 ELEC=Gate VSTEP=-0.25 NSTEP=16
31... SOLVE V (Gate)=0 ELEC=Gate VSTEP=-0.25 NSTEP=16
32... COMMENT Plot drain current versus gate bias
32... COMMENT Plot drain current versus gate bias
33... PLOT.1D BOT=1E-14 TOP=1E-10 LEFT=-4 RIGHT=0 COLOR=2

```
```

33... PLOT.1D BOT=1E-14 TOP=1E-10 LEFT=-4 RIGHT=0 COLOR=2

```
```




Figure 4-24 Output of the simulation input file mdex1t

## Procedures

The analysis including band-to-band tunneling uses the following procedures.

With a negative bias applied to the gate, it is expected that very little current flows through an n-channel MOSFET. But when a high drain bias is also applied, the band bending at the surface makes it possible for valence band electrons to tunnel through the forbidden gap to the conduction band, leaving behind a hole.

Thus, band-to-band tunneling results in the generation of electron-hole pairs that can take part in conduction and can therefore contribute to the drain current in the device.

To accurately study band-to-band tunneling, the simulation grid must be fine enough to resolve the high fields in the region where band-to-band tunneling occurs.

After reading in the simulation structure created by the input file mdexl in Example 1, three additional regrids are performed to refine the mesh for this analysis. Each regrid is based on the band-to-band tunneling generation rate (BB . GENER) and is performed after a solution is obtained with $V_{d}=10 \mathrm{~V}$ and $V_{g}=-4 \mathrm{~V}$, a bias conducive to band-to-band tunneling.

The resulting simulation mesh is shown in Figure 4-25.
Example 1T - BTBT Simulation Grid


Figure 4-25 BTBT simulation grid from PLOT . 2D at line 21 in file mdex1t, Figure 4-24

Models To include band-to-band tunneling self-consistently in the solution of the device equations, the parameter BTBT is specified on the MODELS statement. The other model parameters that were specified previously in the input file mdexl shown in Figures 4-1 and 4-2 are automatically included in this simulation as well. This is because all the model parameters specified in mdexl were automatically stored in the solution file $M D E X 1 S$, which was read in at the beginning of this simulation.

Solution Since band-to-band tunneling is a phenomenon involving both electrons and holes, 2-carrier solutions are required for this analysis.

The most efficient way to apply an initial bias to the device is by performing a 0 carrier solution that is used as the initial guess for the full 2-carrier solution. An initial 0-carrier solution with $V_{\text {Drain }}=10 \mathrm{~V}$ is created at line 26 of the input file mdexlt shown in Figure 4-24. The full 2-carrier solutions are generated by the SOLVE statement at line 31 where the gate bias is swept from 0 V to -4 V .

## Drain Current vs.

 Vgs PlotThe results of this analysis are shown in Figure 4-26 where the logarithm of drain current is plotted as a function of the applied gate bias. This figure clearly shows the increase in drain current due to band-to-band tunneling generated electrons as the gate bias is decreased to more negative values.


Figure 4-26 Drain current vs. Vgs from PLOT. 1D and LABEL at lines 33 and 34 in file mdex1t, Figure 4-24

## Band-to-Band Generation Contour Plot

Figure 4-27 plots contours of band-to-band tunneling generation rate occurring within the device. As the figure indicates, most of the band-to-band tunneling occurs at the surface in the high field region where the gate overlaps the drain.


Figure 4-27 Generation rate contours from PLot . 2D, CONTOUR, and LABEL at lines 36 through 41 in file mdex1t, Figure 4-24

## Avalanche Breakdown Analysis

An avalanche breakdown analysis of the same n-channel MOS device considered in the previous examples is performed using the input file mdexla.

For this analysis, the maximum electron and hole ionization integrals are calculated for a gate bias of 0 V and drain biases of 6 V to 12 V .

Figures 4-28 through 4-33 contain the output associated with the execution of Medici for the input file mdexla.

## Procedures

The simulation of avalanche breakdown includes the following procedures.

Modifying Simulation Structure

The structure created with the input file mdex1a shown in Figures 4-28 and 4-29 is the same as the structure created by the input file mdexl, but includes the modifications discussed below. "Generation of the Simulation Structure," p. 4-2 contains a complete discussion of the input file mdexl. Only the changes to mdexl necessary to create the modified structure are discussed here.

Because of the increased drain bias that is applied to the device, the simulation structure created by the input file mdexl shown in Figures 4-1 and 4-2 needs to be modified in the following two ways.

1. The depth of the structure needs to be increased to accommodate the increased depletion region size associated with the increased drain bias.

The necessary depth can be estimated by assuming that the depletion region size increases as the square root of the applied bias.
2. The drain region needs to be widened to insure that the electric fields in this critical region are accurately represented. This is done in one of the following two ways.
a. The drain width used in the simulation should be one half the actual device drain width. or,
b. In the case of a very wide drain, the drain width should be approximately equal to the depth of the depletion region.

To accommodate drain biases as high as $20 \mathrm{~V}-30 \mathrm{~V}$, the depth of the structure is increased from 2 microns to 4 microns. This is accomplished by specifying one additional Y.MESH statement shown in line 11 of Figure 4-28.

1... TITLE	Synopsys MEDICI Example 1A - 1.5 Micron N -Channel MOSFET
2... COMMENT	Avalanche Breakdown Analysis
3... COMMENT	Initial mesh specification
4... MESH	SMOOTH=1
5... X.MESH	WIDTH=3.0 H1=0.125
6... X.MESH	WIDTH=1.5 H1=0.125 H2=.3
7... Y.MESH	$\mathrm{N}=1 \quad \mathrm{~L}=-0.025$
8... Y.MESH	$\mathrm{N}=3 \quad \mathrm{~L}=0$.
9... Y.MESH	DEPTH=1.0 H1 $=0.125$
10... Y.MESH	DEPTH=1.0 H1 $=0.250$
11... Y.MESH	DEPTH=2.0 H1=0.250 RATIO=1.4
12... COMMENT	Eliminate nodes, increase source/drain oxide thickness
13... ELIMIN	COLUMNS Y.MIN=1.1
14... SPREAD	LEFT WIDTH=0.625 UP=1 LO=3 THICK=.1 ENC=2
15... SPREAD	RIGHT WIDTH=2.125 UP=1 LO=3 THICK=.1 ENC=2
16... SPREAD	LEFT WIDTH=100 UP=3 LO=4 Y.LO=. 125
17... COMMENT	Specify oxide and silicon regions
18... REGION	SILICON
19... REGION	OXIDE IY.MAX=3
20... COMMENT	Electrode definition
21... ELECTR	NAME=Gate $\quad$ X.MIN=0.625 X.MAX=2.375 TOP
22... ELECTR	NAME=Substrate BOTTOM
23... ELECTR	NAME=Source X.MAX=0.5 IY.MAX=3
24... ELECTR	NAME=Drain X.MIN=2.5 IY.MAX=3
25... COMMENT	Specify impurity profiles and fixed charge
26... PROFILE	P-TYPE N.PEAK=3E15 UNIFORM OUT.FILE=MDEX1DS
27... PROFILE	P-TYPE N.PEAK=2E16 Y.CHAR=.25
28... PROFILE	N-TYPE N.PEAK=2E20 Y.JUNC=.34 X.MIN=0.0 WIDTH=0.5
. . +	XY.RAT $=.75$
29... PROFILE	N-TYPE N.PEAK=2E20 Y.JUNC=.34 X.MIN=2.5 WIDTH=2.0
. . . +	$\mathrm{XY} . \mathrm{RAT}=.75$
30... INTERFAC	$Q F=1 \mathrm{E} 10$
31... COMMENT	Regrid on doping
32... REGRID   ... +	DOPING LOG IGNORE=OXIDE RATIO=2 SMOOTH=1   IN.FILE=MDEX1DS
33... COMMENT	Specify contact parameters
34... CONTACT	NAME=Gate N.POLY
35... COMMENT	Specify physical models to use
36... MODELS	CONMOB FLDMOB SRFMOB2
37... COMMENT	Initial solution, regrid on potential
38... SYMB	CARRIERS $=0$
39... METHOD	ICCG DAMPED
40... SOLVE	
41... REGRID	POTEN IGNORE=OXIDE RATIO=. 2 MAX=1 SMOOTH=1 IN.FILE=MDEX1DS

Figure 4-28 First part of the simulation input file mdex1a

```
52... COMMENT Potential contours and electric field lines for most
53... $
54... PLOT.2D
 ... + TITLE="Example 1A - Poten. Contours & E-Lines"
55... CONTOUR POTENTIA MIN=-1 MAX=13 DEL=2 COLOR=6
56... E.LINE X.START=2.3 Y.START=0.02 S.DELTA=-.4 N.LINES=8
 ... + E.MARK=1.75E5 I.HOLE I.ELEC LINE.TYP=3 COLOR=1
```

Figure 4-29 Second part of the simulation input file mdex1a

## Additional Structure Modification

The following additional changes need to be made to the structure:

- To minimize the number of additional nodes added to the structure, the RATIO parameter is used to increase the size of each successive grid spacing.
- The width of the simulation structure is increased by 1.5 microns on the drain side by specifying one additional X.MESH statement shown in line 6 .
- Change the WIDTH parameter on the PROFILE statement for the drain from 0.5 microns to 2.0 microns.

Figure 4-30 shows the resulting simulation mesh after regrids on both impurity concentration and potential have been performed.

## Solutions Because this analysis is performing with the device turned off ( $V_{\text {Gate }}=0 \mathrm{~V}$ ), it is

 sufficient to perform a Poisson-only ( 0 -carrier) solution for each drain bias, as shown below:- In line 45 of Figure 4-28, the drain is initially biased to 4 V .
- An input statement loop, as shown in lines 47 to 51 , is used to ramp the drain from 6 V to 12 V in 2 V increments.


## Ionization Integrals

The IONIZATI parameter on the EXTRACT statement is used to request the calculation of both electron and hole ionization integrals after each solution. The program automatically finds the maximum ionization integrals by calculating the integrals along potential gradient paths starting at each node in the device.

Because this example focuses on the breakdown of the drain, the starting nodes are limited to the drain region to reduce computation time by using the $\mathbf{x}$.MIN parameter. The gradient paths, however, are allowed to extend beyond this limit.

Example 1A - Avalanche Simulation Me


Figure 4-30 Avalanche simulation mesh from Рцот .2D at line 42 in file mdex1a, Figures 4-28 and 4-29

Figure 4-31 contains a portion of the output associated with the execution of Medici for the input file mdexla. The output indicates that avalanche breakdown occurs at a drain bias of approximately 12 V (ionization integrals > 1 ).

The output also indicates that the maximum ionization integrals are caused by fields located at the surface and near the left edge of the drain. The breakdown in this case is aided by the gate.

## Potential Contours and E-Line Plots

Lines 54 and 55 use the PLOT . 2D and CONTOUR statements. A two-dimensional plot of potential contours and electric field lines for a drain bias of 12 V is shown in Figure 4-32. Potential contours are shown as solid lines and electric field lines are dashed. This example uses the following parameters and values:

- The E.MARK parameter on the E.LINE statement is used to place brackets on the field lines at the specified value of $1.75 \times 10^{5} \mathrm{~V} / \mathrm{cm}$.
The starting point for the first field line is specified to be at the surface in the drain region.
- S.DELTA specifies that the starting point for a subsequent line occurs at a distance of 0.4 microns from the previous starting point on a line perpendicular to the previous field line.
- The sign of S.DELTA determines which direction is used to step to the next starting point.

In this case, a negative value indicates that the step is to be taken to the left of the field vector.

Values of the plotted potential contours and the electron and hole ionization integrals calculated for each field line are shown in Figure 4-33.


Figure 4-31 A portion of the ionization integral results from loop lines 47 through 51 in file mdex1a, Figures 4-28 and 4-29


Figure 4-32 Potential contours and E-lines from PLOT . 2D, CONTOUR, E. LINE, and LOOP at lines 54 through 58 in file mdex1a, Figures 4-28 and 4-29

Two dimensional contour plot					
Values plotted:					
$1.000000 \mathrm{E}+00$		$3.000000 \mathrm{E}+00$	5.000000 E	+00	
$7.000000 \mathrm{E}+00$		$9.000000 \mathrm{E}+00$	1.100000 E	+01	
Values not plotted:					
Carrier ionization integral information					
Input	line \#				
Line	Electron Ionization	Hole   Ionization	Peak Field   ( $\mathrm{V} / \mathrm{cm}$ )	X Location (microns)	Y Location   (microns)
1	0.8819	0.8295	$6.9988 \mathrm{E}+05$	2.329	3.4022E-02
2	0.2196	5.2025E-02	$3.7078 \mathrm{E}+05$	2.360	0.2698
3	$4.4254 \mathrm{E}-02$	$2.4136 \mathrm{E}-03$	$2.3826 \mathrm{E}+05$	2.521	0.2937
4	$6.0908 \mathrm{E}-03$	$6.9613 \mathrm{E}-05$	1.6573E+05	2.710	0.3562
5	$1.4377 \mathrm{E}-03$	$5.8706 \mathrm{E}-06$	$1.3720 \mathrm{E}+05$	2.971	0.3609

Figure 4-33 Plotted contour values and the calculated ionization integrals from contour and e. Line at lines 55 through 56 in file mdex1a, Figures 4-28 and 4-29

## Breakdown Simulation with Impact Ionization Model

The input file $m d e x l b$ shown in Figures 4-34 and 4-35 performs a breakdown simulation for the same n -channel MOS device considered in the previous examples.

For this simulation:

- Carriers generated by impact ionization are included self-consistently in the solution.
- Gate bias is set just above threshold at 0.5 V and the drain bias is ramped in 0.5 V increments beginning at 9.0 V .
- When the structure nears breakdown, current boundary conditions are used instead of voltage boundary conditions.
This allows direct simulation of the structure near and past the breakdown point.

Figures 4-34 through 4-39 contain the output associated with the execution of Medici for the input file mdexlb.

## Procedures

The simulation of breakdown with impact ionization model uses the following procedures.

Structure The structure created with the input file mdexlb is identical to the structure created by the input file mdexla, which is discussed in "Avalanche Breakdown Analysis," p. 4-28.

Models Carrier statistics, mobility and recombination models are selected on the MODELS statement at line 36 .

Initial ZeroCarrier Solution

Impact Ionization Model Selection

A zero-carrier solution is used to initially bias the device with 9.0 V on the drain and 0.5 V on the gate.

The LOOP statement at line 45 allows the selection of the impact ionization models. Loop dependent parameters are specified on lines 46-48. In loop 1, the default local model is selected on the MODEL statement at line 55. In loop 2, the non-local model is selected on the MODEL statement at line 52 . With this model selected, any carriers generated due to impact ionization are included in the solution.

Initial Two- Before performing solutions that include the current-continuity equations, a Carrier Solution lumped substrate resistance is specified at line 58 to take into account the resistance of the structure not explicitly included in the simulation domain Newton's method with two carriers is required when performing solutions which include impact ionization. This is specified on the SYMB statement at line 60 .

TITLE	Synopsys MEDICI Example 1B - 1.5 Micron N -Channel MOSFET
2... COMMENT	Breakdown Simulation with Gate Drive
3... COMMENT	Initial mesh specification
4... MESH	SMOOTH=1
5... X.MESH	WIDTH=3.0 H1=0.125
6... X.MESH	WIDTH=1.5 H1=0.125 $\mathrm{H} 2=.3$
7... Y.MESH	$\mathrm{N}=1 \quad \mathrm{~L}=-0.025$
8... Y.MESH	$\mathrm{N}=3 \quad \mathrm{~L}=0$.
9... Y.MESH	DEPTH=1.0 H1=0.125
10... Y.MESH	DEPTH=1.0 H1 $=0.250$
11... Y.MESH	DEPTH=2.0 H1=0.250 RATIO=1.4
12... COMMENT	Eliminate nodes, increase source/drain oxide thickness
13... ELIMIN	COLUMNS Y.MIN=1.1
14... SPREAD	LEFT WIDTH=0.625 UP=1 LO=3 THICK=.1 ENC=2
15... SPREAD	RIGHT WIDTH=2.125 UP=1 LO=3 THICK=.1 ENC=2
16... SPREAD	LEFT WIDTH=100 UP=3 LO=4 Y.LO=. 125
17... COMMENT	Specify oxide and silicon regions
18... REGION	SILICON
19... REGION	OXIDE IY.MAX=3
20... COMMENT	Electrode definition
21... ELECTR	NAME=Gate $\quad$ X.MIN=0.625 X.MAX=2.375 TOP
22... ELECTR	NAME=Substrate BOTTOM
23... ELECTR	NAME=Source X.MAX=0.5 IY.MAX=3
24... ELECTR	NAME=Drain X.MIN=2.5 IY.MAX=3
25... COMMENT	Specify impurity profiles and fixed charge
26... PROFILE	P-TYPE N.PEAK=3E15 UNIFORM OUT.FILE=MDEX1DS
27... PROFILE	P-TYPE N.PEAK=2E16 Y.CHAR=.25
28... PROFILE	N-TYPE N.PEAK=2E20 Y.JUNC=.34 X.MIN=0.0 WIDTH=0.5
. . . +	XY.RAT=. 75
29... PROFILE	N-TYPE N.PEAK=2E20 Y.JUNC=.34 X.MIN=2.5 WIDTH=2.0
... +	XY. RAT=. 75
30... INTERFAC	$Q F=1 \mathrm{E} 10$
31... COMMENT	Regrid on doping
32... REGRID	DOPING LOG IGNORE=OXIDE RATIO=2 SMOOTH=1
+	IN.FILE=MDEX1DS
33... COMMENT	Specify contact parameters
34... CONTACT	NAME=Gate N.POLY
35... COMMENT	Specify physical models to use
36... MODELS	CONMOB FLDMOB SRFMOB2 CONSRH AUGER BGN
37... COMMENT	Initial solution, regrid on potential
38... SYMB	CARRIERS $=0$
39... METHOD	ICCG DAMPED
40... SOLVE	
41... REGRID	POTEN IGNORE=OXIDE RATIO=. 2 MAX=1 SMOOTH=1
+	IN.FILE=MDEX1DS OUT.FILE=MDE1BMS
42... COMMENT	Perform a 0 -carrier solution at the initial bias
43... SYMB	CARRIERS $=0$
44... SOLVE	V (Gate) $=0.5 \mathrm{~V}$ (Drain)=9.0 LOCAL OUT.FILE=TEMP. SOL

Figure 4-34 First part of the simulation input file mdex $1 b$


Figure 4-35 Second part of simulation input file mdex1b

## Continuation Method

When performing a breakdown simulation, it may not be known in advance at what voltage the device breaks down. In such a case it is possible to step the bias of the electrode in question (in this example the drain) from a value that is expected to be below the breakdown voltage to one that is expected to be higher.

As breakdown is approached, the current increases and if a simple voltage boundary condition is used, the program stops converging once the device snaps back.

The continuation method can be used to overcome convergence problems. The continuation method automatically selects bias points and switches smoothly from a voltage boundary condition to a current boundary condition as the slope of the IV characteristic increases. As the device snaps back, the program takes negative voltage steps and continues to follow the curve until one of the termination criteria is reached.

The continuation method is enabled by the following:

- Specify CONTINU on the SOLVE statement (see line 63).
- Specify the electrode to be stepped (ELEC=Drain), the initial voltage step size (C. VSTEP $=0.55$ ), and the terminating voltage and current ( $\mathbf{C .} . \operatorname{VMAX}=13$, C. $\operatorname{IMAX}=0.8 \mathrm{e}-4)$.

If the terminal voltage or current reaches either of these termination criteria, the simulation stops.

- An optional tolerance ( $\mathbf{C} . \boldsymbol{T O L = 0 . 1 0 )}$ may be specified to control the spacing between the bias points.

A smaller C.TOL gives more closely spaced bias points, but takes longer to run.

In this particular example the breakdown voltage was anticipated to be about 11 V . C. VMAX was set to a value greater than 11 V ( 13 V in this case) so the device breaks down. Likewise, C. IMAX is simply set to a value greater than the anticipated snap-back current.

## Drain Current Snapback Plot-Local Model

Figure 4-36 shows the resulting drain current versus drain voltage curve of the local model. The device breaks down at approximately 11 V , but as seen in the figure, the curve snaps back on itself, indicating that the breakdown can be sustained at a lower drain voltage.


Figure 4-36 Drain current snapback of the local model from РLOT.1D and label at lines 65 and 66 in file mdex1b, Figures 4-34 and 4-35

Flowline Plot-Local Model

A two-dimensional plot of total current flowlines for the last solution of the local model (corresponding to a drain bias of approximately 8.8 V and a drain current of $8 \times 10^{-5} \mathrm{~A} / \mu \mathrm{m}$ ) is shown in Figure 4-37. The flowlines are such that $5 \%$ of the total current flows between each pair of lines. As can be seen, in addition to the channel current, much of the current flow from source to drain is now in the bulk.


Figure 4-37 Five percent flowlines of the local model from PLOT . 2D, CONTOUR, and LABEL at lines 68 through 71 in file mdex1b, Figures 4-34 and 4-35

Drain Current Snapback Plot--Non-local Model

Figure 4-38 shows the resulting drain current versus drain voltage curve of the non-local model. The breakdown is slightly higher in this case, so is the holding voltage at high current.


Figure 4-38 Drain current snapback of the non-local model from РLот.1D and LABEL at lines 65 and 66 in file mdex 1b, Figures 4-34 and 435

Flowline Plot--Non-local Model

A two-dimensional plot of total current flowlines for the last solution of the nonlocal model (corresponding to a drain bias of approximately 9.3 V and a drain current of $8 \times 10^{-5} \mathrm{~A} / \mu \mathrm{m}$ ) is shown in Figure 4-39. With the same current level, there is no noticable difference between the results of the local and non-local model.


Figure 4-39
Five percent flowlines of the non-local model from PLOT . 2D, CONTOUR, and LABEL at lines 68 through 71 in file mdex1b, Figures 4-34 and 4-35

## Direct Tunneling Analysis in a N-MOSCAP

The input file mdexldt shown in Figures 4-40 and 4-41 illustrates how to use the direct tunneling model to calculate the gate leakage current in a N-MOSCAP. The three different methods of evaluating the direct tunneling current are compared in post-processing mode and illustrate the importance of direct tunneling at low voltages for thin gate oxides. A self-consistent calculation is also performed.

## Mesh

Line 3 defines the thickness of the gate oxide using the variable TOX to be $15 \AA$. Defining the gate oxide thickness using an ASSIGN statement in this way allows the thickness to be easily changed. Using this thickness, the mesh is constructed in lines 5 through 10 . A rather fine mesh in the $y$-direction is constructed, while only two mesh spacings are used in the x -direction.

```
1... Title Synopsys Medici Example 1DT- Direct Tunneling in NMOSCAP
 2... $ Oxide thickness: 15 Angstroms
 3... ASSIGN NAME=TOX N.VAL=15E-4
 4... $ Create mesh
 5... MESH
 6... X.MESH WIDTH=1 N.SPACES=2
 7... Y.MESH NODE=1 LOCATION=-50E-3
 8... Y.MESH WIDTH=50E-3 H1=5E-3 H2=1E-4
 9... Y.MESH WIDTH=@TOX H1=1E-4
10... Y.MESH WIDTH=200E-3 H1=1E-4 RATIO=1.1
11... $ Define regions
12... REGION SILICON NAME=SILICON2
13... REGION OXIDE NAME=OXIDE1 Y.MAX=@TOX
14... REGION SILICON NAME=SILICON1 Y.MAX=0.0
15... $ Define electrodes. Turn top Si region into electrode.
16... ELECTRODE NAME=BOTTOM BOTTOM
17... ELECTRODE NAME=GATE REGION=SILICON1
18... $ Uniform P-type doping profile
19... PROFILE P-TYPE UNIFORM N.PEAK=2.E17 REGION=SILICON2
20... $ Set parameters for direct tunneling
21... MATERIAL OXIDE AFFINITY=0.95 ME.DT=.35
22... MATERIAL SILICON AFFINITY=4.10 ME.DT=.19
23... MATERIAL ELECTRODE=GATE ME.DT=. 32
24... CONTACT NAME=GATE ALUMI
25... $ Use Fermi-Dirac statistics
26... MODELS FERMI.DIR
27... $ Only solve Poisson
28... SYMBOLIC CARRIERS=0 NEWTON
29... $ Print material parameters
30... MATERIAL PRINT
31... $ Post-process DT model 1 (Analytical)
32... LOG OUT.FILE=DT1.LOG
33... SOLVE V (GATE)=0.0 DT.CURR DT.METH=1 ELEC=GATE VSTEP=. 25
 ... + NSTEPS=20
34... LOG CLOSE
35... $ Post-process DT model 2 (WKB)
36... SOLVE V (GATE)=0.0 INIT
37... LOG OUT.FILE=DT2.LOG
38... SOLVE V (GATE)=0.0 DT.CURR DT.METH=2 ELEC=GATE VSTEP=.025
 ... + NSTEPS=10
39... SOLVE DT.CURR DT.METH=2 ELEC=GATE VSTEP=. 25 NSTEPS=19
40... LOG CLOSE
```

Figure 4-40 First part of input file mdex1dt

```
41... $ Post-process DT model 3 (Airy)
42... SOLVE V (GATE)=0.0 INIT
43... LOG OUT.FILE=DT3.LOG
44... SOLVE V (GATE)=0.0 DT.CURR DT.METH=3 ELEC=GATE VSTEP=.025
 ... + NSTEPS=10
45... SOLVE DT.CURR DT.METH=3 ELEC=GATE VSTEP=. }25\mathrm{ NSTEPS=19
46... LOG CLOSE
47... $ Self-consistent DT model 3 (Airy)
48... MODELS CONSRH AUGER DT.CUR DT.METH=3
49... MATERIAL SILICON TAUN0=1.E-9 TAUP0=1.E-9
50... SOLVE V (GATE)=0.0 INIT
51... SYMBOLIC CARRIERS=2
52... LOG OUT.FILE=DT4.LOG
53... SOLVE V (GATE)=0.0 ELEC=GATE VSTEP=.025 NSTEPS=10
54... SOLVE ELEC=GATE VSTEP=. 25 NSTEPS=19
55... LOG CLOSE
56... $ Make plots of tunneling current
 57... PLOT.1D LEFT=0 BOTTOM=1E-15 TITLE="Direct Tunneling Current"
 ... + IN.FILE=DT1.LOG X.AXIS=V (GATE) Y.AXIS=FE(GATE) ABS
 ... + LOG COLOR=2
58... PLOT.1D IN.FILE=DT2.LOG X.AXIS=V(GATE) Y.AXIS=FE(GATE) ABS
 ... + LOG COLOR=3 UNCH
59... PLOT.1D IN.FILE=DT3.LOG X.AXIS=V(GATE) Y.AXIS=FE(GATE) ABS
 ... + LOG COLOR=4 UNCH
60... PLOT.1D IN.FILE=DT4.LOG X.AXIS=V(GATE) Y.AXIS=I (GATE) ABS
 ... + LOG COLOR=1 UNCH
61... $ Plot labels
62... LABEL LABEL="DT1" X=0.1 Y=1E-5 COLOR=2
63... LABEL LABEL="DT2" X=1.0 Y=2E-8 COLOR=3
64... LABEL LABEL="DT3" X=4.0 Y=5E-5 COLOR=4
65... LABEL LABEL="SC-DT3" X=4.0 Y=5E-14 COLOR=1
```

Figure 4-41 Second part of input file mdex1dt

## Regions

In Figure 4-40, lines 12 through 14 define the following three regions in the MOSCAP:

- Substrate is named SILICON2
- Gate oxide is named OXIDE1
- Gate is named SILICON1

The electrodes are then defined in lines 16 and 17. A flat electrode is defined at the back of the substrate, while the top silicon region, SILICON1, is turned into a region electrode. The device structure is constructed in this way to make it easy to change the gate from an electrode to a polysilicon gate. In line 19, an uniform ptype doping profile is specified for the substrate.

## Tunneling Parameters

The parameters related to the direct tunneling model are specified in lines 21-24. The electron affinity and electron effective tunneling mass for the oxide and silicon regions are specified in lines 21 and 22, respectively. The electron effective tunneling mass for the gate electrode is specified in line 23 . The workfunction of the gate is set to that of aluminum in line 24.

## Models

Line 26 specifies that Fermi-Dirac statistics are to be used. Line 28 specifies that only Poisson's equation is to be solved. Line 30 specifies that the material parameters in all the regions should be printed to the output file.

## Direct Tunneling Analysis

Lines 31 through 46 perform a post-processing analysis of the direct tunneling current for a positive voltage ramp on the gate using the three different methods of evaluating the direct tunneling model. The tunneling current calculated by each method during the voltage ramp is stored in a separate log file. Line 33 specifies that the analytical direct tunneling model should be used (DT . METH=1), lines 38 and 39 specify that numerical integration of the WKB tunneling coefficient should be used to evaluate the tunneling current (DT.METH=2), and lines 44 and 45 specify that numerical integration of the Gundlach tunneling coefficient should be used to evaluate the tunneling current (DT . ME TH=3). Lines 46-55 perform a selfconsistent calculation of the direct tunneling using the Gundlach method. This method is activated as a model on line 48 along with the CONSRH and AUGER models. By default only the CBET contribution to direct tunneling is calculated. The SRH lifetimes are set in line 49. A two carrier solution is specified in line 51. The plot produced by lines 56 through 65 in Figure 4-41 is shown in Figure 4-42 and shows a comparison of the three evaluation methods in post-process mode. These results would be valid for a MOSCAP that has access to a ready supply of electrons such as in a MOSFET or under illumination. At low bias voltage, methods 2 and 3 agree fairly well with each other while method 1 , the analytical method, shows significant discrepancy. This is not surprising since the analytical model is only valid for moderate to large voltage drops across the gate oxide. At high bias voltage, methods 1 and 2 converge to the conventional FowlerNordheim current while method 3 begins to show signs of oscillations in the Fowler-Nordheim regime as a result of a more accurate analysis. The selfconsistent result using the Gundlach method is also shown. The current saturates at a low value that is limited by the carrier generation rate in the substrate.


Figure 4-42 Plot produced by lines 56 through 65 in input file mdex1dt. DT1, DT2, and DT3 indicate the three different methods used for evaluating the direct tunneling model in post-processing mode. SC-DT3 is the result of a self-consistent calculation of direct tunneling using evaluation method 3 .

## Quadtree Mesh for a MOSFET

The input file mdexlqt shown in Figure 4-43 illustrates how to use the quadtree mesh option to regrid a MOSFET. Some of the main features of the quadtree mesh generator are highlighted.

## Initial Quadtree Mesh

Lines 4 and 5 issue statements to construct the initial quadtree mesh. The MESH statement at line 4 reads in the original structure from a TIF file and initiates the construction of a quadtree mesh via the specification of the QUADTREE parameter. The initial mesh spacing in the x and y directions is set using the $\mathbf{X}$. SPAC and $\mathbf{Y}$. SPAC parameters. These mesh spacing values are set to a coarse value of $0.2 \mu \mathrm{~m}$ to allow for selective regrids. An immediate doping regrid is performed at line 5 . Unless a doping file is used, it is a good idea to always do an immediate regrid on the doping in order to accurately capture the doping profile. The regrid is performed on the ASINH of the doping in order to get a nicely graded mesh. A target mesh spacing of 20 nm is specified. Figure $4-44$ shows the resulting quadtree mesh that is plotted at line 7 . The mesh is saved to a TIF file at line 8.

```
1... TITLE Synopsys Medici Example 1QT - Quadtree Mesh
 2... COMMENT Read in a TIF file and create a quadtree mesh.
 3... COMMENT Do an immediate doping regrid.
 4... MESH IN.FILE=mdex1qt.tif TIF QUADTREE X.SPAC=.2 Y.SPAC=.2
 5... REGRID DOPING RATIO=0.5 SPACING=20E-3 ASINH
 6... COMMENT Plot and save initial quadtree mesh.
 7... PLOT.2D GRID FILL SCALE TITLE="Initial Quadtree Mesh"
 8... SAVE OUT.FILE=quadtree0.tif TIF
 9... COMMENT Do a zero-carrier solve at zero bias.
10... SYMB CARRIERS=0
11... SOLVE
12... COMMENT Regrid on the potential.
13... REGRID POTEN REGION=silicon1 RATIO=0.2 SPACING=10E-3
14... COMMENT Regrid on boundary of silicon1.
15... REGRID Y.SPACING=16E-3 BOUNDARY=silicon1 RATIO=16E-3
 ... + VAL.MIN=-32E-3 VAL.MAX=32E-3
16... COMMENT Regrid in the channel: 8nm vertical mesh spacing.
17... REGRID Y.SPACING=8E-3 X.MIN=-.15 X.MAX=.15 Y.MAX=30E-3
 ... + REGION=silicon1
18... COMMENT Regrid in substrate to obtain desired grading
19... COMMENT factor and to suppress obtuse triangles.
20... REGRID GRADING=2.01 COS.ANGL=0.0 REGION=silicon1
21... COMMENT Do a zero-carrier solve at zero bias.
22... SOLVE
23... COMMENT Plot the final refined mesh.
24... PLOT.2D GRID FILL SCALE TITLE="Final Mesh"
25... COMMENT Save the mesh and solution in a TIF file.
26... SAVE OUT.FILE=quadtree1.tif TIF ALL
```

Figure 4-43 List of input file mdex 1qt

## Potential Regrid

In Figure 4-43, line 10 specifies that a Poisson-only solution is to be performed in line 11. A number of regrids are then performed in lines 14 through 20. A regrid on the electric potential is first performed on line 13. This regrid is restricted to the silicon region by using the REGION parameter. A regrid around the boundary of the silicon region is then performed on line 15 . This regrid is used to help transition the mesh from the channel to the source and drain. In line 17 a regrid is performed within a bounding box around the channel to specify a fine vertical mesh spacing. The final regrid performed on line 20 is used to suppress obtuse elements through the COS . ANGL parameter and to limit the relative size of neighboring elements via the GRADING parameter in the silicon region. The zerocarrier solution is repeated on line 22 and the final mesh is plotted in line 24 and is shown in Figure 4-45.


Figure 4-44 Plot produced by line 7 in input file mdex 1qt. Initial mesh created using the quadtree mesh generator.


Figure 4-45
Plot produced by line 24 in input file mdex1qt. Quadtree mesh after a potential regrid and other selective refinements.

# NPN Bipolar Transistor Examples 

## Example Specifications

The use of Medici is illustrated by going through some of the analysis that might be performed on an NPN bipolar transistor. The analysis is divided into the following six parts.

- The input file mdex2 develops the simulation structure.
- The input file $m d e x 2 f$ then simulates the forward current characteristics for the device.

The results of this simulation are examined with the input file mdex2fp.

- The input file $m d e x 2 p$ modifies the emitter region of the device and specifies different material properties for the modified region.
- The forward current characteristics are then repeated for the modified device.
- The results of the simulation with the modified emitter are examined with the input file $m d e x 2 p p$.
- The input file mdex2m illustrates a one-dimensional analysis of a bipolar transistor.


## Generation of the Simulation Structure

The input file $m d e x 2$ creates the simulation structure for an NPN bipolar device. The output associated with the execution of Medici for the input file mdex2 is shown in Figures 5-1 through 5-5.

## Defining the Initial Mesh

As with the MOS example in Chapter 4, the first step in creating a device structure is to generate an initial mesh. Since this initial mesh will be refined, it needs to be adequate for defining the structure, but does not need to be fine enough to perform a solution on.

The mesh generation is initiated with the MESH statement at line 4 of the input file shown in Figure 5-1.

```
1... TITLE Synopsys MEDICI Example 2 - NPN Transistor Simulation
2... COMMENT Grid Generation and Initial Biasing
3... COMMENT Specify a rectangular mesh
4... MESH
5... X.MESH WIDTH=6.0 H1=0.250
6... Y.MESH DEPTH=0.5 H1=0.125
7... Y.MESH DEPTH=1.5 H1=0.125 H2=0.4
8... COMMENT Region definition
9... REGION NAME=Silicon SILICON
10... COMMENT Electrodes
11... ELECTR NAME=Base X.MIN=1.25 X.MAX=2.00 TOP
12... ELECTR NAME=Emitter X.MIN=2.75 X.MAX=4.25 TOP
13... ELECTR NAME=Collector BOTTOM
4... COMMENT Specify impurity profiles
5... PROFILE N-TYPE N.PEAK=5e15 UNIFORM OUT.FILE=MDEX2DS
16...PROFILE P-TYPE N.PEAK=6e17 Y.MIN=.35 Y.CHAR=.16
 ... +
7... PROFILE
 ... +
N-TYPE N.PEAK=7e19 Y.MIN=0 Y.CHAR=.17
... X.MIN=2.75 WIDTH=1.5 XY.RAT=.75
19... PROFILE N-TYPE N.PEAK=1e19 Y.MIN=2 Y.CHAR=.27
20... PLOT.2D GRID TITLE="Example 2 - Initial Grid" SCALE FILL
21... COMMENT Regrid on doping
22... REGRID DOPING LOG RATIO=3 SMOOTH=1 IN.FILE=MDEX2DS
23... PLOT.2D GRID TITLE="Example 2 - 1st Doping Regrid" SCALE FILL
24... REGRID DOPING LOG RATIO=3 SMOOTH=1 IN.FILE=MDEX2DS
25... PLOT.2D GRID TITLE="Example 2 - 2nd Doping Regrid" SCALE FILL
26... COMMENT Extra regrid in emitter-base junction region only.
27... REGRID DOPING LOG RATIO=3 SMOOTH=1 IN.FILE=MDEX2DS
... + X.MIN=2.25 X.MAX=4.75 Y.MAX=0.50 OUT.FILE=MDEX2MS
28... PLOT.2D GRID TITLE="Example 2 - 3rd Doping Regrid" SCALE FILL
29... COMMENT Define models
```

Figure 5-1 Output of the simulation input file mdex2

## Mesh Specifications

The X.MESH and Y.MESH specify how the initial rectangular mesh is generated.

- The $\mathbf{x}$.MESH statement that follows creates a grid section extending from $x=0$ microns (the default starting location) to $x=6$ microns.
- A uniform spacing of 0.25 microns is specified with the H 1 parameter.
- The first Y.MESH statement creates a 0.5 micron grid section at the top of the device that has a uniform spacing of 0.125 microns.
- The next Y. MESH statement adds a 1.5 micron grid section beneath this with a grid spacing that increases from 0.125 microns at $y=0.5$ microns to 0.4 microns at the bottom of the structure ( $y=2.0$ microns).


## Device Regions

The entire structure is defined as silicon with the REGION statement. The
ELECTR statements are used to place the contacts. The base and the emitter are placed on the surface, and the collector is placed along the entire bottom of the structure.

The impurity profiles for the device were specified using analytic functions, although they could also have been read from Synopsys SUPREM-3, TSU-PREM-4, or 1D and 2D formatted files.

The first PROFILE statement specifies a uniform n-type background concentration. The next two PROF ILE statements specify p-type impurities for forming the base. High concentration n-type profiles are then used to form the emitter and buried collector for the structure.

The specification of an output file on the first PROFILE statement saves the profiles to be used whenever the grid is refined. This should always be done to avoid having to interpolate impurity concentrations from the nodes of an unrefined grid to the nodes of a refined grid.

In lines 22 and 24, the grid is refined based on impurity concentration. During the regrids, a triangle is subdivided into four congruent triangles whenever the impurity concentrations at the nodes of the triangle differ by more than three orders of magnitude.

In line 27, a third refinement based on impurity concentration is performed. This regrid is confined to the vicinity of the emitter-base junction. Confining the regrid in this manner allows a fine grid to be placed in this important region and at the same time keeps the total node count from becoming excessive.

The final mesh is saved in a file for use in later simulations.

The various stages of the mesh refinement are shown in Figures 5-2 through 5-5.

## Models and Initial Solution

The MODELS statement at line 30 is used to select various physical models that are included during the solution phase.

At this point it is desired to obtain a solution with $V_{c e}=3 \mathrm{~V}$ and $V_{b e}=0 \mathrm{~V}$ which can be used as a starting point for subsequent simulations. Under these bias conditions, current flow is not expected to be significant.

The desired solution can then be obtained most efficiently by first performing a zero-carrier solution with 3 V applied to the collector. This can then be used as the initial guess for a full two-carrier solution.

Following this approach, a zero-carrier solution is performed at line 34. The twocarrier solution (using Newton's method as the most efficient solution technique) is performed at line 37 . Since no biases were specified here, they are defaulted to those used during the previous solution. The OUT . FILE parameter causes the solution to be saved in a file for later use.

Example 2 - Initial Grid


Figure 5-2 Initial grid from PLot.2D at line 20 in file mdex2, Figure 5-1

$$
\text { Example } 2 \text { - 1st Doping Regrid }
$$



Figure 5-3 First doping regrid from Рцот.2D at line 23 in file mdex2, Figure 5-1

$$
\text { Example } 2 \text { - 2nd Doping Regrid }
$$



Figure 5-4 Second doping regrid from РLOт.2D at line 25 in file mdex2, Figure 5-1

## Example 2 - 3rd Doping Regrid



Figure 5-5 Third doping regrid from PLOT . 2D at line 28 in file mdex2, Figure 5-1

## Simulation of Forward Characteristics

The device structure and initial solution that were created and saved by the input file $m d e x 2$ are read by the input file $m d e x 2 f$. Simulations are performed for the following:

- Base-emitter biases of 0.2 V to 0.9 V .
- For each bias, an AC small-signal analysis is performed at a frequency of $10^{6}$ Hz .

Figure 5-6 contains a portion of the output associated with the execution of Medici for the input file $m d e x 2 f$.

```
1... TITLE Synopsys MEDICI Example 2 - NPN Transistor Simulation
2... COMMENT Forward Bias Points
3... COMMENT Read in simulation mesh
4... MESH IN.FILE=MDEX2MS
5... COMMENT Load previous solution: Vce=3.0 Vbe=0.0
6... LOAD IN.FILE=MDEX2S
7... COMMENT Use Newton's method with 2 carriers
8... SYMB NEWTON CARRIERS=2
9... COMMENT Setup log file for I-V and AC data
10... LOG OUT.FILE=MDEX2FI
11... COMMENT Forward bias the base-emitter junction and
12... $ calculate the admittance matrix at 1.0 MHz
```

Figure 5-6 Output of the simulation input file mdex2f

## Input Statements

Newton's method is chosen as the most efficient solution technique. Before performing any solutions, the I-V and AC log file is created in line 10 to store the I-V and AC data, for later plotting.

In this example, it is desired to plot the carrier concentrations for $V_{b e}=0.7 \mathrm{~V}$. Since this is not the last bias, it is necessary to save the solution for this bias. To do this and not have to save the solutions for all the biases, two SOLVE statements are used.

- The first statement solves for biases through 0.6 V and does not specify an output file.
- The second statement solves for the remaining biases and saves the solutions as a result of the output file specification.

Each solution on the second SOLVE statement is saved in a different file.

## AC Small-Signal

The SOLVE statements also requests that an AC small-signal be performed at a frequency of $10^{6} \mathrm{~Hz}$ after each DC solution is obtained. The parameter TERM is used to specify which electrode biases are to be perturbed when performing the AC small-signal analysis.

The default is to perturb all electrode biases, one at a time, so that a full admittance matrix is calculated. In this example, only the base voltage is perturbed by specifying TERM=Base.

## Post-Processing of Forward Bias Results

For performing a post-processing analysis of the simulation results, input file $m d e x 2 f p$ reads the following:

- The mesh file created and saved by the input file mdex2.
- The solution and log files that were created and saved by the input file mdex $2 f$.

Figures 5-7 through 5-13 contain the output associated with the execution of Medici for the input file $m d e x 2 f p$.

## Input Statements

The post-processing of forward bias results uses the following input statements.

## Collector and Base Currents

The input file $m d e x 2 f p$ is shown in Figure 5-7. The statements in lines 4 through 8 use the I-V $\log$ file MDEX2FI to plot the collector and base currents as a function of $V_{b e}$. The LABEL statement uses the default settings from I-V log file MDEX2FI. The resulting plot is shown in Figure 5-8.

TITLE	Synopsys MEDICI Example 2FP - NPN Transistor Simulation
2... COMMENT	Post-Processing of MDEX2F Results
3... COMMENT	Plot Ic and Ib vs. Vbe
4... PLOT.1D	IN.FILE=MDEX2FI Y.AXIS=I (Collector) X.AXIS=V (Base)
+	LINE=1 COLOR=2 TITLE="Example 2FP - Ic \& Ib vs. Vbe"
+	Y.LOG POINTS BOT=1E-14 TOP=1E-3
5... PLOT.1D	IN.FILE=MDEX2FI Y.AXIS=I (Base) X.AXIS=V (Base)
+	Y.LOG POINTS LINE=2 COLOR=3 UNCHANGE
6... LABEL	LABEL="Ic" $\mathrm{X}=.525 \quad \mathrm{Y}=1 \mathrm{E}-8$
7... LABEL	LABEL="Ib" $\mathrm{X}=.550 \quad \mathrm{Y}=2 \mathrm{E}-10$
8... LABEL	LABEL="Vce $=3.0 \mathrm{v}$ " $\mathrm{X}=.75 \quad \mathrm{Y}=1 \mathrm{E}-13$
9... COMMENT	Plot the current gain (Beta) vs. collector current
10... EXTRACT	NAME=Beta EXPRESS=@I (Collector) /@I (Base)
11... PLOT.1D	IN.FILE=MDEX2FI X.AXIS=I (Collector) Y.AXIS=Beta
+	TITLE="Example 2FP - Beta vs. Collector Current"
+	$\mathrm{BOTTOM}=0.0 \mathrm{TOP}=25$ LEFT=1E-14 RIGHT=1E-3
+	X.LOG POINTS COLOR=2
12... LABEL	LABEL="Vce $=3.0 \mathrm{v}$ " $\mathrm{X}=5 \mathrm{E}-14 \mathrm{Y}=23$
13... COMMENT	Plot the cutoff frequency $\mathrm{Ft}=\mathrm{Gcb} /(2 * \mathrm{pi*} \mathrm{Cbb})$
14... EXTRACT	NAME=Ft UNITS=Hz
+	EXPRESS="@G (Collector, Base) / (6.28*@C (Base, Base)) "
15... PLOT.1D	IN.FILE=MDEX2FI X.AXIS=I (Collector) Y.AXIS=Ft
+	TITLE="Example 2FP - Ft vs. Collector Current"
+	$\mathrm{BOTTOM}=1 \quad \mathrm{TOP}=1 \mathrm{E} 10 \quad \mathrm{LEFT}=1 \mathrm{E}-14 \quad \mathrm{RIGHT}=1 \mathrm{E}-3$
+	X.LOG Y.LOG POINTS COLOR=2
16... LABEL	LABEL="Vce $=3.0 v^{\prime \prime} \quad \mathrm{X}=5 \mathrm{E}-14 \mathrm{Y}=1 \mathrm{E} 9$
17... COMMENT	Read in the simulation mesh and solution for Vbe=0.9v
18... MESH	IN.FILE=MDEX2MS
19... LOAD	IN.FILE=MDEX2S9
20... COMMENT	Vector plot of total current for Vbe $=0.9 \mathrm{v}$
21... PLOT.2D	BOUND JUNC SCALE FILL
+	TITLE="Example 2FP - Total Current Vectors"
22... VECTOR	J.TOTAL COLOR=2
23... LABEL	LABEL="Vbe $=0.9 \mathrm{v}^{\prime \prime} \quad \mathrm{X}=0.4 \quad \mathrm{Y}=1.55$
24... LABEL	LABEL="Vce $=3.0 \mathrm{v}^{\prime \prime}$
25... COMMENT	Potential contour plot for Vbe=0.9v
26... PLOT.2D	BOUND JUNC DEPL SCALE FILL
+	TITLE="Example 2FP - Potential Contours"
27... CONTOUR	POTEN MIN=-1 MAX=4 DEL=. $25 \quad$ COLOR=6
28... LABEL	LABEL="Vbe $=0.9 \mathrm{v}^{\prime \prime} \quad \mathrm{X}=0.4 \quad \mathrm{Y}=1.55$
29... LABEL	LABEL="Vce $=3.0 \mathrm{v}^{\prime \prime}$
30... COMMENT	Plot doping and carrier concentrations for Vbe $=0.7 \mathrm{v}$
31... LOAD	IN.FILE=MDEX2S7
32... PLOT.1D	DOPING Y.LOG SYMBOL=1 COLOR=2 LINE=1
. +	$\mathrm{BOT}=1 \mathrm{E} 10 \quad \mathrm{TOP}=1 \mathrm{E} 20$
. . +	X.STA=3.5 X.END=3.5 Y.STA=0 Y.END=2

Figure 5-7 Post-processing results for input file mdex2fp

Beta The EXTRACT statement is used in line 10 to define the symbol Beta (the collector current gain). This is then used in the PLOT .1D statement which follows, along with the I-V $\log$ file MDEX2FI, to plot current gain as a function of the collector current. The results are shown in Figure 5-9.


Figure 5-8 Ic and lb vs. Vbe from plot. 1d and label at lines 4 through 8 in file mdex2fp, Figure 5-7


Figure 5-9 Beta vs. collector current PLOT.1d and LABEL at lines 11 through 12 in file mdex2fp, Figure 5-7

## Cutoff Frequency

In line 14, the EXTRACT statement is used in conjunction with the capacitance and conductance components obtained from the AC small-signal analysis. This to calculate an approximate expression for the cutoff frequency, Ft.

The PLOT. 1D statement at line 15 uses this definition of Ft, along with the AC small-signal analysis data stored in the file MDEX2FI, to plot cutoff frequency as a function of collector current. The results are shown in Figure 5-10.


Figure 5-10 Ft vs. collector current from Plot. 1D and LABEL at lines 15 through 16 in file mdex2fp, Figure 5-7

## Current Vectors and Potential Contours

The MESH statement at line 18 reads the saved mesh and the LOAD statement at line 19 reads the saved solution corresponding to $V_{b e}=0.9 \mathrm{~V}$. Current vectors and potential contours within the structure for this bias condition are illustrated in Figures 5-11 and 5-12.

Example 2FP - Total Current Vectors


Figure 5-11 Total current vectors from PLOT . 2D, VECTOR, and LABEL at lines 21 through 24 in file mdex2fp, Figure 5-7


Figure 5-12 Potential contours from PLot . 2D, CONTOUR, and LABEL at lines 26 through 29 in file mdex2fp, Figure 5-7

Impurity and Carrier Concentrations

The solution for $V_{b e}=0.7 \mathrm{~V}$ is read using the LOAD statement at line 31, and Figure 5-13 shows the impurity and carrier concentrations along a slice through the emitter for this bias.

Example 2FP - Carrier \& Impurity Conc.


Figure 5-13 Carrier and impurity concentrations from plot .1D and LABEL at lines 32 through 39 in file mdex2fp, Figure 5-7

## Simulation with Modified Emitter Region

This section details the simulation with modified emitter region. This simulation requires numerous modifications. In this example, the emitter region of the NPN transistor considered in the previous examples is modified and the forward current characteristics are repeated. The modification is such that the emitter contact at $y=0$ is replaced by an additional 0.25 microns of silicon and the new contact location is placed at $y=-0.25$ microns.

```
1... TITLE Synopsys MEDICI Example 2P - NPN Transistor Simulation
2... COMMENT Simulation with Modified Emitter Region
3... COMMENT Initial mesh specification
4... MESH
5... X.MESH WIDTH=6.0 H1=0.250
6... Y.MESH Y.MIN=-0.25 Y.MAX=0.0 N.SPACES=2
7... Y.MESH DEPTH=0.5 H1=0.125
8... Y.MESH DEPTH=1.5 H1=0.125 H2=0.4
9... COMMENT Region definition
10... REGION NAME=Silicon SILICON
11... REGION NAME=Oxide OXIDE Y.MAX=0
12... REGION NAME=Poly POLYSILI Y.MAX=0 X.MIN=2.75 X.MAX=4.25
13... COMMENT Electrodes
14...ELECTR NAME=Base X.MIN=1.25 X.MAX=2.00 Y.MAX=0.0
15... ELECTR NAME=Emitter X.MIN=2.75 X.MAX=4.25 TOP
16... ELECTR NAME=Collector BOTTOM
17... COMMENT Specify impurity profiles
18... PROFILE N-TYPE N.PEAK=5e15 UNIFORM OUT.FILE=MDEX2DS
19... PROFILE P-TYPE N.PEAK=6e17 Y.MIN=0.35 Y.CHAR=0.16
 ... + X.MIN=1.25 WIDTH=3.5 XY.RAT=0.75
20... PROFILE P-TYPE N.PEAK=4e18 Y.MIN=0.0 Y.CHAR=0.16
 ...+ X.MIN=1.25 WIDTH=3.5 XY.RAT=0.75
21... PROFILE N-TYPE N.PEAK=7e19 Y.MIN=-0.25 DEPTH=0.25 Y.CHAR=0.17
 ...+ X.MIN=2.75 WIDTH=1.5 XY.RAT=0.75
22... PROFILE N-TYPE N.PEAK=1e19 Y.MIN=2.0 Y.CHAR=0.27
23... COMMENT Regrids on doping
24... REGRID DOPING LOG RATIO=3 SMOOTH=1 IN.FILE=MDEX2DS
25... REGRID DOPING LOG RATIO=3 SMOOTH=1 IN.FILE=MDEX2DS
26... COMMENT Extra regrid in emitter-base junction region only.
27... REGRID DOPING LOG RATIO=3 SMOOTH=1 IN.FILE=MDEX2DS
 .. + X.MIN=2.25 X.MAX=4.75 Y.MAX=0.50 OUT.FILE=MDEX2MP
28... PLOT.2D GRID SCALE FILL
 ... + TITLE="Example 2P - Modified Simulation Mesh"
29... COMMENT Modify properties of polysilicon-emitter region
30... MOBILITY POLYSILI CONC=7E19 HOLE=2.3 FIRST LAST
31... MATERIAL POLYSILI TAUP0=8E-8
32... MODEL CONMOB CONSRH AUGER BGN
33... COMMENT Initial solution
34... SYMB CARRIERS=0
```

Figure 5-14 Output of the simulation input file mdex2p

The mobility and lifetime of the minority carrier in this additional region are modified from their default silicon values to approximately represent this region as a material other than silicon.For example, this region may represent $n+$ polysilicon in a real device. Figures 5-14 and 5-15 contain the output associated with the execution of Medici for the input file $m d e x 2 p$.

## Modification of Mesh

To include an additional 0.25 microns of emitter material without altering the rest of the structure, it is necessary to make some modifications to the input file mdex2 shown in Figure 5-1 for creating the device structure. This is done with the following statements:

- Two additional lines of nodes are added to the top of the initial simulation mesh by including an additional Y. MESH statement that places the first line of nodes at $y=-0.25$ microns.
- Two additional REGION statements are necessary.
- The first additional REGION statement defines the top 0.25 microns of the structure to be silicon dioxide.
- The second additional REGION statement redefines the portion of this region that is to be part of the emitter as polysilicon.
- The base electrode is modified by replacing "TOP" with " $\mathbf{Y}$. MAX=0.0" so that contact is made to the silicon.
- The PROFILE statement that defines the emitter doping (line 21 ) is modified so that the additional emitter material has a uniform n-type concentration of $7 \times 10^{19} \mathrm{~cm}^{-3}$.

The modified simulation mesh after three regrids on impurity concentration is shown in Figure 5-15.


Figure 5-15 Modified simulation mesh from PLOT. 2D at line 28 in the file mdex2p, Figure 5-14

Hole Mobility and
Lifetime

The minority carrier (hole) mobility in the Poly region is adjusted at line 30 by specifying an entry for the concentration-dependent hole mobility table. The parameters FIRST and LAST cause this entry to be the only value in the table for the polysilicon region. This is so that the specified hole mobility will in fact apply to any impurity concentration value in this region. The hole lifetime is also modified (line 31).

Final
Adjustments and Saves

After making the above adjustments to the simulation structure, the forward current characteristics and AC small-signal analysis are repeated. The I-V and AC $\log$ file is saved, as well as the modified mesh and solutions for biases of $V_{b e}=0.7 \mathrm{~V}, 0.8 \mathrm{~V}$, and 0.9 V .

## Post-Processing of Device with Modified Emitter

The mesh, solution, and log files that were created and saved by the input file $m d e x 2 p$ are read by the input file $m d e x 2 p p$ for performing a post-processing analysis of the simulations results. Figures 5-16 through 5-23 contain the output associated with the execution of Medici for the input file mdex $2 p p$.

## Metal Contact vs. Metal-Poly-Silicon

The input file $m d e x 2 p p$ shown in Figures 5-16 and 5-17 is similar to the input file $m d e x 2 f p$ shown in Figure 5-7. They differ in that the saved mesh, solution, and log files are read in from the simulations of the structure with the modified emitter.

```
1... TITLE
Synopsys MEDICI Example 2PP - NPN Transistor Simulation
2... COMMENT
3... COMMENT
4... PLOT.1D
 ... +
 ... +
5... PLOT.1D IN.FILE=MDEX2PI Y.AXIS=I (Base) X.AXIS=V(Base)
 ... + Y.LOG POINTS LINE=2 COLOR=3 UNCHANGE
6... LABEL LABEL="IC" X=.525 Y=1E-8
7... LABEL LABEL="Ib" X=.550 Y=2E-10
8... LABEL LABEL="Vce = 3.0v" X=.75 Y=1E-13
9... COMMENT Plot the current gain (Beta) vs. collector current
10... EXTRACT NAME=Beta EXPRESS=@I(Collector)/@I(Base)
11... PLOT.1D IN.FILE=MDEX2PI X.AXIS=I(Collector) Y.AXIS=Beta
Post-Processing of MDEX2P Results
Plot Ic and Ib vs. Vbe
IN.FILE=MDEX2PI Y.AXIS=I(Collector) X.AXIS=V(Base)
LINE=1 COLOR=2 TITLE="Example 2PP - Ic & Ib vs. Vbe"
BOT=1E-14 TOP=1E-3 Y.LOG POINTS
```

Figure 5-16 First part of the simulation input file mdex2pp
The results shown in Figures 5-18 through 5-23, however are not significantly changed from those shown in Figures 5-8 through 5-13 where the emitter region was not modified. This indicates that replacing a metal contact with a metal-polysilicon contact has a small effect on the device behavior for the structure under consideration.

You may anticipate this result by considering the diffusion length of the minority carrier holes in the quasi-neutral emitter region $y>0$. The diffusion length for holes is given by the square root of the product of the diffusion coefficient ( $D_{p}=(K T / q)$ (hole mobility)) and the hole lifetime.

```
13... COMMENT Plot the cutoff frequency Ft=Gcb/(2*pi*Cbb)
14... EXTRACT NAME=Ft UNITS=Hz
 ... EXPRESS="@G(Collector,Base)/(6.28*@C(Base,Base))"
15... PLOT.1D IN.FILE=MDEX2FI X.AXIS=I (Collector) Y.AXIS=Ft
 ... + TITLE="Example 2FP - Ft vs. Collector Current"
 ... + BOTTOM=1 TOP=1E10 LEFT=1E-14 RIGHT=1E-3
 ... + X.LOG Y.LOG POINTS COLOR=2
16... LABEL LABEL="Vce = 3.0v" X=5E-14 Y=1E9
17... COMMENT Read in the simulation mesh and solution for Vbe=0.9v
18... MESH IN.FILE=MDEX2MS
19... LOAD IN.FILE=MDEX2S9
20... COMMENT Vector plot of total current for Vbe=0.9v
21... PLOT.2D BOUND JUNC SCALE FILL
 ... + TITLE="Example 2FP - Total Current Vectors"
22... VECTOR J.TOTAL COLOR=2
23... LABEL LABEL="Vbe = 0.9v" X=0.4 Y=1.55
24... LABEL LABEL="Vce = 3.0v"
25... COMMENT Potential contour plot for Vbe=0.9v
26... PLOT.2D BOUND JUNC DEPL SCALE FILL
 ... T TITE="Example 2FP - Potential Contours"
27... CONTOUR POTEN MIN=-1 MAX=4 DEL=. 25 COLOR=6
28... LABEL LABEL="Vbe = 0.9v" X=0.4 Y=1.55
29... LABEL LABEL="Vce = 3.0v"
30... COMMENT Plot doping and carrier concentrations for Vbe=0.7v
31... LOAD IN.FILE=MDEX2S7
32... PLOT.1D DOPING Y.LOG SYMBOL=1 COLOR=2 LINE=1
 ... + BOT=1E10 TOP=1E20
 ... + X.STA=3.5 X.END=3.5 Y.STA=0 Y.END=2
 ... + TITLE="Example 2FP - Carrier & Impurity Conc."
33... PLOT.1D ELECTR Y.LOG SYMBOL=2 COLOR=3 LINE=2 UNCHANGE
 M X.STA=3.5 X.END=3.5 Y.STA=0 Y.END=2
```

Figure 5-17 Second part of the simulation input file mdex2pp
Using a concentration-dependent hole mobility value of $85 \mathrm{~cm}^{2} / \mathrm{V}$-s and a concentration dependent lifetime value of $2 \times 10^{-10}$ seconds (corresponding to an average impurity concentration of $3 \times 10^{19} \mathrm{~cm}^{-3}$ ), the hole diffusion length is found to be approximately 0.2 microns.

Since the distance from the emitter-base depletion edge to the location $y=0$ is approximately 0.34 microns, most of the excess holes recombine before reaching the modified emitter material ( $y>0$ ). Therefore, the base current, and consequently the gain, for this device is not significantly affected by the presence of the modified emitter material.


Figure 5-18 Ic and lb vs. Vbe from PLOT . 1D and LABEL at lines 4 through 8 in file $m d e x 2 p p$, Figures 5-16 and 5-17


Figure 5-19 Beta vs. collector current from PLOT.1D and LABEL at lines 11 through 12 in file mdex2pp, Figures 5-16 and 5-17

Example 2PP - Ft vs. Collector Current


Figure 5-20
Ft vs. collector current from plot . 1d and Label at lines 15 through 16 in file mdex2pp, Figures 5-16 and 5-17


Figure 5-21 Total current vectors from PLot . 2d, vector, and label at lines 21 through 24 in file mdex2pp, Figures 5-16 and 5-17


Figure 5-22 Potential contours from PLot . 2D, CONTOUR, and LABEL at lines 26 through 29 in file mdex2pp, Figures 5-16 and 5-17


Figure 5-23 Carrier and impurity concentrations from PLOT . 1D and LABEL at lines 32 through 39 in file mdex2pp, Figures 5-16 and 5-17

## Simulation of a One-Dimensional Bipolar Transistor

In this example, a one-dimensional simulation of a bipolar transistor is performed. One-dimensional analysis allows extremely rapid device simulation, but multidimensional effects like emitter current crowding or variations in the parasitic base resistance cannot be simulated.

Even with these limitations, quite accurate results can be obtained and a wide variety of physical effects can be accounted for. Some examples include the following:

- The Early effect and its effect on output conductance
- Base push-out and other high current effects
- Low current beta roll-off due to recombination in space charge regions
- Charge storage in the base and collector and various time-dependent effects


## Creating a One-Dimensional Device Structure

A one-dimensional device structure is created in Medici using a single column of triangular elements. This produces a structure with two columns of nodes. The resulting structure is not truly one-dimensional since there are two columns of nodes. A true one-dimensional structure would have only a single column of nodes.

## Note:

The results of the analysis are the same as a true one-dimensional analysis as long as there is no variation in the device structure in the direction perpendicular to the column of nodes.

## Base Contact

The simulation of a bipolar transistor requires that a contact be made to the base of the transistor. In a one-dimensional simulation this contact is placed across the device within the base of the transistor.

A normal electrical contact cannot be used since it would force the electron and hole concentrations to their equilibrium values with the result that no current could cross the base of the transistor from the emitter to the collector.

A MAJORITY carrier contact is used for the base contact. The MAJORITY contact only sets the quasi-Fermi potential of the majority carrier to the contact potential. (A normal electrode sets both the majority and minority carrier quasi-Fermi potentials to the contact potential.)

The result is that when the MAJORITY contact is used only majority carriers can leave the base via the contact. In addition, the concentration of both majority and minority carriers can deviate from the equilibrium levels within the MAJORI TY contact.


Figure 5-24 A one-dimensional bipolar transistor
Grid The simulation input file is shown in Figures 5-25 through 5-26. The grid is created by lines 5 through 7, as shown below:

- A single column of elements is created in the $y$ direction by specifying (at line 5) that $\mathbf{N}$. SPACES $=1$.
- The WIDTH of device is set to 2 microns.

This value was chosen to be the same as the emitter width in the previous example.

In both cases the emitter area is $2.0 \times 1.0=2.0$ square microns. The grid spacing for the first 0.8 microns of the device is 0.01 microns. Beyond 0.8 microns the grid is allowed to expand to a spacing of 0.04 microns. The total device is 2.0 microns high and the final grid has only 272 grid points.

Electrodes
The electrodes are created by lines 12 through 14 , as shown below:

- The emitter is on top and covers the entire top edge of the device.
- The collector is on the bottom and covers the entire bottom edge of the device.
- The base covers a single row of nodes (i.e., 2 nodes) located at $\mathrm{y}=0.45$ microns.
The base is specified as a MAJORITY carrier contact. The MAJORITY contact is also be written as part of the mesh file and does not need to be re-specified when the mesh file is read.


## Doping Profiles

The doping profiles are specified at lines 16 through 20. These profiles are identical to the two-dimensional case with the exception that the $x$ coordinate information (X.MIN, WIDTH) has not been specified.

No REGRID operations have been performed. While regrids can be used to refine the grid in the $y$ direction, they also refine the grid in the $x$ direction resulting in a rapid increase in the number of nodes. It is more efficient to simply specify a fine initial grid.

```
1... TITLE Synopsys MEDICI Example 2M - 1-D NPN Transistor Simulation
2... COMMENT Grid Generation and Initial Biasing
3... COMMENT Specify a rectangular mesh
4... MESH
5... X.MESH WIDTH=2.0 N.SPACES=1
6... Y.MESH DEPTH=0.8 H1=0.01 H2=0.01
7... Y.MESH DEPTH=1.2 H1=0.01 H2=0.04
8... COMMENT Region definition
9... REGION NUM=1 SILICON
10... COMMENT Electrodes
11... $ Use a majority carrier electrode for the base.
12...ELECTR NAME=Base Y.MIN=0.45 Y.MAX=0.45 MAJORITY
13... ELECTR NAME=Emitter TOP
14...ELECTR NAME=Collector BOTTOM
15... COMMENT Specify impurity profiles
16... PROFILE N-TYPE N.PEAK=5e15 UNIFORM OUT.FILE=MDEX2DS
17... PROFILE P-TYPE N.PEAK=6e17 Y.MIN=. 35 Y.CHAR=. 16
18... PROFILE P-TYPE N.PEAK=4e18 Y.MIN=0 Y.CHAR=.16
19... PROFILE N-TYPE N.PEAK=7e19 Y.MIN=0 Y.CHAR=.17
20... PROFILE N-TYPE N.PEAK=1e19 Y.MIN=2 Y.CHAR=.27
21... PLOT.2D TITLE="Example 2M - 1-D Structure" BOUND FILL SCALE
22... LABEL LABEL="n-emitter" X=0.87 Y=0.20
23... LABEL LABEL="p-base" X=0.91 Y=0.57
24... LABEL LABEL="base contact" X=0.87 Y=0.43 C.SI=0.2
25... LABEL LABEL="n-collector" X=0.85 Y=1.50
26... COMMENT Specify some models
27... MODELS CONMOB CONSRH AUGER BGN
28... COMMENT Use Newton's method with 2 carriers
29... SYMB NEWTON CARRIERS=2
30... COMMENT Setup log file for I-V data
31... LOG OUT.FILE=MDEX2MI
32... COMMENT Find the base width (defined as p>1e15)
33... EXTRACT NAME=w1 COND="@p>1e15" EXPRESS="min(@w1;@y)" INIT=1000
34... EXTRACT NAME=w2 COND="@p>1e15" EXPRESS="max(@w2;@y)" INIT=-1000
35.___EXTRACT NAME=wb EXPRESS="运2-@w1" UNITS=Microns
```

Figure 5-25 First part of the simulation input file mdex2m
Solutions The remainder of the input file is very much like the files mdex2f and mdex2fp presented in the previous examples.

- The base voltage is ramped from 0.2 V to 0.9 V . Since this one-dimensional example runs significantly faster than its two-dimensional counterpart, more bias points have been requested.
- AC small-signal analysis is used to calculate the transconductance "gm" and the total base capacitance. These are used to estimate the cutoff frequency "Ft".

```
40... COMMENT Plot Ic and Ib vs. Vbe
41... PLOT.1D IN.FILE=MDEX2MI Y.AXIS=I(Collector) X.AXIS=V(Base)
 ... Y.LOG POINTS LINE=1 COLOR=2
 ... + TITLE="Example 2M - Ic & Ib vs. Vbe"
42... PLOT.1D IN.FILE=MDEX2MI Y.AXIS=I(Base) X.AXIS=V(Base)
 ... + Y.LOG POINTS LINE=2 COLOR=3 UNCHANGE
43... LABEL LABEL="Vce = 3.0v"
44... LABEL LABEL="IC" X=.525 Y=1.5E-8
45... LABEL LABEL="Ib" X=.550 Y=2.0E-10
46... COMMENT Plot the current gain (Beta) vs. collector current
47... EXTRACT Name=Beta EXPRESS=@I(Collector)/@I(Base)
48... PLOT.1D IN.FILE=MDEX2MI X.AXIS=I (Collector) Y.AXIS=Beta
 ... + X.LOG POINTS COLOR=2
 ... + TITLE="Example 2M - Beta vs. Collector Current"
49... LABEL LABEL="Vce = 3.0v"
50... COMMENT Plot cutoff frequency (Ft) vs collector current
51... COMMENT Ft = Gcb/(2*pi*Cbb)
52... EXTRACT NAME=Ft UNITS=Hz
 ... +
53... PLOT.1D X.AX=I (Collector) Y.AX=Ft
 ... TITLE="Example 2M - Ft vs. Collector Current"
 ... + X.LOG Y.LOG POINTS COLOR=2 IN.FILE=MDEX2MI
 ... + BOTTOM=1 TOP=1E10 LEFT=1E-14 RIGHT=1E-3
54... LABEL LABEL="Vce = 3.0v"
55... COMMENT Plot doping and carrier concentrations for Vbe=0.7v
56... LOAD IN.FILE=MDE2MS7
57... PLOT.1D DOPING Y.LOG SYMBOL=1 COLOR=2 LINE=1
 ... + BOT=1E10 TOP=1E20
 ... + X.STA=0 X.END=0 Y.STA=0 Y.END=2 C.SIZE=0.15
 ... TITLE="Example 2M - Carrier & Impurity Conc."
58... PLOT.1D ELECTR Y.LOG SYMBOL=2 COLOR=3 LINE=2 UNCHANGE
 ... + X.STA=0 X.END=0 Y.STA=0 Y.END=2 C.SIZE=0.15
59... PLOT.1D HOLES Y.LOG SYMBOL=3 COLOR=4 LINE=3 UNCHANGE
 ... X.STA=0 X.END=0 Y.STA=0 Y.END=2 C.SIZE=0.15
60... LABEL LABEL="Vbe = 0.7v" X=1.55 Y=4E12
61... LABEL LABEL="Vce = 3.0v"
62... LABEL LABEL="Doping" SYMBOL=1 COLOR=2
63... LABEL LABEL="Electrons" SYMBOL=2 COLOR=3
```

Figure 5-26 Second part of the simulation input file mdex2m

Graphical Output It is interesting to compare the results, shown in Figures 5-27 through 5-31 with the results of the two-dimensional analysis shown in Figures 5-8 through 5-13. The results with one- and two-dimensional analyses are very similar in this particular example.


Figure 5-27 Device structure from plot. 2D and label at lines 21 through 25 in file mdex2m, Figure 5-25

```
Example 2M - Ic & Ib vs. Vbe
```



Figure 5-28 Base and collector current as a function of the base-emitter voltage from plot .1d and label at lines 41 through 45 of the input file mdex2m


Figure 5-29 Current gain versus collector current from ExTRACT, PLOT.1D, and label at lines 47 through 49 in file mdex $2 m$


Figure 5-30 Cutoff frequency versus collector current from extract, PLOT.1D, and label at lines 52 through 54 in mdex2m


Figure 5-31 Electron, hole and doping concentrations from РLOT.1D and LABEL at lines 57 through 64 in file mdex $2 m$

# Diode and Lumped Element Examples 

## Example Specifications

This chapter details the following three capabilities of the Medici program.

- A transient simulation of a PN diode.
- The effects of and differences between lumped resistive elements and distributed contact resistance.
- The use of lumped resistance, capacitance, and inductance as the load for a MOSFET.

The simulation uses the following files and structure:

- The input file $m d e x 3$ develops the simulation structure and simulates the transient turn-on characteristics for the diode.
- The input file mdex3h plots the hole concentration through the device at various times during the turn-on.
- The input mdex3e plots electron concentrations through the device at various times during the turn-on.


## Transient Simulation of a PN Diode

The input file $m d e x 3$ creates the simulation structure for the PN-diode device and then simulates the transient turn-on characteristics. The output associated with the execution of Medici for the input file $m d e x 3$ is shown in Figures 6-1 through 6-4.

## Mesh Generation

The first step in creating the device structure is to generate an initial mesh, as is done in lines 3 through 5 of the input file shown in Figure 6-1.

```
1... TITLE
2... COMMENT
3... MESH
4... X.MESH
5... Y.MESH
6... COMMENT
7... REGION
8... ELECTR
9... ELECTR
10... COMMENT
11... PROFILE
N-TYPE N.PEAK=1E15 UNIF OUT.FILE=MDEX3DS
12... PROFILE P-TYPE N.PEAK=1E19 X.MIN=0 WIDTH=1.0 X.CHAR=.2
 ... +
13... COMMENT
Refine the mesh with doping regrids
14... REGRID DOPING LOG RAT=3 SMOOTH=1 IN.FILE=MDEX3DS
15... REGRID DOPING LOG RAT=3 SMOOTH=1 IN.FILE=MDEX3DS
16... REGRID DOPING LOG RAT=3 SMOOTH=1 IN.FILE=MDEX3DS
 ... +
 OUT.FILE=MDEX3MS
17... PLOT.2D GRID TITLE="Example 3 - Simulation Mesh" SCALE FILL
18... COMMENT Attach a lumped resistance to the Anode contact
19... CONTACT NAME=Anode RESIST=1E5
20... COMMENT Specify physical models to use
21... MODELS SRH AUGER CONMOB FLDMOB
22... COMMENT Symbolic factorization
23... SYMB
24... COMMENT
25... LOG
26... COMMENT
27... $
28... SOLVE OUT.FILE=MDE3S00
 the transient turn-on characteristics for the diode.
```

Figure 6-1 Output of the simulation input file mdex3
The mesh statement initiates the mesh generation. The X.MESH and Y.mesh statements are used to define the placement of lines of nodes within the structure. The structure created by the $\mathbf{X}$.MESH and $\mathbf{Y}$. MESH statements extends from 0 to 3 microns in both the x and y directions. The grid spacing in each direction is uniform.

With initial mesh defined, it is now the time to define the device. The entire device is defined as silicon with the REGION statement in line 7 .

The ELECTR statements locate the contacts within the device structure.

- The anode is placed along the left edge of the top surface and makes contact with what will eventually be the p-type material of the diode.
- The cathode is placed along the bottom surface and makes contact with what will eventually be the $n$-type material of the diode.

Two PROFILE statements define the impurity distribution for the structure.

- The first PROFILE statement places a uniform concentration of n-type material over the entire device.
- The second PROFILE statement then adds a Gaussian distribution of p-type material to the top-left portion of the structure to form the diode.

The profile information is saved in a file to be used during grid refinement by specifying the OUT.FILE parameter on the first PROFILE statement.

Doping Regrid It is now necessary to refine the grid so it is adequate for simulation. In lines 14 through 16 , the simulation grid is refined based on DOPING. If the impurity concentration varies by more than three orders of magnitude over a triangle of the existing mesh, the triangle is divided into four congruent triangles by adding new nodes.

Each REGRID statement creates one new level of triangles. The impurity concentration at the new nodes of each refined mesh is calculated using the profile information stored in the file specified by IN.FILE. Performing the regrids one level at a time and using the doping file specified by IN FILE avoids problems that may arise due to interpolation errors.

The final refined mesh is shown in Figure 6-2.


Figure 6-2 Simulation mesh from plot. 2D at line 17 in file mdex3, Figure 6-1

## Transient Analysis

The solution part of the input file is described in the following sections.

> Models and Boundary Conditions

Before generating solutions, any special boundary conditions or physical models to be used should be specified. For this example:

- A lumped resistance of $10^{5} \Omega-\mu \mathrm{m}$ is attached to the anode.
- Specify that both Shockley-Read-Hall and Auger recombination are to be used.
- Specify concentration and field-dependent mobilities.

Solution
Since the behavior of both electrons and holes will be important in this example, a two-carrier simulation is requested on the SYMB statement at line 23 . Newton's method is also selected as the most efficient solution technique.

Before actually performing the first solution, a log file is specified that will store the terminal I-V data at each bias and/or time point of the simulation.

## Initial Solution

Since no bias values are specified on the first SOLVE statement (line 28), all biases default to zero. The results of this solution point are stored for future processing or plotting in the file specified by OUT .FILE.

Transient
The second SOLVE statement (line 29) begins the transient analysis of the turn-on Solutions characteristics for the diode. The bias applied to the anode is instantaneously switched to 2 volts at time $t=0$.

To perform a transient analysis with Medici, it is only necessary to specify the first time step to use and the stopping time. Medici will automatically choose the intermediate time steps to insure an accurate solution. In this example, a 1 picosecond initial time step is chosen with the TSTEP parameter, and a stopping time of 10 nanoseconds is chosen with the TSTOP parameter (line 29).

Specifying the OUT .FILE parameter (line 29) causes the solution information to be stored in files for future processing or plotting. The solution for each time step will be stored in a separate file, with the identifier specified by OUT . FILE being incremented for each solution.

## CAUTION

It should be kept in mind that since Medici chooses the time steps automatically, it is unknown at this point how many solutions will actually be performed. Therefore, specifying OUT . FILE in a transient analysis such as this can potentially create a very large number of output files.

## Graphical

 ResultsLine 31 requests that a plot of diode current versus time be drawn. This is shown in Figure 6-3. Note the variation in time step size selected automatically by Medici during the analysis.

It should also be noted that although the analysis above was carried out to 10 nanoseconds, the plot shown in Figure $6-3$ was limited to the first 0.5 nanoseconds.


Figure 6-3 Current vs. time from plot. 1D at line 31 in file mdex3, Figure 6-1

Line 32 requests that a plot of the anode voltage versus time be drawn. This is shown in Figure 6-4. Although the applied bias remained at 2 volts during the entire analysis, the actual contact voltage is always less than 2 volts and varies with time. This is due to the lumped resistance attached between the applied bias and the anode.


Figure 6-4 Contact voltage from Рцот.1D at line 32 in file mdex3, Figure 6-1

## One-Dimensional Plots of Hole Concentrations

The device structure that was created and saved by the input file $m d e x 3$ is read by the input file $m d e x 3 h$. Additionally, solution files created by the input file mdex3 at various simulation times are read by the input file $m d e x 3 h$ and are used to plot the hole concentration along a one-dimensional vertical slice through the structure at those times.

Figures 6-5 and 6-6 contain the output associated with the execution of Medici input file $m d e x 3 h$.

In Figure 6-5, the UNCH parameter is used on the second and subsequent PLOT.1D statements to allow all the curves to be plotted in the same figure with the scaling established by the first PLOT.1D statement.

In Figure 6-6, the input file $m d e x 3 h$ adds labels to the figure to identify each curve with the corresponding simulation time. The simulation times were obtained from the printed output associated with the execution of mdex3.

1... TITLE	Synopsys MEDICI Example 3H - PN Diode Transient Simulation					
2... COMMENT	Plot hole con	centration at	vari	us time		
3... COMMENT	Read in simu	ation structur				
4... MESH	IN.FILE=MDEX					
5... TITLE	Example 3H -	Hole Concentra	ation			
6... LOAD	IN.FILE=MDE3					
7... PLOT.1D	HOLES Y.LOG	X.ST=0. X.EN	$\mathrm{N}=0$.	Y. ST=0.	Y. $E N=3$.	
8... LOAD	IN.FILE=MDE3					
9... PLOT.1D	HOLES Y.LOG	X.ST=0. X.EN	$\mathrm{N}=0$.	Y. ST=0.	Y. $\mathrm{EN}=3$.	UNCH
10... LOAD	IN.FILE=MDE3					
11... PLOT.1D	HOLES Y.LOG	X.ST=0. X.EN	$\mathrm{N}=0$.	Y. ST=0.	$Y . E N=3$.	UNCH
12... LOAD	IN.FILE=MDE3					
13... PLOT.1D	HOLES Y.LOG	X.ST=0. X.EN	$\mathrm{N}=0$.	Y. ST=0.	$Y . E N=3$.	UNCH
14... LOAD	IN.FILE=MDE3					
15... PLOT.1D	HOLES Y.LOG	X.ST=0. X.EN	$\mathrm{N}=0$.	Y. ST=0.	Y. $E N=3$.	UNCH
16... LOAD	IN.FILE=MDE3					
17... PLOT.1D	HOLES Y.LOG	X.ST=0. X.EN	$\mathrm{N}=0$.	Y. ST=0.	Y.EN=3.	UNCH
18... LOAD	IN.FILE=MDE3					
19... PLOT.1D	HOLES Y.LOG	X.ST=0. X.EN	$\mathrm{N}=0$.	Y. ST=0.	Y. $\mathrm{EN}=3$.	UNCH
20... LABEL	LABEL="0"	$\mathrm{X}=1.10$	$Y=5$	0E6		
21... LABEL	LABEL="7"	$X=1.3$	$\mathrm{Y}=2$.	E 7		

Figure 6-5 Output of the simulation input file $m d e x 3 h$


Figure 6-6 Hole concentration from plot.1d at lines 7, 9, 11, 13, 15, 17, and 19, and label at lines 20 through 26 in file mdex3h, Figure 6-5

## One-Dimensional Plots of Electron Concentration

The device structure that was created and saved by the input file mdex3 is read by the input file $m d e x 3 e$. Additionally, solution files created by the input file $m d e x 3$ at various simulation times are read by the input file mdex3e and are used to plot the electron concentration along a one-dimensional vertical slice through the structure at those times.

Figures 6-7 and 6-8 contain the output associated with the execution of Medici for the input file mdex3e.

In Figure 6-7, the UNCH parameter is used on the second and subsequent PLOT.1D statements to allow all the curves to be plotted in the same figure with the scaling established by the first PLOT.1D statement.

In Figure 6-8, the input file mdex3e also adds labels to the figure to identify each curve with the corresponding simulation time. The simulation times were obtained from the printed output associated with the execution of mdex3.


Figure 6-7 Output of the simulation input file mdex3e


Figure 6-8 Electron concentration from PLOT.1D at lines 7, 9, 11, 13, 15, 17, and 19, and label at lines 20 through 26 in file mdex3e, Figure 6-7

## Stress-Induced Leakage Example

The following example describes the simulation of a silicon PN diode created near a LOCOS isolation structure. Such isolation structures produce localized regions of large stress which can severely impact device performance. The analysis is performed in one input file, mdexstress.inp, and consists of the following three steps:

1. The basic device structure and stress tensor are loaded from a TIF file created by TSUPREM-4. A simple doping profile for a PN diode is created using the PROFILE statement.
2. A static simulation of the reverse-bias leakage current without stress effects is performed.
3. A static simulation of the reverse-bias leakage current with stress effects is performed.

## Reading and Specification of the Device Structure

As shown in Figure 6-9, the name of the TIF file containing the device structure and the simulated stress tensor is given in line 3 as STRESS1. TIF. The structure is loaded into Medici using the MESH statement on line 5. The thin top region named NITRIDE1 is turned into an electrode in line 7. A doping profile is then created in lines 9 and 10 . In line 12 , the stress tensor is read from the $T I F$ file using the OTHER parameter on the PROFILE statement.

$\begin{aligned} & 1 \ldots \\ & 2 \ldots \text { TITLE } \\ & 3 \ldots \end{aligned}$	MEDICI Example - Stress-Induced Leakage Near LOCOS Name of TIF file.This file is LOCOS simulation from TS4. NAME=MESHFILE C.VALUE="STRESS1.TIF"
4... \$	Load TIF file
5... MESH	IN.FILE=@MESHFILE TIF
6... \$	Convert nitride1 to a region electrode
7... ELECTRODE	NAME=CATHODE REGION=NITRIDE1
8... \$	Doping profile for diode
9... PROFILE	P-TYPE UNIFORM N.PEAK=1E17
10... PROFILE	N-TYPE Y.JUNC=.1 N.PEAK=2E19 X.MAX=. 8
11... \$	Read stress tensor from TIF file.
12... PROFILE	IN.FILE=@MESHFILE TIF OTHER=(SXX, SYY, SXY)
13... \$	Surface Recombination
14... INTERFACE	REGION= (SILICON1, OXIDE1) S.N=1E4 S.P=1E4
15... \$	Plot of device structure
16... PLOT.2D	GRID FILL SCALE
17... \$	Solve for reverse bias IV without stress
18... MODELS	CONMOB FLDMOB CONSRH
19... SYMB	CARRIERS=2 NEWTON
20... LOG	OUT.FILE=STRESS1.LOG
21... SOLVE	$\mathrm{V}(\mathrm{CATHODE})=0.0$
22... SOLVE	$V($ CATHODE $)=0.2$
23... SOLVE	$\mathrm{V}(\mathrm{CATHODE})=0.4$
24... SOLVE	$V(C A T H O D E)=0.6$
25... SOLVE	$\mathrm{V}(\mathrm{CATHODE})=1.0 \mathrm{ELEC}=\mathrm{CATHODE} \mathrm{VSTEP}=1 \mathrm{NSTEPS}=4$
26... PLOT.2D	FILL SCALE TITLE="GENERATION RATE WITHOUT STRESS"
$\begin{gathered} 27 \ldots \\ \ldots \\ \ldots \end{gathered}$	RECOMBINATION NCONT=10 MIN.VALU=16 MAX.VALU=21 ABS LOG FILL C.START=13
28... \$	Now solve for reverse bias IV with stress
29... MODELS	CONMOB FLDMOB CONSRH STRESS STRMOB Y.ORIENT=100
30... LOG	OUT.FILE=STRESS2.LOG
31... SOLVE	$\mathrm{V}(\mathrm{CATHODE})=0.0$ INITIAL
32... SOLVE	$V($ CATHODE $)=0.2$
33... SOLVE	$V($ CATHODE $)=0.4$
34... SOLVE	$V($ CATHODE $)=0.6$
35... SOLVE	$\mathrm{V}(\mathrm{CATHODE})=1.0$ ELEC=CATHODE VSTEP=1 NSTEPS=4
36... PLOT. 2 D	FILL SCALE TITLE="GENERATION RATE WITH STRESS"
$\begin{gathered} 37 \ldots \\ \ldots \\ \ldots \end{gathered}$	RECOMBINATION NCONT=10 MIN.VALU=16 MAX.VALU=21 ABS LOG FILL C.START=13

Figure 6-9 Output listing of the simulation input file mdexstress

## CAUTION

When reading the stress tensor from a TIF file, the names of the components of the stress tensor must be given as SXX, SYY, and SXY.

The recombination velocities at the silicon-oxide interface are then set on line 14 to model interface recombination centers. A plot of the device structure is made on line 16 using a PLOT . 2D statement and is shown in Figure 6-10.


Figure 6-10 LOCOS device structure and mesh generated by the PLOT . 2D statement on line 16 in the input file mdexstress.inp

## Reverse Leakage Simulation Without Stress

The simulation of the leakage current without stress is begun on line 18 where some common models are selected. A two carrier solution is specified on line 19 and lines 21-25 perform a solution at different biases up to 5 V . A 2D contour plot of the net generation rate at 5 V is initiated on lines 26 and 27 and is shown in Figure 6-11a. The primary source of leakage current in silicon PN diodes is from generation in the depletion region. The main effect of stress is to alter the bandgap which should produce a significant effect on the generation rate, and hence the leakage current.

## Reverse Leakage Simulation With Stress

The impact of stress on the leakage current is simulated by first specifying the various stress-related parameters on the MODELS statement on line 29. The three stress-related parameters that are specified are shown below:

- STRESS, which turns on the stress-induced bandgap model
- STRMOB, which turns on the stress-induced mobility model
- Y. ORIENT=100, which is used to specify a $<100>$ oriented substrate for the stress calculations

The reverse leakage is simulated for biases up to 5 V using a series of bias steps similar to the solution without stress. Lines 31-34 specify solves at discrete biases while line 35 specifies a voltage ramp from 1 to 5 V . A 2D contour plot of the resulting stress-induced generation rate is shown in Figure 6-11b The large compressive stress in the silicon near the LOCOS bird's beak causes a narrowing of the bandgap and a subsequent increase in the generation rate.


Figure 6-11 Simulated generation rate near a LOCOS isolation structure with and without stress

An IV plot of the leakage current, with and without stress, is performed on lines 39-42 with a PLOT . 1D statement. Figure 6-12 shows that when stress is included in the simulation, the leakage current increases by a factor of two.


Figure 6-12 A comparison of leakage currents produced with а РLOT.1D statement in the input file mdexstress.inp

## Lumped Resistance and Distributed Contact Resistance Example

This section details an example that shows the difference between using a lumped resistive element and a distributed contact resistance in a simulation. The input file $m d e x 4 r$ creates the simulation structure and then performs the following two separate solutions:

- A lumped resistive element attached to one of the contacts
- A nonzero contact resistance specified instead.

The results are then examined graphically.
The output associated with the execution of Medici for the input file mdex $4 r$ is shown in Figures 6-13 through 6-15.

## Mesh Generation

The structure used in this example is created in lines 3 through 9 of the input file shown in Figure 6-13. These statements create a structure measuring 4 microns by 0.2 microns covered by a uniform mesh in both directions. The entire structure consists of uniformly doped n-type silicon with a concentration of $2 \times 10^{19} \mathrm{~cm}^{-3}$. Two electrodes are defined for the structure in the following way:

- One along the entire left edge of the device
- One along the right half of the top surface of the device

```
1... TITLE Synopsys MEDICI Example 4R - Lumped and Contact Resistance
2... COMMENT Create the simulation structure
3... MESH
4... X.MESH X.MAX=4.0 N.SPACES=20
5... Y.MESH Y.MAX=0.2 N.SPACES=10
6... REGION NAME=Silicon SILICON
7... ELECTR NAME=Anode LEFT
8... ELECTR NAME=Cathode TOP X.MIN=2.0
9... PROFILE N-TYPE N.PEAK=2E19 UNIFORM
10... COMMENT Attach a lumped resistance to the Cathode, obtain a
11... $ solution, and plot results
12... CONTACT NAME=Cathode RESIST=50 PRINT
13... SYMB CARR=1 NEWTON ELEC
14... SOLVE INIT V (Anode)=0.1
15... PLOT.2D BOUND LUMPED TITLE="Example 4R - Lumped Resistance"
16...VECTOR J.ELEC COLOR=2
17... COMMENT Change to contact resistance at Cathode, obtain a
18... $ solution, and plot results
19... CONTACT NAME=Cathode RESIST=0.
```

Figure 6-13 Output of the simulation input file mdex4r

## Lumped Special boundary conditions to be used at contacts are specified with the Resistance Solution CONTACT statement. At line 12 , a $50 \Omega-\mu \mathrm{m}$ resistive element is attached to the cathode.

A single-carrier solution for electrons is then obtained with a 0.1 V bias applied to the anode.

A vector plot of the resulting current is requested with the PLOT.2D and VECTOR statements at lines 15 and 16 of the input file. The result is shown in Figure 6-14. Note that this figure is not drawn to scale. Although a $50 \Omega-\mu \mathrm{m}$ resistance is attached to the contact, the contact itself has no resistance and the current crowds into the nearest corner of the electrode.

Contact Lines 19 and 20 of the input file change the boundary condition at the cathode in Resistance Solution the following way:

- The lumped resistance is removed by specifying a value for RESIST of 0 .
- A distributed contact resistance is specified with the CON. RES parameter.

The value $10^{-6} \Omega . \mathrm{cm}^{2}$ is chosen so that total resistance of the contact is $50 \Omega-\mu \mathrm{m}$ (the same value used for the resistive element above).

A single-carrier solution for electrons is obtained with 0.1 V applied to the anode.
A vector plot of the resulting current is shown in Figure 6-15. The contact now has a resistivity associated with it; the current crowding experienced above has diminished; and the current is now distributed along the entire electrode.


Figure 6-14 Lumped resistance from PLOT. 2D and vector at lines 15 and 16 in file mdex4r, Figure 6-13


Figure 6-15 Contact resistance from PLOT . 2D and VECTOR at lines 23 and 24 in file mdex4r, Figure 6-13

## MOSFET with Inductive Load

This section simulates the turn-off characteristics of a MOSFET with a complex load impedance. Using Medici, it is possible to create a load consisting of a resistor, a capacitor, and an inductor in parallel.

This particular example emphasizes the inductive portion of the load. Expect to see the voltage at the drain of the MOSFET spike up above the power-supply voltage during turn-off.

```
1... TITLE Synopsys MEDICI Example 4L - MOSFET With Inductive Load
2... COMMENT Turn-off Characteristics for MOSFET with Inductive Load
3... COMMENT Read in the structure created by example 1
4... MESH IN.FILE=MDEX1MS
5... COMMENT Specify the models to be used
6... MODELS CONMOB PRPMOB FLDMOB CONSRH AUGER
7... COMMENT Obtain initial solution with the MOSFET fully conducting
8... SYMBOLIC GUMMEL CARRIERS=0
9... METHOD ICCG DAMPED
10... SOLVE V (Gate)=5 V(Substrate)=0 V(Source)=0 V(Drain)=5
11... SYMBOLIC NEWTON CARRIERS=2
12... METHOD N.DVLIM=0.4
13... SOLVE
14... COMMENT Attach the inductive, resistive, and capacitive
 ... load elements to the drain and get steady-state solution
15... CONTACT NAME=Drain RESISTAN=1E5 CAPACITA=5E-14 INDUCTAN=2E-5
16... SOLVE
17... COMMENT Open up a log file to store the terminal currents
18... LOG OUT.FILE=MDEX4LI
19... COMMENT Increase Newton voltage update limit
20... METHOD N.DVLIM=0.8 ITLIMIT=10
```

Figure 6-16 Output of the simulation input file mdex4l

## Mesh

Line 4 of the input file $m \operatorname{dex} 4 l$ (shown in Figure 6-16) reads in the mesh which was saved from example 1 ( $m d e x 1$ ). This mesh has 480 grid points and 890 elements.

Models Line 6 specifies the models to be used. These are the typical models used during simulation of a MOSFET.

Initial Device Solution

Lines 8 through 10 obtain a zero-carrier solution to be used as an initial guess for the two-carrier simulation that will follow. Bias the N -channel MOSFET in the fully conducting state, with 5 volts on the gate and 5 volts on the drain.

Lines 11 through 13 obtain a 2 -carrier initial solution that will be used to start the transient simulation. Specify N.DVLIM equal to 0.4 volts. 0.4 volts limits the potential update during any single Newton iteration to 0.4 volts and improves the stability of the solution process. This allows the fully conducting state to be obtained in a single bias step.

Adding Lumped Elements

Line 15 attaches the resistor, capacitor, and inductor to the drain of the MOSFET. Note that while these three elements are connected in parallel, they are still in series with the 5 volt source that was originally attached to the drain. The units for the resistor and inductor are $\Omega . \mu \mathrm{m}$ or $H . \mu \mathrm{m}$.

To calculate the parameters RESISTAN and INDUCTAN multiply the real resistance and inductance (in ohms and Henries respectively) by the MOSFET channel width in microns.

The units for capacitance are $F / \mu \mathrm{m}$, so to obtain the parameter CAPACITA divide the real capacitance (in farads) by the MOSFET channel width.

Line 13 performs the last steady-state solution. This solution sets the current in the inductor and the voltage on the capacitor to their initial values.

Line 18 opens a file to save the terminal currents (for plotting).

Transient Simulation

Line 20 increases $\mathbf{N}$. DVLIM and reduce the maximum number of Newton iterations. Reducing Newton iterations causes the program to stop, cut back the time step, and cease to work on a solution that will never converge. This can sometimes speed up a simulation. Most time points in transient analysis converge in less than 10 iterations.

Line 22 perform the actual transient simulation. The gate bias is dropped from 5 volts to zero volts over a period of 10 nanoseconds. The entire simulation, however, lasts for 20 nanoseconds. Line 24 produces a plot of the MOSFET drain voltage versus time.

As seen in Figure 6-17, the drain voltage spikes up about one volt above the power supply voltage and then dips below 5 volts before finally settling to 5 volts.


Figure 6-17 MOSFET drain voltage from PLOT.1D at line 24 in file mdex4l, Figure 6-16

## Photogeneration Examples

## Example Specifications

The Medici photogeneration model can be used to model the perturbations in a semiconductor device caused by many forms of radiation. The following two examples are presented in this chapter:

- The first example is a back-lit solar cell that illustrates the influence of visible light on device behavior.
The input file $m d e x 5$ develops the simulation structure and simulates the operation of the cell when exposed to light with a wavelength 0.6 microns.
- The second example involves the simulation of single-event upset (SEU) in a static random access memory (SRAM) cell.

The input file $m$ dex 6 develops the simulation structure and simulates upset by a 100 MeV argon ion passing through the drain of the p-channel MOSFET in an SRAM cell.

## Back-Lit Solar Cell

This section details some of the analyses that might be performed on a solar cell. The purpose of the simulation is to calculate the power-versus-load resistance curve for the cell so that the maximum power point and cell efficiency can be determined.

The structure simulated is a back-lit solar cell. The term back-lit is used because light enters from the back side of the wafer, away from the side with the contacts and diffusions. The entire wafer is 150 microns thick and this example simulates a narrow 10 micron wide piece. The structure is constructed using a uniformly doped p-type wafer with an impurity concentration of $10^{14} \mathrm{~cm}^{-3}$. A 6 micron wide n -type collector diffusion is used to collect the minority carriers (electrons).

The collector junction depth is 2 microns. Contacts are situated only on the top surface of the wafer.

## Wavelength of Light

An important consideration in the design of solar cells is the wavelength of light used to illuminate the structure. The light incident on the silicon surface is absorbed exponentially with distance as it penetrates the crystal lattice. The distance over which the light is absorbed is characterized by an absorption coefficient (measured in units of inverse length) and is usually very wavelength dependent.

The inverse of the absorption coefficient, which is called the absorption distance, is the distance at which the incident photon flux drops to ( $1 / \mathrm{e}$ ) of its initial value. In Figure 7-1, the light absorption distance in silicon is plotted as a function of wavelength.


Figure 7-1 Absorption distance of light in silicon as a function of wavelength

## Generation of the Simulation Structure and Solutions

The input file $m d e x 5$ creates the simulation structure for the solar cell and simulates the steady-state characteristics. The output associated with the execution of Medici for the input file mdex5 is shown in Figures 7-2 through 7-6.

Initial Mesh
The first step in creating the structure is the generation of a mesh. The MESH statement at line 3 of the input file shown in Figures 7-2 and 7-4 is used to initialize the mesh generation.

1... TITLE	Synopsys MEDICI Example 5 - Back-lit Solar Cell.
2... COMMENT	Mesh Generation
3... MESH	
4... X.MESH	$\mathrm{WIDTH}=10.0 \quad \mathrm{H} 1=0.50$
5... Y.MESH	$\mathrm{DEPTH}=2.0 \quad \mathrm{H} 1=0.40$
6... Y.MESH	Y.MAX $=75.0 \quad \mathrm{H} 1=0.40 \quad \mathrm{H} 2=15.0$
7... Y.MESH	Y. $M A X=150.0 \quad H 1=15.0 \quad H 2=0.30$
8... REGION	NAME=Silicon SILICON
9... COMMENT	Electrodes:
10... ELECTR	NAME=Substrate TOP X.MIN=9.0
11... ELECTR	NAME=Collector TOP X.MAX=7.0
12... COMMENT	Substrate layer and collector diffusion
13... PROFILE	P-TYPE N.PEAK=1E14 UNIF OUT.FILE=MDEX5DS
14... PROFILE	N-TYPE N.PEAK=1E17 WIDTH=6.0 JUNC=2.0 XY.RATIO=0.75
15... COMMENT	Grid refinement based on doping.
16... REGRID	DOPING LOG RATIO=1 SMOOTH=1 IN.FILE=MDEX5DS
17... COMMENT	Display the grid at the top and bottom on the same plot.
18... PLOT.2D	TITLE="Example 5 - Simulation MESH"   ^MARKS ^LABELS X.LEN=15
19... PLOT.2D	GRID SCALE FILL Y.MAX=20 TITLE="'
... +	X.LEN=6 X.OFF=2 ${ }^{\text {^ CLEAR }}$

Figure 7-2 First part of the simulation input file mdex5

## Grid and Device

 DimensionsA single $\mathbf{X}$.MESH statement is used that specifies the device is 10 microns wide with a uniform grid spacing of 0.50 microns.

The following three Y.MESH statements further define the grid:

- The first Y. MESH statement creates a grid section with a depth of 2 microns and a vertical grid spacing of 0.4 microns.
- The second Y.MESH statement gradually increases the grid spacing so that at a depth of 75 microns the grid spacing is 15 microns.
- The third Y.MESH statement gradually reduces the grid spacing to give a final mesh spacing of 0.3 microns at the back surface.


## Fine Grid for Photogeneration

A fine grid spacing is needed at the back surface to prevent discretization error during the photogeneration process. Medici calculates the generation at nodes, and if an insufficient number of nodes are used at the back surface, the exponential decay of the generation curve is poorly approximated. This results in the generation of too many electron-hole pairs.

Referring to Figure 7-1, light with a wavelength of 0.6 microns has a 1/e decay length of 2 microns. Therefore, a fine grid spacing is only needed for approximately the bottom 4 microns of device depth.

## Device Specification

It is now necessary to specify the following:

- The entire device is fabricated from silicon, which is specified with the REGION statement at line 8.
- The ELECTR statements (line 8 ) are used to specify the location of contacts to the structure.
- The substrate electrode (defined in line 10) only touches the top right edge of the device.
- The collector (line 11) contacts the n-type diffusion region at the top left edge of the device.

Doping Lines 13 and 14 specify the structure doping. Line 13 specifies the entire device to have a uniform p-type concentration of $10^{14} \mathrm{~cm}^{-3}$. The file MDEX5DS is used to store a description of the doping profiles. This information is used later to find the impurity concentration at new nodes added to the structure as the result of a grid refinement using the REGRID statement. Line 14 creates the n-type collector diffusion with a peak doping of $10^{17} \mathrm{~cm}^{-3}$ and a junction depth of 2 microns.

Regrid At line 16, the simulation grid is refined based on DOPING. New nodes are added if the impurity concentration differs by more than one order of magnitude (as specified with LOG and RATIO=1) over an existing triangle. Smoothing is also requested to help reduce the number of obtuse triangles that may be created and their adverse effects.

The doping information stored in the file MDEX5DS is used to calculate the doping at the new nodes. If MDEX5DS were not used, the doping at the new nodes would be calculated by interpolation from the unrefined mesh, which is likely to introduce some inaccuracies in the doping profile.

Figure 7-3 shows portions of the resulting simulation mesh.
Models Line 22 modifies the carrier lifetimes to values that are more appropriate for solar cell simulation. Line 23 specifies the models to be used in the simulation.

Since recombination is important in solar cell operation, both AUGER and concen-tration-dependent Shockley-Read-Hall (CONSRH) recombination are used. The mobility also affects the diffusion of carriers, and a concentration-dependent mobility model (CONMOB) is used. Since the applied bias will be low, and the substrate is lightly doped, relatively small electric fields will be present and fielddependent mobility models are not needed.


Figure 7-3 Simulation mesh from РLOт.2D at lines 18 through 20 in file mdex5, Figure 7-2

## Photogeneration

 Rate ModelIt is now time to include statements that describe the photogeneration process. The photogeneration rate $G_{\text {photo }}$ (electron-hole-pairs $/ \mathrm{cm}^{3}$-s) as a function of distance $y$ (microns) from the surface upon which the radiation is incident can be expressed as:

$$
G_{\text {photo }}=F L U X \frac{\exp \left[-\frac{y}{Y . C H A R}\right]}{10^{-4} \cdot Y . C H A R}
$$

where:

- $F L U X$ is the photon flux (photons $/ \mathrm{cm}^{2}-\mathrm{sec}$ )
- Y.CHAR is the absorption distance (microns)

The $10^{-4}$ factor in the denominator is a conversion factor from microns to cm . The PHOTOGEN statement, however, requires the photogeneration rate to be expressed in the following form (where the radial and time-dependent factors default to unity):

$$
G_{\text {photo }}=\mathbf{A} \mathbf{3} \cdot \exp (\mathbf{A} 4 \cdot y)
$$

Comparing this with the above expression, the following equivalences can be made:

$$
\begin{aligned}
& \mathbf{A} 3=\frac{10^{4} \cdot F L U X}{Y \cdot C H A R} \\
& \mathbf{A 4}=\frac{-1}{Y \cdot C H A R}
\end{aligned}
$$

Equation 7-3

Equation 7-4

```
24... COMMENT Photogeneration rates (#/cm^3/sec) can be expressed
 ... + in terms of a photon flux (#/cm^2/sec) and a
 ... + characteristic absorption distance (microns). Assuming
 ... + that each photon generates one electron-hole pair, these
 ... can be related to parameters available on the
 ... PHOTOGEN statement (A3 and A4) as follows:
 ...
 ... G (photo) = (1e4*FLUX/Y.CHAR)*exp[-(y/Y.CHAR)] =
 ...+ = A3* exp[A4*y]
 ... +
 ..+ ==> A 3 =1e4*FLUX/Y.CHAR and A 4=-1/Y.CHAR
25... COMMENT Assign names and values for the characteristic
 ... absorption distance and the photon flux.
26... ASSIGN NAME=Y.CHAR N.VALUE=2.0
27... ASSIGN NAME=FLUX N.VALUE=4E17
28... COMMENT Specify the photogeneration rate and that the photo
 ... + source illuminates the entire back surface.
29... PHOTOGEN A3=1E4*@FLUX/@Y.CHAR A4=-1/@Y.CHAR
 ... + X.START=0. Y.START=150. X.END=0. Y.END=0.
30... COMMENT Set up a log file for terminal currents.
31... LOG OUT.FILE=MDEX5I
32... COMMENT Perform steady state solutions to find
 ... + the maximum power point
33... SYMBOL NEWTON CARRIERS=2
34... SOLVE V (Substrate)=0.00 ELEC=Substrate VSTEP=.05 NSTEP=6
35... SOLVE V (Substrate)=0.32 ELEC=Substrate VSTEP=.02 NSTEP=2
36...SOLVE V (Substrate)=0.37 ELEC=Substrate VSTEP=.01 NSTEP=2
37... COMMENT Plot the cell current-vs-voltage curve.
38... PLOT.1D X.AXIS=V(Substrate) Y.AXIS=I (Substrate)
 ... T TITLE="Example 5 - Cell Current vs. Voltage"
39... COMMENT Calculate the power generated and load impedance.
```

Figure 7-4 Second part of the simulation input file mdex5

## Specifying Photogeneration Model Parameters

The ASSIGN statements at lines 26 and 27 of the input file $m d e x 5$ create assigned names representing the following:

- The photon flux (FLUX)

The photon flux is assumed to be $4 \times 10^{17}$ photons $/ \mathrm{cm}^{2}$-sec.

- The light absorption distance (Y.CHAR)

The absorption distance is chosen to be 2.0 microns corresponding to light of wavelength 0.6 microns.

The photogeneration rate is then specified with the PHOTOGEN statement at line 29 using these assigned names and the equivalences for A3 and A4 established above.

## Generation Path

The PHOTOGEN statement also allows a line to be specified along which the carriers are generated. This line is specified in terms of its starting and ending points. Because the light is to be incident on the back surface, the following points are used:

- Starting points corresponding to the bottom of the device (X.START=0, $\mathbf{Y} . \mathbf{S T A R T}=150$ )
- Ending points corresponding to the top of the device (X.END=0, Y.END=0)

Solutions File
Before solutions are obtained, the LOG statement is used to open a file that saves the I-V information for later plotting.

Newton's method is chosen as the solution technique on the SYMBOL statement. Two-carrier solutions are necessary to allow the modeling of both minority and majority carrier effects.

Lines 34 through 36 perform the steady-state solutions to calculate the collected current. The initial bias step size is 0.05 Volts. This step is reduced as the voltage approaches the open circuit voltage, $V_{o c}$, to allow better resolution in the plotted output. If $V_{o c}$ is exceeded the junction current passes through zero and change sign.

In Figure 7-5, the cell's I-V characteristics are plotted. It can be seen that the short circuit photocurrent (the current with $V=0$ ) is approximately $6.14 \times 10^{-9}$ amps. The open circuit voltage, on the other hand, can be found where the current reaches zero. From the figure, $V_{o c}$ is approximately 0.4 V .


Figure 7-5 Cell current vs. voltage from PLOT. 1D at line 38 in file mdex5, Figure 7-4

Total Generated Charge

The amount of charge generated by the cell can be calculated by multiplying the cell area by the photon flux and the electron charge.
$Q=\operatorname{Area} \cdot F L U X \cdot q$
Equation 7-5

$$
=\left(z \times 10^{-4} \mathrm{~cm}\right)\left(\frac{4 \times 10^{17}}{\mathrm{~cm}^{2} \cdot \mathrm{sec}}\right)\left(1.602 \times 10^{-19} \text { Coul }\right)\left(10^{-4} \frac{\mathrm{~cm}}{\mu \mathrm{~m}}\right)
$$

or

$$
\frac{Q}{z}=6.408 \times 10^{-9} \frac{\mathrm{Coul}}{\mu \mathrm{~m} \cdot \mathrm{sec}}
$$

Equation 7-6

Medici calculates the total generated charge by summing the contributions at the nodes. This quantity can be found in the standard output under the heading Photogeneration.

In this simulation, Medici calculated $6.499 \times 10^{-9} \mathrm{Coul} / \mu \mathrm{m} . \mathrm{sec}$, a difference of $0.7 \%$. This difference is due to discretization error during the charge generation process. Even though the error is negligible, it is a good idea to check this value to be certain the grid in the generation area is fine enough.

Cell Power and Load Resistance

Lines 40 to 43 define new plot quantities with the EXTRACT statement, as shown below:

- The first is Power, the cell power. This is simply the product of the cell voltage and the cell current.
- Line 41 calculates the effective load resistance. Because the cell voltage and current are the same as the load voltage and current, the load resistance is the cell voltage divided by the cell current.
- Line 42 scales the power and resistance by the cell area. Assuming the cell has a 1 micron depth into the simulation plane (the z dimension), the cell area is $10^{-7} \mathrm{~cm}^{2}$ (since the device is 10 microns wide).

The cell power is proportional to the cell area, so it is necessary to divide the power by the cell area to obtain the power density. The resistance, on the other hand is inversely proportional to the cell area so it is necessary to multiply the resistance by the cell area to obtain the scaled resistance. To improve the readability of the plots, the resistance and power were negated to yield positive quantities.

Figure 7-6 shows a plot of power versus resistance for the cell. The peak power $\left(18 \mathrm{mWatts} / \mathrm{cm}^{2}\right)$ is generated at a load resistance of about $6 . \Omega \mathrm{cm}^{2}$.


Figure 7-6 Cell power vs. load resistance from plot. 1D at line 43 in file mdex5, Figures 7-2 and 7-4

## Single-Event Upset of a SRAM Cell

The use of Medici is illustrated by going through some of the analyses that might be performed to study single-event upset of a SRAM cell.

The input file mdex6 develops the simulation structure and simulates upset by a 100 MeV argon ion passing through the drain of the p-channel MOSFET in an SRAM cell.

The input file mdex6h then plots the internal hole and potential distributions at various times after the ion strike.

## Overview

Single-event upset occurs when an energetic particle (ion) strikes a memory circuit such as a DRAM or SRAM cell and causes the stored information to be lost. For this simulation, assume the following:

- The drain of one of the two p-channel MOSFETs in a six transistor SRAM cell is struck by a single 100 MeV argon ion.
- The MOSFET is in an OFF state (which it must be to be upset sensitive), that the drain is at a potential of -3.0 V , and that the n-type substrate is grounded ( 0 Volts).

These voltages reverse bias the drain-substrate junction. During the upset process, the conductive charge track generated by the passage of the ion temporarily short circuits the drain-substrate junction and pulls the drain up to the higher potential of the substrate. If the drain reaches the substrate potential ( 0 Volts in this case), the SRAM cell latches into the inverted state and upset occurs. (Refer to the section on circuit analysis for more information on this topic.)

- The p-channel MOSFET being considered is fabricated in an n-type epitaxial layer on top of an n-type substrate. The relevant process parameters are indicated in the following table:

Process Parameter	Value
epitaxial layer thickness	2.0 um
epitaxial layer doping	$1 \mathrm{e} 17 / \mathrm{cm}^{\wedge} 3$
substrate doping	$5 \mathrm{e} 18 / \mathrm{cm}{ }^{\wedge} 3$
p-channel junction depth	0.3 um
p-channel peak S/D doping	$1 \mathrm{E} 20 / \mathrm{cm}{ }^{\text {^ }}$ 3
power supply voltage	-3.0v

Geometric
Symmetry

## Limitation with Medici Simulation

The first important effect to consider is the geometry of the problem. The charge column generated as the ion passes through the device shows cylindrical symmetry. Assuming that the ion enters the semiconductor at normal incidence and places the charge column along the z axis of a cylindrical coordinate system, then full three-dimensional accuracy can be obtained by only simulating the radial (r) and depth ( z ) dependence.

Unfortunately these arguments do not apply to the rectangular MOSFET drain diffusion or the MOSFET itself. These can not be modeled in cylindrical coordinates. Instead, this example models the square drain diffusion as a circular disk, and does not model the MOSFET at all. Converting the square drain to a circular disk is a good assumption. If the MOSFET is to be modeled, as well as the charge column, a full three-dimensional simulation (such as Synopsys TCAD's Davinci) is needed.

## Generation of the Simulation Structure and Transient Solutions

The input file mdex6 creates the structure and performs a transient simulation to analyze the device behavior after a 100 MeV argon ion passes through the device. The output associated with the execution of Medici for the input file mdex6 is shown in Figures 7-7 through 7-11.

The structure created for this analysis consists of a p+drain diffusion in an n-type epitaxial layer with an $n+$ substrate. Cylindrical coordinates are used. It is assumed that the ion path is along the cylindrical coordinate $z$-axis $(r=0)$.

The device structure is created at lines 4 through 17 of the input file mdex6 shown in Figures 7-7 and 7-9.

```
1... TITLE Synopsys MEDICI Example 6 - Single Event Upset Simulation
2... COMMENT P+/EPI/N+ Structure Using Cylindrical Coordinates
3... COMMENT Define a non-uniform mesh using cylindrical coordinates
 ... + (the x-direction corresponds to the radial direction).
 ... Put the finest grid along the r=0 column and at the
 ... + junction.
4... MESH CYLINDRI
5... X.MESH WIDTH=3.0 H1=0.02 H2=0.30
6... Y.MESH DEPTH=0.3 H1=0.10
7... Y.MESH DEPTH=3.7 H1=0.10 H2=0.50
8... REGION NAME=Silicon SILICON
9... COMMENT Electrodes:
10... ELECTR NAME=Drain TOP X.MAX=1.0
11... ELECTR NAME=Substrate BOTTOM
12... COMMENT Profiles for the Epi layer, N+ substrate,
 ... +
13... PROFILE
14... PROFILE N-TYPE N.PEAK=5.0E18 Y.MIN=2.0 DEPTH=2.0 Y.CHAR=0.1
15... PROFILE P-TYPE N.PEAK=1.0E20 JUNC=0.3
 ... + WIDTH=1.0 XY.RATIO=0.75
16... COMMENT Grid refinement based on doping.
17... REGRID DOPING LOG RATIO=1 SMOOTH=1 Y.MAX=1.0
 ... + IN.FILE=MDEX6DS OUT.FILE=MDEX6MS
18... PLOT.2D GRID TITLE="Example 6 - Mesh" SCALE FILL
19... COMMENT Specify physical models to use
20... MODELS CCSMOB FLDMOB CONSRH AUGER BGN
```

Figure 7-7 First part of the simulation input file mdex6

## Mesh Generation

The first step in creating the device structure is to generate an initial mesh. The mesh generation is initiated with the MESH statement at line 4.

The parameter CYLINDRI indicates that cylindrical coordinates are to be used. In this case, the X.MESH statements are used to define the grid placement in the cylindrical radial direction and the $\mathbf{Y}$.MESH statements are used to define the grid placement in the cylindrical z-direction.

Structure Definitions

The X.MESH and Y.MESH statements specify spacing for different areas of the grid.

The $\mathbf{x}$.MESH statement at line 5 creates a grid section that is 3 microns wide. A grid spacing of 0.02 microns (H1) is used near the left side of the device where the charge column is placed.

This fine grid spacing assures that the charge column is adequately resolved. The grid is gradually expanded to a spacing of 0.3 microns ( H 2 ) at the right edge of the device.

The Y.MESH statement at line 6 specifies a 0.1 micron grid spacing at the top of the structure (near the drain-substrate junction). The second Y.MESH statement gradually expands the grid spacing to 0.5 microns at the bottom of the structure.

The REGION statement defines the entire device to be silicon. The ELECTR statements place the $\mathrm{p}+$ drain contact at top left side of the structure and the substrate contact along the bottom edge of the device.

Lines 13 through 15 specify the structure doping. Line 13 generates the n-type epitaxial layer, which extends through the entire device. Line 14 creates the $\mathrm{n}+$ substrate region of the device. In this case, the substrate starts at a depth of 2.0 microns. Line 15 creates the drain diffusion. The drain junction is placed at a depth of 0.3um.

Line 17 performs a grid refinement based on doping to add more nodes in the vicinity of the junction.

Figure 7-8 shows the resulting mesh.


Figure 7-8
Final mesh from Рцот . 2D at line 18 in file mdex6, Figure 7-7

Models Line 20 specifies the physical models used. Due to the large carrier concentrations present in the charge column, the carrier-carrier scattering mobility model (ССSMOB) is used. ССSMOB also includes the effects of doping and temperature on mobility.

Since the drain-substrate is reverse biased by 3 V , high electric fields exist in the deletion region of the junction. Because of this the field dependent mobility model (FLDMOB) should also be used.

Since recombination of the carriers is important, both the concentration dependent Shockley-Read-Hall and Auger recombination models are activated. Finally, since the pn-junction is a bipolar device, the band-gap-narrowing (BGN) model is also used.

## Initial Solution

Lines 22 through 24 generate an initial solution to be used to start the transient simulation. Assume that the MOSFET drain (the p-type region) is at the power supply potential $(-3 \mathrm{~V})$, and that the $n$-type substrate is grounded.

Since the junction is reverse-biased and little current is flowing (before the ion hits) a zero-carrier solution is sufficient. DAMPED is specified on the METHOD statement since it improves the convergence of the Poisson solution.

## Boundary

 ConditionsLine 26 specifies that lumped element boundary conditions are to be used. Applying a fixed potential directly to the $\mathrm{P}+$ diffusion is an inappropriate choice of boundary conditions since the drain potential of the MOSFET changes from -3 to 0 volts during the upset process.

Using a resistor and capacitor, however, the effects of an attached circuit can be included. Included in this example is an effective resistance attached to the drain of 1000 Ohms and an effective capacitance of $10^{-13}$ Farads.

Solution In line 28 a LOG statement is used to save the terminal currents and voltages for plotting.

Line 30 switches to a full Newton 2-carrier solution. The Newton method must be used for time dependent solutions. The Newton method is also required if lumped elements are attached to the device terminals. Line 31 calculates the initial steadystate solution to be used to start the transient simulation.

## Generation Track

The PHOTOGEN statement at line 33 specifies the charge track generated by the ion. The ion enters at the upper left corner ( $\mathbf{X} . \mathbf{S T A R T}=0.0, \mathbf{Y} . \mathbf{S T A R T}=0.0$ ) and exits at the lower left corner ( $\mathbf{X}$. $\mathbf{E N D}=0.0, \mathbf{Y}$.END=4.0).


## Note:

It is important to remember that when using cylindrical coordinates, the charge track must be placed along the cylindrical z-axis. Placement of the charge track at other locations results in rings or cones of charge being generated.

The charge column is assumed to have a characteristic $1 / \mathrm{e}$ radius of 0.2 microns as specified by $\operatorname{DCHR}=0.2$. This radius is measured perpendicular to the specified line segment.

```
25... COMMENT Attach a 1000 Ohm resistor and a }100\textrm{fF}\mathrm{ capacitor to the
 ... D Drain. These simulate the loading of an external circuit.
26... CONTACT NAME=Drain RESIS=1.0E3 CAPAC=1.0E-13 PRINT
27... COMMENT Specify a log file for storing the terminal data
28... LOG OUT.FILE=MDEX6I
29... COMMENT Switch to Newton and two carriers and solve for the
 ... t time=0 reverse bias solution.
30... SYMBOL NEWTON CARRIERS=2
31... SOLVE
32... COMMENT Create the ion track with a PHOTOGEN statement. The
 ... + linear energy transfer data vs. depth for a 100 MeV argon
 ... atom incident on silicon is read from the file mde6let.
33... PHOTOGEN X.START=0.0 X.END=0.0 Y.START=0.0 Y.END=4.0 DCHR=0.2
 ... + T0=3.0E-12 TC=1.5E-12 LETFILE=mde6let PC.UNITS GAUSS
34... COMMENT Simulate the lst 100 picoseconds of the
 ... + transient response
35... SOLVE TSTEP=0.5E-12 TSTOP=100E-12 OUT.FILE=MDE6S01
36... COMMENT Plot the terminal characteristics
```

Figure 7-9 Second part of the simulation input file mdex6

Generation Waveform

Since GAUSS is specified, the charge is generated over a period of about 6 picoseconds using a Gaussian waveform. The Gaussian has a 1/e characteristic time of 1.5 picoseconds, as specified by $\mathbf{T C}=1.5 \mathrm{e}-12$, and the peak of the Gaussian occurs at 3.0 picoseconds as specified by $\mathbf{T O}=3.0 \mathrm{e}-12$.

The Gaussian is normalized by its integral over time. This causes the total charge generated over the duration of the pulse to remain constant, even if $\mathbf{T C}$ or $\mathbf{T O}$ is altered.

Generation Rate vs. Depth of Penetration

The generation rate versus depth of penetration of the ion is read from the file $m$ deblet. This file contains the following data ${ }^{1}$ :

```
/ Linear Energy Transfer (LET) data vs. depth for a 100 MeV
/ argon atom incident on a silicon wafer.
/
/ Depth (um) LET (pCoul/um)
 0.0 0.17
 5.16 0.18
 9.86 0.185
 14.2 0.190
 19.1 0.177
 22.1 0.15
 23.0 0.00
```

1.This data corresponds to a 100 MeV argon ion and was obtained from the tables found in "The Stopping and Ranges of Ions in Matter" by J. F. Ziegler, J. P. Biersack, and U. Littmark, Pergamon Press, 1985.

The slashes (/) indicate comment lines, which are ignored. The depth is measured from the starting point of the line segment (X.START, Y.START) and is measured parallel to the line. Only the first two entries in this file are significant since the structure being simulated is only 4.0 microns deep. The final parameter on the PHOTOGEN statement, PC. UNITS, specifies that the data in file mde6let is in units of picoCoulombs per micron instead of electron-hole pairs $/ \mathrm{cm}^{3}$.

Transient Solution

In line 35 the transient solution is performed. An initial time step of 0.5 picoseconds is used. Medici calculates all subsequent time steps based on a local truncation error criteria. The total simulation is 100 picoseconds long. This is sufficient to resolve the drift component of the charge collection process. The diffusion charge collection, however, continues for a longer period.

Each time step generates its own solution file. The solution from the first time point is stored in MDE6S01. File names to store subsequent solutions are obtained by incrementing this name. The second time-step is stored in MDE6SO2, the third in MDE6S03, and so on.

The terminal current obtained as a result of this simulation is plotted in Figure 710. The large spike (approximately $6.8 \mathrm{mAmp} / \mathrm{micron}$ ) is due to drift collection. The drift collection process is quickly extinguished (at about 40 psec ) as all the charge in the depletion region is collected.

After this time, the diffusion collection continues, as is evident from the slowly decaying tail. This tail continues for several nanoseconds.


Figure 7-10 Drain current from plot. 1D at line 37 in file mdex6, Figures 7-7 and 7-9

The terminal voltage is plotted in Figure 7-11. This plot can be used to determine if the SRAM cell upsets. The figure shows that the voltage reaches a maximum of about -2.4 volts and slowly starts to return to -3.0 . Since the voltage did not reach the high state $(0.0 \mathrm{~V})$, the cell would not upset with this ion. If a heavier ion had been used, upset would be more likely to occur.


Figure 7-11 Voltage current from PLOT. 1D at line 38 in file mdex6, Figure 7-9

## Examination of Internal Device Behavior

The mesh and solution files created and saved by the input file mdex6 are read by the input file mdex6h and are used to examine the internal device behavior at various times after the ion strike. Figures 7-12 through 7-16 contain the output associated with the execution of Medici for the input file mdex6h.

## Plot Generation

The input file mdex6h shown in Figure 7-12 uses an input statement loop to read in four solutions corresponding to four simulation times ( $1.5 \mathrm{psec}, 5.2 \mathrm{psec}, 14$ $\mathrm{psec}, 100.0 \mathrm{psec})$. For each solution, a filled contour plot of hole concentration is generated. Potential contours are plotted as solid lines on top of this.


Figure 7-12 Output of the simulation input file mdex6h

Evolution of the Charge Column

Referring to Figure 7-13, the filled contours show the path of the charge column down the left edge of the device. Since LOG and MIN=4 were specified on the

Holes \& Potential, 1.5 ps


Holes and potential at 1.5 psec , generated in the first pass of the loop from plot. 2D and contour at lines 11 through 13 in file mdex6h, Figure 7-12
CONTOUR statement at line 12 , the white (non-filled) area indicates a region where the hole concentration is less than $10^{4} \mathrm{~cm}^{-3}$. Each change of shade indicates a factor of 100 increase in hole concentration.

It can be seen, by examining the sequence of plots, that the charge column widens by the outward diffusion of carriers. The charge column also pinches off at the junction due to collection of charge from the depletion region, and at 100 psec a large "body" of uncollected charge can be seen sitting under the junction.

It can also be seen that the column does not spread as rapidly within the substrate layer. This is due to a reduction in carrier mobility due to the heavily doped material.

A funneling behavior is evident by examining the potential contours in the series of plots. Before the ion strikes, the equipotentials are parallel to the junction.

At 1.5 psec (Figure 7-13), the equipotentials begin to extend into the substrate due to the voltage drop along the charge column. The funneling reaches its peak at 5.2 psec (Figure 7-14). At 13.5 psec (Figure 7-15), the funnel starts to collapse and the drift current starts to decrease as charge is swept from the depletion region. At 100 psec (Figure 7-16), the depletion region is effectively restored and only diffusion charge collection is occurring.

Holes \& Potential, 5.2 ps


Figure 7-14
Holes and potential at 5.2 psec , generated in the second pass of the loop from plot . 2D and contour at lines 11 through 13 in file mdex6h, Figure 7-12


Figure 7-15 Holes and potential at 14 psec , generated in the third pass of the loop from PLOT. 2D and contour at lines 11 through 13 in file mdex6h, Figure 7-12

Holes \& Potential, 100.0 ps


Figure 7-16
Holes and potential at 100.00 psec , generated in the fourth pass of the loop from plot . 2D and Contour at lines 11 through 13 in file mdex6h shown in Figure 7-12

## Template Examples

## Example Specifications

This chapter contains three examples that illustrate the use of parameterized template files for the automatic creation of standard MOS and bipolar structures. The examples also illustrate the use of parameterized template files for the automatic simulation of standard bias sequences. The examples create the following:

- A 1.5 micron n-channel LDD MOSFET and then simulates its drain characteristics.
- A 3.0 micron p-channel MOSFET and then simulates its gate characteristics.
- An NPN bipolar device and then simulates its forward-active device characteristics.

A complete discussion of the available template files is given in Appendix A: Template Files.

## N-Channel LDD MOSFET Example

This example illustrates the use of parameterized template files for the automatic creation of a 1.5 micron n-channel LDD MOSFET and the automatic simulation of its drain characteristics. The output for this example is shown in Figures 8-1 through 8-9.

## Templates Used

The input file mdex7n uses CALL statements to enter the parameterized template files mosdef0, mosstr1, and mosdrn0 into the input.

The ^PRINT parameter is specified on the CALL statements so that the contents of the parameterized files are used but not printed to the standard output.

## MOS Definition Template

Since it is desired to create an MOS device, the input file shown in Figure 8-1 begins by using a CALL statement to enter the file mosdef0 into the input. This file contains default values for all parameters used by the MOS templates.

The default parameters in $\operatorname{mosdef0}$ are for a 1 micron gate n -channel LDD MOSFET with the structure doping defined by analytic profiles. See Appendix A: Template Files for a complete description of the available parameters and their default values.

```
 1... TITLE Synopsys MEDICI Example 7N - MOS Template File Example
 2... COMMENT Drain Characteristics for an LDD Structure
 3... COMMENT Load the default parameters defining the
 ... + structure and biases
 4... CALL FILE=mosdef0 ^PRINT
59... COMMENT Modify the parameters to define
 ... + a 1.5 micron n-channel LDD
60... ASSIGN NAME=TRANTYPE C.VALUE=NMOS
61... ASSIGN NAME=FILE C.VALUE=N1
62...ASSIGN NAME=LGATE N.VALUE=1.5
63... COMMENT Create the structure using template "mosstr1"
64... CALL FILE=mosstr1 ^PRINT
236... COMMENT Specify parameters for obtaining Vgs=1
 ... + and Vgs=3 drain curves
237... ASSIGN NAME=VBO N.VALUE=0.0
238... ASSIGN NAME=VG0 N.VALUE=1
239... ASSIGN NAME=VGSTEP N.VALUE=2
240... ASSIGN NAME=NGSTEP N.VALUE=2
241...ASSIGN NAME=VDO N.VALUE=0.0
```

Figure 8-1 Output of the simulation input file mdex7n
In this example, the only desired change from the default device is to increase the gate length to 1.5 microns. This is accomplished with the ASSIGN statement at line 62.

A value is also assigned to the name FILE, which is used as a prefix for the names of any output files that are generated by the templates.

## MOS Structure Template

The program is now ready to call a template that actually creates the device structure. From Appendix A: Template Files, there are two choices for templates that create MOS devices: mosstr0 and mosstrl. In this example, mosstrl is chosen.

Regrid This template uses the REGRID statement to successively refine a coarse initial mesh until it is fine enough for creating solutions. This type of template tends to work best for short-channel devices.

Although this example is using analytic impurity profiles, this template is also a good choice if the impurity profiles come from data files. This is because the REGRID approach to mesh refinement does not require a knowledge of structure parameters such as junction depths in advance in order to correctly allocate the grid.

Regrid Plots Figures 8-2 through 8-8 contain the output associated with the call to the template file mosstrl at line 64.


Figure 8-2 Mesh after first doping regrid from CALL to template file mosstr1 at line 64 in file mdex7n, Figure 8-1

Doping Plots Figures 8-2 and 8-3 show the results of regrids based on doping which are used to refine the mesh where large variations of impurity concentration occur (for example, at junctions).

2nd Doping Regrid


Figure 8-3 Mesh after second doping regrid from CALL to template file mosstr1 at line 64 in the file mdex7n, Figure 8-1

Potential Plots Figures 8-4 through 8-6 show the results of regrids based on potential which are used to refine the mesh in the channel region.


Figure 8-4 Mesh after first potential regrid from CALL to template file mosstr1 at line 64 in file $m d e x 7 n$, Figure 8-1


Figure 8-5 Mesh after second potential regrid from CALL to template file mosstr1 at line 64 in file mdex7n, Figure 8-1


Figure 8-6 Mesh after third potential regrid from CALL to template file mosstr1 at line 64 in file mdex7n, Figure 8-1

Impurity Two-dimensional and one-dimensional plots of impurity concentration for the Concentration final structure are shown in Figures 8-7 and 8-8.

## N1MSH: Doping Contours



Figure 8-7 Doping contours from CaLL to template file mosstr1 at line 64 in file mdex7n, Figure 8-1


Figure 8-8 ID doping profiles from CALL to template file mosstr1 at line 64 in file mdex7n, Figure 8-1

## Template

Having created the structure, a set of drain characteristics can now be obtained. Before doing so, values should be assigned to various parameters for describing the range of biases to use. The assignments in lines 237 through 243 are such that $V_{\text {Substrate }}=0 \mathrm{~V}, V_{\text {Gate }}=1 \mathrm{~V}$ and 3 V , and $V_{\text {Drain }}=0 \mathrm{~V}$ to 3 V in 0.25 V increments. The call to the template file mosdrn0 at line 245 performs the desired simulations. The output associated with this CALL is shown in Figure 8-9.


Figure 8-9 Drain characteristics from CALL to template file mosstr1 at line 245 in file mdex7n, Figure 8-1

## P-Channel MOSFET Example

This example illustrates the use of parameterized template files for the automatic creation of a 3.0 micron p-channel MOSFET and the automatic simulation of its gate characteristics. The output associated with the execution of Medici for the input file $m d e x 7 p$ is shown in Figures 8-10 through 8-15.

## Template Used

The input file $m d e x 7 p$ uses CALL statements to enter the parameterized template files mosdef0, mosstr0, and mosgat0 into the input.

1... TITLE   2... COMMENT   ... +	```Synopsys MEDICI Example 7P - MOS Template File Example Gate Characteristics for a 3 Micron Gate P-channel Device```
$\begin{gathered} 3 \ldots \\ \ldots \\ \text {. . } \\ 4 . \\ \text { COMMENT } \\ \text { CALL } \end{gathered}$	Load the default parameters defining the structure and biases   FILE=mosdef0 ^PRINT
$\begin{gathered} 59 \ldots \\ \ldots \\ \ldots \end{gathered}$	Modify the parameters to define a 3 micron p-channel device
60... ASSIGN	NAME=TRANTYPE C.VALUE=PMOS
61... ASSIGN	NAME=FILE C.VALUE=P 3
62... ASSIGN	NAME=LGATE N.VALUE=3.0
63... ASSIGN	NAME=LSPACER N.VALUE=0
64... ASSIGN	NAME=LDDPEAK N.VALUE=0
65... ASSIGN	NAME=SDJUNC N.VALUE $=.30$
66... ASSIGN	NAME=VTPEAK N.VALUE=1E16
67... ASSIGN	NAME $=$ VTCHAR $\mathrm{N} . \mathrm{VALUE}=0.1$
68... COMMENT	Create the structure using template "mosstr0"
69... CALL	FILE=mosstr0 ^PRINT
493... COMMENT	Specify parameters for obtaining $\mathrm{Vbs}=0$ and $\mathrm{Vbs}=2.5$ gate
494... ASSIGN	NAME=VD0 N.VALUE $=-0.1$
495... ASSIGN	NAME=VB0 N.VALUE $=0.0$
496... ASSIGN	NAME=VBSTEP N.VALUE=2.5
$497 \ldots$ ASSIGN	NAME=NBSTEP N,VALUE=2

Figure 8-10 Output of the simulation input file mdex7pci

## Suppress The ^PRINT parameter is specified on the CALL statements so that the contents

 Content Listing of the parameterized files are used but not printed to the standard output.
## MOS Definition Template

Because it is desired to create an MOS device, the input file shown in Figure 8-10 begins by using a CALL statement to enter the file mosdef0 into the input. This file contains default values for all parameters used by the MOS templates.

The default parameters in mosdef0 are for a 1 micron gate n -channel LDD MOSFET with the structure doping defined by analytic profiles. See Appendix A: Template Files for a complete description of the available parameters and their default values.

Default Changes In this example, the following changes must be made from the default device:

- The value of "PMOS" must be assigned to the name TRANTYPE to specify that a PMOS structure is to be created.
- The gate length is set to 3 microns using the name LGATE. Because the default device is an LDD, a few changes must be made to obtain a standard MOSFET.
- To avoid obtaining an LDD profile, the LDD peak impurity concentration, LDDPEAK, is set to zero.
- Set $L S P A C E R$ to zero so there is no offset between the gate electrode and the source/drain profiles.
- Make adjustments to the source/drain junction depth (SDJUNC) and the threshold adjustment profile (VTPEAK and VTCHAR).
- Also assign a value to the name FILE, which is used as a prefix for the names of any output files that are generated by the templates.


## MOS Structure Template

The program is now ready to call a template that actually creates the device structure. Appendix A: Template Files shows that there are two choices for templates that create MOS devices: mosstr0 and mosstrl. In this example, mosstr0 is chosen.

Mesh The template mosstr0 creates a mesh where the spacing between node lines is fine near junction locations and in the channel region, and coarse away from these regions. Eliminates are used to remove closely spaced lines in regions where a fine grid spacing is not needed. This template is very versatile, efficiently creating grids for both short- and long-channel devices.

## Simulation Mesh <br> Plot

Figures 8-11 through 8-13 contain the output associated with the call to the template file mosstr0 at line 69. Figure 8-11 shows the simulation mesh that is created.

Two-dimensional and one-dimensional plots of impurity concentration for the final structure are shown in Figures 8-12 and 8-13.

## Template

Having created the structure, a set of gate characteristics can now be obtained. Before doing so, however, values should be assigned to various parameters for describing the range of biases to use. The assignments at lines 494 through 500 are the following:

- $V_{\text {Drain }}=-0.1 \mathrm{~V}$
- $V_{\text {Substrate }}=0 \mathrm{~V}$ and 2.5 V
- $V_{\text {Gate }}=0 \mathrm{~V}$ to -2 V in -0.25 V increments

The call to the template file mosgat0 at line 502 performs the desired simulations. The output associated with this CALL is shown in Figures 8-14 and 8-15.

P3MSH: Simulation Mesh


Figure 8-11 Simulation Mesh from CALL to template file mosstr0 at line 69 in file mdex7p, Figure 8-10

## P3MSH: Doping Contours



Figure 8-12 Doping contours from CALL to template file mosstr0 at line 69 in file mdex7p, Figure 8-10


Figure 8-13 1D doping profiles from CALL to template file mosstr0 at line 69 in file mdex 7 p, Figure 8-10

P3: Gate Characteristics


Figure 8-14 Turn on characteristics from CALL to template file mosstr0 at line 502 in file mdex7p, Figure 8-10

## P3: Gate Characteristics



Figure 8-15 Gate characteristics from CALL to file mosstr0 at line 502 in file mdex7p, Figure 8-10

## NPN Bipolar Junction Transistor Example

This example illustrates the use of parameterized template files for the automatic creation of an NPN bipolar junction transistor and the automatic simulation of its forward-active device characteristics.

## Templates Used

The input file $m d e x 7 p$ uses CALL statements to enter the parameterized template files bipdef0, bipstr0, and bipgum0 into the input to accomplish this.

Suppress Content Listing

The ${ }^{\wedge}$ PRINT parameter is specified on the CALL statements so that the contents of the parameterized files are used but not printed to the standard output. The output associated with the execution of Medici for the input file $m d e x 7 p$ is shown in Figures 8-16 through 8-23.

## Bipolar Definition

Template
Because it is desired to create a bipolar device, the input file shown in Figure 8-16 begins by using a CALL statement to enter the file bipdef0 into the input. This file contains default values for all parameters used by the bipolar templates.

The default parameters in bipdef0 are for an NPN bipolar junction transistor with the structure doping defined by analytic profiles. See Appendix A: Template Files for a complete description of the available parameters and their default values.

1... TITLE   2... COMMENT	Synopsys MEDICI Example 7B - BJT Template File Example Forward Bias Points and AC Small-Signal Analysis
3... COMMENT	Load the default parameters defining the structure and biases
4... CALL	FILE=bipdef0 ^PRINT
59... COMMENT	Use the default NPN transistor
60... ASSIGN	NAME=TRANTYPE C.VALUE=NPN
61... ASSIGN	NAME=FILE C.VALUE=NPN
62... COMMENT	Create the structure using template "bipstr0"
63... CALL	FILE=bipstr0 ^PRINT
339... COMMENT	Display doping using a 3D projection plot
340... PLOT.3D	DOPING LOG TITLE="NPN Doping Surface" ^FRAME
341... 3D.SURF	COLOR=4
342... COMMENT	Specify collector voltage and range of base biases.
343... ASSIGN	NAME $=\mathrm{VC0}$ N.VALUE=3.0
344... ASSIGN	NAME $=\mathrm{VB} 0 \quad$ N.VALUE $=0.0$

Figure 8-16 Output of the simulation input file mdex $7 b$
In this example, the default device structure specified in bipdef0 is used. The ASSIGN statement at line 61 is used to give a value to the name FILE, which is used as a prefix for the names of any output files that are generated by the templates.

## Bipolar Structure Template

The program is now ready to call the template that actually creates the device structure. This is accomplished at line 63 where the template bipstr0 is called.

Mesh This template creates a mesh where the spacing between node lines is fine near junction locations and coarse away from the junctions. Eliminates are used to remove closely spaced lines in regions where a fine grid spacing is not needed.

Figures 8-17 through 8-19 contain the output associated with the call to the template file bipstr0.

## Simulation Mesh

Doping Plots
Figure 8-17 shows the simulation mesh that is created by the output.
Figure 8-18 shows a two-dimensional plot of the doping contours in the device. Figure 8-19 shows one-dimensional plots of impurity concentration along slices through the final structure. A 3D projection plot of doping is requested with the PLOT . 3D and statement at lines 340 and 341 of the input file and is plotted in Figure 8-20.

## Gummel Plot Template

Having created the structure, a set of forward-active device characteristics can now be obtained. Before doing so, however, values should be assigned to various parameters for describing the range of biases to use. The assignments in lines 343 through 346 are such that $V_{\text {Collector }}=3 \mathrm{~V}$ and $V_{\text {Base }}=0 \mathrm{~V}$ through 0.9 V in 0.1 V increments. The call to the template file bipgum0 at line 348 performs the desired simulations.

The output associated with this CALL is shown in Figures 8-21 through 8-23. These figures represent plots of $I_{\text {Collector }}$ and $I_{\text {Base }}$ versus $V_{\text {Base }}$, current gain versus $I_{\text {Collector }}$, and cutoff frequency versus $I_{\text {Collector }}$.

NPNMSH: Simulation Mesh


Figure 8-17 Simulation mesh from CALL to template file bipstr0 at line 63 in file mdex7b, Figure 8-16

## NPNMSH: Doping Contours



Figure 8-18 Doping contours from CALL to template file bipstr0 at line 63 in file $m d e x 7 b$, Figure 8-16

NPNMSH: Vertical Doping Slices


Figure 8-19 1D doping profiles from CALL to template file bipstr0 at line 63 in file mdex7b, Figure 8-16

NPN Doping Surface


Figure 8-20
3D doping plot from PLot . 3D and 3D. SURF at lines 340 and 341 in file mdex7b, Figure 8-16

NPN: Collector and Base Current


Figure 8-21 Gummel plot from CALL to template file bipgum0 at line 348 in file mdex7b, Figure 8-16

NPN: Current Gain


Figure 8-22 Current gain vs. collector current from CALL to template file bipgum0 at line 348 file mdex7b, Figure 8-16

NPN: Cutoff Frequency


Figure 8-23 Cutoff frequency vs. collector current from CALL to template file bipgum0 at line 348 in file mdex7b, Figure 8-16

## Energy Balance Examples

## Example Specifications

This chapter demonstrates application of the self-consistent solution of the carrier energy balance equations in addition to the standard set of drift-diffusion equations. This is done using the following two examples:

- A MOSFET simulation comparing substrate currents calculated with the conventional local electric field-based impact ionization model and a carrier temperature-based model.
- A bipolar junction transistor (BJT) simulation showing carrier velocity overshoot and the impact of the energy balance model on the transistor's Gummel plot and static current gain.


## Substrate Current Simulation in an LDD MOSFET

This example demonstrates the use of the energy balance model for the calculation of substrate currents in a submicron LDD MOSFET.

## Mesh Specifications

The example device is an N-FET with an effective channel length of $0.5 \mu \mathrm{~m}$. Oxide thickness is 10 nm , spacer width is $150 \mathrm{~nm}, \mathrm{~S} / \mathrm{D}$ junctions are $0.2 \mu \mathrm{~m}$ deep and the LDD junctions are $0.1 \mu \mathrm{~m}$ deep. Device structure and grid are generated using the MOS template file mosstrl. For the associated files and graphical plots see the following:

- Structure specification file, see Figure 9-1.
- Simulation file, see Figure 9-2.
- Input deck for plots, see Figure 9-3
- Mesh and doping plots, see Figures 9-4 and 9-5.


## Solutions

After the creation of the mesh and device structure three sets of solutions are performed in a loop.

$\begin{gathered} 1 \ldots \text { TITLE } \\ 2 \ldots \\ \ldots \\ \ldots \end{gathered}$	MEDICI Example 8A - LDD-MOSFET Simulation   Calculation of substrate current using the carrier   temperature-based impact ionization model
3... COMMENT   4... CALL	Create the structure using the MOSFET templates FILE=mosdefo ^PRINT
$\begin{gathered} 59 \ldots \\ \ldots \\ \ldots \end{gathered}$	Modify the mosdef0 parameters to define a 0.5 micron $n$-channel LDD
60... ASSIGN	NAME=TRANTYPE C.VALUE=NMOS
61... ASSIGN	NAME=FILE C.VALUE=E8A
62... ASSIGN	NAME=LGATE N.VALUE=0.5
63... ASSIGN	NAME=LSOURCE N.VALUE=0.5
64... ASSIGN	NAME=LSCONT N.VALUE=0.25
65... ASSIGN	NAME $=$ LDRAIN $\quad$.VALUE $=0.5$
66... ASSIGN	NAME=LDCONT N.VALUE=0.25
67... ASSIGN	NAME=LSPACER N.VALUE=0.15
68... ASSIGN	NAME=TOX N.VALUE=0.01
69... ASSIGN	NAME $=$ NSUB $\quad$ N.VALUE $=5 \mathrm{E} 15$
70... ASSIGN	NAME=VTTYPE C.VALUE=P
71... ASSIGN	NAME=VTPEAK N.VALUE=5E15
72... ASSIGN	NAME=VTCHAR N.VALUE=0.10
73... ASSIGN	NAME=SDPEAK N.VALUE=1E20
74... ASSIGN	NAME=SDJUNC N.VALUE=0.20
75... ASSIGN	NAME=LDDPEAK N.VALUE=2E18
76... ASSIGN	NAME=LDDJUNC N.VALUE=0.1
77... ASSIGN	NAME = CHANSP N.VALUE $=.005$
78... ASSIGN	NAME=JUNCSP N.VALUE $=.03$
79... ASSIGN	NAME=RATIO N.VALUE=1.4
80... ASSIGN	NAME=VDBMAX N.VALUE=3

Figure 9-1 First part of the simulation input file mdex8a (structure specification)

Conventional DriftDiffusion Solution

The energy balance equation is not solved and the impact ionization rate is calculated based on the local electric field. Since IMPACT. I is specified on the SOLVE statement and not on the MODELS statement, impact ionization is calculated as a post-processing analysis. The ionization rates are not fed back into the carrier continuity equations.

## Approximate Energy Balance <br> Solution

In this mode the energy balance equation is solved to determine the mean carrier temperature. The carrier temperature, however, is never fed back to the drift diffusion equations. This mode of operation is almost as fast as a standard driftdiffusion solution since the energy balance equation is only solved once per bias point.

The coupling of the energy balance equation to the drift diffusion model is disabled by turning off the models TMPDIF and TMPMOB. (The standard fielddependent mobility model FLDMOB is used). Post-processing impact ionization is used to calculate the substrate currents. Since II.TEMP is specified, the calculations are based on carrier temperature instead of electric field.

## Full Energy Balance Model

This model is self consistent. In this model the electron temperature is fed-back into the continuity equations through the temperature dependent mobility model TMPMOB and the temperature diffusion model TMPDIF (both parameters are now set true).

This analysis mode is the slowest since multiple passes are required to solve the drift-diffusion and energy balance model. Impact ionization (based on carrier temperature) is again computed as a post processing step.

```
509... COMMENT Apply drain bias (2.0v)
510... SYMBOL CARR=0
511... METHOD ICCG DAMPED
512... SOLVE V (Drain)=2.0 OUT.FILE=TEMPSOL
513... COMMENT Perform three sets of solutions:
 ... + 1. DDE solution: mobility(E), impact ioniz(E)
 ... 2. Approx EB solution: mobility(E), impact ioniz(T),
 ... + no temp. enhanced diffusion
 ... + 3. Full EB solution: mobility(T), impact ioniz(T)
514... LOOP STEPS=3
515... ASSIGN NAME=ELETEMP L.VALUE=(F,T,T)
516... ASSIGN NAME=FULLEB L.VALUE=(F,F,T)
517... ASSIGN NAME=LOGFIL C1="MDE8AID" C2="MDE8AIE" C3="MDE8AIF"
518... ASSIGN NAME=SOLFIL C1="MDE8ASD" C2="MDE8ASE" C3="MDE8ASF"
519... LOAD IN.FILE=TEMPSOL
520... IF COND=@ELETEMP
521... IF COND=@FULLEB
522... MODELS TMPDIF TMPMOB II.TEMP
523... ELSE
524... MODELS ^TMPDIF ^TMPMOB II.TEMP
525... IF.END
526... SYMBOL CARR=1 NEWTON ELECTRON ELE.TEMP
527... METHOD ETX.TOL=0.10
528... ELSE
529... SYMBOL CARR=1 NEWTON ELECTRON
530... IF.END
```

Figure 9-2 Second part of simulation input file mdex8a (the simulation)

## Plots

Upon completion of the loop, the calculated substrate currents, internal distribution of the impact ionization rate according to the drift-diffusion model and the energy balance model using a carrier temperature-based impact ionization model, and the electron temperature distribution at $V_{\text {Drain }}=2 \mathrm{~V}, V_{\text {Gate }}=6 \mathrm{~V}$ are plotted. The graphical output is shown in Figures 9-6 through 9-9.

Significant differences between the conventional and the energy balance simulation are observed: the substrate current curves have the characteristic "double hump" shape. The first maximum of the curve is due to impact ionization at the drain junction, whereas the second maximum is largely produced by impact ionization near the source junction.

The energy balance model predicts lower substrate currents for all gate biases, with most significant differences at high gate biases, where source-side impact ionization is dominant. The reason for this behavior is primarily the inability of the conventional local electric field impact ionization model to take nonlocal dark space effects into account. This is because the carriers traveling in a strong accelerating electric field require a certain time until they gain sufficient energy for impact ionization. This is accounted for in the carrier temperature-based impact ionization model, thus leading to lower impact ionization in the source.


Figure 9-3 Third part of the simulation input file mdex8a (plots)


Figure 9-4 Device structure and grid on the left, doping concentration contours on the right

## E8AMSH: Vertical Doping Slices



Figure 9-5 Vertical doping slices in source/drain S/D, LDD, and channel


Figure 9-6 Substrate currents from lines 539 through 542 in file mdex8a, Figure 9-3


Figure 9-7 Impact ionization rate calculated using the local electric field impact ionization model (lines 549 through 553 in file mdex8a, Figure 9-3)

Example 8A - EB: Impact Ionization


Figure 9-8 Impact ionization rate calculated using the carrier temperature based impact ionization model (lines 554 through 558 in file mdex8a, Figure 9-3)
Example 8A - EB: Electron Temperature


Figure 9-9 Electron temperature from lines 559 through 562 in file mdex8a, Figure 9-3

## Bipolar Junction Transistor Example

The example demonstrates the use of the energy balance model for the simulation of a bipolar junction transistor.

## Mesh Specification

The example uses an NPN device with a base width of $0.15 \mu \mathrm{~m}$. Device structure and grid are generated using the BJT template bipstr0. The mesh consists of 1466 triangles and 787 nodes. It is optimized to resolve the base-emitter junction, which is important to obtain accurate current gain results. For the associated files and graphical plots, see the following:

- Structure specification and simulation, Figure 9-10
- Simulation mesh, Figure 9-11
- Doping, Figures 9-12 and 9-13
- Input file for plots, Figures 9-14 and 9-15


## Solution

After the creation of the mesh and device structure a collector-emitter bias of 2 V and a base-emitter bias of 0.3 V are applied in one step using a zero-carrier Gummel cycle algorithm (specified in line 351). The solution thus obtained is used as an initial guess for stepping the base-emitter voltage from 0.3 V to 0.85 V in steps of 0.05 V . The simulation is then performed in a loop (lines 353-369) with two methods.

Standard Drift- Both carrier-continuity equations as well as Poisson's equation are solved in a Diffusion Solution coupled Newton procedure. A field-dependent mobility model is used to describe the velocity saturation effect.

## Electron Energy Balance Method

This method solves the electron energy balance equation, specified in line 361. Specifying the MODEL parameter TMPMOB (line 360) selects a carrier temperature-based mobility model. The field-dependent mobility model is switched off automatically since TMPMOB and FLDMOB describe the same physical effect (velocity saturation) and thus cannot be used simultaneously.

## Plots

Following the simulation, two-dimensional contour plots of the potential and electron temperature are created using the last computed solution ( $V_{\text {Base }}=0.85 \mathrm{~V}$, $V_{\text {Collector }}=2 \mathrm{~V}$ ). Base push-out is clearly visible in both plots. See Figures 9-17 and 9-18.

For the same solution ( $V_{\text {Base }}=0.85 \mathrm{~V}, V_{\text {Collection }}=2 \mathrm{~V}$ ) one-dimensional crosssectional plots through the middle of the base $x=2.5 \mu \mathrm{~m}$ are also presented (see Figures 9-19 through 9-21). The displayed functions are shown below:

- Potential
- Electron temperature
- Electron mean velocity

The potential plot shows a significant voltage drop in the collector due to high current injection. The electron temperature peak is substantially lower at this base-emitter bias than it was at lower biases. A comparison of the electron temperature to the so-called static temperature

$$
T_{n}^{\text {static }}=\frac{2}{3}\left(\frac{v_{s a t} \cdot \tau_{w}}{k T_{0} / q}\right) T_{0} \cdot E+T_{0}
$$

Equation 9-1
shows the carrier cooling in the base-emitter junction, carrier heating in the collector as well as the separation of the peak electric field and peak carrier temperature in the direction of electron flow. This separation leads to a velocity overshoot at the base-collector junction. The velocity overshoot is moderate at this bias.

Finally, a Gummel plot and the static current gain $\beta=I_{c} / I_{b}$ versus base bias are plotted for the conventional drift-diffusion model and the energy balance solution. The energy balance model predicts a slightly higher base current and a slightly lower collector current at base biases $V_{\text {Base }}>0.5 \mathrm{~V}$. The overall effect for the example device is reduced static current gain in comparison to the conventional simulation.

```
 1... TITLE MEDICI Example 8B - BJT with Energy Balance
 2... COMMENT Demonstrates carrier heating and velocity overshoot
 3... COMMENT Use the bipolar templates to define the structure
 4... CALL FILE=bipdef0 ^PRINT
59... COMMENT Modify the default NPN transistor
60... ASSIGN NAME=TRANTYPE C.VALUE=NPN
61... ASSIGN NAME=FILE C.VALUE=E8B
62... ASSIGN NAME=BCJUNC N.VALUE=0.30
63... ASSIGN NAME=XBJUNC N.VALUE=0.35
64... ASSIGN NAME=BPEAK N.VALUE=5E18
65... ASSIGN NAME=EBJUNC N.VALUE=0.15
66... ASSIGN NAME=EBSP N.VALUE=.02
67... ASSIGN NAME=BCSP N.VALUE=.03
68... ASSIGN NAME=RATIO N.VALUE=1.5
69...ASSIGN NAME=VCBMAX N.VALUE=2
70... COMMENT Create the structure using the template "bipstr0"
71... CALL FILE=bipstr0 ^PRINT
347... COMMENT Specify models and obtain an initial solution
348... MODELS CONMOB FLDMOB SRH AUGER BGN
349... SYMBOL CARR=0
350... METHOD ICCG DAMPED
351... SOLVE V(Collector)=2.0 V(Base)=0.3 OUT.FILE=TEMPSOL
352... COMMENT The first step is for drift-diffusion, the second
 ... +
353... LOOP STEPS=2
354... ASSIGN NAME=ELETEMP L.VALUE=(F,T)
355... ASSIGN NAME=LOGFIL C1=MDE8BID C2=MDE8BIE
356... ASSIGN NAME=SOLFIL C1=MDE8BSD C2=MDE8BSE
357... LOAD IN.FILE=TEMPSOL
358... IF COND=@ELETEMP
359... COMMENT Use temperature dependent mobility instead of FLDMOB
360... MODELS TMPMOB
```

Figure 9-10 Output of the simulation input file mdex8b (structure specification and simulation)

E8BMSH: Simulation Mesh


Figure 9-11 BJT device structure and grid


Figure 9-12 BJT doping concentration contour lines


Figure 9-13 Vertical cross-section plots of the doping concentration in the BJT through the emitter and the base

```
1... COMMENT MEDICI Example 8BP - BJT with Energy Balance
2... COMMENT Post-processing of Example 8B simulation results
3... COMMENT Load the structure and the energy balance solution
 ... for V (Collector)=2.0 and V(Base)=0.85
4... MESH IN.FILE=E8BMSH
5... LOAD IN.FILE=MDE8BSE
6... COMMENT 2d plots using the energy balance solution
 ... +
7... ASSIGN
8... PLOT.2D
9... CONTOUR
10... PLOT.2D
11... LABEL
12... PLOT.2D
13... CONTOUR
13... CONTOUR
15... LABEI
16... COMMENT 1D plots using the energy balance solution
 ... + for V (Base)=0.85v
\begin{tabular}{|c|c|}
\hline 1... COMMENT & MEDICI Example 8BP - BJT with Energy Balance \\
\hline 2... COMMENT & Post-processing of Example 8 B simulation results \\
\hline \[
\begin{gathered}
3 . \ldots \\
\ldots \\
\ldots
\end{gathered}
\] & Load the structure and the energy balance solution for \(V(\) Collector \()=2.0\) and \(V(\) Base \()=0.85\) \\
\hline 4... MESH & IN.FILE=E8BMSH \\
\hline 5... LOAD & IN.FILE=MDE8BSE \\
\hline \[
\begin{aligned}
& 6 \ldots \text { COMMENT } \\
& \ldots+
\end{aligned}
\] & 2d plots using the energy balance solution for \(V\) (Base) \(=0.85 v\) \\
\hline 7... ASSIGN & NAME=BIAS C.VALUE="V(Coll.) \(=2.0 \mathrm{v}, \mathrm{V}(\) Base \()=0.85 \mathrm{v}\) " \\
\hline 8... PLOT. 2D & SCALE TITLE="Example 8BP - Potential" \\
\hline 9... CONTOUR & POTEN FILL LINE=1 \\
\hline 10... PLOT.2D & BOUND SCALE JUNC L.JUNC=1 L.ELEC=-1 ^CLEAR \\
\hline 11... LABEL & LABEL=@BIAS \(\mathrm{Y}=1.9\) \\
\hline 12... PLOT. 2D & SCALE FILL TITLE="Example 8BP - Electron Temperature" \\
\hline 13... CONTOUR & ELE.TEMP FILL MIN=400 DEL=150 \\
\hline 14... PLOT.2D & BOUND SCALE JUNC L.JUNC=1 L.ELEC=-1 ^CLEAR \\
\hline 15... LABEL & LABEL=@BIAS \(\mathrm{Y}=1.9\) \\
\hline \[
\begin{gathered}
16 \ldots \\
\ldots \\
\ldots
\end{gathered}
\] & 1D plots using the energy balance solution for \(V(\) Base \()=0.85 v\) \\
\hline
\end{tabular}
```

Figure 9-14 First part of the simulation input file mdex8bp, used to generate plots

```
20... COMMENT Plot the electron temperature and the "static
 ... + temperature." The static temperature can be approximated
 ... + using the electric field (E) as follows:
 ..+ 2*vsat*tauw*T0 2*1.035e7*2e-13*300
 ... + T = --------------- E + T0 = ------------------------ E + 300
 ...+ 3*(k*T0/q)
 ...+
21... ASSIGN NAME=TMIN N.VALUE=0
22... ASSIGN NAME=TMAX N.VALUE=800
23... ASSIGN NAME=EMIN N.VALUE=((@TMIN-300)*62.4)
24... ASSIGN NAME=EMAX N.VALUE=((@TMAX-300)*62.4)
25... PLOT.1D ELE.TEMP TITLE="Electron and Static Temperature, X="@XP
 ... + X.START=@XP X.END=@XP Y.START=0 Y.END=2
 ... + BOT=@TMIN TOP=@TMAX COLOR=2 SYMB=2
26... PLOT.1D E.FIELD Y.COMP NEGATIVE ^AXES ^CLEAR
 ... + X.START=@XP X.END=@XP Y.START=0 Y.END=2
 ... + BOT=@EMIN TOP=@EMAX COLOR=3 SYMB=3 LINE=2
27... LABEL LABEL=@BIAS
28... LABEL LABEL="Electron Temperature" START.L LX.FIN=1 X=1.15
 ... + SYMB=2 COLOR=2
29... LABEL LABEL="Static Temperature" START.L LX.FIN=1
```

Figure 9-15 Second part of simulation input file mdex8bp

```
32... COMMENT I-V plots for drift-diffusion and energy balance
33... EXTRACT NAME=Beta EXPRESS=@I(Collector)/@I(Base)
34... PLOT.1D
 ... +
 ... +
35... PLOT.1D
 ... +
36... PLOT.1D
... +
37... PLOT.1D
 ... +
38... LABEL
39... LABEL LABEL="I(Coll.) Energy Balance" START.L LX.FIN=0.32
 ... +
40... LABEL LABEL="I(Coll.) Drift-Diffusion" START.L LX.FIN=0. 32
41... + LABEL
41... + LABEL
42... + LABEL
... +
 ... +
43... COMMENT Beta plots for drif-diffusion and energy balance
44... PLOT.1D IN.FILE=MDE8BIE X.AXIS=V(Base) Y.AXIS=Beta
 ... +
 ... +
45... PLOT.1D IN.FILE=MDE8BID X.AXIS=V(Base) Y.AXIS=Beta UNCHANGE
IN.FILE=MDE8BIE X.AXIS=V(Base) Y.AXIS=I(Collector)
SYMB=2 COLOR=2 BOT=1E-14 TOP=1E-3
TITLE="Example 8BP - Gummel Plot"
IN.FILE=MDE8BID X.AXIS=V(Base)
SYMB=3 COLOR=3 LINE=2 UNCHANGE
IN.FILE=MDE8BIE X.AXIS=V(Base) Y
SYMB=4 COLOR=4 UNCHANGE
IN.FILE=MDE8BID
SYMB=5 COLOR=5 LINE=2 UNCHANG
LABEL="V(Coll.)=2.0v" X=0.36
SYMB=2 COLOR=2 X=0.35 Y=5E-5
SYMB=3 COLOR=3 LINE=2
LABEL="I(Base) Energy Balance" START.L LX.FIN=0.32
SYMB=4 COLOR=4
LABEL="I(Base) Drift-Diffusion" START.L LX.FIN=0.32
SYMB=5 COLOR=5 LINE=2
44... PLOT.1D IN.FILE=MDE8BIE X.AXIS=V(Base) Y.AXIS=Beta
 BOT=0 TOP=110 COLOR=2 SYMB=2
TITLE="Example 8BP - I(Coll.)/I(Base)"
LOG
.AXIS=I(Collector) LOG
Beta plots for drif-diffusion and energy balance
```

Figure 9-16 Third part of the simulation input file mdex8bp

Example 8BP - Potential


Figure 9-17 Contour lines of the electric potential generated by lines 9 through 11 in file mdex8bp, Figure 9-14

Example 8BP - Electron Temperature


Figure 9-18 Contour lines of the electron temperature generated lines 12 through 15 in file mdex8bp, Figure 9-14


Figure 9-19 Cross-sectional plot of the electric potential generated by lines 18 and 19 in file mdex8bp, Figure 9-15


Figure 9-20 Cross-sectional plot of the electric potential generated by lines 25 through 29 in file mdex8bp, Figure 9-15


Figure 9-21 Cross-sectional plot of the electron velocity generated by lines 30 and 31 in file mdex8bp, Figure 9-15


Figure 9-22 Gummel plots generated by lines 34 through 42 in file mdex8bp, Figure 9-16


Figure 9-23 Static current gain generated by lines 44 through 48 in file mdex8bp, Figure 9-16

## Interface Examples

## Introduction

This chapter contains examples that illustrate how Medici interfaces to both process simulation and parameter extraction programs.

## Interfaces to Process Simulators

The output from a process simulation program can consist of the following:

- Profile information, which describes the impurity distribution within a device structure.
- Topography information, which describes the shape of the various material regions which make up a device structure.

Both kinds of information can be passed to Medici, either together or separately, allowing the electrical characteristics of very complex structures to be analyzed easily.

This section presents examples that illustrate the interfaces between Medici and the following:

- TMA SUPREM-3—Synopsys TCAD's one-dimensional process simulation program
- TSUPREM-4—Synopsys TCAD's two-dimensional process simulation program
- Taurus-Lithography-Synopsys TCAD's two-dimensional process simulation program for deposition, etching, and photolithography


## Interfaces to Parameter Extractors

After simulating the electrical characteristics of a device structure with Medici, it is often desired to extract circuit model parameters from the various simulated I-V characteristics. Medici interfaces directly to a number of parameter extraction programs, which can be used for this purpose.

This section presents examples that illustrate the interfaces between Medici and the following:

Aurora—Synopsys TCAD's parameter extraction program
IC-CAP—A parameter extraction program available from Hewlett-Packard

## Interface to TMA SUPREM-3

The interface between Medici and TMA SUPREM-3 is illustrated by first creating the impurity profiles for a n-channel MOSFET structure with TMA SUPREM-3 and then passing these profiles to Medici to create the full device structure. Medici is used to simulate the gate characteristics for the resulting structure.

## TMA SUPREM-3 Simulation

The TMA SUPREM-3 simulation of channel and source/drain profiles for a nchannel MOSFET is accomplished by the input file $s 3$ ex $9 a$. The output associated with the execution of TMA SUPREM-3 for the input s3ex9a is shown in Figures 10-1 through 10-6.


Figure 10-1 First part of the simulation input file s3ex9a
Mask Layout The input file s3ex9a shown in Figures 10-1 through 10-3 uses the masking capability that is available in TMA SUPREM-3 in order to simulate both the channel profile and the source/drain profile from a single input file. The mask layout that is used in this simulation is set up at lines 4 through 8 and is shown in Figure 10-4, p.10-5.

```
30... COMMENT Grow the pad oxide.
31... DIFFUSION TEMPERATURE=1050 THICKNESS=.05 DRYO2
32... COMMENT Deposit a nitride masking layer.
33... DEPOSIT NITRIDE THICKNESS=.2 DX=.02 SPACES=10
34... COMMENT Pattern the nitride.
35... MASK APPLY NAME=NITRIDE
36... ETCH NITRIDE
37... MASK REMOVE
38... COMMENT Grow the field oxide under high pressure.
39... DIFFUSION TEMPERATURE=1000 TIME=30 STEAM PRESSURE=5 PRINT
40... COMMENT Etch the oxide and nitride layers.
41... ETCH OXIDE thick=.04
42... ETCH NITRIDE
43... MASK APPLY NAME=THINOX
44..ETCH OXIDE THICK=.05
45... MASK REMOVE
46... COMMENT Implant boron to shift the threshold voltage.
47... IMPLANT BORON DOSE=4E12 ENERGY=50
48... COMMENT Oxidize the gate in a dilute ambient with HCl.
49... ASSIGN NAME=N2 N.VALUE=23.6
50... DIFFUSION TEMPERATURE=1000 TIME=40 HCL%=5 F.O2=100-@N2 F.N2=@N2
 ... + PRINT
51... COMMENT Deposit and dope the polycrystalline silicon gate.
52... DEPOSIT POLYSILICON THICKNESS=0.5 TEMPERATURE=620
53... DIFFUSION TEMPERATURE=950 TIME=60 SS.PHOSPHORUS PRINT
54... COMMENT Etch the poly and oxide over the source/drain.
55... MASK APPLY NAME=POLY
56... ETCH POLYSILICON
57...ETCH OXIDE
58... MASK REMOVE
59... COMMENT Implant the arsenic source/drain regions.
60... MASK APPLY NAME=NSD
61... IMPLANT ARSENIC DOSE=5E15 ENERGY=50 GAUSSIAN
```

Figure 10-2 Second part of the simulation input file s3ex9a
Processing The processing steps used to create the desired profiles are located within the Steps input statement loop between lines 25 and 83. The assigned names $X L O C$ and ZLOC are used to specify the point within the mask layout where the processing is performed.

- For the first pass through the loop, processing is performed in the center of the channel by specifying $X L O C=0$ and $Z L O C=0$.
- For the second pass through the loop, processing is performed in the source/ drain region by specifying $X L O C=2$ and $Z L O C=0$.

Files for Medici
After the required processing is complete, the resulting profiles are saved in files for Medici on the SAVE statement at line 82. The parameter DEVICE specifies that the profiles are used in a device simulation program. The channel profile is saved in a file with the identifier $S 3 E X 9 A 0$. The source/drain profile is saved in a file with the identifier $S 3 E X 9 A 2$.

```
70... COMMENT Plot the resulting chemical impurity distributions.
71... ASSIGN NAME=TSTRING C1="NMOS Channel" C2="NMOS Source/Drain"
72... PLOT ACTIVE NET RIGHT=1.5
 ... + TITLE="Example 9A - "@TSTRING" x="@XLOC", z="@ZLOC
73... PLOT ACTIVE BORON ADD COLOR=2 LINE=2
74... PLOT ACTIVE PHOSPHOR ADD COLOR=3 LINE=3
75... PLOT ACTIVE ARSENIC ADD COLOR=4 LINE=4
76... PLOT ACTIVE NET ADD COLOR=1 LINE=1
77... LABEL LABEL="Active Net" START.LE LX.F=.9 X=1.1 Y=1e20
78... LABEL LABEL="Boron" START.LE LX.F=.9 COLOR=2 LINE=2
79... LABEL LABEL="Phosphorus" START.LE LX.F=.9 COLOR=3 LINE=3
80... LABEL LABEL="Arsenic" START.LE LX.F=.9 COLOR=4 LINE=4
81... COMMENT REG_0 - CHANNEL, REG_2 - SOURCE/DRAIN
```

Figure 10-3 Third part of the simulation input file s3ex9a


Figure 10-4 Mask layout used in file s3ex9a, Figures 10-1 through 10-3


Figure 10-5 Channel profile from file s3ex9a, Figures 10-1 through 10-3


Figure 10-6 Source/drain profile from file s3ex9a, Figures 10-1 through 10-3

## Medici Simulation of Gate Characteristics

So far, TMA SUPREM-3 has been used to create one-dimensional profiles for the channel and source/drain regions of an n-channel MOSFET. Now these profiles are used to describe the two-dimensional impurity distribution in a Medici device for the simulation of the device's gate characteristics.

The input file mdex9a is used to create the device structure for a 1.4 micron channel length MOSFET that uses the profiles generated by TMA SUPREM-3.

```
1... TITLE Example 9A - SUPREM-3/MEDICI Interface
2... COMMENT MEDICI Input File
3... COMMENT Specify a rectangular mesh. Parameterize file with
... +
channel length: LENGTH.
4... ASSIGN NAME=LENGTH N.VALUE=1.4
5.. MESH SMOOTH=1
6... X.MESH WIDTH=0.8 H2=.05 RATIO=1.25
7... X.MESH WIDTH=@LENGTH/2 H1=.05 RATIO=1.25
8... X.MESH WIDTH=@LENGTH/2 H2=.05 RATIO=1.25
9... X.MESH WIDTH=0.8 H1=.05 RATIO=1.25
```

Figure 10-7 First part of the simulation input file mdex9a
Figures 10-7 through 10-13 contain the output associated with the execution of Medici for the input file mdex9a.

## Device Specification

In this example the grid, electrodes, and regions are explicitly specified, as they were for the structure created in Figure 4-3, p.4-6. The difference is that in this example, the impurity profiles generated by the TMA SUPREM-3 program are used.

Using
TMA SUPREM-3 Profiles

To read a profile from TMA SUPREM-3 it is only necessary to specify the 1D. PROC parameter on the PROFILE statement, and to use the IN. FILE parameter to specify the file containing the profile. The doping profiles are defined in this example as follows:

- The one-dimensional profiles created by TMA SUPREM-3 are oriented along the vertical axis in Medici.
By default, the origin for the impurity profile is aligned with the vertical origin in Medici.
- The horizontal extent of the profile is determined by specifying the parameters X.PEAK (synonym of X.MIN) and WIDTH.
- The impurity profile is assumed to be constant in the horizontal direction in the region between the locations X. PEAK (synonym of X.MIN) and X.PEAK+WIDTH.
- Outside of this region, the profile falls off as a Gaussian if $\mathbf{X}$. CHAR is specified, as the difference of two complimentary error functions if $\mathbf{X}$. ERFC is specified, or in a manner determined by rotating the vertical profile if XY . RATIO is specified.

```
13... COMMENT Eliminate some unnecessary nodes
14...ELIMIN COLUMNS Y.MIN=1.1
15... COMMENT Specify oxide and silicon regions
16... REGION NAME=Silicon SILICON
17... REGION NAME=Oxide OXIDE Y.MAX=0
18... COMMENT Electrodes:
19... ELECTR NAME=Gate X.MIN=0.65 X.MAX=0.95+@LENGTH TOP
20... ELECTR NAME=Substrate BOTTOM
21... ELECTR NAME=Source X.MAX=0.5 Y.MAX=0
22... ELECTR NAME=Drain X.MIN=1.1+@LENGTH Y.MAX=0
23... COMMENT Specify impurity profiles and fixed charge
24... PROFILE P-TYPE 1D.PROC IN.FILE=S3EX9A0
25... PROFILE N-TYPE 1D.PROC IN.FILE=S3EX9A2 DEPTH=0.4
 ... +
X.MIN=0.0 WIDTH=0.6 XY.RATIO=0.75
26... PROFILE N-TYPE 1D.PROC IN.FILE=S3EX9A2 DEPTH=0.4
 ... +
 X.MIN=1.0+@LENGTH WIDTH=0.6 XY.RATIO=0.75
27... INTERFAC QF=1E10
28... COMMENT Plots of structure and impurity profiles
29... PLOT.2D GRID FILL SCALE TITLE="Example 9A - Grid Structure"
30... PLOT.1D DOPING X.START=0 X.END=0 Y.START=0 Y.END=2.5
 ... + Y.LOG POINTS BOT=1E14 TOP=1E21 COLOR=2
 ... + TITLE="Example 9A - Source Impurity Profile"
31... PLOT.1D DOPING X.START=0.8+@LENGTH/2 X.END=0.8+@LENGTH/2
 ... + Y.START=0 Y.END=2.5 Y.LOG POINTS BOT=1E14 TOP=1E18
 ... +
2... PLOT.2D
 ... +
33... CONTOUR
34... CONTOUR DOPING LOG MIN=-16 MAX=-15 DEL=.5 COLOR=1 LINE=2
35... COMMENT Specify contact parameters and physical models
36... CONTACT NAME=Gate N.POLY
37... MODELS CONMOB PRPMOB FLDMOB CONSRH AUGER BGN
38... COMMENT Specify a 1-carrier solution for electrons
39... SYMB CARRIERS=1 ELECTRONS NEWTON
```

Figure 10-8 Second part of the simulation input file mdex9a

- The first Profile statement at line 24 in the input file mdex9a specifies that the channel profile stored in the file S3EX9A0 is to be read in.
- Because neither X.PEAK and WIDTH is specified, the profile is assumed to span the entire device width.
- The Interface statement at line 27 sets the fixed charge at the silicon dioxide interface equal to $1 \mathrm{E} 10 \mathrm{~cm}^{-2}$.
- The source/drain profile stored in the file S3EX9A2 is used to define the source and drain regions of the MOSFET on the PROFILE statements at lines 25 and 26 , respectively.

Device Plots Figures 10-9 through 10-12 show the simulation mesh and impurity profiles for the final structure.

Example 9A - Grid Structure


Figure 10-9 Grid Structure from plot.2d at line 29 in file mdex9a, Figures 10-7 and 10-8


Figure 10-10 Source impurity profile from PLot.1d at line 30 in file mdex9a, in Figures $10-7$ and 10-8

Gate The remainder of the input file is used to simulate the gate characteristics of the

## Characteristics

 Simulationdevice. The I-V results are stored in the log file MDEX9AI and a plot of the results is shown in Figure 10-13, p.10-11.


Figure 10-11 Gate impurity profile from pLot. 1D at line 31 in input file mdex9a, Figures 10-7 and 10-8


Figure 10-12 Impurity profile from PLOT . 2D and CONTOUR at lines 32 through 34 in file mdex9a, Figures 10-7 and 10-8


Figure 10-13 Gate characteristics from PLOT. 1D and LABEL at lines 44 through 45 in file mdex9a, Figures 10-7 and 10-8

## Interface to TSUPREM-4

The interface between Medici and TSUPREM-4 is illustrated by first performing the processing associated with creating an n -channel MOSFET in TSUPREM-4. The resulting two-dimensional structure (including the mesh, boundaries, and impurity profiles) are then passed to Medici. In Medici, a simulation of the drain characteristics for the device are performed.

## TSUPREM-4 Simulation

The input file $s 4 e x 9 b$ is used to simulate the processing of a two-dimensional cross-section of an n-channel MOSFET using TSUPREM-4. The output associated with the execution of TSUPREM-4 for the input file $s 4 e x 9 b$ is shown in Figures 10-14 and 10-17.

The LINE statements at the beginning of the input file specify the initial mesh for the left-hand side of the MOSFET. Since the final MOSFET structure in this example is symmetric about a vertical axis passing through the center of the channel, it is only necessary to simulate half of the structure. This results in a significant savings in CPU time.

## Medici Considerations

In this example, the entire structure created as a result of the TSUPREM-4 simulation is passed to Medici. This not only includes the impurity profiles, but also the structure boundary and grid. Because the grid created by TSUPREM-4 is also used in Medici, it is important that some care is taken to make sure that the grid is adequate for device simulation.


## Note:

The most important consideration in this regard is to make sure that the vertical grid spacing in the channel is adequate for device simulation. In most cases, a vertical spacing of approximately $100 \AA$ is sufficient. Figure 10-16, p.10-16 shows the initial TSUPREM-4 mesh.

Processing Steps

After creating the initial mesh structure, the remainder of the file goes through the processing steps necessary to create the MOSFET. Metallization is the final step for this simulation, before saving the structure for Medici. This step is intended to make the source/drain contact that is used by Medici.

Electrodes When the final structure is passed to Medici, all aluminum regions are automatically converted to electrodes. In addition, any aluminum node, within the aluminum region, that does not contact another nonelectrode material region is eliminated from the structure. This helps to reduce the total node count while still providing the electrode boundaries for Medici.

## Note:

The source and drain electrode contacts could also have been made in Medici itself. After passing the TSUPREM-4 structure into Medici, specify ELECTROD statements that place the electrodes at the desired locations.

Completing the Device Structure

The TSUPREM-4 simulation is done on half of the device while the Medici simulation needs the entire device. Because of this the final step in this example is to create the complete device structure by using the REFLECT parameter on the STRUCTUR statement. The MEDICI parameter on the second STRUCTUR statement causes TSUPREM-4 to save the final structure in a form that Medici can read.


Figure 10-14 First part of the TSUPREM-4 input file s4ex9b

COMMENT	Gate oxidation		
DIFFUSE	TEMP=900 TIME=35 DRYO2		
DEPOSIT	POLYSILICON THICKNESS=0.3 DIVIS	IONS $=4$	
COMMENT	Poly and oxide etch		
ETCH	POLY LEFT P1.X=0.8 P1.Y=-0.5	P2. $\mathrm{X}=0.8$	P2.Y=0.5
ETCH	OXIDE LEFT P1.X=0.8 P1.Y=-0.5	P2. $\mathrm{X}=0.8$	P2.Y=0.5
DEPOSIT	OXIDE THICKNESS=0.02		
COMMENT	LDD implant		
IMPLANT	PHOS ENERGY=50 DOSE=5E13		
COMMENT	LTO		
DEPOSIT	OXIDE THICK=0.2 DIVISIONS=10		
COMMENT	Spacer etch		
ETCH	OXIDE DRY THICK=0.22		
COMMENT	S/D implant		
IMPLANT	ARSENIC ENERGY=100 DOSE=2E15		
COMMENT	Oxide etch		
ETCH	OXIDE LEFT P1.X=0.5		
COMMENT	S/D reoxidation		
DIFFUSE	TEMP $=950$ TIME=30 DRYO2 PRESS=0	. 02	
COMMENT	BPSG		
DEPOSIT	OXIDE THICK=0.3		
ETCH	OXIDE LEFT P1.X=0.3 P1.Y=-2	2. Y=2	
SELECT	Z=LOG10 (DOPING) TITLE="TSUPREM-4: S/D Doping Profile"		
PLOT.1D	X.VALUE=0 LINE.TYP=5 BOUNDARY	Y.MIN=14	Y. MAX=21

Figure 10-15 Second part of the TSUPREM-4 input file s4ex9b


Figure 10-16 TSUPREM-4 initial mesh in file s4ex9b, Figures 10-14 and 10-15


Figure 10-17 TSUPREM-4 source/drain profile in file s4ex9b, Figures 10-14 and 10-15

## Medici Simulation

There are a number of ways the results of a TSUPREM-4 simulation is used in Medici.

- Create the grid entirely in Medici using the usual meshing statements and only read the profile information from the TSUPREM-4 results using the PROFILE statement.
Advantages-There is full control over the grid used in Medici, allowing an optimal grid for device simulation to be created.
Disadvantage-It is difficult to reproduce complex topographies.
- Create an initial rectangular mesh in Medici and then use the BOUNDARY statement to read the topography from TSUPREM-4. Medici then modifies the initial mesh to assure that the topography is well represented by the mesh. The profile information from TSUPREM-4 can then be read in using the PROFILE statement.
This method has the advantage that you have some control over the grid used in Medici, but also assures that the structure topography is captured.
- Use the complete structure created by TSUPREM-4, including the grid, boundaries, and profile information, by reading the TSUPREM-4 results on the MESH statement in Medici.
This is the simplest method available and is recommended in most cases as long as the TSUPREM-4 mesh is adequate for device simulation.

This example uses the last method described above.

Gate Characteristics Simulation

Structure Definition with TSUPREM-4

The input file mdex $9 b$ is used to read the results of the TSUPREM-4 simulation for an n-channel MOSFET and then performs a simulation of the drain characteristics for the device. Figures 10-18 through 10-24 contain the output associated with the execution of Medici for the input file mdex9b.

The MESH statement reads the structure created by TSUPREM-4.
The following parameters are used in the simulation:

- The parameter TSUPREM4 indicates that the structure file specified with the IN. FILE parameter was created by TSUPREM-4.
- The rename statement is used to provide meaningful Medici names read in from TSUPREM-4.
- The Y.MAX parameter indicates that only the portion of the structure with $y$-coordinates less than 3 microns is read into Medici.
- The ELEC. вот parameter indicates that an electrode should be placed along the bottom of the structure.
This is the substrate contact for the device.
- The parameter POLY . ELEC indicates that all polysilicon regions in the TSUPREM-4 structure should be converted to electrodes in Medici.

This causes the polysilicon gate material in TSUPREM-4 to be treated as an ideal conductor in Medici. If ${ }^{\wedge}$ POLY . ELEC is specified, polysilicon is treated as a semiconductor material.

- The OUT . FILE parameter on the SAVE statement at line 10 is used to specify the file where the resulting Medici structure is stored.

Examining the Device Structure

Once the structure is read in, examine the portion of the output listing generated by the MESH statement. This is shown in Figure 10-19, p.10-20. The output indicates the different material types for each region, as well as the minimum and maximum coordinates for each region and electrode.

This makes it possible to identify the region number corresponding to each material and also the electrode number corresponding to the following:

- Source
- Drain
- Gate
- Substrate


## Note:

Region 3 has a material type of ELECTROD. This represents the TSUPREM-4 polysilicon region that was converted to an electrode as a result of the POLY . ELEC parameter.

## Device Plots

Figures 10-20 through 10-23 show the simulation mesh and impurity profiles for the final Medici structure.

[^0]```
1... TITLE Example 9B - TSUPREM-4/MEDICI Interface
2... COMMENT MEDICI Input File
3... COMMENT Simulation of NMOS device output characteristics
4... COMMENT Read in simulation mesh
5...MESH IN.FILE=S4EX9BS TSUPREM4 ELEC.BOT POLY.ELEC Y.MAX=3
6... COMMENT Rename some electrodes from TSUPREM-4 to standard names.
7... RENAME ELECTR OLDNAME=1 NEWNAME=Source
8... RENAME ELECTR OLDNAME=1 NEWNAME=Source
9... COMMENT Save the mesh with the new electrode names
10... SAVE MESH OUT.FILE=MDEX9BM
11... CONTACT NUMBER=Gate N.POLY
12... MODELS CONMOB PRPMOB FLDMOB CONSRH AUGER BGN
13... PLOT.2D GRID SCALE FILL TITLE="Structure from TSUPREM-4"
14... PLOT.1D DOPING LOG X.START=0 X.END=0 Y.START=0 Y.END=2
    ... +
15... PLOT.1D
    ... +
16... PLOT.2D
17... CONTOUR
18... CONTOUR DOPING LOG LOG MIN=14 
19... COMMENT Simulate a drain curve with Vg=2v
20... SYMB CARR=0
21... METHOD ICCG DAMPED
22... SOLVE V (Gate)=2
23... SYMB CARR=1 NEWTON ELECTRON
24... LOG OUT.FILE=MDEX9BI
```

Figure 10-18 Output of the simulation input file mdex9b

| Read TSUPREM-4 file from S4EX9BS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ```Mesh statistics (rectangular) : Total grid points = 1549 Total no. of triangles = 2966 Obtuse triangles = 149 (5.0%)``` | | | | | |
| | | | | | |
| | | | | | |
| Region Name | Material Type | $\begin{gathered} \text { X-min } \\ \text { (microns) } \end{gathered}$ | $\begin{gathered} \text { X-max } \\ \text { (microns) } \end{gathered}$ | $\begin{gathered} \text { Y-min } \\ \text { (microns) } \end{gathered}$ | $\begin{gathered} \text { Y-max } \\ \text { (microns) } \end{gathered}$ |
| 1 | Silicon | 0.0000 | 3.6000 | 0.0215 | 3.0000 |
| 2 | Oxide | 0.3000 | 3.3000 | -0.5942 | 0.0223 |
| 3 | Electrod | 0.8000 | 2.8000 | -0.2922 | 0.0078 |
| Electrode
 Name | Number of Nodes | $\begin{gathered} \text { X-min } \\ \text { (microns) } \end{gathered}$ | $\begin{gathered} \mathrm{X}-\mathrm{max} \\ \text { (microns) } \end{gathered}$ | $\begin{gathered} \text { Y-min } \\ \text { (microns) } \end{gathered}$ | $\begin{gathered} \text { Y-max } \\ \text { (microns) } \end{gathered}$ |
| 1 | 14 | 0.0000 | 0.5818 | -0.5447 | 0.0223 |
| 2 | 14 | 3.0182 | 3.6000 | -0.5447 | 0.0223 |
| Poly | 149 | 0.8000 | 2.8000 | -0.2922 | 0.0078 |
| Sub | 23 | 0.0000 | 3.6000 | 3.0000 | 3.0000 |

Figure 10-19 Output from Mesh at line 5 in file $m d e x 9 b$ shown in Figure 10-18, p. 10-19

Figure 10-20 TSUPREM-4 structure from PLOT. 2D at line 13 in file mdex9b, Figure 10-18, p.10-19

Figure 10-21 Source/Drain profile from РLOT.1d statement at line14 in file mdex9b, Figure 10-18, p.10-19

Channel Profile

Figure 10-22 Channel profile from PLOT. 1D at line15 in file mdex9b, Figure 10-18, p.10-19

Impurity Contours

Figure 10-23 Impurity contours from PLot.1D and contour at lines 16 through 18 in file mdex9b, Figure 10-18, p.10-19

Ids vs. Vds

Figure 10-24 Ics vs. Vds from plot . 1D and Label at lines 28 and 29 in file mdex9b, Figure 10-18, p.10-19

Interface to Taurus-Lithography

The interface between Medici and Taurus-Lithography is illustrated by first creating the topography for an interconnect structure using Taurus-Lithography and then passing the topography information to Medici. In Medici, the potential and electric field distributions of the structure are analyzed.

Taurus-Lithography Simulation

The Taurus-Lithography simulation of a two-dimensional cross-section of an interconnect structure is accomplished by the input file deex9c. The output associated with the execution of Taurus-Lithography for the input file deex9c is shown in Figures 10-25 and 10-26.

The structure created by the input file deex9c and shown in Figure 10-25, p.10-24 consists of a silicon substrate on top of which three poly lines are patterned. The oxide is assumed to be deposited with the thermal decomposition of silane. This deposition is simulated using the hemispherical deposition machine. A metal crossing line is then created by depositing aluminum. The resulting structure is shown in Figure 10-26, p.10-24.

Files for Medici
A SAVE statement is used to save the topography information for Medici. The SUPRA parameter specifies that the output file is saved in a format that can be read by TMA SUPRA, which is also the same format that can be read by Medici.

| 1... TITLE
 2... COMMENT | Example 9C - Taurus-Lithography/MEDICI Interface Taurus-Lithography Input File | | | |
| :---: | :---: | :---: | :---: | :---: |
| 3... INITIAL | WIDTH=4.5 | | | |
| 4... DEPOSIT | MAT=SILICON TH | HICK=1 | | |
| 5... DEPOSIT | MAT=POLY TH | HICK=0.5 | | |
| 6... ETCH | MAT $=$ POLY \quad COO | OORR $=(0.5$ | $01.5,0)$ | |
| 7... ETCH | MAT=POLY CO | OORD $=(2.75$ | ,1.5 3,1 | $14.25,1.5)$ |
| 8... SAVE | STRUCTURE FII | LE=TEMP | | |
| 9... TITLE | Taurus-Lithogr | raphy - Si | lane Proce | |
| 10... LOAD | STRUCTURE FILE | $\mathrm{E}=$ TEMP | | |
| 11... DEPOSIT | MAT $=$ OXIDE M | MACH=HEMI | RATE $=0.5$ | TIME=1 |
| 12... DEPOSIT | MAT = ALUMINU M | $\mathrm{MACH}=\mathrm{HEMI}$ | RATE $=0.5$ | TIME=1 |
| 13... PLOT | SCALE | | | |
| 14... SHADE | ALL | | | |
| 15... LABEL | LABEL=SILICON | V=1.8 | $Y=.75$ | |
| 16... LABEL | LABEL=POLY | $\mathrm{X}=1.8$ | $\mathrm{Y}=1.2$ | |

Figure 10-25 Taurus-Lithography output of file deex9c

Figure 10-26 Taurus-Lithography plot created by file deex9c, Figure 10-25, p.10-24

Medici Simulation of Electric Field Distribution

The input file $m d e x 9 c$ is used to read the interconnect structure created by Taurus-Lithography into Medici, and a solution is obtained with -10 V applied to the aluminum line. The resulting potential and electric field distributions in the structure are plotted. The output associated with the execution of Medici for the input file mdex9c is shown in Figures 10-27 through 10-31.

An initial rectangular mesh is created using the X.MESH and Y.MESH statements.
Topology from Then the topography information created by Taurus-Lithography is read by TaurusLithography Medici using the BOUNDARY statement. The bOUNDARY statement itself should specify the file created and saved by Taurus-Lithography with the IN.FILE parameter. The parameter 2D.PROC is used to specify that the file was created using a Synopsys TCAD two-dimensional process simulation program.

Note:
When boundary information is read into Medici using the 2D . PROC parameter, it is necessary to explicitly define each region and electrode in the structure. This can be accomplished quite easily, however, by using the X and Y parameters on the REGION and ELECTROD statements to simply point to a location within the area that encloses the region or electrode to be defined.

Regrid After the structure specification is complete, two regrids based on potential are performed when -10 V is applied to the aluminum line. This causes more nodes to be added to the mesh in the high field regions in the oxide.

Plots The initial and refined simulation meshes are shown in Figures 10-28 and 10-29. A final solution is obtained and the potential and electric field distributions are plotted. The results are shown in Figures 10-30 and 10-31.

```
1... COMMENT Example 9C - Taurus-Lithography/MEDICI Interface
2... COMMENT MEDICI Input File
3... COMMENT Grid structure
4... MESH
5... X.MESH WIDTH=4.5 N.SPACES=18
6... Y.MESH DEPTH=1.7 N.SPACES=12 Y.MIN=-1.7
7... Y.MESH DEPTH=1.0 N.SPACES=7
8... Y.MESH DEPTH=0.2 N.SPACES=1
9... COMMENT Taurus-Lithography boundaries
10... BOUNDARY 2D.PROC IN.FILE=DEEX9CS
11... COMMENT Regions:
12... REGION NAME=Silicon X=1.0 Y= 0.2 SILICON
13... REGION NAME=Oxide1 X=1.0 Y=-0.3 OXIDE
14... REGION NAME=Oxide2 X=1.0 Y=-1.6 OXIDE
15... REGION NAME=Poly1 X=0.2 Y=-0.2 POLY
16... REGION NAME=Poly2 X=2.0 Y=-0.2 POLY
17... REGION NAME=Poly3 X=4.3 Y=-0.2 POLY
18... REGION NAME=Aluminum X=0.2 Y=-1.2 POLY
19... REGION NAME=Substrate X=1.0 Y= 1.1 POLY
20... COMMENT Electrodes:
21... ELECTROD NAME=Substrate X=1.0 Y=1.1 VOID
22...ELECTROD NAME=Poly1 X=0.2 Y=-0.2
23...ELECTROD NAME=Poly2 X=2.0 Y=-0.2
24... ELECTROD NAME=Poly3 X=4.3 Y=-0.2
25...ELECTROD NAME=Aluminum X=0.2 Y=-1.2
26... COMMENT Doping profiles
27... PROFILE N-TYPE N.PEAK=1.E15 UNIFORM
28... COMMENT Plots
29... PLOT.2D GRID SCALE FILL
    ... + TITLE="Example 9C - Silane Process from T-Lithography"
30... COMMENT Set V(Aluminum)=-10v, regrid on potential
31... SYMB CARR=0
32... METHOD DAMPED
33... SOLVE V (Aluminum) =-10
34... REGRID POTEN RATIO=2 SMOOTH=1
35... SYMB CARR=0
36... SOLVE
37... REGRID POTEN RATIO=2 SMOOTH=1
38... SYMB CARR=0
39... SOLVE
40... PLOT.2D GRID SCALE FILL
    ... + TITLE="Example 9C - Mesh After Potential Regrids"
41... PLOT.2D BOUND SCALE FILL TITLE="Example 9C - Potential"
    ... + L.ELEC=-1
42... CONTOUR POTEN COLOR=2
43... LABEL LABEL="V (Aluminum)=-10v" X=1.7 Y=-1.2 COLOR=0
```

Figure 10-27 Simulation input file mdex9c

Figure 10-28 Mesh from Taurus-Lithography-2 from PLOT . 2D at line 29 in file mdex9c, Figure 10-27, p.10-26

Example 9C - Mesh After Potential Regrids

Figure 10-29 Mesh after potential regrids from PLOT. 2D at line 40 in file mdex9c, Figure 10-27, p.10-26

Figure 10-30 Potential contour from PLOT. 2D, CONTOUR, and LABEL at lines 41 through 48 in file mdex9c, Figure 10-27, p.10-26

Example 9C - Electric Field

Figure 10-31 Electric field distribution from PLot . 2D, CONTOUR, and LABEL at lines 49 through 55 in file mdex9c, Figure 10-27, p.10-26

Interface to Aurora

The interface between Medici and Aurora is illustrated by first converting the Medici I-V \log file created using the input file mdex9a into a data file that is directly readable by Aurora. The Aurora program is then used to perform a simple parameter extraction of a few of the MOS/SPICE model parameters using the data file as input.

Conversion of Medici Log File to Aurora Format

In the example input file mdex9a, a Medici I-V log file, MDEX9AI, was created that contains the results of a gate characteristic simulation for an n -channel MOSFET. Although it is possible for Aurora to read this file, it would require having a detailed knowledge of the contents of MDEX9AI.

Using the LOG statement, however, it is possible to convert the Medici I-V log file into a data file that is directly readable by Aurora. The input file mdex9d, shown in Figure 10-32, p.10-29, is used for this purpose.

Note:

Various parameters that must be used to specify conversion processes are shown below.

Input and Output

Files

The AURORA parameter on the LOG statement is used to specify that the Medici I-V \log file specified with the IN.FILE parameter is to be converted into Aurora format and stored in the file specified with the OUT FIILE parameter.

Electrode
The parameters GATE, DRAIN and SUBST identify the gate, drain, and substrate electrode names, respectively. The specification of only the GATE, DRAIN and SUBST parameters also indicates that only the I-V information relating to the gate, drain and substrate should be written to the output file. For the simple extraction that is to be performed, this is all that is necessary.

Device
Parameters
The width and LENGTH parameters identify the channel width and length, respectively, for the device. The values specified here are in units of microns. The resulting Aurora data file stores these parameters in units of meters. The value specified for WIDTH multiplies all current values before the date is written to the output file.

```
1... COMMENT Example 9D - MEDICI/AURORA Interface
2... COMMENT MEDICI Input File
3... COMMENT Convert gate characteristic file obtained from Example 9A
    ... +
4... LOG IN.FILE=MDEX9AI OUT.FILE=AUEX9DI AURORA
    ... + GATE=Gate DRAIN=Drain SUBST=Substrate
```

Figure 10-32 Output of the simulation input file mdex9d

Aurora Extraction

In the previous section, Medici was used to convert an I-V log file containing the gate characteristics for $V_{b s}=0 \mathrm{~V}$ to a data file that can be read directly by Aurora.

Parameter
Extraction

In this example, the Aurora input file auex9d is used to read the data file, AUEX9DI, and a simple extraction of the MOS/SPICE model parameter LD is performed.

Figures and Plot
Figure 10-33, p.10-30 shows the parameter initialization file used for the extraction. Figure $10-34$, p.10-31 shows the Aurora output listing which contains the input statements specified in auex9d, as well as the results of the extraction. The Medici simulated data and the resulting fit to this data are shown in Figure 10-35, p.10-32.

```
S AURORA Parameter initialization for MOS/SPICE model
TYPE 1.0
LEVEL 3
VTO 0.90 -2.0 2.0
KP
GAMMA
PHI
LAMBDA
TOX 2.5E-8
NSUB 1.0E16 5.0E14 1.0E17
NSS
NFS
TPG
XJ 0.0E-6 0.0E-6 5.0E-6
LD 0.0E-6 -1.0E-6 1.0E-6
UO 400.0 300.0 900.0
UCRIT
UEXP
UTRA
VMAX 1.0E5 1.0E4 1.0E6
NEFF
DELTA 1.0 0.0 5.0
THETA 0.0 0.0 0.0
ETA 0.0 0.0 3.0
KAPPA 0.0 0.0 10.0
DW 0.0E-6 -1.0E-6 1.0E-6
R
```

Figure 10-33 Aurora parameter initialization file lev3par for the MOS/SPICE model

```
    1... TITLE NMOS Parameter Extraction Using AURORA with MEDICI Data
    2... COMMENT AURORA Input File
    3... COMMENT Select MOS model and read in data
    4... MODEL NAME=MOS/SPICE INIT=lev3par
    5... DATA FILE=AUEX9DI
    6... COMMENT Fit short-channel gate characteristics for Vb=0 to
    ... + get LD
    7... SELECT W=40E-6 L=1.4e-6
    8... SELECT Vd=0.1
    9... SELECT Vb=0.0
10... INCLUDE Id MIN=0.4E-6
    9 ~ t a r g e t ~ v a l u e s ~ w e r e ~ i n c l u d e d ~ f r o m ~ t h e ~ d a t a ~ f i l e s ~
There are currently 9 target values included for optimization.
11... FIX ALL
12... EXTRACT VTO LD
13... OPTIMIZE
*** Optimization successful:
        Smooth minimum found.
            23 function evaluations in 5 iterations.
        Condition number of solution: 1.49E+02
parameter init value final value 
    ld 0.0000E+00 1.7120E-07 > 999.00 1.42 1.14
RMS error = 4.42 %
```

Figure 10-34 Aurora output of input file auex9d and the extraction results

Figure 10-35 Aurora plot of the model fit to the simulated data

Interface to IC-CAP

The interface between Medici and Hewlett-Packard's IC-CAP program is illustrated by converting the Medici I-V log file created using the input file mdex9a into a form that is directly readable by IC-CAP.

Conversion of Medici Log File into IC-CAP Format

In the example input file mdex9a, a Medici I-V log file, MDEX9AI, was created that contains the results of a gate-characteristic simulation for an n -channel MOSFET.

In this example, the LOG statement is used to convert the Medici I-V log file into a form that is directly readable by Hewlett-Packard's IC-CAP program. The input file $m d e x 9 e$, shown in Figure 10-36, p.10-33, is used for this purpose.

Note:

Various parameters that must be used to specify conversion processes are shown below.

Input and Output

Files

The ICCAP parameter on the LOG statement is used to specify that the Medici I-V log file specified with the IN.FILE parameter is to be converted into IC-CAP format and stored in the file specified with the OUT.FILE parameter.

Electrodes The parameters GATE, SUBSTRAT, SOURCE, and DRAIN must all be specified to identify the gate, substrate, source, and drain electrode names, respectively.

Input Variables Additionally, all the input variables must be identified with the parameters INP1, INP2, INP3, and INP 4. The most rapidly varying input variable, V (Gate), which represents the gate voltage, should be specified first. In this example, all other input variables are constant, and therefore, their order is unimportant. Finally, the output variable, I (Drain), which represents the drain current, is identified with the parameter OUT1.

Output Figure 10-36, p.10-33 shows the output listing which contains the input statements specified in $m d e x 9 e$, as well as the results of the conversion.

Figure 10-36 Output from file mdex9e and the results of the conversion to an IC-CAP data file

2002.4 Programmable Device Examples

Example Specifications

The Medici Programmable Device Advanced Application Module (PD-AAM) is capable of simulating the programming characteristics of nonvolatile memory devices such as EPROMs, EEPROMs, and flash EEPROMs. This chapter presents examples of the simulation of flash EEPROM programming. The following three models are most important for these applications:

- Charge boundary conditions to describe floating electrodes
- Hot-carrier injection model to describe charge injection into floating electrodes
- Fowler-Nordheim tunneling model to describe charge removal from electrodes (erasing) in EEPROMs

The set of input files discussed in "Writing and Erasing of a Flash EEPROM Cell," p. 11-1 demonstrates the use of these models.

Writing and Erasing of a Flash EEPROM Cell

Writing and erasing are the two basic steps in the operation of a flash EEPROM cell.

Writing is accomplished by hot-carrier injection from the channel onto the floating gate. The device is biased to create a large number of high-energy (hot) electrons in the channel and a gate-oxide field attracting the carriers from the channel towards the floating gate. This requires a high drain bias and a high positive bias at the control gate.

Erasing

Erasing of the cell is accomplished through the thin tunneling oxide by creating a high enough field pushing the electrons from the floating gate into the semiconductor.

To erase the cell, a positive bias is applied to the erasing electrode (source in the example) and a high negative bias is applied to the control gate. Both writing and erasing are transient processes.

Procedures

The Programmable Device Advanced Application Module (PD-AAM) examples have the following procedures.

Device Structure

The first input file in this set is mdex10a shown in Figure 11-1. The example flash EEPROM structure and grid (Figure 11-2) are created from this file.

Gate After the creation of the structure and grid for the example device, its gate Characteristics characteristics are calculated (shown in Figure 11-3). This is compared to the gate characteristics after writing to demonstrate the shift of the threshold voltage due to charge stored on the floating gate.

Grid The grid (Figure 11-2) consists of 792 nodes and 1480 triangles. The thickness of the oxide between the channel and floating gate is 10 nm . The gate overlap is larger on the side of the erasing electrode (source) to improve the erasing speed and reduce the sensitivity of the device to processing conditions.

Writing of the EEPROM

The writing is performed by the simulation input file mdex10b shown in Figure $11-4$. The programming biases chosen for the example are 12 V at the control gate and 5.5 V at the drain.

Initial Solution
An additional initial condition for the transient writing process is a zero net charge on the floating gate. To obtain this initial solution, a zero-carrier Gummel solution is performed first with voltage boundary conditions at the floating gate. The floating gate potential is set to $1 / 3$ times the control gate potential (line 10 of the listing in Figure 11-4).

Charge Boundary and Solution

Simulation Line 21 performs the actual writing simulation. Fowler-Nordheim FN.CUR and hot carrier Gate Current GATE . CUR models as well as TSTEP and TSTOP are specified to initiate the transient writing of the EEPROM.

Plots Results are plotted in Figures 11-5 through 11-8. Figure 11-5 shows the hot electron current versus time (note the logarithmic time scale), Figures 11-6 and 11-7 show the floating gate charge and its potential versus time. The hot electron current is highest in the beginning of the simulation but begins to drop after about 1 microsecond as the negative charge injected onto the gate becomes significant and lowers the floating gate potential. This in turn leads to an increased threshold voltage (as shown in Figure 11-8) and decreasing hot carrier injection.

Erasing of the EEPROM

The erase process is performed by the simulation input file mdex10c shown in Figure 11-9. The erase biasing is -12 V at the control gate and 8 V at the source (the drain is held at 0 V). Under these bias conditions, there is sufficiently strong electric field in the oxide between the floating gate and the source for the negative charge to tunnel through the oxide.

Solution and Erase The simulation starts with the steady-state solution with erasing biases applied as specified above. This solution is used as an initial guess for the simulation using charge boundary conditions. The result of the writing simulation is used as charge for the floating gate (line 17).

The actual erase is a transient process, initiated by the SOLVE statement on line 20. As in the writing simulation Fowler-Nordheim (FN. CUR) and hot carrier gate current (GATE.CUR) models as well as TSTEP and TSTOP are specified.

Plots Results are displayed in Figures 11-10 through 11-12. Figure 11-10 shows the Fowler-Nordheim tunneling current versus time, Figure 11-11 shows the floating gate charge versus time and Figure 11-12 presents the gate characteristics of the flash EEPROM after erase.

The tunneling current is highest in the beginning of the erase but decreases as the floating gate becomes less negative, thus reducing the field in the tunneling oxide. As a result, the threshold voltage decreases.

```
    1... TITLE Synopsys MEDICI Example 10A
    2... COMMENT EEPROM Simulation Structure
    3... MESH OUT.FILE=MDE10MS
4... X.MESH WIDTH=.4 H1=.1 H2=.1
5...X.MESH WIDTH=.4 H1=.1 H2=.025
6... X.MESH WIDTH=.25 H1=.025 H2=.05
7... X.MESH WIDTH=.25 H1=.05 H2=.025
8... X.MESH WIDTH=.5 H1=.025 H2=.1
9... Y.MESH DEPTH=0.050 N.SPACE=1 Y.MIN=-0.125
10... Y.MESH DEPTH=0.040 N.SPACE=2
11... Y.MESH DEPTH=0.025 N.SPACE=2
12... Y.MESH DEPTH=0.010 N.SPACE=1
13...Y.MESH DEPTH=2.5 H1=0.01 RATIO=1.30
14... COMMENT Eliminate unnecessary nodes
15... ELIMINAT COLUMNS X.MIN=.6 X.MAX=1.5 Y.MIN=1.0
16... COMMENT Define regions
17... REGION NAME=Silicon SILICON
18... REGION NAME=Oxide OXIDE Y.MAX=0.0
19... COMMENT Electrodes:
20... ELECTROD NAME=Drain X.MIN=1.5 Y.MIN=-0.125 Y.MAX=0
21...ELECTROD NAME=Gate X.MIN=0.5 X.MAX=1.4 IY.MAX=2
22... ELECTROD NAME=Source X.MAX=0.3 Y.MIN=-0.125 Y.MAX=0
23... ELECTROD NAME=Substrate BOTTOM
24...ELECTROD NAME=Flt_Gate X.MIN=0.5 X.MAX=1.4 IY.MIN=4 IY.MAX=6
25... COMMENT Define profiles
26... PROFILE P-TYPE N.PEAK=6E16 UNIFORM OUT.FILE=MDE1ODS
27... PROFILE N-TYPE N.PEAK=2E20 Y.JUNC=0.632 X.MIN=0.0
    ... + X.MAX=0.74 X.CHAR=3.2951E-2
28... PROFILE N-TYPE N.PEAK=2E20 Y.JUNC=0.332 X.MIN=1.4
    ... + X.MAX=1.8 X.CHAR=3.2951E-2
29... COMMENT Create the floating gate
30... CONTACT NAME=Flt_Gate CHARGE N.POLY
31... COMMENT Set the workfunction of the control gate
32... CONTACT NAME=Gate WORKFUNC=4.7
33... COMMENT Specify models
34... MODELS CONMOB PRPMOB FLDMOB CONSRH AUGER BGN
35... COMMENT Plot the structure
36... PLOT.2D GRID SCALE FILL X.OFF=5
    .. + TITLE="Example 10A - EEPROM Simulation Structure"
```

Figure 11-1 Input file mdex10a creating the EEPROM device structure and an initial solution

Figure 11-2 Device structure and grid for the flash EEPROM from PLOT. 2D at line 36 in input file mdex10a, Figure 11-1

Figure 11-3 Gate characteristics before writing from PLOT.1D at line 43 of the input file mdex10a, Figure 11-1

```
1... TITLE Synopsys MEDICI Example 10B - EEPROM Simulation
2... COMMENT Load the saved structure and solution, apply bias for
    ... a write operation, and then perform the transient.
3... MESH IN.FILE=MDE10MS
4... COMMENT Programming Bias: Control Gate = 12 V, Drain = 5.5 V
5... COMMENT Specify models
6... MODELS CONMOB CONSRH AUGER BGN FLDMOB PRPMOB
7... COMMENT Use a zero-carrier gummel for the intial guess
    ... + Estimate the floating gate will bias up at Vg/3
8...SYMB CARRIERS=0
9... METHOD DAMPED
10... SOLVE V (Drain)=5.5 V (Gate)=12.0 V (Flt_Gate)=4.0
11... COMMENT Specify the floating gate as a charge boundary condition
12... CONTACT NAME=Flt_Gate CHARGE N.POLY
13... COMMENT Set the workfunction of the control gate
14... CONTACT NAME=Gate WORKFUNC=4.7
15... COMMENT Initial solution with zero charge on the floating gate
16... SYMB CARRIERS=1 NEWTON ELECTRONS
17... METHOD N.DVLIM=.26
18... SOLVE Q(Flt_Gate)=0.0
19... COMMENT Charge the floating region via transient analysis
20... LOG OUT.FILE=MD10BIT
21... SOLVE TSTEP=1E-9 TSTOP=1E-2 FN.CUR GATE.CUR
22... COMMENT Programing currents, charge, and floating gate voltage
23... PLOT.1D X.AXIS=TIME Y.AXIS=HE(Flt_Gate) IN.FILE=MD10BIT X.LOG
    ... + POINTS TITLE="Example 10B - Hot Electron Current"
24... PLOT.1D X.AXIS=TIME Y.AXIS=Q(Flt_Gate) IN.FILE=MD10BIT X.LOG
    ... + POINTS TITLE="Example 10B - Floating Gate Charge"
25... PLOT.1D X.AXIS=TIME Y.AXIS=V(Flt_Gate) IN.FILE=MD10BIT X.LOG
    ... POINTS TITLE="Example 10B - Floating Gate Voltage"
```

Figure 11-4 Input file mdex10b for the writing characteristics of the flash EEPROM

Figure 11-5 Hot electron current during writing from РLOT.1D at line 23 in input file mdex10b, Figure 11-4

Figure 11-6 Floating gate charge during writing from Рцот.1D at line 24 in input file mdex10b, Figure 11-4

Figure 11-7 Floating gate potential during writing from РLOT. 1D at line 25 in input file mdex10b, Figure 11-4

Figure 11-8 Gate characteristics of the flash EEPROM after writing from PLOT.1D at line 32 in output file mdex10b shown in Figure 11-4

```
1... TITLE Synopsys MEDICI Example 10C - EEPROM Simulation
2... COMMENT Load the saved structure and solution, apply bias for
    ... + an erase operation, and then perform the transient
3... MESH IN.FILE=MDE10MS
4... COMMENT Programming Bias: Control Gate = -12 v, Source = 8.0 V
5... COMMENT Specify models
6... MODELS CONMOB FLDMOB CONSRH AUGER BGN PRPMOB
7... COMMENT Use a zero-carrier gummel for the intial guess
    ... +
8... SYMB
9... METHOD
10... SOLVE V(Source)=8.0 V(Gate)=-12.0 V(Flt_Gate)=-4.0
11... COMMENT Use a charge boundary condition on the floating gate
12... CONTACT NAME=Flt_Gate CHARGE N.POLY
13... COMMENT Set the workfunction of the control gate
14... CONTACT NAME=Gate WORKFUNC=4.7
15... COMMENT Obtain the initial solution with charge on the
    ... + floating gate. The value for Q(Flt_Gate) is obtained
    ... + from Example 10B at t=1e-2
16... SYMB CARRIERS=1 NEWTON ELECTRONS
17... SOLVE Q(Flt_Gate)=-3.988E-15 OUT.FILE=MDE10S1
18... COMMENT Erase the floating electrode using transient analysis
19... LOG OUT.FILE=MD10CIT
20... SOLVE TSTEP=1E-6 TSTOP=1E-3 FN.CUR GATE.CUR
21... COMMENT Programing currents and floating gate charge
22... PLOT.1D X.AXIS=TIME Y.AXIS=FE(Flt_Gate) IN.FILE=MD10CIT X.LOG
    ... + POINTS TITLE="Example 10C - Fowler-Nordheim Current"
    ... + dev=XPOST plot.out=mdex10b_4.ps
23... PLOT.1D X.AXIS=TIME Y.AXIS=Q(Flt_Gate) IN.FILE=MD10CIT X.LOG
    ... + POINTS TITLE="Example 10C - Floating Gate Charge"
    ... + dev=XPOST plot.out=mdex10b_4.ps
```

Figure 11-9 Output of file mdex $10 c$ that erases the flash EEPROM

Figure 11-10 Fowler-Nordheim tunneling current during the erase from РLOT.1D at line 22 in input file mdex10c shown in Figure 11-9

Example 10C - Floating Gate Charge

Figure 11-11 Floating gate charge during the erase from Рцот.1D at line 23 in input file mdex10c, Figure 11-9

Figure 11-12 Gate characteristics after the erase from рцот.1D at line 30 in input file mdex10c, Figure 11-9

Circuit Analysis Examples

Example Specifications

This chapter details the Medici Circuit Analysis Advanced Application Module (CA-AAM). The CA-AAM is used to model a wide variety of circuits. The following analyses are presented:

- A single bipolar transistor connected to a resistive load.

This example uses a template to create the bipolar junction transistor (BJT) and illustrates the basic use of the circuit analysis module.

- A transient single event upset simulation of a diode in an SRAM circuit.
- Calculate the characteristic for a CMOS inverter constructed from Medici transistors including:
- The transient transfer curve for the inverter
- The frequency response of the circuit
- The DC transfer curve

Bipolar Transistor With Resistive Load

The use of the Circuit Analysis AAM with Medici is illustrated by calculating a single bias point for a BJT connected to a resistive load. Although this example is simple, and can be performed without the circuit analysis module, (using the RESISTAN parameter on the CONTACT statement) it serves as a good introductory problem. A schematic diagram of the circuit to be analyzed is presented in Figure 12-1.

BJT With Resistance

Figure 12-1 Bipolar transistor with resistive load

Generation of the Simulation Structure and Solutions

The input file mdexll creates the simulation structure for the BJT and circuit and simulates the steady-state characteristics. The output associated with the execution of Medici for the input file mdexll is shown in Figures 12-2 through 12-6.

Mesh File
The first step in creating the structure is the generation of a mesh file for the circuit simulator. The predefined template bipstr0 is used for this purpose. First the default values for the parameters are read in from the file bipdef0 at line 3.

Transistor Type

The transistor type is assigned as NPN at line 59 and the peak values for the base and emitter doping are reset to 10^{18} and 1.5×10^{20} respectively. The default values for the other parameters such as the emitter width, collector doping etc. are assigned in file bipdefo.

Models At line 341 the models to be used in the simulation are specified. At line 343 the mesh and models are written to the file MDE11MS. The W. MODELS parameter causes all the MODELS, MOBILITY, MATERIAL, and INTERFACE information to be included in the file. This file is used by the circuit simulator to create the device structure.

Circuit Mode

Voltage Source

Transistor
Line 358 creates the Medici transistor. Note that the letter P in the name $P B j t$ indicates a Medici device, the $B j t$ is an arbitrary choice (it could have been $P 2$, Pa, Pdog etc.) Each of the following character/number pairs assigns a circuit node to a Medici terminal. Circuit node 2 is connected to the collector, circuit node 4 to the base, etc. FILE specifies the mesh file used to create the device. In this case the file that was created at line 343 is used.

Initial Guess Line 360 specifies the initial guess for the circuit node voltages using the . NODESET statement. The initial guess need not be exact but should be within about 30 percent for best results. The SPICE syntax is used here again, i.e., node 1 is set to 5 volts, node 2 to 4 volts, etc.

Note:

These values are also used to obtain an initial guess for the internal circuit variables (potential, electrons, holes) so it is very important to specify the initial guess.

Potentials Line 363 specifies the limit on the size of the potential update both internal to the device and at the circuit nodes using the .OPTIONS statement. This parameter aids in convergence by preventing the potentials from changing too rapidly and becoming unstable (oscillating wildly). Since the initial guess is reasonably sure, DELVMAX is reduced from its default value to of 0.5 V to 0.2 V .

Solution Line 366 calculates the solution. Note that the .OP statement is the same as a .DC statement without any parameters. The bias point was found to be:

```
VC(1)=5.0 VC (2)=4.755 VC(3)=.858 VC(4)=.857
VC (5) =5.1e-3
IC (VDD) =-2.45e-4
```

Plots Line 368 places the program back into Medici mode for plotting the internal characteristics. Lines 370-372 generate plots of the electron distribution and current flow lines which are shown in Figure 12-6. The output associated with the execution of Medici for the input file mdexll is shown in Figures 12-2 through 12-6.

```
1... TITLE Example 11 - BJT with Series Resistance
2... COMMENT Get default values
3... CALL FILE=bipdef0 ^PRINT
58... COMMENT Select an NPN device
59... ASSIGN NAME=TRANTYPE C.VALUE=NPN
60... COMMENT Assign some new values for the doping profiles
61... ASSIGN NAME=EPEAK N.VALUE=1.5e20
62... ASSIGN NAME=XBPEAK N.VALUE=1e18
63... COMMENT Create the meshfile using the template "bipstr0"
64... CALL FILE=bipstr0 ^PRINT
340... COMMENT Specify some physical models
341... MODELS CONMOB CONSRH AUGER BGN
342... COMMENT Save the meshfile
343... SAVE OUT.FILE=MDE11MS MESH W.MODELS
344... COMMENT Enter CIRCUIT mode
345... START CIRCUIT
346... $ Power source
347...VDD 1 0 5
348... $ Collector resistance
349\ldots RC 1 2 1k
350... $ Base bias
351... IB 0 3 .01m
352... $ Base resistance
353... RB 3 4 100
354... $ Emitter resistance
355... RE 5 0 20
356... $
357... $ MEDICI transistor
358... PBjt 2=Collector 4=Base 5=Emitter FILE=MDE11MS
359... $ Initial guess
360\ldots.NODESET V (1)=5 V (2)=4 V (3)=.85 V (4)=.85 V (5)=.02
361... $
362\ldots.. $ Due to high confidence in the initial guess, reduce DELVMAX
363... .OPTIONS DELVMAX=0.2
364... $
```

Figure 12-2 Output of the simulation input file mdex11

Figure 12-3 Simulation mesh from CALL at line 64 in input file mdex11, Figure 12-2

BJTMSH: Doping Contours

Figure 12-4 Doping contours from CALL at line 64 in input file mdex11, Figure 12-2

BJTMSH: Vertical Doping Slices

Figure 12-5 Doping slices from CALL at line 64 in input file mdex11, Figure 12-2

Figure 12-6 Electrons and current flow from PLot . 2D and Contour at lines 370 through 372 in input file mdex11, Figure 12-2

Single Event Upset of SRAM Cell with Circuit

This example is an extension of the single event upset in Chapter 7, "Single-Event Upset of a SRAM Cell," p. 7-9; it will be helpful to read this section if you have not done so.

This example simulates the same cylindrical diode structure with a small circuit attached to model the transistors of the SRAM cell. In this way the circuit supplies the correct boundary conditions for the diode and the diode supplies the current which upsets the cell.

SEU Schematic

A schematic of the complete circuit with diode is shown in Figure 12-7. Upset of the cell is indicated if the voltages at nodes 2 and 4 (the drains of the MOSFETs) interchange values. The resistors in the circuit ($R 5$ and $R \sigma$) slow the cells response and reduce the vulnerability to upset by giving the cell more time to recover after the particle hits.

SEU in SRAM Cell

Figure 12-7 SRAM circuit with cylindrical diode

Generation of the Simulation Structure and Solutions

This simulation is divided into two input files, mdex $12 a$ and $m d e x 12 b$. File mdex $12 a$ amends mdex6 to create the cylindrical diode, and then passes the information to the simulation file. The file mdex $12 b$ performs the actual simulation.

Creating the Cylindrical Diode

This file creates the cylindrical diode and a listing is given in Figure 12-8. The file is similar to the grid generation portion of mdex6 found in Chapter 7, "SingleEvent Upset of a SRAM Cell," p. 7-9, with following difference. Instead of performing the solution the mesh is written to the file MDE12MS at line 21 for use with simulation file mdexl2b.

The W. MODELS parameter causes the model information to be written to the file as well as the grid. The plot of the device grid generated by line 18 of this file appears in Figure 12-9. The P+ region represents the drain diffusion of a Pchannel and the N -type body represents the substrate of the die.

Simulation The simulation is performed by file mdex $12 b$, which is shown in Figure 12-10.

Circuit Mode Line 3 places the simulator in circuit mode.

Lumped Circuit

 ElementsLines 7 through 14 create the lumped circuit elements. The lumped element MOSFETs which form the inverters are at lines 10 through 14.

The ordering for the nodes of a MOSFET is drain, gate, source, and substrate. Note that the NMOS and PMOS transistor model names are MNMOS and MPMOS respectively. These models refer to the .MODEL statements at lines 18 and 19 where the parameters for the transistors are specified. These parameters are identical to those used by SPICE 2G. 6 and would be extracted from measured data or Medici simulations using Aurora or some other parameter extractor. It is also possible to model M7-M10 using Medici transistors for greater accuracy.

Cylindrical Diode

Line 16 creates the Medici cylindrical diode, circuit node 2, which corresponds to the drains in the first inverter attached to the drain terminal, the P+ contact of the diode. Node 5, the power supply, is attached to the substrate terminal, the $\mathrm{N}+$ contact of the diode.

Line 21 sets the initial guess for the simulation. Chose the state for the circuit so that nodes 2 and 4 , are at zero volts and nodes 5,4 and 1 at $V_{d d}=3 \mathrm{~V}$. This places the $\mathrm{P}+$ contact of the diode at 0 volts, reverse biasing the diode as in "Single-Event Upset of a SRAM Cell," p. 7-9.

Exiting Circuit Circuit mode is exited at line 23 since this simulation requires a PHOTOGEN Mode

Solution Lines 25-29 generate the initial solution using the voltages specified on the .nODeSET statement as the initial guess. The circuit is included in this calculation. The circuit biases up at:
$\operatorname{VC}(1)=3.0 \quad \operatorname{VC}(2)=1.6 \mathrm{e}-9 \quad \operatorname{VC}(3)=1.6 \mathrm{e}-9 \quad \operatorname{VC}(4)=3.0 \mathrm{VC}(5)=3.0$
IC (VDD) $=-9.05 \mathrm{e}-12 \quad$ (AMPS)

Charge Track Line 31 specifies the charge track that pierces the junction. The track used is identical to that of Chapter 7, "Single-Event Upset of a SRAM Cell," p. 7-9. Note that the device Pcell is specified with the STRUCTUR parameter corresponding to the diode.

Logfile Line 33 opens up a LOGFILE where the terminal currents and circuit voltages are stored.

Time Step and The method statement at line 35 relaxes the time step tolerance to 2 percent.
Solve Line 36 performs the simulation. An initial time step of 0.5 picosecond is selected and the simulation runs for 0.5 nanosecond.

Plots Lines 38-45 generate the waveform plots shown in Figure 12-12. Lines 46-47 generate current and charge plots shown in Figures 12-13 and 12-14.

Observe how the circuit nodes are specified in lines 46 and 47. EXTRACT statements also use a similar syntax.

- To plot the voltage at a circuit node, specify $\mathbf{Y} . \mathbf{A X I S}=V C(\langle$ node $\rangle)$.
- To plot the current in a voltage source, specify $\mathbf{Y} . \mathbf{A X I S}=I C(\langle$ source $\rangle)$ where <source> is the name of the voltage source.
- To plot the current or the voltage at a Medici terminal, use Y.AXIS $=$ I \langle dname \rangle. \langle ter \rangle) where <dname \rangle is the name of the Medici device (Pcell in this case) and \langle ter $>$ is the name of the terminal.

| 1... TITLE
 2... COMMENT
 ... + | ```Example 12A - Create Cylindrical P+N Diode P+/EPI/N+ structure using cylindrical coordinates (based on example MDEX6)``` |
| :---: | :---: |
| $\begin{gathered} 3 \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \end{gathered}$ 4... MESH | Define a non-uniform mesh using cylindrical coordinates (the x-direction corresponds to the radial direction). Put the finest grid along the $r=0$ column and at the junction.
 CYLINDRI |
| 5... X.MESH | $\mathrm{WIDTH}=3.0 \quad \mathrm{H} 1=0.02 \quad \mathrm{H} 2=0.30$ |
| 6... Y.MESH | $\mathrm{DEPTH}=0.3 \quad \mathrm{H} 1=0.10$ |
| 7... Y.MESH | $\mathrm{DEPTH}=3.7 \mathrm{H} 1=0.10 \quad \mathrm{H} 2=0.50$ |
| 8... REGION | NAME=Silicon SILICON |
| 9... COMMENT | Electrodes: |
| 10... ELECTR | NAME=Drain TOP X.MAX=1.0 |
| 11... ELECTR | NAME=Substrate BOTTOM |
| $\begin{gathered} 12 \ldots \text { COMMENT } \\ \ldots+ \end{gathered}$ | Profiles for the Epi layer, N+ substrate, and $P+$ diffusion |
| 13... PROFILE | N-TYPE N.PEAK=1.0E17 UNIF OUT.FILE=MDE12DS |
| 14... PROFILE | N-TYPE N.PEAK=5.0E18 Y.MIN=2.0 DEPTH=2.0 Y.CHAR=0.1 |
| 15... PROFILE | P-TYPE N.PEAK=1.0E20 JUNC=0.3 |
| . . + | $\mathrm{WIDTH}=1.0 \quad \mathrm{XY} . \mathrm{RATIO}=0.75$ |
| 16... COMMENT | Grid refinement based on doping. |
| 17... REGRID | DOPING LOG RATIO=1 SMOOTH=1 Y.MAX=1.0 |
| ... + | IN.FILE=MDE12DS |

Figure 12-8 Output of simulation input file mdex12a

Example 12A - Cylindrical Dio

Figure 12-9 Cylindrical diode from РLOT. 2D at line 18 in file mdex12a, Figure 12-8

```
1... TITLE Example 12B - Single Event Upset of SRAM Cell
2... COMMENT Enter CIRCUIT mode
3... START CIRCUIT
4... $ Power source
5... VDD 5 0 3
6... $ Decoupling resistors
7... R5 1 4 15K
8... R6 2 3 15K
9... $ First inverter
10... M9 2 1 0 0 MNMOS PS=20 PD=20 AS=5 AD=5 W=1.1 L=.7
11... M7 2 1 5 5 MPMOS PS=40 PD=40 AS=8 AD=8 W=1.5 L=.7
12... $ Second inverter
13... M8 4 3 5 5 MPMOS PS=40 PD=40 AS=8 AD=8 W=1.5 L=.7
14... M10 4 3 0 0 MNMOS PS=20 PD=20 AS=5 AD=5 W=1.1 L=.7
15... $ MEDICI cylindical diode
16... Pcell 2=Drain 5=Substrate FILE=MDE12MS
17... $ MOSFET models
18... .MODEL MPMOS PMOS VTO=-.6 TOX=150 NSUB=3E16 VMAX=5E6 LEVEL=2
... + JS=1E-14 UCRIT=1E4 UEXP=.5 UO=300
19... .MODEL MNMOS NMOS VTO=.7 TOX=150 NSUB=1E16 VMAX=1E7 LEVEL=2
... + JS=1E-14 UCRIT=1E4 UEXP=.5 UO=600
20... $ Set up voltages for the initial guess
21... .NODESET V(5)=3 V(4)=3 V(1)=3
22... $ Return to MEDICI mode for simulation and plotting
23... FINISH CIRCUIT
24... COMMENT Obtain an steady state solution
    ... + for the initial conditions
25... SYMBOLIC GUMMEL CARRIERS=0
```

Figure 12-10 First part of simulation input file mdex12b

```
32... COMMENT Open a log file for the circuit voltages
    ... and terminal currents
33... LOG OUT.FILE=MDE12BI
34... COMMENT Simulate the first 500 picoseconds
    ... + of the transient response.
35... METHOD TOL.TIME=2e-2
36... SOLVE TSTEP=0.5E-12 TSTOP=5e-10
37... COMMENT Plot the circuit voltages
38... PLOT.1D X.AX=TIME Y.AX=VC(1) TOP=4 BOT=0 SYMB=1
    ... +
40\ldotsPLOT.1D X.AX=TIME Y.AX=VC(3) COLOR=3 UNCH SYMB=3
41... PLOT.1D X.AX=TIME Y.AX=VC(4) COLOR=4 UNCH SYMB=4
42... LABEL LABEL="VC(1)" COLOR=1 SYMB=1 X=100 Y=1
43... LABEL LABEL="VC(2)" COLOR=2 SYMB=2
44... LABEL LABEL="VC(3)" COLOR=3 SYMB=3
45... LABEL LABEL="VC(4)" COLOR=4 SYMB=4
46... PLOT.1D X.AX=TIME Y.AX=I(Pcell.Substrate) POINTS X.MAX=5E-10
```

Figure 12-11 Second part of the simulation input file mdex12b

Example 12B - Waveforms: SEU with Argon Io:

Figure 12-12 Waveform from рцот.1D at lines 38 through 45 in input file mdex12b, Figure 12-11

Figure 12-13 Current from pLot . 1D at line 46 in input file mdex12b, Figure 12-11

Figure 12-14 Charge from plot .1D at line 47 in input file mdex12b, Figure 12-8

Transfer Curves for CMOS Pair with Compact Load

This example calculates the DC and transient transfer curves for a CMOS pair under realistic loading conditions. The simulation involves two Medici transistors and lumped elements. The example also demonstrates how easy it is to transfer the mesh, circuit and solution between simulations using files.

The simulation has five separate files and steps.

1. File mdex1 $3 a$ creates the N -channel transistors.
2. File mdex $13 b$ creates the P-channel transistors.
3. File mdex 13 c then calculates the DC transfer curve.
4. File mdexl3d performs the transient analysis.
5. File mdex $13 e$ calculates the small signal response of the circuit over a range of frequencies.

Circuit Specifications

The circuit simulated is given in Figure 12-15. The first stage is composed of Medici transistors and the second (Load) stage of SPICE transistors. Resistors $R 9$ and R10, and capacitor C8 represent parasitic interconnect resistance and capacitance. A five-volt power supply is used and all transistors have channel lengths of 1.25 microns. The channel widths of the N -channel transistors is 1.5 microns and 3.0 microns is used for the P -channel devices.

Generation of the Simulation Structure

This section details the generation of the simulation structure.

N-Channel
Transistors

The Medici transistors are based upon those developed in Chapter 4, "Generation of the Simulation Structure," p. 4-2. Input file mdex13a generates the N-channel device, and is shown in Figures 12-16 and 12-17.

The mdex $13 a$ is similar to mdexl, with the following exceptions:

- The intermediate plotting steps have been removed.
- A SAVE statement has been added (at line 47).
- Some of the material parameters have been slightly altered.

The material parameters were altered as a test that they work and are transferred between simulations.

Note that as well as the doping and mesh, all the interface, material, models and contact information are stored in the SAVE file.

A plot of the finished structure is given in Figure 12-18.

P-Channel Transistors

The Medici transistors are based upon those developed in "Generation of the Simulation Structure," p. 4-2. Figures 12-19 and 12-20 show the input files which generates the P-channel transistor. This device is similar to mdexl with the following exceptions:

- The sign of all doping has been inverted.
- Some of the material parameters have been slightly altered.

A plot of the finished structure is shown in Figure 12-21. Using the mesh files MDE13AM and MDE13BM, generated by mdexl3a and mdexl3b, circuit simulation of the CMOS pair is now possible.

Inverter with Compact Load

Figure 12-15 CMOS pair with compact load

```
1... TITLE Example 13A - 1.5 Micron N-Channel MOSFET
2... COMMENT This device is similar to Example 1 from the MEDICI
    ... + manual. It has 480 grid points and 890 elements.
3... COMMENT Specify a rectangular mesh
4... MESH SMOOTH=1
5... X.MESH WIDTH=3.0 H1=0.125
6... Y.MESH N=1 L=-0.025
7... Y.MESH N=3 L=0.
8... Y.MESH DEPTH=1.0 H1=0.125
9... Y.MESH DEPTH=1.0 H1=0.250
10... COMMENT Eliminate some unnecessary substrate nodes
11... ELIMIN COLUMNS Y.MIN=1.1
12... COMMENT Increase source/drain oxide thickness using SPREAD
13... SPREAD LEFT WIDTH=.625 UP=1 LO=3 THICK=.1 ENC=2
14...SPREAD RIGHT WIDTH=.625 UP=1 LO=3 THICK=.1 ENC=2
15... COMMENT Use SPREAD again to prevent substrate grid distortion
16...SPREAD LEFT WIDTH=100 UP=3 LO=4 Y.LO=0.125
17... COMMENT Specify oxide and silicon regions
18... REGION NAME=Silicon SILICON
19... REGION NAME=Oxide OXIDE IY.MAX=3
20... COMMENT Electrodes:
21... ELECTR NAME=Drain X.MIN=2.5 IY.MAX=3
22... ELECTR NAME=Gate X.MIN=0.625 X.MAX=2.375 TOP
23... ELECTR NAME=Source X.MAX=0.5 IY.MAX=3
24... ELECTR NAME=Substrate BOTTOM
25... COMMENT Specify impurity profiles and fixed charge
26... PROFILE P-TYPE N.PEAK=3E15 UNIFORM OUT.FILE=MDE13DS
27... PROFILE P-TYPE N.PEAK=2E16 Y.CHAR=.25
```

Figure 12-16 First part of the simulation input file mdex13a

```
34... COMMENT Regrid on doping
35... REGRID DOPING LOG IGNORE=Oxide RATIO=2
    ... +
SMOOTH=1 IN.FILE=MDE13DS
36... COMMENT Specify contact parameters
37... CONTACT NAME=Gate N.POLY
38... COMMENT Specify physical models to use
39... MODELS CONMOB SRFMOB2 FLDMOB AUGER CONSRH
40... COMMENT Symbolic factorization, solve, regrid on potential
41... SYMB CARRIERS=0
42... METHOD ICCG DAMPED
43... SOLVE
44... REGRID POTEN IGNORE=Oxide RATIO=.2
    ... + MAX=1 SMOOTH=1 IN.FILE=MDE13DS
45... PLOT.2D GRID TITLE="Example 13A - N-MOSFET Final Grid"
```

Figure 12-17 Second part of the simulation input file mdex 13a

Figure 12-18 N-channel device from рцот. 2d at line 45 of file mdex13a, Figure 12-17

| 1... TITLE | Example 13B - 1.5 Micron P-Channel MOSFET |
| :---: | :---: |
| $\begin{gathered} 2 \ldots \text { COMMENT } \\ \ldots+ \end{gathered}$ | This device is similar to Example 1 from the MEDICI manual. It has 480 grid points and 890 elements. |
| 3... COMMENT | Specify a rectangular mesh |
| 4... MESH | SMOOTH=1 |
| 5... X.MESH | $\mathrm{WIDTH}=3.0 \mathrm{H} 1=0.125$ |
| 6... Y.MESH | $\mathrm{N}=1 \quad \mathrm{~L}=-0.025$ |
| 7... Y.MESH | $\mathrm{N}=3 \quad \mathrm{~L}=0$. |
| 8... Y.MESH | $\mathrm{DEPTH}=1.0 \quad \mathrm{H} 1=0.125$ |
| 9... Y.MESH | $\mathrm{DEPTH}=1.0 \quad \mathrm{H} 1=0.250$ |
| 10... COMMENT | Eliminate some unnecessary substrate nodes |
| 11... ELIMIN | COLUMNS Y.MIN=1.1 |
| 12... COMMENT | Increase source/drain oxide thickness using SPREAD |
| 13... SPREAD | LEFT WIDTH=.625 UP=1 LO=3 THICK=.1 ENC=2 |
| 14... SPREAD | RIGHT WIDTH=.625 UP=1 LO=3 THICK=.1 ENC=2 |
| 15... COMMENT | Use SPREAD again to prevent substrate grid distortion |
| 16... SPREAD | LEFT WIDTH=100 UP=3 LO=4 Y.LO=0.125 |
| 17... COMMENT | Specify oxide and silicon regions |
| 18... REGION | NAME=Silicon SILICON |
| 19... REGION | NAME=Oxide OXIDE IY.MAX=3 |
| 20... COMMENT | Electrodes: |
| 21... ELECTR | NAME=Drain X.MIN=2.5 IY.MAX=3 |
| 22... ELECTR | NAME=Gate $\quad \mathrm{X} . \mathrm{MIN}=0.625 \quad \mathrm{X} . \mathrm{MAX}=2.375 \quad$ TOP |
| 23... ELECTR | NAME=Source $\mathrm{X} . \mathrm{MAX}=0.5 \quad \mathrm{IY} . \mathrm{MAX}=3$ |
| 24... ELECTR | NAME=Substrate BOTTOM |
| 25... COMMENT | Specify impurity profiles and fixed charge |
| 26... PROFILE | N-TYPE N.PEAK=3E15 UNIFORM OUT.FILE=MDE13DS |
| 27... PROFILE | N-TYPE N.PEAK=2E16 Y.CHAR=.25 |

Figure 12-19 First part of the simulation input file mdex13b

| 34... COMMENT | Regrid on doping |
| :---: | :---: |
| 35... REGRID | DOPING LOG IGNORE=Oxide RATIO=2 |
| . + | SMOOTH=1 IN.FILE=MDE13DS |
| 36... COMMENT | Specify contact parameters |
| 37... CONTACT | NAME=Gate P.POLY |
| 38... COMMENT | Specify physical models to use |
| 39... MODELS | CONMOB SRFMOB2 FLDMOB AUGER CONSRH |
| 40... COMMENT | Symbolic factorization, solve, regrid on potential |
| 41... SYMB | CARRIERS=0 |
| 42... METHOD | ICCG DAMPED |
| 43... SOLVE | |
| 44... REGRID | POTEN IGNORE=Oxide RATIO=. 2 MAX=1 |
| . + | SMOOTH=1 IN.FILE=MDE13DS |
| 45... PLOT. 2D | GRID TITLE="Example 13B - P-MOSFET Final Grid" |

Figure 12-20 Second part of the simulation input file mdex $13 b$

Figure 12-21 P-channel device from plot.2d at line 45 of the file mdex13b, Figure 12-20

Generation of Circuit and DC Simulations

The input file for the circuit simulation is given in Figures 12-22 and 12-23. As in the proceeding, examples begin by entering circuit mode and creating the circuit. The power supply $V D D$ at line 5 is a fixed five volt supply.

Procedures

The generation of the circuit and DC simulations have the following procedures.

Time Dependent Input Source

P- and N-Channel Devices

N-Channel
P-Channel
Other Circuit Elements

Initial Guess

The input source, VIN at line 7 is a time dependent source. In the present DC simulation, the time parameters are of no consequence since the value of VIN is swept by the . SOLVE statements at lines 33-35.

To use the same input file for the transient simulation later on, specify the time dependence of the input source now. Further explanation of this source is given in the next section on transient analysis.

The two Medici devices PNMOS and PPMOS appear at lines 13 and 11 respectively.

PNMOS is the N-channel device and has a channel width of 1.5 microns. Since the z dimension, which corresponds to the width of the MOSFET, is unmodeled; the width is accounted for simply by multiplying the terminal currents by 1.5 .

PPMOS is the P-channel transistor and has a width of 3 microns. The terminal currents printed and plotted by Medici are the total currents, which includes these width multipliers (currents are in Amps, not Amps/micron). Lines 11 and 13 the devices meshes created in mdex $13 a$ and $m d e x 13 b$ are referenced with the FILE parameters.

Lines 15 to 24 create the remainder of the circuit and are similar to the proceeding examples.

At line 26, the initial guess for the circuit voltages are given using a . NODESET statement.

Note:

The specification of the initial guess is very important and should never be omitted.

Solution Line 28 exits circuit mode. Lines 29 and 30 perform a zero carrier (Possion only) solution as an initial guess. The voltages specified on the . NODESET statement are used as the bias. At line 32 , the voltage updates are limited to 0.3 V . This option prevents the solver from generating physically unrealistic voltages which may hinder convergence.

DC Sweep Switch to a 2 carrier simulation. Line 33 performs the first DC sweep of the voltage at source VIN from 0.0 Volts to 1.5 Volts in 0.5 volt steps (4 steps in all). The proper choice of PREVIOUS or PROJECTI is automatically made for the initial guess.

Line 34 continues the DC sweep at voltage source VIN from 1.8 Volts up to 2.6 Volts using steps of 0.20 Volts. The circuit is expected to change state rapidly from 1.8 to 2.6 Volts so smaller steps are used here to allow better resolution of the curve. Likewise the 1.5 volt solution generated by line 33 serves as the initial guess for the 1.8 volt solution at line 34 and the zero carrier step is not needed. Line 35 finishes the DC sweep. Switch back to 0.5 volt steps for the final part of the curve between 3.0 and 5.0 Volts.

Saving the Solution and Mesh

Lines 36 and 37 specify files to store the solutions and mesh. The solution file MD13S00 is incremented as the program sweeps through the DC curve just as in normal Medici. The solution file contains potential, electron and hole information for all Medici transistors and all the circuit voltages and currents.

The mesh file MDE13MS contains all MESH, DOPING, MATERIAL, MOBILITY, and MODEL information for all the Medici transistors in the circuit. In addition, the mesh file contains the circuit itself, all component values and all model parameters.

Plots Line 39 plots the output voltage at the drains of the Medici MOSFETs (Node 1) versus the input voltage (Node 9) at the gates (See Figure 12-24). Note how the node voltages to plot are specified as $\mathbf{A X I S}=V C(\langle$ node $\rangle)$. Line 40 similarly plots the power supply current $I C(V D D)$ versus the input voltage (Node 9), shown in Figure 12-25.

Lines 42 and 43 generate a potential plot for the N -channel device (PNMOS) when VIN=5.0V , shown in Figure 12-26. Note that the device to plot is specified by the STRUCTUR parameter on the PLOT . 2D statement (line 42). Lines 45 and 46 generate a similar plot for the P-channel transistor $P P M O S$ when VIN $=5.0 \mathrm{~V}$, shown in Figure 12-27.

Figure 12-22 First part of the simulation input file mdex $13 c$

```
29... SYMBOL NEWTON CARR=0
30... SOLVE INIT
31... SYMBOL NEWTON CARR=2
32... METHOD N.DVLIM=0.3
33... SOLVE ELEMENT=VIN V.ELEM=0 VSTEP=0.5 NSTEP=3
34... SOLVE ELEMENT=VIN V.ELEM=1.80 VSTEP=0.2 NSTEP=4
    ... +
35... SOLVE ELEMENT=VIN V.ELEM=3.0 VSTEP=0.5 NSTEP=4
36... SAVE SOLUTION OUT.FILE=MD13S10
37... SAVE MESH OUT.FILE=MDE13MS W.MODELS
38... COMMENT Plot the circuit voltages and currents
39... PLOT.1D X.AX=VC(9) Y.AX=VC(1) POINTS
... + TITLE="Example 13C - Vout vs. Vin"
40... PLOT.1D X.AX=VC(9) Y.AX=IC(VDD) POINTS
    ... + TITLE="Example 13C - Power Supply Current vs. Vin"
41... COMMENT Plot the internal behavior of transistor PNMOS
42... PLOT.2D STRUCT=PNMOS
    ... +
43... CONTOUR
TITLE="Example 13C - Potential in PNMOS with Vin=5v"
POTEN MIN=-1 MAX=6 FILL
```

Figure 12-23 Second part of the simulation input file mdex 13 c

Figure 12-24 Output voltage from РLот. 1D at line 39 of the file mdex13c, Figure 12-23

Figure 12-25 Power supply current from PLOT . 1D at line 40 of the file mdex13c, Figure 12-23

Figure 12-26 Potential distribution in the N-channel device from lines 42 and 43 in file mdex13c, Figure 12-23

Figure 12-27 Potential distribution in the P-channel device (PPMOS) from lines 45 and 46 of the file mdex $13 c$, Figure 12-23

Transient Simulation of CMOS Pair with Compact Load

This example extends the analysis of the previous section to the time domain and examines the dynamic performance of the CMOS inverter. The compact MOSFETs and layout parasitics in the steady state (DC) example had no effect on the Medici inverter. This is because of the infinite input impedance of the inverters in steady state. In this example, however the compact MOSFETs are important due to their gate capacitance, and the layout parasitics add additional delay. The circuit used is the same as in the preceding section (refer to Figure 1215).

Procedures

The transient simulation of CMOS pair with compact load uses the following procedures.

Structure The Medici input file to be used is presented in Figure 12-29. Circuit mode is entered with a START CIRCUIT statement at line 3 . The circuit has already been created so the next step is to load in the mesh file created in example mdex13c. This is done at line 5 using the . LOAD statement.

Solution Load in the solution from the final bias point of the DC sweep (corresponding to $V I N=5 \mathrm{~V}$). This solution is used as the initial condition which starts the simulation process.

Input Source Returning to VIN in Figure 12-22, the time dependence is as follows:

Figure 12-28 Pulse waveform used in transient simulation
The source starts out at 5 volts, immediately starts dropping to zero volts (since $T_{d}=0$) and at 2.010 ns starts rising to 5 volts again. In the interest of brevity, only the first 2 nS are simulated. Note also that the initial value of 5 Volts is consistent with the 5 Volt solution which was loaded at line 5 . Circuit mode is exited at line 6.

Time Step In line 8, the time step tolerance is relaxed to 2 percent to speed the simulation. Tolerance

Note:

It is not necessary to specify the initial conditions or an initial guess with an . IC or . NODESET statement since a valid solution was read in at line 5.

Transient Simulation

Line 9 performs the transient simulation. $\mathbf{D T}$ is the initial time step to use.
Subsequent time steps are computed from the local truncation error. TSTOP is the ending time for the simulation.

Inverter Plot Line 11 generates a plot of the output voltage of the Medici inverter (Node 1) versus time which is shown in Figure 12-30. The plot shows the typical switching behavior for an inverter.

Load Inverter Line 12 generates a plot of the output of the compact inverter (Node 3) versus Plot time which is shown in Figure 12-31. This waveform is inverted with respect to that of Figure $12-30$ as is expected. No attempt was made to "fit" the compact MOSFET models other than specifying the oxide thickness, channel length and width, substrate doping and lateral out diffusion. As a result the switching speed of the compact inverter is much faster than the Medici inverter.

Drain Current Line 13 generates a plot of the N-channel drain current versus time. Note how the Plot drain of PNMOS is specified as I (PNMOS.Drain). This plot appears in Figure 1232.

Power Supply At Line 14 a plot of the total power supply current versus time is produced.

```
1... TITLE Example 13D - Transient Transfer Curve for CMOS Inverter
2... COMMENT Enter circuit mode
3...START CIRCUIT
4... $ Load in the mesh and solution from the DC solution.
5... .LOAD MESH=MDE13MS SOLUTION=MD13S10
6... FINISH CIRCUIT
7... SYMBOL NEWTON CARRIER=2
8... METHOD TOL.TIME=. 02
9...SOLVE DT=5e-12 TSTOP=2e-9
10... COMMENT Plot the circuit voltages and currents
11... PLOT.1D X.AX=TIME Y.AX=VC(1) POINTS
    ... + TITLE="Example 13D - Output Voltage vs. Time"
12... PLOT.1D X.AX=TIME Y.AX=VC(3) POINTS
    ... + TITLE="Example 13D - Load Output Voltage vs. Time"
```

Figure 12-29 Output of simulation input file mdex13d

Figure 12-30 Output voltage of the inverter from PLOT. 1D at line 11 in file mdex13d, Figure 12-29

Figure 12-31 Output voltage of the compact inverter from РLот . 1D at line 12 in file mdex13d, Figure 12-29

Figure 12-32 \quad-channel mosfet PNMOS from PLOT. 1D at line 13 in file mdex13d, Figure 12-29

Example 13D - Power Supply Current vs. Time

Figure 12-33 Power supply current from PLOT. 1D at line 14 of the file mdex13d, Figure 12-29

AC Analysis Simulation of CMOS Pair with Compact Load

In "Transient Simulation of CMOS Pair with Compact Load," p. 12-26 the dynamic performance of a circuit was analyzed by performing a time domain simulation. This example calculates the small signal response of the circuit for a given range of frequencies, thereby obtaining its frequency domain response.

Procedures

The AC analysis simulation of CMOS pair with compact load uses the following procedures.

Device Structure The same circuit used in previous sections (see Figure 12-15) is used here. The input file used for the simulation is given in Figure 12-34. Circuit mode is entered at line 3. The circuit and mesh information contained in file MDE13MS and the initial solution from MD13SO1 are loaded at line 6 and circuit mode is exited at line 7.

The initial solution corresponds to a bias point $V I N=2 \mathrm{~V}$. Since p-type and n-type devices are involved, a two-carrier analysis is required on the SYMBOLIC statement at line 10 . Cases where DC analysis can be accurately performed by simulating only one-carrier transport may still require that both carriers be included in the AC analysis.

The AC analysis mode is activated on the SOLVE statement at line 11 by specifying AC. ANAL. The MULT statement specifies that FSTEP is multiplied by the frequency used for the $i^{t h}$ step to calculate the frequency used for the $(i+1)^{\text {th }}$ simulation step. The total number of frequency steps is specified by NFSTEP. Note that the AC input source is VIN.

AC Analysis Plot

Line 12 generates a plot of the frequency dependence of circuit node \#2, shown in Figure 12-35. It has been specified that the real part of the voltage at circuit node 2 is plotted. Refer to Chapter 3, "PLOT.1D," p. 3-199 for more details. This is the output of the Medici PNMOS-PPMOS pair after low-passing by the $R 9-C 8$ poly line equivalent circuit. The cut-off appears around 250 Mhz and is due to the Medici devices since the R9-C8 low-pass filter cuts-off around 150 Ghz .

```
1... TITLE Example 13E - AC Analysis CMOS Inverter
2... COMMENT Enter circuit mode
3... START CIRCUIT
4... $ Load in the mesh and solution from the DC solution.
5... $ The DC solution was calculated with in input of 2.0V.
6... .LOAD MESH=MDE13MS SOLUTION=MD13S01
7... FINISH CIRCUIT
8... COMMENT Resolve at the same bias.
9... COMMENT Perform AC analysis }10\mathrm{ points, starting at 1e6 Hz
10... SYMBOL NEWTON CARR=2
11... SOLVE AC.ANAL FREQ=1e6 FSTEP=3.3 MULT NFSTEP=10
```

Figure 12-34 Output of the simulation input file mdex13e

Figure 12-35 AC Analysis CMOS inverter from PLOT.1D at line 12 of the file mdex13e, Figure 12-34

Lattice Temperature Examples

Example Specifications

The Medici Lattice Temperature Advanced Application Module (LT-AAM), is capable of modeling the effects of temperature, heat generation and transfer in many materials. This chapter presents the following simulations as examples:

- Simulates a silicon on insulator SOI device and illustrates how heating can dramatically alter the drain characteristics.
- Combines the use of the LT-AAM and the Circuit Analysis AAM to simulate thermal-runaway in a bipolar device.
- Analyzes an insulated gate bipolar junction transistor (IGBT) and shows how the breakdown voltage and basic operation of the device are completely different when lattice temperature is included.

SOI Drain Characteristics Example

Most common SOI MOS devices employ a thin layer of insulating material (usually silicon dioxide) just beneath the channel of the MOSFET, to electrically insulate the MOSFET from the bulk of the semiconductor. It is unfortunate that this thin insulating layer also thermally insulates the MOSFET from the bulk (due to the low thermal conductivity of the oxide).

The result is that heat generated in the SOI MOSFET causes a much greater temperature rise than in a bulk device under similar conditions. The rise in the MOSFET temperature results in reduced carrier mobility, and a corresponding reduction in drain current transconductance and speed.

This example examines the effects of heating on the MOSFET performance by generating drain characteristics with and without the effects of lattice temperature. It also looks inside the device using plots of lattice temperature.

Procedures

The SOI drain characteristics example uses the following procedures.

Mesh and Device
Structure

The input file mdex14s is shown in Figures 13-1 and 13-2. Line 1 uses the TITLE statement to reference the file. Line 2 uses the COMMENT statement to give the simulation a name. The mesh is generated by lines $4-31$. Notice that two oxide regions are specified. The first oxide region (at line 18) is the gate oxide and is 200 Angstroms thick (from $y=-0.02$ to 0.0 microns). The silicon layer, in which the MOSFET is formed is specified at line 19 , and is 0.1 micron thick (from $y=0.0$ to 0.1 microns). The buried oxide layer is created at line 20 , and is 0.3 microns thick (from $y=0.1$ to 0.4 microns). The remainder of the device (down to $y=1.0$ microns) is silicon.

Electrode The thermal electrode is created at line 27. This electrode runs along the bottom of the device and is created in the same way as the rest of the electrodes (with the exception of the parameter THERMAL).

Simulation Mesh

 PlotThe final grid and device structure are plotted at line 33, and appears in Figure 133.

Models The contact and model parameters are specified at lines 35 and 36 . Note that the ANALYTIC low-field mobility is specified instead of CONMOB since CONMOB is not temperature dependent. In general all the mobility models are temperature dependent except CONMOB and HPMOB.

Gate Bias and

 Solution
Generating Drain
 Curves

The structure is now ready to generate two sets of curves. The first without lattice temperature effects, and the second with. Use a LOOP statement to generate the two solutions. Lines 42 through 52 use the IF, ELSE, IF . END, and L. END statements to control the loop. The assigned variable HEAT (line 43) controls whether lattice temperature is used.

First Loop The first time through the loop, HEAT takes on the value F (false) by using the ASSIGN statement. Likewise the assigned character variables LOGFIL and SOLFIL take on the value associated with C1; MD14SI1 and MD14SS1 respectively.

Two Carrier Newton Solution

Since HEAT is false the first time through, COND is false (see line 47) and the second SYMBOLIC statement at line 51 is executed (a simple two carrier Newton solution). The drain is then ramped from 0.0 to 6.0 volts at lines 55-58.

Second Loop

Drain Curve Plot
The PLOT . 1D statements at line 61 and 62 plot the two drain curves. The plot appears in Figure 13-4. It is easy to see how the higher temperatures at the higher drain bias reduce the mobility and cause the drain curve to bend down slightly.

Temperature Distribution Plot

The PLOT. 3D, and 3D. SURFACE statements at lines 67 and 68 plot the temperature distribution within the device ($V_{\text {Drain }}=6 \mathrm{~V}$ and $V_{\text {Gate }}=10 \mathrm{~V}$), shown in Figure 13-5. Notice how the large temperature gradient occurs across the oxide layer which is a poor thermal conductor.

```
1... TITLE Synopsys MEDICI - Example 14S
2... COMMENT Solution of Lattice Heat Equation for SOI Structure
3... COMMENT Specify a rectangular mesh
4... MESH SMOOTH=1 OUT.FILE=MDE14SM
5... X.MESH WIDTH=0.5 H1=0.1 H2=0.020
6... X.MESH WIDTH=0.5 H1=0.020 H2=0.020
7... X.MESH WIDTH=0.5 H1=0.020 H2=0.1
8... Y.MESH N=1 L=-0.02
9... Y.MESH N=2 L=0.0
10... Y.MESH DEPTH=0.1 H1=0.020 H2=0.020
11...Y.MESH DEPTH=0.3 SPACING=0.05
12...Y.MESH DEPTH=1 SPACING=0.4
13... COMMENT Some eliminates to reduce node count
14... ELIMINAT COLUMNS X.MIN=0.4 X.MAX=1.1 Y.MIN=0.1
15... ELIMINAT COLUMNS X.MIN=0.5 X.MAX=1.0 Y.MIN=0.1
16... ELIMINAT COLUMNS Y.MIN=0.5
17... COMMENT Region definition
18... REGION NAME=Gate_Ox Y.MAX=0.0 OXIDE
19... REGION NAME=Device Y.MIN=0.0 Y.MAX=0.1 SILICON
20... REGION NAME=Buried_Ox Y.MIN=0.1 Y.MAX=0.4 OXIDE
21... REGION NAME=Bulk Y.MIN=0.4 SILICON
22... COMMENT Electrodes
23...ELECTR NAME=Gate X.MIN=0.5 X.MAX=1.0
    ... + Y.MIN=-0.02 Y.MAX=-0.01
24... ELECTR NAME=Source X.MAX=0.3 Y.MIN=-0.02 Y.MAX=0.0
25... ELECTR NAME=Drain X.MIN=1.2 Y.MIN=-0.02 Y.MAX=0.0
26... ELECTR NAME=Substrate BOTTOM
27...ELECTR NAME=Heat_Sink BOTTOM THERMAL
28... COMMENT Specify impurity profiles
29... PROFILE P-TYPE N.PEAK=1E16 UNIFORM
```

Figure 13-1 First part of the simulation output file mdex14s

```
34... COMMENT Contacts and models
35... CONTACT NAME=Gate N.POLY
36... MODEL ANALYTIC PRPMOB FLDMOB
37... COMMENT 0-carrier solve with 10v on the gate
38... SYMB CARRIERS=0
39... METHOD DAMPED ICCG
40... SOLVE V (Gate)=10 OUT.FILE=TEMPSOL
41... COMMENT The first pass is without the lattice heat equation.
    ... + The second pass includes the lattice heat equation.
42... LOOP STEPS=2
43... ASSIGN NAME=HEAT L.VALUE=(F,T)
44... ASSIGN NAME=LOGFIL C1=MD14SI1 C2=MD14SI2
45... ASSIGN NAME=SOLFIL C1=MD14SS1 C2=MD14SS2
46... LOAD IN.FILE=TEMPSOL
47... IF COND=@HEAT
48... SYMB CARR=2 NEWTON LAT.TEMP COUP.LAT
49... METHOD ^AUTONR
50... ELSE
51... SYMB CARRIERS=2 NEWTON
52... IF.END
53... COMMENT Ramp the drain to 6v
54... LOG OUT.FILE=@LOGFIL
55... SOLVE V (Drain)=0.00
56... SOLVE V (Drain)=0.01
57... SOLVE V (Drain)=0.60 VSTEP=0.6 ELEC=Drain NSTEP=8
58... SOLVE V (Drain)=6.00 OUT.FILE=@SOLFIL
59... L.END
60... COMMENT Plot I-V curves
61... PLOT.1D IN.FILE=MD14SI1 X.AXIS=V(Drain) Y.AXIS=I (Drain)
    ... LEFT=0 RIGHT=6 BOT=0.0 TOP=5E-4
    ... + LINE=2 SYMBOL=2 COLOR=2
    ... + TITLE="Example 14S - SOI Device: I(Drain) vs. V(Drain)"
62... PLOT.1D IN.FILE=MD14SI2 X.AXIS=V(Drain) Y.AXIS=I (Drain)
    ... + UNCHANGE SYMBOL=3 COLOR=3
63... LABEL LABEL="Without Lattice Heat Equation" COLOR=2 SYMB=2
    ... + LINE=2 START.LE LX.FIN=0.2 X=0.6
```

Figure 13-2 Second part of the simulation output file mdex14s

Figure 13-3 SOI simulation mesh from line 33 of file mdex 14s, Figure 13-1
Example 14S - SOI Device: I (Drain) vs. V(Drai

Figure 13-4 Drain curves from lines 61 through 65 of mdex 14s, Figure 13-2

Figure 13-5 SOI lattice temperature from lines 67 and 68 of file mdex14s, Figure 13-2

Bipolar Transistor Thermal Run-Away Analysis

In this example both the Lattice Temperature Advanced Application Module (LT-AAM) as well as the Circuit Analysis Advanced Application Module (CA-AAM) are used to analyze thermal run-away in a bipolar structure.

Device Failure

During thermal run-away, the following feedback behavior causes the device to fail:

- The collector current causes heating of the device which raises its temperature.
- The higher temperature causes the intrinsic carrier concentration to increase.
- The increased intrinsic carrier concentration increases the emitter injection efficiency.
- Due to the increased emitter injection efficiency, less bias voltage at the base is required to maintain the level of collector current.
- Since the base bias remains constant, the collector current increases.
- The increased collector current causes greater power dissipation and more heating.

Collector Current

Rather than simply simulate a device entering run-away, however, it is more interesting to carefully examine heating within the device as the collector current is slowly increased while holding the collector-emitter voltage constant. To perform this analysis, the base bias is automatically adjusted to maintain the collector voltage at 3.0 volts. The results of the analysis is a plot of the maximum temperature within the device and the base-emitter voltage as a function of the collector current.

Collector Voltage

In order to slowly increase the collector current it is best to drive the collector of the transistor with a current source. To maintain constant collector voltage an electrical feed-back amplifier is used which automatically adjusts the base-emitter voltage. This amplifier detects the difference between the actual collector voltage and the desired value (3.0 volts) and reduces the base bias if the detected collector voltage falls below the 3.0 volts. The circuit used is shown in Figure 13-6.

Figure 13-6 Circuit for example mdex14b showing transistor with feedback amplifier attached

The current source $I 1$, supplies the collector current for the BJT. Voltage source $V 1$ is set to 3.0 volts and provides the reference for the collector voltage. The feedback amplifier is represented as a small box with four leads. This amplifier has a gain of 10,000 and its operation is governed by the following equation.

$$
V_{2}=10,000\left(V_{1}-V_{3}\right)=V_{b e}=10,000\left(V_{c e}-3.0\right) \quad \text { Equation 13-1 }
$$

From this equation it is clear that $V_{\text {Collector }}$ must be very close to 3.0 volts, since $V_{\text {Base }}$ is normally a small voltage (around 0.8 volts).

Procedures

The Bipolar transistor thermal run-away uses the following procedures.

Device Structure The input file for this example is presented in Figures 13-7 and 13-8.

- The BJT mesh is created using the bipolar template files bipdef0 and bipstr0.
- The CALL statement at line 3 , sets the default values by reading in the file bipdef0
- Lines 59-62 set some assigned variables used during the mesh creation process. TRANTYPE selects whether an NPN or a PNP transistor is created (select NPN). FILE specifies a prefix use to create a file name to store the mesh in. Since M14B is specified for $F I L E$, the mesh created by template bipstr0 is written to the file m14bmsh.
- Lines 61 and 62 specify the vertical grid spacing at the emitter-base junction and at the base-collector junction respectively using the assigned variables $E B S P$ and $B C S P$. The default values of 0.0125 and 0.0250 (which are listed in the file bipdef0) were increased to make the example run faster.
- At Line 64 the CALL statement calls the file bipstr0 which uses the above information to generate the mesh.

The plots created by this structure are shown Figures 13-9 through 13-11.

> Mesh \quad The MESH statement at line 341 reads in the mesh generated previously and reinitializes the simulator (a new MESH statement always reinitializes the simulator). This step is necessary since a new thermal electrode is to be added and this cannot be done unless the simulator is reinitialized.

Electrode

Thermal Resistance

The ELECTRODE statement at line 342 creates this thermal electrode which runs along the entire bottom edge of the device.

The CONTACT statement at line 344 is used to specify a thermal resistance of $8.6 \times 10^{4} \mathrm{~K}-\mu \mathrm{m} / \mathrm{W}$. This value represents the thermal resistance of the package and what ever heat sink the device is attached to. The above value $\left(8.6 \times 10^{4}\right)$ is obtained by multiplying the total thermal resistance by the device width in microns.

Models The MODEL statement at line 346 specifies the models to be used in the simulation. The SAVE statement at line 348 save the new mesh with thermal electrode, thermal resistance and models to the file m14bmsh. This destroys the old mesh which was in m14bmsh, which is not used again.

Lines 350-355 create a solution which is used as an initial guess to start the circuit simulation. The SYMBOLIC and SOLVE statements at lines 350 and 351 perform a zero-carrier solution with 3.0 volts on the collector and 0.7 volts on the base.

The SYMBOLIC statement at line 353 specifies the following:

- A two carrier simulation (NEWTON CARRIERS=2)
- With the lattice temperature equation (LAT. TEMP)
- Fully coupled to the semiconductor equations (COUP .LAT).

The last parameter (COUP .LAT) causes all four equations to be solved together as a single set.
The other alterative (^COUP . LAT) causes a block iterative approach to be used where the three semiconductor equations are solve first, then the lattice temperature equation.

The fully coupled method tends to be the most stable and sometimes the fastest approach, but needs more memory.

The SOLVE statement at line 355 calculates the solution with lattice temperature and two carriers and stores the results in the file $m d e 14 s 7$.

Circuit
Line 358 starts the circuit simulation, places Medici in CIRCUIT mode, and once Simulation again reinitializes the simulator. (Note, this example could have been split into three separate files, starting at lines 1,341 , and 358.)

The . OPTIONS statement at line 360 specifies that the lattice temperature equation (LAT) be solved using the fully coupled method (COU).

Numerical Bipolar
Transistor Model
The numerical bipolar transistor model is created by the PBjt statement at line 362.

- Circuit node 1 is attached to the collector.
- Circuit node 2 is attached to the base, and the emitter is grounded (circuit node 0).

Current Source

The device structure is read from the file $m 14 b m s h$ created earlier. Line 364 creates the current source $I l$ which drives the collector. Note that current flows into the positive terminal of the current source (which is grounded) and out of the negative terminal (which is attached to node 1, and the collector of the transistor.) Line 366 creates the 3.0 volt reference source, which is connected between ground and node 3.

Amplifier Line 368 creates the amplifier. A voltage controlled voltage source (type E) element is used. The voltage at the output (nodes 2 and 0) is 10,000 times the difference of the voltages at the two inputs (nodes 1 and 3).

Curve Finally the .DC statements at lines 374 and 375 calculate the desired curve of

Initial Guess

Calculation

The . LOAD statement at line 370 reads in file $m d e 14 s 7$ which contains the solution generated earlier, at line 355 . This solution is used as an initial guess for the device variables. It is doubtful that the circuit with device would have converged by itself and reading in a standard Medici solution like this is one way of helping assure convergence.

The . NODESET statement at line 372 specifies the initial guess for the circuit nodes. Even though a solution was read in at line 370, it is required that an initial guess be given for the circuit nodes since the solution read in did not contain any information on the circuit nodes. The specified voltages match those of the solution read in previously. $I_{\text {Collector }}$ vs. $V_{\text {Base }}$ using 12 bias steps. The starting point $\left(I_{\text {Collector }}=6.0 \times 10^{-6} \mathrm{Amps}\right)$ was chosen to be near the collector current calculated without the circuit attached.

The bias steps on the first . DC statement are smaller than those on the second .DC statement since once two solutions are available, projection may be used to obtain the initial guess. Once projection is available convergence improves and larger bias steps may be used.

Exiting Circuit Mode

The FINISH statement at line 377 takes Medici out of circuit mode for plotting.

Thermal Runaway Plot

The PLOT.1D statement at line 379 generates a plot of $I_{\text {Collector }}$ vs. $V_{\text {Base }}$ Note how terminals of devices are referenced in circuit mode. For example, in the string "PBjt.Base" the device name is PBjt and the terminal is the base, thus this refers to the base of the transistor.

The final plot is shown in Figure 13-12. As expected, the temperature increases as the collector current increases. The base-emitter voltage reaches a maximum of about 0.78 volts and then starts to decrease.

| 1... TITLE | Synopsys MEDICI Example 14B - BJT with Lattice Temperature |
| :---: | :---: |
| 2... COMMENT | Load default parameters defining the structure and biases |
| 3... CALL | FILE=bipdef0 ^PRINT |
| 58... COMMENT | Use the default NPN transistor |
| 59... ASSIGN | NAME=TRANTYPE C.VALUE=NPN |
| 60... ASSIGN | NAME=FILE C.VALUE=M14B |
| 61... ASSIGN | NAME $=\mathrm{EBSP} \quad \mathrm{N} . \mathrm{VALUE}=.05$ |
| 62... ASSIGN | NAME $=$ BCSP \quad N.VALUE $=.05$ |
| 63... COMMENT | Create the structure using template "bipstr0" |
| 64... CALL | FILE=bipstr0 ^PRINT |
| 340... COMMENT | Read in mesh and specify thermal electrode |
| 341... MESH | IN.FILE=M14BMSH |
| 342... ELECTROD | NAME=Heat_Sink THERMAL Y.MIN=2 |
| 343... COMMENT | Specify thermal contact |
| 344... CONTACT | NAME=Heat_Sink R.THERM=8.6E4 |
| 345... COMMENT | Models specification |
| $346 \ldots$ MODELS | ANALYTIC FLDMOB PRPMOB CONSRH AUGER BGN |
| 347... COMMENT | Save mesh with models for circuit analysis |
| 348... SAVE | MESHFILE OUT.FILE=M14BMSH W.MODELS |
| 349... COMMENT | Obtain a zero carrier initial guess |
| 350... SYMB | GUMMEL CARRIERS=0 |
| 351... SOLVE | $\mathrm{V}($ Collector $)=3 \quad \mathrm{~V}($ Base $)=0.7$ |

Figure 13-7 First part of the simulation input file mdex14b

Figure 13-8 Second part of the simulation input file mdex14b

Figure 13-9 Simulation mesh from CALL at line 64 in file mdex14b, Figure 13-7

Figure 13-10 Doping contours from CALL at line 64 in file mdex14b, Figure 13-7

Figure 13-11 Vertical doping slices from CALL at line 64 in file mdex14b, Figure 13-7

Figure 13-12 Thermal run-away from PLot.1D and LABEL at lines 379 through 390 in file mdex14b, Figure 13-8

Insulated Gate Bipolar Transistor Example

This set of input files demonstrates the use of the lattice heating module (AAM) for the simulation of self-heating induced breakdown of an Insulated Gate Bipolar Transistor (IGBT). The example shows a comparison of the simulation results to those of an isothermal simulation. Thermal boundary conditions include a finite thermal resistance between the device and a heat sink.

The IGBT is an important practical power device with a low forward voltage drop and a high-impedance MOS gate control over the current flow. The device contains a thyristor-type four layer structure, which can latch-up under certain conditions. If this happens, the device cannot be turned off using the control gate and can be thermally destroyed.

To design an IGBT so that latch-up does not occur in the operating range, the device designer must consider self-heating effects in the simulation. This is demonstrated in the example under discussion, exhibiting differences in latch-up behavior between the isothermal simulation and the simulation including realistic thermal boundary conditions.

IGBT Device Structure

The structure, mesh, and doping distribution are created by the first of the input files mdex 15a shown in Figures 13-13 and 13-14. The device is represented by a simulation domain of $30 \mu \mathrm{~m}$ by $70 \mu \mathrm{~m}$. The gate oxide thickness is 30 nm , the drift-region is $50 \mu \mathrm{~m}$ deep with n -type doping concentration of $10^{14} \mathrm{~cm}^{-3}$.

Latch-Up To reduce the resistivity of the p-wel, a second higher doping has been defined. Stability This has the purpose of improving the latch-up stability of the four layer n-p-n-p structure.

Device Structure Plots

The device structure, grid and doping concentration contours are shown in Figure 13-15. Cross-sectional plot of the doping concentration are shown in Figure 1316.

Boundary
Conditions

A heat sink has been attached to the bottom of the device via a thermal resistance of $10^{5} \mathrm{~K} / \mathrm{W}-\mu \mathrm{m}$. This corresponds to including an additional $120 \mu \mathrm{~m}$ deep silicon region at the bottom of the device. The thermal resistance specification allows the use of realistic thermal boundary conditions for the nonisothermal simulation of power devices without the necessity to include very large material regions.

Non-Isothermal Solution

The nonisothermal solution is performed by the file $m d e x 15 b$ (Figure 13-17). This input file covers the entire I-V curve. After reaching 6 V forward bias, the input file switches from voltage to current boundary conditions to simulate the snapback. The applied current value is stepped up through both first and second snapback until very high lattice temperature indicates the thermal destruction of the device. All solution files are saved and can be analyzed with the post-processing input file discussed below.

Isothermal Solution

The isothermal simulation, i.e., simulation under the assumption $T_{L}=300^{\circ} \mathrm{K}$ throughout the device, is performed by the input file mdexl5c shown in Figure 1318. This simulation predicts a latch-up safe device. With the gate bias of +25 V , no snap-back, which would indicate that the latch-up effect is taking place, is visible in the I-V curve for forward biases up to 30 V .

Plots

This section details the plots created by the preceding procedures.

I-V Curves and Internal
 Functions
 Forward Bias Current Voltage

Internal Device
Behavior

I-V curves and plots of the internal functions clarifying the effects are created by the last input file in this set, mdexl5p, shown in Figures 13-19 and 13-20.

The forward bias current-voltage characteristics of the IGBT with 25 V applied to the gate are plotted in Figure 13-21, calculated using the isothermal and the nonisothermal simulations. The dashed line represents the results of the isothermal simulation $T=300^{\circ} K$. The solid line shows the results of the nonisothermal simulation. The I-V curve for the nonisothermal simulation shows the two snapbacks mentioned above.

The plots of the internal device behavior show the carrier concentrations, lattice temperature distribution and current flowlines using the solution files MD15B10 (Figure 13-22) and MD15B30 (Figure 13-23). These correspond to the bias point at the onset of snap-back and the last point of the simulation, respectively. These plots are of a nonisothermal solution.

It is worthwhile to look at the internal device behavior using the other saved solution files for the entire I-V curve above the first latch-up. This can be accomplished by changing the loop specification in mdex $15 p$ to:

```
LOOP STEPS=30
    ASSIGN NAME=SOLFIL C.VALUE=MD15B00 DELTA=1
```

| 1... TITLE | Example 15A - IGBT Grid and Initial Solution |
| :---: | :---: |
| 2... COMMENT | Create the initial mesh |
| 3... ASSIGN | NAME=EPI N.VALUE=50.0 |
| 4... ASSIGN | NAME=DPT N.VALUE=10.0 |
| 5... MESH | OUT.FILE=MDE15AM |
| 6... X.MESH | $\mathrm{X} . \mathrm{MAX}=5.0 \quad \mathrm{H} 2=1.25 \quad \mathrm{RATIO}=1.4$ |
| 7... X.MESH | $X . M A X=15.0 \quad \mathrm{H} 1=1.25 \quad \mathrm{H} 2=0.5$ |
| 8... X.MESH | $X . M A X=17.0 \quad \mathrm{H} 1=0.60 \quad \mathrm{H} 2=0.75$ |
| 9... X.MESH | $X . M A X=30.0 \quad H 1=0.75 \quad H 2=1.5$ |
| 10... Y.MESH | $\mathrm{N}=1 \quad \mathrm{LOC}=-0.10$ |
| 11... Y.MESH | $\mathrm{N}=2 \quad \mathrm{LOC}=-0.03$ |
| 12... Y.MESH | $\mathrm{N}=3 \quad \mathrm{LOC}=0.0$ |
| 13... Y.MESH | Y.MAX $=1.0 \quad \mathrm{H} 1=0.02 \quad \mathrm{H} 2=0.5$ |
| 14... Y.MESH | $Y . M A X=8.0 \quad H 1=0.5 \quad H 2=1.0$ |
| 15... Y.MESH | $Y . M A X=@ E P I+@ D P T \quad H 1=1.0 \quad H 2=1.0 \quad H 3=5.0$ |
| 16... Y.MESH | DEPTH=@DPT $\mathrm{H} 1=1.0 \quad$ RATIO $=1.4$ |
| 17... ELIMINAT | COLUMNS Y.MIN=10 |
| 18... ELIMINAT | COLUMNS Y.MIN=20 |
| 19... ELIMINAT | ROWS X.MAX $=8$ IY.MIN $=4 \quad Y . M A X=1.0$ |
| 20... ELIMINAT | ROWS X.MAX $=8$ IY.MIN=4 Y.MAX $=1.0$ |
| 21... ELIMINAT | ROWS X.MIN=21 IY.MIN=4 Y.MAX $=1.0$ |
| 22... ELIMINAT | ROWS X.MIN=21 IY.MIN=4 Y.MAX=1.0 |
| 23... COMMENT | Specify oxide and silicon regions |
| 24... REGION | NAME=Silicon Y.MIN=0 SILICON |
| 25... REGION | NAME=Oxide Y.MAX=0 OXIDE |
| 26... COMMENT | Electrodes |
| 27... ELECTR | NAME=Gate X.MIN=5 X.MAX=15 Y.MAX=-0.03 |
| 28... ELECTR | NAME=Cathode $\mathrm{X} . \mathrm{MIN}=17 \quad \mathrm{Y} . \mathrm{MAX}=0$ |
| 29... ELECTR | NAME=Anode BOTTOM |
| 30... COMMENT | Define a thermal electrode |
| 31... ELECTR | NAME=Heat_Sink BOTTOM THERMAL |
| 32... COMMENT | Specify impurity profiles |
| 33... PROFILE | N-TYPE N.PEAK=1E14 UNIFORM |
| 34... PROFILE | N-TYPE N.PEAK=1E17 X.MIN=0 X.MAX=2 X.CHAR=2 |

Figure 13-13 First part of the simulation input file mdex15a

```
41... COMMENT Plot grid, structure, and doping
42... PLOT.2D GRID SCALE FILL TITLE="IGBT Grid" X.OFF=3 X.LEN=5
43... PLOT.2D BOUND SCALE FILL L.ELEC=-1 ^CLEAR
    ... + TITLE="IGBT Doping" X.OFF=11 X.LEN=5
44... CONTOUR DOPING LOG MIN=15 MAX=20 DEL=1 COLOR=2
45... CONTOUR DOPING LOG MIN=-20 MAX=-15 DEL=1 COLOR=1
46... LABEL LABEL="'n" X=15 Y=30
47... LABEL LABEL=" p" X=15 Y=67
48... LABEL LABEL="p" X=27 Y=3
49... LABEL LABEL="n" X=16 Y=1
50... PLOT.1D DOPING LOG MIN=1E12 MAX=1E21 COLOR=2 SYMB=2
    ... + X.ST=0 X.EN=0 Y.ST=0 Y.EN=70 C.SI=.2
    ... + TITLE="Example 15A - IGBT Doping Slices"
51... PLOT.1D DOPING LOG MIN=1E12 MAX=1E21 COLOR=3 SYMB=3 UNCH
    ... + X.ST=17 X.EN=17 Y.ST=0 Y.EN=70 C.SI=.2
52... PLOT.1D DOPING LOG MIN=1E12 MAX=1E21 COLOR=4 SYMB=4 UNCH
    ... + X.ST=30 X.EN=30 Y.ST=0 Y.EN=70 C.SI=.2
53... LABEL LABEL="Doping, X=0" COL=2 SYMB=2 START.LE LX.FI=40
    ... + X=45
54... LABEL LABEL="Doping, X=17" COL=3 SYMB=3 START.LE LX.FI=40
55... LABEL LABEL="Doping, X=30" COL=4 SYMB=4 START.LE LX.FI=40
56... COMMENT Define a thermal resistance
57... CONTACT NAME=Heat_Sink R.THERM=1.0E5
58... COMMENT Specify the gate workfunction
59... CONTACT NAME=Gate N.POLY
60... COMMENT Modify default carrier lifetimes
61... MATERIAL SILICON TAUN0=1E-6 TAUP0=1E-6 PRINT
```

Figure 13-14 Second part of the simulation input file mdex15a

Figure 13-15 Grid and doping concentration contours from PLOT. 2D, Contour, and Label at lines 42 through 49 in file mdex15a, Figure 13-13

Figure 13-16 Doping concentration along three vertical lines from lines 50 through 55 in file mdex15a, Figure 13-13

| 1... TITLE | Example 15B - Simulation of IGBT current vs. Vc |
| :---: | :---: |
| 2... COMMENT | Read in simulation mesh and initial solution |
| 3... MESH | IN.FILE=MDE15AM |
| 4... LOAD | IN.FILE=MDE15AS |
| $\begin{gathered} 5 \ldots \\ \ldots \\ \ldots \end{gathered}$ | Begin ramping Anode, first without lattice lattice temperature (low current) |
| 6... SYMBOL | CARR=2 NEWTON |
| 7... LOG | OUT.FILE=MDE15BI |
| 8... SOLVE | $\mathrm{V}($ Anode $)=0.0 \quad \mathrm{ELEC}=$ Anode $\mathrm{VSTEP}=0.1$ NSTEP=2 |
| 9... SOLVE | $V($ Anode $)=0.5$ |
| $\begin{gathered} 10 \ldots \\ \ldots \\ \ldots \end{gathered}$ | Use block iterative lattice temperature solution as the device begins to heat up |
| 11... SYMBOL | CARR=2 NEWTON LAT.TEMP |
| 12... SOLVE | $\mathrm{V}($ Anode $)=0.6$ ELEC=Anode $\mathrm{VSTEP}=0.1$ NSTEP=2 |
| $\begin{gathered} 13 \ldots \\ \ldots \\ \ldots \end{gathered}$ | For higher currents and temperatures, use a fully coupled solution |
| 14... SYMBOL | CARR=2 NEWTON LAT.TEMP COUP.LAT |
| 15... LOOP | $S T E P S=10$ |
| 16... ASSIGN | NAME $=\mathrm{VC} \quad$ N.VALUE $=0.85 \quad$ RATIO $=1.25$ |
| 17... ASSIGN | NAME=SOLFIL C.VALUE="MD15B01" DELTA=1 |
| 18... SOLVE | $\mathrm{V}($ Anode $)=@ \mathrm{VC}$ SAVE.BIA OUT.FILE=@SOLFIL |
| 19... L.END | |
| 20... COMMENT | Switch to current boundary conditions at the collector |
| 21... CONTACT | NAME=Anode CURRENT |

Figure 13-17 Output of the simulation input file mdex15b

| 1... TITLE | Example 15C - IGBT Simulation Without Lattice Temperature | | | |
| :---: | :---: | :---: | :---: | :---: |
| 2... COMMENT | Read in simulation mesh initial solution | | | |
| 3... MESH | IN.FILE=MD | 15AM | | |
| 4... LOAD | IN.FILE=MD | 15AS | | |
| 5... SYMBOL | CARR=2 NE | NTON | | |
| 6... LOG | OUT.FILE=M | E15CI | | |
| 7... SOLVE | $\mathrm{V}($ Anode $)=0$ | . 0 ELEC=Anode | $\mathrm{VSTEP}=0.1$ | NSTEP=2 |
| 8... SOLVE | $V($ Anode $)=0$ | . 5 ELEC=Anode | $\mathrm{VSTEP}=0.1$ | NSTEP=3 |
| 9... LOOP | STEPS $=15$ | | | |
| 10... ASSIGN | NAME=VC | N.VALUE=0.85 | RATIO $=1.25$ | |

Figure 13-18 Output of the simulation input file mdex15c

Figure 13-19 First part of the simulation input file mdex15p

```
31... PLOT.2D BOUND JUNC TITLE="" L.ELEC=-1 ^^CLEAR
    ... + X.LEN=@XLEN Y.LEN=@YLEN X.SIZE=@CSIZ Y.SIZE=@CSIZ
    .. + X.OFF=2+@XOFF
32... LABEL LABEL=@CARR X=10 Y=35.5 C.SI=@CSIZ
33... PLOT.2D TITLE="Temperature, dT="@DT"K" T.SI=@CSIZ ^LABELS
    ... + X.LEN=@XLEN Y.LEN=@YLEN X.OFF=2+2*@XOFF ^MARKS ^CLEAR
34... CONTOUR LAT.TEMP MIN=@TMIN DEL=@DT LINE=1 FILL
35... PLOT.2D BOUND JUNC TITLE="" L.ELEC=-1 ^`CLEAR
    ... + X.LEN=@XLEN Y.LEN=@YLEN X.SIZE=@CSIZ Y.SIZE=@CSIZ
    ... + X.OFF=2+2*@XOFF
36... LABEL LABEL=@TBOT"K" X=10 Y=69 C.SI=@CSIZ
37... LABEL LABEL=@TTOP"K" X=10 Y=4 C.SI=@CSIZ COLOR=0
38... PLOT.2D TITLE="Flowlines" T.SI=@CSIZ ^LABELS ^MARKS ^CLEAR
    ... + X.LEN=@XLEN Y.LEN=@YLEN X.OFF=2+3*@XOFF FILL
39... CONTOUR FLOWLINES COLOR=2
```

Figure 13-20 Second part of the simulation input file mdex $15 p$

Figure 13-21 Forward bias current-voltage from lines 5 through 9 in file mdex15p, Figure 13-19
Example 15P - IGBT: V=6.3v, I=1.9E-4 A/un

Figure 13-22 IGBT at the onset of latch-up from PLOT . 2D, CONTOUR, and LABEL at line 15 in file mdex15p, Figure 13-19

Figure 13-23 IGBT after the second latch-up from PLOT. 2D, CONTOUR, and LABEL at line 15 in file mdex15p, Figure 13-19

Heterojunction Examples

Example Specification

The Medici Heterojunction Device AAM (HD-AAM) can be used to model a wide variety of semiconductor devices which employ heterojunctions. This chapter provides examples of analyses of the following two possible devices.

- A simple one-dimensional SiGe Heterojunction Bipolar Transistor (HBT).

The base region of this structure consists of $\mathrm{Si}_{0.8} \mathrm{Ge}_{0.2}$ with mole fraction transitions occurring in the emitter-base and base-collector regions. The forward bias characteristics of this HBT are simulated.

- The basic operation of a High Electron Mobility Transistor (HEMT) that employs three different materials (GaAs, AlGaAs, and InGaAs).

Gate characteristics for the device are calculated, and band diagrams and current flowlines are plotted.

SiGe Heterojunction Bipolar Transistor Simulation

A Heterojunction Bipolar Transistor (HBT) is formed by introducing a heterojunction at the emitter-base junction of a bipolar device. Such devices are extremely attractive due to their potential for high speed operation. HBTs typically have an emitter with a bandgap that is wider than the bandgap in the base. The potential barrier formed at the emitter-base junction under these conditions reduces the minority carrier injection from the base into the emitter to an insignificant level. This results in improved emitter efficiency and higher current gain, and leaves the base doping free as a parameter that can be adjusted for optimizing the performance of these devices.

In this example, the forward characteristics of a one-dimensional $n p n \mathrm{Si}_{1-\mathrm{x}} \mathrm{Ge}_{\mathrm{x}}$ HBT are simulated. This structure uses silicon for the emitter and collector regions, and the alloy $\mathrm{Si}_{1-\mathrm{x}} \mathrm{Ge}_{\mathrm{x}}$ for the base region. $\mathrm{Si}_{1-\mathrm{x}} \mathrm{Ge}_{\mathrm{x}}$ has a narrower bandgap than silicon with most of the offset occurring at the valence band. Thus, hole injection into the emitter is drastically reduced for this device, resulting in a very high current gain. In this example, a Ge mole fraction of $x=0.2$ is used.

Device Structure and Plots

The structure for this simulation is generated using the input file mdex 16 shown in Figures 14-1 and 14-2. The three REGION statements that have the SIGE parameter specified are used to define the $\mathrm{Si}_{0.8} \mathrm{Ge}_{0.2}$ section of the device. The first and third such statements are used to specify graded transitions in the emitterbase and base-collector regions. The mesh and structure for the device are shown in Figure 14-3. The specified doping and mole fraction are shown in Figure 14-4.

This input file also performs an initial zero bias solution and then plots the equilibrium band diagram. This is shown in Figure 14-5.

```
1... TITLE
. . COMMENT
3... MESH
4... X.MESH
5... Y.MES
6... Y.MESH
7... Y.MESH DEPTH=0.6 H1=0.005 H2=0.050
8... COMMENT Use a SiGe base (X.MOLE=0.2) with a graded mole fraction
    ... +
9... REGION
10... REGION
11... REGION
12... REGION
13... COMMENT
14... ELECTR
15... ELECTR NAME=Base Y.MIN=0.125 Y.MAX=0.125 MAJORITY
16... ELECTR NAME=Collector BOTTOM
17... PROFILE N-TYPE N.PEAK=2E16 UNIFORM
18... PROFILE N-TYPE N.PEAK=5E19 Y.MIN=0.80 Y.CHAR=0.125
19... PROFILE P-TYPE N.PEAK=2E18 Y.MIN=0.12 Y.JUNC=0.200
20... PROFILE N-TYPE N.PEAK=7E19 Y.JUNC=0.10
21... PLOT.2D GRID FILL SCALE TITLE="SiGe HBT Mesh"
22... FILL SET.COLOR C.SIGE=5 C.SILI=3 ^NP.COLOR
23... PLOT.2D BOUND FILL SCALE JUNC L.JUNC=1 ^CLEAR X.OFF=11.5
    ... + TITLE="SiGe HBT Structure"
24... LABEL LABEL="n-emitter" X=0.17 Y=0.05
25... LABEL LABEL="SiGe p-base" X=0.17 Y=0.18
26... LABEL LABEL="n-collector" X=0.17 Y=0.50
27... PLOT.1D DOPING LOG X.ST=0 X.EN=0 Y.ST=0 Y.EN=0.8 COLOR=2
... + TITLE="Doping Through Emitter"
28... LABEL LABEL="n" X=0.05 Y=1E16
29... LABEL LABEL="p" X=0.15 Y=1E16
30... LABEL LABEL="n" X=0.50 Y=1E16
31... PLOT.1D X.MOLE X.ST=0 X.EN=0 Y.ST=0 Y.EN=0.8 COLOR=4 LINE=2
    ... + ^CLEAR ^AXES ^MARKS ^LABELS
32... LABEL LABEL="mole fraction (max=0.2)" X=0.3 Y=0.18 START.LE
    LX.FIN=0.22 ARROW C.SI=0.2
```

Figure 14-1 First part of the simulation input file mdex16

```
33... COMMENT Perform a 0-bias solution and plot the equilibrium
    ... +
band diagram.
34... SYMBOL
35... SOLVE
36... PLOT.1D
    ... +
37... PLOT.1D
38... PLOT.1D
39... PLOT.1D
40... LABEL
41... LABEL
42... LABEL
43... LABEL
```

```
CARR=2 NEWTON
VAL NEG X.ST=0 X.EN=0 Y.ST=0 Y.EN=0.8 MIN=-1.2 MAX=1.2
    TITLE="HBT Band Diagram, Vce=0.0, Vbe=0.0"
    CON NEG X.ST=0 X.EN=0 Y.ST=0 Y.EN=0.8 UNCH
    POT NEG X.ST=0 X.EN=0 Y.ST=0 Y.EN=0.8 UNCH
    QFP NEG X.ST=0 X.EN=0 Y.ST=0 Y.EN=0.8 UNCH COL=2 LINE=2
    LABEL="conduction" X=0.40 Y=0.25
    LABEL="potential" X=0.40 Y=-0.3
    LABEL="valence" X=0.40 Y=-0.85
    LABEL="Fermi level" X=0.26 Y=0.05
```

Figure 14-2 Second part of the simulation input file mdex16

Figure 14-3 Mesh and structure generated by lines 21 through 26 in file mdex16, Figures 14-1

Doping Through Emitter

Figure 14-4 Doping and mole fraction generated by lines 27 through 32 in file mdex16, Figures 14-1

Figure 14-5 Equilibrium band generated by lines 36 through 43 in file mdex16, Figures 14-1

Forward Bias Simulation

The input file mdex $16 f$, shown in Figure 14-6, is used to read in the HBT structure that was created with the input file mdex16, and then simulates its forward bias characteristics. By default, Medici uses an energy bandgap model for strained $\mathrm{Si}_{1-\mathrm{x}} \mathrm{Ge}_{\mathrm{x}}$ as a function of mole fraction x. A model for unstrained $\mathrm{Si}_{1-\mathrm{x}} \mathrm{Ge}_{\mathrm{x}}$ can also be used by specifying a MATERIAL statement with the parameters "SIGE EG.MODEL=3" prior to the SOLVE statement.

Plots

The output generated by this example includes a Gummel plot $\left(\mathrm{I}_{\mathrm{c}}\right.$ and I_{b} versus $V_{b e}$) and a plot of current gain versus I_{c}. These plots are shown in Figures 14-7 and $14-8$, respectively. The current gain shown in Figure $14-8$ is one to two orders of magnitude higher than it would be for a device of the same dimensions and doping levels that uses a silicon base instead of a $\mathrm{Si}_{1-\mathrm{x}} \mathrm{Ge}_{\mathrm{x}}$ base.

```
1... TITLE Synopsys MEDICI Example 16F - 1D SiGe HBT Simulation
2... COMMENT Read in mesh, specify contact and model parameters
3... MESH IN.FILE=MDEX16M
4... CONTACT NAME=Emitter SURF.REC VSURFN=1E5 VSURFP=1E5
5... MODELS CONMOB FLDMOB CONSRH AUGER BGN
6... COMMENT Use Vc=2.0, ramp the base voltage
7... SYMBOLIC NEWTON CARRIERS=2
8... METHOD CONT.STK
9... LOG OUT.FILE=MDE16BI
10... SOLVE V (Collector)=2.0 V (Base)=0.0
    ... ELEC=Base VSTEP=0.05 NSTEPS=16
11... EXTRACT NAME=Beta EXPRESS=@I(Collector)/@I(Base)
12... COMMENT Plot Ic and Ib vs. Vbe
13... PLOT.1D IN.FILE=MDE16BI X.AXIS=V(Base) Y.AXIS=I (Collector) LOG
    ... +
    LEFT=0 RIGHT=0.9 BOTTOM=1E-15 TOP=1E-3 POINTS
    ... + TITLE="Example 16F - HBT Gummel Plot" COLOR=2
14... PLOT.1D IN.FILE=MDE16BI X.AXIS=V(Base) Y.AXIS=I (Base) LOG
    ... + UNCH COLOR=3 LINE=2 POINTS
15... LABEL LABEL="IC" X=0.5 Y=7E-8
16... LABEL LABEL="Ib" X=0.5 Y=2E-11
17... COMMENT Plot the current gain vs. collector current
18... PLOT.1D IN.FILE=MDE16BI X.AXIS=I(Collector) Y.AXIS=Beta X.LOG
    ... + Y.LOG LEFT=1E-10 RIGHT=1E-3 BOT=10 TOP=1E3 COLOR=2
    ... + TITLE="Example 16F - HBT Gain vs. Collector Current"
    ... +
    POINTS
```

Figure 14-6 Output of the simulation input file mdex16f

Figure 14-7 Gummel plot generated by lines 13 through 16 in file mdex $16 f$, Figure 14-6

Figure 14-8 Current gain generated by line 18 in file mdex16f, Figure 14-6

High Electron Mobility Transistor Simulation

> The High Electron Mobility Transistor (HEMT) is a small geometry heterojunction device that exploits the high electron mobility in an undoped region to achieve high speed operation. Heterojunctions are used to create a narrow undoped electron well which forms the channel for current flow. Electrons from surrounding doped regions of the device become trapped in the well resulting in a high concentration of electrons in the channel. This channel is below the surface of the device and separated from the impurity atoms (doping) which supply the electrons for the conduction process. The lack of scattering sites in the channel results in high electron mobility. In addition, the channel itself is normally constructed from a material which possesses a high mobility such as InGaAs.

Structure Generation

The HEMT simulated is shown in Figure 14-11 and the input file mdex 17 that generated the simulation in Figures 14-9 and 14-10 (this device is loosely based upon a device described in the article: "DC and Microwave Characteristics of Sub-0.1- $\mu \mathrm{m}$ Gate-Length Planar-Doped Pseudomorphic HEMT's," P.-C. Chao et al., IEEE Trans. Electron Devices, vol. 36, no. 3, pp. 461-473, Mar. 1989).

Device Structure
The device structure is largely planar with constant doping in most of the regions. The device regions and grid were generated using Synopsys TCAD's Michelangelo. A refine box was used in the channel of the device to create the fine grid needed to resolve the channel. The structure and mesh generated by Michelangelo is stored in the ASCII file mdex17.msh.

Note:

The structure and mesh file can be examined and modified (if desired) using Michelangelo. If changes are made, make sure to save them with a new name so that the original examples are not overwritten.

Doping Lines 18-24 specify the doping for the device, as shown below:

- The bulk (region 1), AlGaAs spacer (region 10), and the InGaAs channel (region 2) are left undoped (although an insignificant doping concentration of $1 \mathrm{e} 2 / \mathrm{cm}^{3}$ is specified).
- The source and drain contact regions (5 and 6) are heavily doped (n-type, 1e20).
- The AlGaAs region under the gate serves as the source of channel electrons and is doped n-type, 1e18.
- At line 24 a 2D- (delta-) doping is used as an additional source of electrons.
- Line 25 sets the colors that are used to fill various material regions during subsequent plotting.

```
1... TITLE Example 17 GaAs - AlGaAs - InGaAs HEMT Device
2... COMMENT Read in the mesh file (created by the Device Editor)
3... MESH IN.FILE=mdex17.tif TIF
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
M
25..NNP COI SET COI C.GAA
l
l
l
l
l
l
l
```

Figure 14-9 The first part of simulation input file mdex17

Material and Mobility Parameters

Lines 27-29 assign the appropriate material types and mole fractions to the various regions. Mole-fraction and material dependent models are used during the simulation for quantities such as the band-gap, electron affinity, low- and highfield mobility,... etc (see the Heterojunction Device AAM chapter in the first volume of the manual for more details).

The plot displayed in Figure 14-11 is generated by lines 34-41 of the input file (see Figure 14-10).

Simulation

This section describes the HEMT simulation and generated plots.
Line 43 enables models for concentration dependent recombination SRH recombination, Auger recombination, and the analytic mobility model.

For gate characteristics in this particular device, it is easiest to start the simulation with the device ON and reduce the gate voltage until the device cuts off.

Figure 14-10 Second part of the simulation input file mdex 17

Solution
At lines 46 and 47, a zero carrier (Poisson only) solution is performed as an initial guess with 0.05 V on the drain and 0.6 V on the gate. Then, a two carriers is performed (lines 54 and 55). Then, the gate voltage is reduced in -0.1 V steps, stopping at $\mathrm{Vg}=0.2 \mathrm{~V}$, and some plots are generated (line 57).

Figure 14-11 HMET device generated by lines 34 through 41 in file mdex17

Plots The first plot (lines 52-55) is shown in Figure 14-12, and displays electron concentration and doping as a function of depth at the center of the channel.

Figure 14-12 Doping and electron concentration generated by lines 52 through 55 in file mdex17, Figure 14-10

The peak in doping due to the Gaussian profile is plainly evident. It is also clear how the electrons have moved away from the doped region and flowed into the undoped InGaAs well. Expect these electrons to have very high mobility due to the absence of the ionized doping atoms which cause scattering and reduce the mobility.

Lines 57-62 generate a band diagram (Figure 14-13) by plotting the following:

- Conduction band
- Valence band
- Electron quasi-Fermi level

Parameter
 Note the specification of the NEGATIVE parameter on the PLOT . 1D statements.

 NEGATIVEThis is necessary since band diagrams are calculated as the electron charge multiplied by the potential and the electron charge is negative. The channel well in the conduction band is clearly visible.

The quasi-Fermi level is flat in this plot since there is no current flowing in the vertical direction. Also, the conduction band has dipped below the quasi-Fermi level within the quantum well indicating an extremely large concentration of electrons there.

If the gate bias is increased, the first dip in the conduction band becomes closer and closer to the quasi-Fermi level. This results in a large concentration of electrons at the top edge of the AlGaAs spacer (where the delta doping is located). Current would then flow along the top edge of the spacer rather than in the channel. This is undesirable since the mobility of electrons flowing in the heavily doped spacer is much lower than in the undoped channel.

2D Plots A 2D plot is now generated (lines 64-66) showing current flow in the device (see Figure 14-14). Observe that the current is flowing within the channel as expected, but that a small amount of current (about 10%) is flowing along the top of the spacer. The FILI statement is used to set color for a specified region.

Figure 14-13 Band structure generated by lines 57 through 62 in file mdex17, Figure 14-10

Figure 14-14 Current flow generated by lines 64 through 66 in file mdex 17, Figure 14-10

Line 69 continues to reduce the gate bias in -0.1 V steps until the gate voltage is 0.8 V . Line 71 plots the gate characteristics (I_{d} versus V_{gs}) for the device (Figure $14-15)$. The device cuts off at about -0.6 V . The decreasing slope of the gate characteristic at higher gate biases is caused by electrons from the channel being pulled out of the well and flowing along the highly doped upper edge of the spacer, where the mobility is lower

Figure 14-15 Gate characteristics generated by line 71 in file mdex17, Figure 14-10

Trapped Charge Examples

Example Specifications

The Trapped Charge Advanced Application Module (TC-AAM) is an extension to Medici which allows simulation of important carrier trapping and de-trapping mechanisms within semiconductor materials. These effects are important in a wide variety of cases such as the simulation of deep level traps, deep donor/ acceptor states, or the creation of lifetime profiles. This chapter presents examples which illustrate the use of the TC-AAM. The following three devices are considered:

- A thin film transistor (TFT)
- A bipolar junction transistor
- A power MOSFET

Thin Film Transistor Example

TFTs are fabricated by depositing a thin film of semiconductor upon an insulating substrate. The semiconductor film is then patterned using etching techniques into the source, drain and body of the transistor. Since the film is deposited rather than grown as a single crystal, the thin film is of an amorphous or polycrystalline nature with a large number of defects. These defects give rise to a continuous distribution of trap states within the band-gap. Since electrons and holes may become trapped and held within these states, the trap states exert a strong effect on the electrical behavior of the device.

Trap States

The trap states in a TFT may be characterized by a density of states distribution (DOS). The DOS describes the number of trap states at a given energy level. In the general case, the DOS may be a function of position (X,Y) and may also change as the device ages i.e. be a function of time.

DOS Example

For the present example, consider the relatively simple DOS present in Figure 151. The center of the energy gap is indicated by Energy $\mathrm{E}=0$. It is also assumed that all traps with $\mathrm{E}>0$ are electron traps, and all traps with $\mathrm{E}<0$ are hole traps. The peak density of traps occurs at the band edges, and a value of $1 \mathrm{e} 19 \mathrm{traps} / \mathrm{cm}^{3} / \mathrm{eV}$ is assumed for electrons and 1e18 for holes. The trap density then decreases exponentially toward the center of the band to values of 5 e 16 and 1 e 17 for electrons and holes respectively. The exponential slope, however, is different for the electrons and holes. The slope for electrons is such that the density of traps reaches $1 \mathrm{e} 17 / \mathrm{cm}^{3} / \mathrm{eV}$ at an energy of 0.4 eV . The slope for holes is such that the density of traps reaches $5 \mathrm{e} 15 / \mathrm{cm}^{3} / \mathrm{eV}$ at an energy of 0.25 eV .

Figure 15-1 \quad Trap density of states function to be modeled

Simulation

This section details the simulation for thin film transistors. The simulation is performed with and without traps.

The input file mdex $18 a$ for the N -channel TFT example is shown in Figures 15-2 and 15-3. The first 18 lines of the file create the device structure using a simple rectangular mesh with 504 grid points. This particular device has a gate oxide thickness of 300 Angstrom and a silicon film thickness of 1000 Angstrom. The channel length is 2.0 microns. A plot of the device structure is shown in Figure 15-4.

Without Traps At lines 20-27 a gate sweep is conducted without any traps specified within the device. For this sweep, $\mathrm{Vds}=0.1 \mathrm{~V}$ and Vgs is swept from 0 to 3.0 V in 0.2 volt steps. The results of this gate sweep are stored in the file TFT_NT.IVL for plotting later on.

```
1... MESH
OUT.FILE=TFT.MSH
2... X.MESH WIDTH=5 N.SPACES=20
3...Y.MESH WIDTH=.1 N.SPACES=1
4... Y.MESH WIDTH=.03 N.SPACES=2
5... Y.MESH WIDTH=.1 N.SPACES=15
6...Y.MESH WIDTH=.1 N.SPACES=5
7... REGION NUM=1 SILICON
8... REGION NUM=2 Y.MIN=0.23 OXIDE
9... REGION NUM=3 Y.MAX=0.13 OXIDE
10... COMMENT 1=DRAIN 2=GATE 3=SOURCE 4=SUBST
11... ELECT NUM=1 IY.MAX=4 X.MIN=4.25
12...ELECT NUM=2 IY.MAX=2 X.MAX=4 X.MIN=1
13... ELECT NUM=3 IY.MAX=4 X.MAX=. }7
14..EELECT NUM=4 BOTTOM
15... COMMENT Specify doping
```

Figure 15-2 First part of the simulation input file mdex18a

```
19... PLOT.2D GRID FILL
    ... +
20... MODELS
21... SYMB
22... SOLVE
23... COMMENT
24... SYMB
25... LOG
26... SOLVE
27... LOG
28... COMMENT
29... LOAD
30... ASSIGN
31... ASSIGN
32... COMMENT
33... ASSIGN
34... COMMENT
35... TRAP
    ... +
    ... +
36... COMMENT
37... ASSIGN
38... COMMENT
39... TRAP
    ... +
    ... +
40... COMMENT
41... SYMB
42... SOLVE
43... SYMB
44... METHOD
45... SOLVE
46... LOG
47... SOLVE
48... LOG
49... COMMENT
50... PLOT.1D
    ... +
    ... +
51... PLOT.1D
52... LABEL
51... PLOT.1D Y.AX=I1 X.AX=V2 IN.FILE=TFT_TC.IVL SYMB=2 UNCH LOG
53... LABEL
```

Simulation with traps

```
Simulation with traps
Simulation without traps
Simulation without traps
NAME=EV N.VAL=-1.06/2
NAME=EV N.VAL=-1.06/2
NAME=EC N.VAL=1.06/2
NAME=EC N.VAL=1.06/2
Calculate characteristic length for hole states
Calculate characteristic length for hole states
NAME=PCHR N.VAL=(-0.25-@EV)*LOG(1E18/5E16) PRINT
NAME=PCHR N.VAL=(-0.25-@EV)*LOG(1E18/5E16) PRINT
Gererate hole traps
Gererate hole traps
DISTR N.TOT="-(5E16+1E18*EXP(-(@FENER-@EV)/@PCHR))"
DISTR N.TOT="-(5E16+1E18*EXP(-(@FENER-@EV)/@PCHR))"
COND="(@FENER<0)"
COND="(@FENER<0)"
TAUN="1E-5" TAUP="1E-6"
TAUN="1E-5" TAUP="1E-6"
Calculate characteristic length for electron states
Calculate characteristic length for electron states
NAME=NCHR N.VAL=(@EC-0.4)*LOG(1E19/1E17) PRINT
NAME=NCHR N.VAL=(@EC-0.4)*LOG(1E19/1E17) PRINT
Generate electron traps
Generate electron traps
N.TOT="(1E17+1E19*EXP((@FENER-@EC)/@NCHR))"
N.TOT="(1E17+1E19*EXP((@FENER-@EC)/@NCHR))"
COND=" (@FENER>0)"
COND=" (@FENER>0)"
Simulate with traps
Simulate with traps
TAUN="1E-5" TAUP="1E-6"
TAUN="1E-5" TAUP="1E-6"
NEWT CARR=2
NEWT CARR=2
N.DAMP
N.DAMP
OUT.FILE=TFT_TC.IVL
OUT.FILE=TFT_TC.IVL
ELEC=2 VSTEP=.2 NSTEP=15
ELEC=2 VSTEP=.2 NSTEP=15
CloSE
CloSE
PLot Results
PLot Results
Y.AX=I1 X.AX=V2 IN.FILE=TFT_NT.IVL SYMB=1 LOG
Y.AX=I1 X.AX=V2 IN.FILE=TFT_NT.IVL SYMB=1 LOG
Title="MDEX18a Id - vs- Vgs with and without Traps"
Title="MDEX18a Id - vs- Vgs with and without Traps"
LEFT=0 BOTTOM=1.E-13
LEFT=0 BOTTOM=1.E-13
LABEL="NO TRAPS" SYMB=1
```

LABEL="NO TRAPS" SYMB=1

```
```

TITLE="MDEX18a TFT Transistor Structure"

```
TITLE="MDEX18a TFT Transistor Structure"
SRH ARORA SRFMOB
SRH ARORA SRFMOB
GUMM CARR=0
GUMM CARR=0
V1=.1 OUT.FILE=TFT.INI
V1=.1 OUT.FILE=TFT.INI
NEWT CARR=2
NEWT CARR=2
OUT.FILE=TFT_NT.IVL
OUT.FILE=TFT_NT.IVL
ELEC=2 VSTEP=.2 NSTEP=15
ELEC=2 VSTEP=.2 NSTEP=15
CLOSE
CLOSE
IN.FILE=TFT.INI
IN.FILE=TFT.INI
GUMM CARR=0
GUMM CARR=0
LABEL="WITH TRAPS" SYMB=2
```

LABEL="WITH TRAPS" SYMB=2

```

Figure 15-3 Second part of the simulation input file mdex18a
With Traps
The simulation is now started with traps. At line 29, the initial solution calculated earlier is loaded. To define the trap densities the exponential form is used \(N O * \exp (E-E V) / P C H R\). The example predefines some assigned quantities. EC and EV are the energies of the conduction and valence band respectively.

To define the exponential characteristic, the characteristic energy for the exponential is needed, which for holes is given the symbol PCHR. Calculate PCHR by noting that the hole trap density is 1 e 18 at \(\mathrm{E}=\mathrm{EV}\) and the hole trap density is 5 e 16 at \(\mathrm{E}=0.25\), therefore:
\[
\begin{array}{ll}
1 e 18=N O^{*} \exp ((E V-E V) / P C H R) & \text { Equation } 15-1 \\
5 e 16=N O^{*} \exp ((-0.25-E V) / P C H R) & \text { Equation } 15-2
\end{array}
\]

Solving for \(P C H R\) and \(N O\) gives:
Equation 15-3
\[
N O=1 e 18 \quad P C H R=(-0.25-E V) * \log (1 e 18 / 5 e 16)
\]

\section*{Creating Traps}

The above values are used in line 35 to create the traps. The DIST parameter specifies that 20 discrete equally spaced discrete levels are created within the band-gap.

Densities The trap densities at the 10 points in the lower \(1 / 2\) of the band-gap are then assigned by evaluating the equation: - (5E16+1E18*EXP (- (@FENER-@EV) / @PCHR). Note that this expression is always negative since hole traps are designated by giving N. TOT a negative value. The value 5 e 16 was added to make нтOT assume a constant value near the center of the band. Note that the energy E has been replaced by the variable @FENER, which has never been assigned a value.

Band Gap Energy FENER represents the band gap energy and its value is assigned automatically by Medici during the trap creation process. FENER is one of about 50 pre-assigned variables which can be used in numeric character expressions, others represent position (@FX, @FY) potential (@FV), etc. (the complete list can be found in Chapter 3, "EXTRACT," p. 3-180). The MIDGAP parameter is used to set the energy reference for specifying trap energy levels. When MIDGAP is set in conjunction with the DIST parameter, as in this example, the distributed trap energies are centered around the middle of the band-gap rather than the intrinsic Fermi level.

The COND parameter is used to control when N.TOT, TAUN, and TAUP are evaluated. If the expression for COND evaluates to true, then values are assigned. In line 35, COND = "@FENER<0". This implies that for this statement (\#35), \(\mathbf{N}\). TOT, TAUN and TAUP are only evaluated for the lower \(1 / 2\) of the band, where \(\mathrm{E}<0\). Finally TAUN and TAUP are given values, (constants in this case). Complicated expressions could also have been given for TAUN and TAUP.

Electron Traps A similar set of statements (36-39) generates the electron traps in the upper \(1 / 2\) of the band. Note that \(\mathbf{N} . \mathbf{T O T}\) is always positive in line 39 , which indicates electron traps. The DIST parameter is not needed in line 39 since the electron traps were already created by line 35 . The MIDGAP parameter, however, is needed to specify the midgap as the energy reference for the electron trap levels.

Simulation The actual simulation with traps is performed at lines 41-48. The IV data is stored in the file TFT_TC.IVL. An IV plot of Id vs Vgs is generated by lines \(50-53\). This is shown in Figure 15-5. It can be seen that when traps are included, the device turns on much more gradually. This is to be expected. All the traps at the surface of the device must be filled with electrons before the conducting channel of the device can form. The electrons in traps contribute to the charge in Poisson's equation. But they are not free to participate in conduction, so the channel must be heavily inverted before appreciable current flows.


Figure 15-4 Transistor structure at line 19 in file mdex18a, Figure 15-3


Figure 15-5 Gate characteristics of the TFT device with and without traps at lines 46 through 49 of file mdex18a, Figure 15-3

\section*{Bipolar Junction Transistor Turn-Off with Traps Simulation}

This example investigates how the presence of electron traps effects the switching behavior of a bipolar junction transistor.

\section*{Structure Generation}

This section details the generation of the device structure to simulate BJT turn-off with traps.

Device Structure

Electrodes and Doping

The input file for the example is shown in Figure 15-6. This example uses a quasi one-dimensional transistor structure. The grid is created at lines 2-5. Note that only one vertical column of nodes is used because a one dimensional model is desired.

The electrodes and doping are generated by lines 6-11. The emitter is at the top edge and the collector at the bottom edge. The base contact extends all the way across the middle of the device at a depth of \(\mathrm{Y}=0.3\) microns. Note that the MAJORITY type contact is used for the base. This contact is transparent to minority carriers and allows electrons to pass freely from the emitter to the collector.

Initial Solution Lines 14-18 generate an initial solution with the device turned ON (Vce=8.0 Vbe \(=0.76\) ). A zero carrier solution (at line 18) is used to start the 2 carrier solution (at line 16). This initial solution is stored in the file \(S 1\) and is used to set the initial conditions for the transient.

\section*{Simulation}

This section details simulation.

Without Traps The first transient is performed without traps by line 21. The base voltage is dropped from its initial value ( 0.76 ) to zero volts over a period of \(1 \mathrm{e}-11\) seconds (the first time step) and the simulation runs for \(1 \mathrm{e}-2\) seconds. The results are stored in the file BJT_NT.

\section*{Time Dependent Traps}

The second simulation is performed with time dependent traps, i.e., the time dependent trap equations are solved simultaneously with the device equations. The traps are specified by line 25 , and single energy level with a trap density of \(1 \mathrm{e} 14 \mathrm{traps} / \mathrm{cm}^{3}\) is used. The trap energy level is explicitly specified as 0.1 volt above the intrinsic Fermi level using the E1 parameter.

The traps are then specified as time dependent using TIMEDEP. The same device is then resimulated, using the SOLVE statement of line 28 to reestablish the steady state solution (this time with traps). Finally, the time dependent simulation is performed by line 33 .

\section*{Fast Traps A third simulation with fast traps is then run for comparison. When fast traps are} used, the time dependent trap equation is not solved. Instead the trap occupation function is calculated to be consistent with the carrier concentrations. The trap occupation functions, therefore, adjust instantaneously to the carrier concentrations rather than at their own rate.

Trap Analysis

The results of the analysis are shown in Figure 15-7.
- It can be seen that without any traps, the device turns off the most rapidly.
- When fast traps are included, turn off is delayed because electrons must be removed from the traps in the base and depletion region of the collector before the device can be turned off.
- When time dependent traps are included, the early part of the turn off characteristic looks like the case without any traps, but then a nearly constant tail appears.

This tail is created by electrons being slowly excited from the trap centers and participating in conduction. Since the trap level is deep in the band, the rate of thermal excitation is very slow and the tail has a very small magnitude but long duration. If the trap center were placed closer to the conduction band, the magnitude of the tail would be increased, and the duration reduced.


Figure 15-6 Input listing of simulation file mdex 18b


Figure 15-7 Transient turn-off response of BJT with different trap models at lines 22, 29, and 36 through 40 in file mdex 18b, Figure 15-6

\section*{Breakdown Walk-Out in Power MOS Device}

This example simulates breakdown walk-out in a power MOS transistor. Breakdown walk-out is a behavior whereby the breakdown voltage of a MOSFET increases with time due to the trapping of carriers within the oxide and at the interface of the device.

This example uses the TC-AAM to simulate this trapping of carriers. A new material called S. OXIDE is also used in the simulation. S.OXIDE is silicon dioxide treated as a wide band-gap semiconductor. This type of material is used so that the electron and hole continuity equations can then be solved within the oxide as well as the silicon layers. This enables modeling of the transport and trapping of hot electrons injected within the oxide. Since the oxide is modeled as a wide band-gap semiconductor, the \(\mathrm{Si} / \mathrm{SiO} 2\) interface becomes a heterojunction and the HD-AAM must also be authorized to run this example.

\section*{Structure Generation and Simulation}

This section provides details for the generation of a power MOS device structure and simulation of breakdown walk-out in this structure.

\title{
Device Structure Specification
}

The Medici input file which generates the structure and performs the simulations is shown in Figure 15-8. The device structure is specified using lines 1-24. Note that the material S.OXIDE is used instead of OXIDE (line 14).

The drain electrode is created using two statements (lines 15 and 16). This is done because it is desired for the drain to extend over the top of the drift space as well as contact the silicon. This electrode is not visible in the device structure plot shown in Figure 15-9.
```

1... TITLE
Synopsys MEDICI MDEX18C: Breakdown Walk-out in Power MOS
2... COMMENT Create the structure
3... MESH OUT.FILE=MD18CMS
4... X.MESH WIDTH=5 N.SPACES=5
5...X.MESH WIDTH=10 N.SPACES=25
6... X.MESH WIDTH=5 N.SPACES=5
7... Y.MESH WIDTH=0.5 N.SPACES=3 Y.MIN=-1.02
8... Y.MESH WIDTH=0.5 N.SPACES=3
9... Y.MESH WIDTH=0.02 N.SPACES=3
10... Y.MESH WIDTH=10 H1=.05 H2=1.5
11... ELIMIN COLUMN Y.MIN=2
12...ELIMIN COLUMN Y.MIN=3
13... REGION SILICON
14... REGION S.OXIDE Y.MAX=0 X.MIN=5 X.MAX=15
15...ELECTR NAME=Drain Y.MAX=0 X.MIN=16
16... ELECTR NAME=Drain TOP X.MIN=9
17..E ELECTR NAME=Gate Y.MIN=-.5 Y.MAX=-0.02 X.MIN=5.1 X.MAX=10
18... ELECTR NAME=Source Y.MAX=0 X.MAX=4
19...ELECTR NAME=Substrate BOTTOM
20... PROFILE P-TYPE N.PEAK=5E14 REGION=SILICON UNIF
21... PROFILE N-TYPE N.PEAK=5E19 REGION=SILICON X.MAX=5 JUNC=1
22... PROFILE N-TYPE N.PEAK=5E19 REGION=SILICON X.MIN=15 JUNC=1
23... PROFILE N-TYPE N.PEAK=2.0E16 REGION=SILICON
... + X.MIN=10 Y.CHAR=0.25 Y.MAX=0.25
24... PROFILE N-TYPE N.PEAK=1 UNIF REGION=S.OXIDE
25... COMMENT Plot the structure
26... PLOT.2D FILL Title="MDEX18C: Power MOS Device Structure"
27...FILL REGION=S.OXIDE COLOR=5 ^NP.COLOR
28... LABEL LABEL="S.OXIDE" X=12 Y=-0.5 C.SIZ=.35
29... LABEL LABEL="SOURCE" X=1 Y=0.5 C.SIZ=. 35
30... LABEL LABEL="DRAIN" X=16 Y=0.5 C.SIZ=.35
31... LABEL LABEL="DRIFT SPACE" X=10 Y=0.5 C.SIZ=.35
32... MODELS FLDMOB PRPMOB BGN CONSRH AUGER GATE2 ARORA
33... COMMENT Gerarate an initial solution
34... SYMB CARR=0
35... METHOD DVLIMIT=12 ITLIMIT=40 ^ TAUTO
36... SOLVE V (Drain)=50 V (Gate)=2.5
37.. SYMB NEWTON CARR=2
38... SOLVE GATE

```

Figure 15-8 The input file for the breakdown walkout simulation, mdex18c

The final grid is rather course and has about 900 nodes. Since charge transport within the oxide is being modeled, it is important to have several lines of nodes within the oxide to resolve the current flow. It is also desirable to have fine grid near the edge of the gate on the drain side since the electric field changes rapidly in this area.

The device is a rather large MOS transistor with the exception of the "Drift Space" and the drain electrode which extends over the drift space. The drift space operates like a lightly doped drain (LDD) and extends the depletion region at the drain side, thereby reducing the peak electric field and increasing the breakdown voltage.

The extension of the drain electrode over the drift space is not normally done in the design of the device, but it is used here because it exaggerates the breakdown walk-out mechanism. Walk-out is exaggerated because the positive drain electrode attracts electrons up into the oxide thereby increasing the hot electron injection efficiency. Without this electrode, only traps at the interface would receive hot electrons.

MDEX18C: Power MOS Device Structure


Figure 15-9 Power MOS device structure plot generated by the statements at lines 26 through 30 of the file mdex18c shown in Figure 15-8

Models The models used in the simulation are specified at line 32. Note that the GATE2 gate current model is specified. GATE 2 is used because this is the only gate current model currently available that is compatible with S.OXIDE. This restriction will be removed in future versions of the program. The other models specified at line 32 are "standard" for a MOS simulation.

\section*{Initial Solution}

At lines 33 through 36, the initial solution for the transient is generated. First a zero carrier Gummel solution is generated. Since 50 V is applied to this device, the potential update limit is increased to 12 V using the DVLIMIT parameter on the ME THOD statement. The initial solution is calculated at line 36 .

It should be noted that the gate current calculated at the end of a time or bias point is used to supply the hot electron injection for the next time point. Specifying GATE on the SOLVE statement at line 38 causes a gate current calculation to be performed that will used during the first time step of the transient simulation that is initiated at line 41 . This method is accurate as long as the time steps are small enough so that the gate current changes relatively slowly.

At line 40, the oxide traps are specified. The traps are placed in the interior of the S. OXIDE region using the COND parameter. The effective surface density of traps is \(2 \mathrm{e} 12 / \mathrm{cm}^{2}\) since the density of traps is \(2 \mathrm{e} 16 / \mathrm{cm}^{3}\) and the traps are uniformly distributed throughout the \(10^{-4} \mathrm{~cm}\) thick oxide layer. The traps are specified as time dependent with an energy level \(=0 \mathrm{eV}\), (at the intrinsic Fermi level).

\section*{Time Dependent Simulation}

The time dependent simulation is initiated at line 41. Note that the GATE parameter is specified to cause the program to calculate the number of hot electrons which are injected into the S. OXIDE layer. Post-processing impact ionization analysis is also performed by specifying the IMPACT parameter. Due to the long time constant of the trap charging process, multiplicative time steps are taken using the TMULT parameter.

Results A series of plots can now be generated using the solution files created during the preceding example. The input file to generate the plots is shown in Figure 15-10.

Lines 7-15 generate the plot shown in Figure 15-11.
- The top plot shows the potential distribution within the device at time \(\mathrm{t}=1 \mathrm{Sec}\).

Note how the equipotentials are spread more or less uniformly across the drift space. This spreading reduces the peak electric field and results in a higher breakdown voltage. During the simulation, electrons which become trapped within the oxide cause the spreading to become even more uniform and as a result the breakdown voltage increases.
- The middle plot in the figure shows the component of electric field parallel to the current (J.E/|J|).
It can be seen that the peak electric field is right below the edge of the gate. This is the point of peak impact ionization and hot electron injection.
- The bottom plot in Figure 15-11 shows hot electron injection within the device.

Note that the hot electron injection is highly localized.
\begin{tabular}{|c|c|}
\hline \(\begin{array}{ll}1 \ldots & \text { TITLE } \\ \text { 2... } & \text { MESH } \\ \text { 3... ASSIGN }\end{array}\) & \begin{tabular}{l}
MDEX18D: Plot Results of Breakdown Walk-out \\
IN.FILE=MD18CMS \\
NAME=STRING C.VAL="Y.MAX=1.5 Y.LENG=3 ^LABELS L.ELEC=-1"
\end{tabular} \\
\hline 4... COMMENT & Perform some plots at time \(t=0.1\) \\
\hline 5... LOAD & IN.FILE=MD18C00 \\
\hline 6... MODELS & GATE2 \\
\hline 7... PLOT. 2D & @STRING Y.OFF=.5 TITLE="" \\
\hline 8... CONTOUR & G.IN LOG ABS FILL \\
\hline 9... PLOT. 2D & \({ }^{\wedge}\) CLEAR BOUND @STRING Y.OFF=.5 \\
\hline . + & TITLE="Gate Currrent Genertation, T=0.1 Sec" \\
\hline 10... PLOT.2D & @STRING ^CLEAR Y.OFF=5.5 TITLE="" \\
\hline 12... PLOT. 2D & \({ }^{\wedge}\) CLEAR BOUND @STRING Y.OFF=5.5 \\
\hline & TITLE="J.E/|J|, T=0.1 Sec" \\
\hline 13... PLOT.2D & @STRING ^CLEAR Y.OFF=10.5 TITLE="" \\
\hline 14... CONTOUR & POTENTIAL FILL \\
\hline 15... PLOT. 2D & \({ }^{\wedge}\) CLEAR BOUND @STRING Y.OFF=10.5 \\
\hline . + & TITLE="MDEX18D: Potential, \(\mathrm{T}=0.1 \mathrm{Sec}\) " \\
\hline 16... COMMENT & Plot trap occupation at various times. \\
\hline 17... LOAD & IN.FILE=MD18C00 \\
\hline 18... PLOT.2D & @STRING Y.OFF=0.5 TITLE="" \\
\hline 19... CONTOUR & LOG TRAP.OC MIN=10 MAX=16.3 FILL \\
\hline 20... PLOT.2D & \({ }^{\wedge} \mathrm{CLEAR}\) BOUND @STRING Y.OFF=.5 \\
\hline . + & TITLE="Trap Occupation, T=0.1 Sec" \\
\hline 21... LOAD & IN.FILE=MD18C10 \\
\hline 22... PLOT.2D & @STRING Y.OFF=5.5 ^CLEAR TITLE=" \\
\hline 23... CONTOUR & LOG TRAP.OC MIN=10 MAX=16.3 FILL \\
\hline 24... PLOT. 2D & \({ }^{\wedge}\) CLEAR BOUND @STRING Y.OFF=5.5 \\
\hline . + & TITLE="Trap Occupation, \(\mathrm{T}=4 \mathrm{Hrs}\) " \\
\hline 25... LOAD & IN.FILE=MD18C17 \\
\hline 26... PLOT.2D & @STRING Y.OFF=10.5 ^CLEAR TITLE="" \\
\hline 27... CONTOUR & LOG TRAP.OC MIN=10 MAX=16.3 FILL \\
\hline 28... PLOT.2D & ^CLEAR BOUND @STRING Y.OFF=10.5 \\
\hline \(\ldots+\) & TITLE="MDEX18D: Trap Occupation, T=1.5 Years" \\
\hline 29... Comment & Plot impact generation at various times \\
\hline 30... LOAD & IN.FILE=MD18C00 \\
\hline 31... PLOT. 2D & @STRING Y.OFF=0.5 TITLE="" \\
\hline 32... CONTOUR & II.GEN LOG MIN=20 MAX=26 FILL \\
\hline 33... PLOT. 2D & \({ }^{\text {chelear }}\) BOUND @STRING Y.OFF=.5 \\
\hline ... + & TITLE="Generation (ISUB=1.4E-6), T=0.1 Sec" \\
\hline 34... LOAD & IN.FILE=MD18C10 \\
\hline 35... PLOT.2D & @STRING Y.OFF=5.5 ^CLEAR TITLE=" \\
\hline 36... CONTOUR & II.GEN LOG MIN=20 MAX=26 FILL \\
\hline 37... PLOT.2D & \({ }^{\wedge}\) CLEAR BOUND @STRING Y.OFF=5.5 \\
\hline ... + & TITLE="Generation (ISUB=7.5E-7), T=4 Hrs" \\
\hline 38... LOAD & IN.FILE=MD18C17 \\
\hline 39... PLOT.2D & @STRING Y.OFF=10.5 ^CLEAR TITLE="" \\
\hline 40... CONTOUR & II.GEN LOG MIN=20 MAX=26 FILL \\
\hline 41... PLOT. 2D & \({ }^{\wedge} \mathrm{CLEAR}\) BOUND @STRING Y.OFF=10.5 \\
\hline & TITLE="MDEX18D: Generation (ISUB=3.9E-7), T=1.5 Yrs" \\
\hline 42... PLOT.1D & X.AX=TIME Y.AX=II IN.FILE=mdex18c.ivl POINTS X.LOG \\
\hline ... + & TITLE="MEDX18D: Substrate Current During Walk-Out" \\
\hline 43... PLOT.1D & X.AX=TIME Y.AX=I (DRAIN) IN.FILE=mdex18c.ivl POINTS X.LOG \\
\hline & TITLE="MEDX18D: Drain Current During Walk-Out" \\
\hline
\end{tabular}

Figure 15-10 The simulation input file mdex18d

\section*{Trap Occupation \\ Plots}

\section*{Impact lonization} Plots

Lines 16-28 of Figure 15-10 plot trap occupation at three different time points which is shown in Figure 15-12. Observe how traps are filled first closest to the point of gate current injection. You can also see how the gate current fans out as it moves up toward the overlapping drain contact since the pattern of filled traps is wider at the top than at the bottom.

Observe that not all of the electrons are trapped as they move through the oxide. If all the electrons were trapped, then early in the simulation (at time \(\mathrm{t}=1 \mathrm{Sec}\) ), only traps near the interface would be filled and not the traps near the top of the oxide.

Lines 29-41 of Figure 15-10 generates Figure 15-13 which shows impact ionization during the simulation. It can be seen that the peak ionization rate is decreasing and the size of the peak is also getting smaller.

Figure 15-14 which plots total substrate current also bears out this point. The fact that the ionization rate is getting smaller at this fixed drain bias would indicate that the breakdown voltage is increasing. Unfortunately, to actually run the simulations to generate the breakdown curves for each of these time points would be a very time consuming process.

MDEX18D: Potential \(\mathrm{T}=1 \mathrm{Sec}\)

J.E/|J| T=1 Sec


Gate Currrent Genertation \(\mathrm{T}=1 \mathrm{Sec}\)


Figure 15-11 Time dependent potential, electric field, and gate current at lines 7 through 15 in file mdex 18d, Figure 15-10
```

MDEX18D: Trap Occupation $\mathrm{T}=1.5$ Years

```


Figure 15-12 Trap occupation at lines 16 through 28 in file mdex18d, Figure 15-10


Figure 15-13 Impact Ionization at lines 29 through 41 in file mdex18d, Figure 15-10


Figure 15-14 Substrate current during walk-out at line 42 in file mdex18d, Figure 15-10

\section*{Optical Device Examples}

\section*{Example Specifications}

The Medici Optical Device Advanced Application Module (OD-AAM) is used to model propagation of light inside and outside a device. The OD-AAM also allows calculation of the spectral response of the optical devices in steady-state or transient modes. This chapter presents the following two examples:
- Simulation of an A-Silicon solar cell and how the DC characteristics change according to the wavelength of the incident light
- Simulation of a GaAs photoconductive detector

\section*{A-Silicon Solar Cell Example}

Amorphous silicon p-i-n solar cells are one of the most promising technologies for both consumer and power photovoltaic applications. This example examines the spectral response and the power conversion efficiency of such a cell. There are many important parameters for solar cell design such as the following:
- Doping profile
- Structure of illumination window
- Gap-state distribution
- Back surface electrode

This example uses the oxide thickness of the illumination window as a variable to investigate its effect on the cell operation.

\section*{Structure Generation}

This section describes the generation of the device structure (input file, mesh, etc.).

Input file mdex19a is shown in Figures 16-1 and 16-2. The first step in creating the structure is the mesh generation in the lines 9 to 14 . The oxide thickness is controlled by the loop parameter L1.

The doping profile is specified by lines 21 to 23 . The cell has a typical p+-i - n+ structure.

Line 25 sets the top ITO electrode as an infinitely thin transparent film. Its refractive index will be set on the MATERIAL statement. The bottom a-silicon/ Aluminum contact reflectance is set to 0.9 in line 26 .

\section*{Refractive Index}

Line 30 instructs the program to set the refractive index of the ITO film to 2.1 over the \([0.2,1.0]\) micron wavelength band rather than using the default values of the silicon dioxide. The absorption coefficients of a-silicon in this simulation is calculated from the imaginary terms of the refractive index which is read from the default table. The absorption coefficient of a-silicon in the visible region decreases dramatically as the wavelength approaches the ultra-violet region.

\section*{Description of Light Source}

The description of the light source and the ray-tracing parameters are given on the PHOTOGEN statement in line 33. RAYTRACE should be specified whenever the OD-AAM is used.

The solar light spectrum is approximated by the black-body radiation spectrum (enabled via the BB. RAD flag) at 5800 K (BB. TEMP=5800) which is nearly identical to Air Mass Zero (AM0) spectrum as shown in Figure 16-3. The total radiation energy is approximately 100 m W over the \([0.2 \mu \mathrm{~m}, 1.0 \mu \mathrm{~m}\) ] wavelengthrange.

The number of sampled wavelengths, WL is set to 25 in line 2 . Each wavelength has its monochrome component of the light intensity calculated internally by Medici. The beam originates at \(x=0.05 \mu \mathrm{~m}\) and \(\mathrm{y}=-1.5 \mu \mathrm{~m}\) and the incident angle is 90 degrees. Each ray of the beam is traced until its power is attenuated below, INT. RATIO *(The initial light power) of the ray, at which point the ray is terminated.

The width of ray is \(0.1 \mu \mathrm{~m}\) so that the whole device is illuminated. The ray is not initially split since the simulation device has a simple one-dimensional structure.

One of the major capabilities of OD-AAM is the treatment of the stack of multiple layers as a single film to consider interference effects. You can evaluate the energy of the electromagnetic wave which enters the device and its TM and TE polarization. In this example, the transmittance and reflectance of the Air/ITO/aSi structure is modeled.

\section*{Solutions for the Spectral Response and I/V Characteristics}

This section describes the various solutions and save methods for the examples.
The zero-bias (or short-circuit) solutions for the sampled wavelengths are performed by lines 37 to 39 and the result is saved in the log files, MDEX19.SPL1, MDEX19.SPL2, and MDEX19.SPL3.

The WAVE parameter specifies the number of sampled wavelengths. Each solution only accounts for the carriers generated by the current wavelength component. In this example, the WAVE loops from 1 to 25 which is the number of sampled wavelengths in the PHOTOGEN statement. The log files contain the following:
- Wavelengths
- Transmittance
- Reflectance
- Terminal currents
- Number of generated carriers
- Incident flux

Lines 41 to 44 perform steady-state solutions to calculate the total collected current, the open-circuit voltage and the cell power. The bias step is reduced as the voltage approaches the open-circuit voltage Voc.

\section*{Simulation Results and Plots}

This section presents the simulation results and the generated graphical plots.
Plots from the simulation clarifying the optical effects are generated by the second input file, mdex19b, which is shown in Figures 16-6 and 16-7. Line 3 creates a plot of the simulation mesh of the cell with ITO thickness of \(0.06 \mu \mathrm{~m}\) (Figure 168).

Figures 16-4 and 16-5 show the simulation results for an ITO thickness of 0.06 \(\mu \mathrm{m}\). The transmittance plot is shown in Figure \(16-9\) which is the result of the lines 5 through 11 in the input file \(m d e x 19 b\).

> Short Circuit Current and Spectral Power Density

Figure 16-10 created in lines 13 to 19 shows the short-circuit current through electrode num \(=1\). The cell with a \(0.06 \mu \mathrm{~m}\) thick ITO window reaches a peak of generated current for a wavelength of approximately \(0.6 \mu \mathrm{~m}\), very near the \(\lambda=0.51\) \(\mu \mathrm{m}\) maximum spectral power density of the source (see Figure 16-3). Therefore, this cell can absorb more photons than the other two whose transmittance peaks are far from the solar power density peak.

\section*{External Collection Efficiency Plot}

Lines 21 to 27 plot the external collection efficiency of the three cells. The result is shown in Figure 16-11.

The external collection efficiency is defined as the total photocurrent density \(J(\lambda)\)
at that wavelength divided by the number of photons incident on the surface of the cell times the electronic charge \(\mathrm{q}(=1.6 \mathrm{e}-19 \mathrm{C})\).

This is different from QNTM.EFF, the quantum efficiency which is the electron-hole-pair generation rate per photon inside the device and may be defined by the user. The default value used in this example is 1.0.

In this figure, the cell with \(0.09 \mu \mathrm{~m}\) ITO exhibits a spike near \(0.28 \mu \mathrm{~m}\) reflecting the peak of the transmittance in the Figure 16-9. Both the short-circuit current and the external collection efficiency of the cell with \(0.03 \mu \mathrm{~m}\) ITO have much lower values over the wavelength range than the other cells. This is due to the poor transmittance beyond \(\lambda=0.4 \mu \mathrm{~m}\). The \(0.06 \mu \mathrm{~m}\) ITO cell shows the greatest efficiency over the 0.4 to \(0.7 \mu \mathrm{~m}\) range where most of the solar energy is concentrated.

In Figure 16-12, the I-V characteristics of the three cells are plotted. The photocurrents are approximately as follows:
- \(-1.99 \mathrm{e}-11 \mathrm{Amps}\) for the \(0.03 \mu \mathrm{~m}\) "ITO thickness"
- \(-2.43 \mathrm{e}-11 \mathrm{Amps}\) for the \(0.06 \mu \mathrm{~m}\) "ITO thickness"
- \(-2.13 \mathrm{e}-11 \mathrm{Amps}\) for the \(0.09 \mu \mathrm{~m}\) "ITO thickness"

Since the device is \(0.1 \mu \mathrm{~m}\) wide and \(1 \mu \mathrm{~m}\) deep in the z direction, the absolute current densities are \(19.9 \mathrm{~mA} / \mathrm{cm}^{2}, 24.3 \mathrm{~mA} / \mathrm{cm}^{2}\) and \(21.3 \mathrm{~mA} / \mathrm{cm}^{2}\), respectively. The open-circuit voltage Voc is found to be approximately 0.94 V for all three cells.

Power and Load Resistance Plot

Lines 37 and 38 define the power and the load resistance quantities for a new plot. The power P is the product of the cell voltage and the cell current and the load resistance L is the cell voltage divided by the cell current.

In Figure 16-13, the ITO peak powers are approximately as follows:
- \(15.2 \mathrm{~mW} / \mathrm{cm}^{2}\) for the \(0.03 \mu \mathrm{~m}\) "ITO thickness"
- \(19.0 \mathrm{~mW} / \mathrm{cm}^{2}\) for the \(0.06 \mu \mathrm{~m}\) "ITO thickness"
- \(16.7 \mathrm{~mW} / \mathrm{cm}^{2}\) for the \(0.09 \mu \mathrm{~m}\) "ITO thickness"

The maximum power is generated by the \(0.06 \mu \mathrm{~m}\) ITO cell. The Fill Factor of the \(0.06 \mu \mathrm{~m}\) ITO cell is:
\[
F F=\frac{P_{\max }}{I_{S C} V_{O C}}=\frac{19.0 \mathrm{~mW} / \mathrm{cm}^{2}}{24.3 \mathrm{~mA} / \mathrm{cm}^{2} \cdot 0.94 \mathrm{~V}}=0.83
\]

The power conversion efficiency for \(0.06 \mu \mathrm{~m}\) cell is calculated in Equation 16-2. The total incident power is \(100.4 \mathrm{mWatts} / \mathrm{cm}^{2}\), and therefore,
\[
\text { Efficiency }=\frac{19.0 \mathrm{~mW} / \mathrm{cm}^{2}}{100.4 \mathrm{~mW} / \mathrm{cm}^{2}} \cong 0.19
\]

Equation 16-2
```

1... TITLE Example 19 a-Silicon Solar Cell Example
2... ASSIGN NAME=WL N.VALUE=25
3... ASSIGN NAME=EG N.VAL=1.6
4... COMMENT loop with 3 different oxide thicknesses
5... LOOP STEPS=3
6... ASSIGN NAME=L1 N.VAL=(1, 2, 3)
7... ASSIGN NAME=TOX N.VAL=(0.03,0.06,0.09)
8... COMMENT mesh generation
9... MESH OUT.FILE="SSMSH"@L1""
10... X.MESH WIDTH=0.1 H1=0.1
11... Y.MESH Y.MIN=-@TOX Y.MAX=0.0 H1=@TOX/2
12... Y.MESH Y.MIN=0.0 Y.MAX=0.02 H1=0.002
13... Y.MESH Y.MIN=0.02 Y.MAX=0.45 H1=0.002 H2=0.005 H3=0.04
14... Y.MESH Y.MIN=0.45 Y.MAX=0.50 H1=0.005
15... REGION NUM=1 Y.MAX=0 INSULATOR
16... REGION NUM=2 Y.MIN=0 A-SILICON
17... COMMENT Electrodes: \#1=p+ Collector, \#2=Substrate
18... ELECTR NUM=1 Y.MIN=0 Y.MAX=0
19... ELECTR NUM=2 BOTTOM
20... COMMENT Specify Doping (p+nn+ structure)
21... PROFILE N-TYPE Y.MIN=0.00 UNIFORM N.PEAK=1e11
22... PROFILE P-TYPE Y.MIN=0.00 Y.JUN=0.01 N.PEAK=1E18
23... PROFILE N-TYPE Y.MIN=0.50 Y.JUN=0.47 N.PEAK=5E18
24... COMMENT Specify Electrode Characteristics
25... CONTACT NUM=1 TRANSE
26... CONTACT NUM=2 REFLECT=0.9
27... COMMENT Specify Optical Parameters
28... COMMENT The cell is assumed to be coated with indium tin oxide
29... MATERIAL A-SILICON EG300=@EG
30... MATERIAL REGION=1 PR.TAB WAVE.RE=(0.2,1.0) INDEX.RE=(2.10,2.10)
... + FIRST LAST

```

Figure 16-1 First part of the simulation input file mdex19a
```

31... MODELS CONSRH AUGER
32... COMMENT Specify light source and photogeneration with raytracing
... + The light spectrum is black body radiation (T = 5800K)
... + which is approximated to the AM0 spectrum.
... + Total incident light power is approximately 100mW/cm^2
... + for [0.2 um, 1.0 um] wavelength band.
33... PHOTOGEN RAYTRACE BB.RADI BB.TEMP=5800 WAVE.ST=0.2 WAVE.EN=1.0
... + WAVE.NUM=@WL
... + X.ORG=0.05 Y.ORG=-1.5 ANGLE=90 INT.RATIO=1E-2
... + N.INTEG=10 RAY.N=1 RAY.W=0.1 FILM.REG=(1)
34... SYMBOL NEWTON CARRIERS=2
35... COMMENT Solve for each wavelength of the spectral response
36... LOG OUT.FILE="MDEX19.SPL"@L1""
37... LOOP STEPS=@WL
38... SOLVE WAVE=1:1
39... L.END
40... COMMENT DC characteristics
41... LOG OUT.FILE="MDEX19.IVL"@L1""
42... SOLVE V1=0.0 VSTEP=0.1 NSTEP=7 ELEC=1
43... SOLVE V1=0.8 VSTEP=0.03 NSTEP=3 ELEC=1
44... SOLVE V1=0.9 VSTEP=0.01 NSTEP=6 ELEC=1
45... L.END
46... END

```

Figure 16-2 Second part of the simulation input file mdex19a


Figure 16-3 Black-body radiation at 5800K and AM0 solar spectrum
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Transmittance and Reflectance at Illumination Surface} \\
\hline Number & Wavelength & Transmittance & Reflectance \\
\hline 1 & \(2.160 \mathrm{E}-01 \mathrm{um}\) & \(5.955 \mathrm{E}-01\) & \(4.045 \mathrm{E}-01\) \\
\hline 2 & \(2.480 \mathrm{E}-01 \mathrm{um}\) & \(3.704 \mathrm{E}-01\) & \(6.296 \mathrm{E}-01\) \\
\hline 3 & \(2.800 \mathrm{E}-01 \mathrm{um}\) & \(3.459 \mathrm{E}-01\) & \(6.541 \mathrm{E}-01\) \\
\hline 4 & \(3.120 \mathrm{E}-01 \mathrm{um}\) & \(3.900 \mathrm{E}-01\) & \(6.100 \mathrm{E}-01\) \\
\hline 5 & \(3.440 \mathrm{E}-01 \mathrm{um}\) & \(4.934 \mathrm{E}-01\) & \(5.066 \mathrm{E}-01\) \\
\hline 6 & \(3.760 \mathrm{E}-01 \mathrm{um}\) & \(6.180 \mathrm{E}-01\) & \(3.820 \mathrm{E}-01\) \\
\hline 7 & \(4.080 \mathrm{E}-01 \mathrm{um}\) & \(7.551 \mathrm{E}-01\) & \(2.449 \mathrm{E}-01\) \\
\hline 8 & \(4.400 \mathrm{E}-01 \mathrm{um}\) & \(8.620 \mathrm{E}-01\) & \(1.380 \mathrm{E}-01\) \\
\hline 9 & \(4.720 \mathrm{E}-01 \mathrm{um}\) & \(9.412 \mathrm{E}-01\) & \(5.882 \mathrm{E}-02\) \\
\hline 10 & \(5.040 \mathrm{E}-01 \mathrm{um}\) & \(9.833 \mathrm{E}-01\) & \(1.666 \mathrm{E}-02\) \\
\hline 11 & \(5.360 \mathrm{E}-01 \mathrm{um}\) & \(9.926 \mathrm{E}-01\) & \(7.411 \mathrm{E}-03\) \\
\hline 12 & \(5.680 \mathrm{E}-01 \mathrm{um}\) & \(9.852 \mathrm{E}-01\) & \(1.477 \mathrm{E}-02\) \\
\hline 13 & \(6.000 \mathrm{E}-01 \mathrm{um}\) & \(9.662 \mathrm{E}-01\) & \(3.384 \mathrm{E}-02\) \\
\hline 14 & \(6.320 \mathrm{E}-01 \mathrm{um}\) & \(9.426 \mathrm{E}-01\) & \(5.742 \mathrm{E}-02\) \\
\hline 15 & \(6.640 \mathrm{E}-01 \mathrm{um}\) & \(9.231 \mathrm{E}-01\) & 7.692E-02 \\
\hline 16 & \(6.960 \mathrm{E}-01 \mathrm{um}\) & \(9.048 \mathrm{E}-01\) & 9.522E-02 \\
\hline 17 & \(7.280 \mathrm{E}-01 \mathrm{um}\) & \(8.882 \mathrm{E}-01\) & \(1.118 \mathrm{E}-01\) \\
\hline 18 & \(7.600 \mathrm{E}-01 \mathrm{um}\) & \(8.736 \mathrm{E}-01\) & \(1.264 \mathrm{E}-01\) \\
\hline 19 & \(7.920 \mathrm{E}-01 \mathrm{um}\) & \(8.609 \mathrm{E}-01\) & \(1.391 \mathrm{E}-01\) \\
\hline 20 & \(8.240 \mathrm{E}-01 \mathrm{um}\) & \(8.498 \mathrm{E}-01\) & \(1.502 \mathrm{E}-01\) \\
\hline 21 & \(8.560 \mathrm{E}-01 \mathrm{um}\) & \(8.395 \mathrm{E}-01\) & 1.605E-01 \\
\hline 22 & \(8.880 \mathrm{E}-01 \mathrm{um}\) & \(8.307 \mathrm{E}-01\) & \(1.693 \mathrm{E}-01\) \\
\hline 23 & \(9.200 \mathrm{E}-01 \mathrm{um}\) & \(8.232 \mathrm{E}-01\) & \(1.768 \mathrm{E}-01\) \\
\hline 24 & \(9.520 \mathrm{E}-01 \mathrm{um}\) & \(8.168 \mathrm{E}-01\) & \(1.832 \mathrm{E}-01\) \\
\hline 25 & \(9.840 \mathrm{E}-01 \mathrm{um}\) & 8.093E-01 & \(1.907 \mathrm{E}-01\) \\
\hline
\end{tabular}

Figure 16-4 Transmittance and reflectance from Photogen and file. reg at line 33 in file mdex19a.inp, Figures 16-1 and 16-2
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Generation rate and Incident flux per each wavelength} \\
\hline Number & Wavelength & Generated & carriers & Incident & flux \\
\hline 1 & \(2.160 \mathrm{E}-01 \mathrm{um}\) & \(5.919 \mathrm{E}-14\) & C/um/s & 9.939E-14 & C/um/s \\
\hline 2 & \(2.480 \mathrm{E}-01 \mathrm{um}\) & \(9.325 \mathrm{E}-14\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & \(2.517 \mathrm{E}-13\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 3 & \(2.800 \mathrm{E}-01 \mathrm{um}\) & \(1.681 \mathrm{E}-13\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & \(4.860 \mathrm{E}-13\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 4 & \(3.120 \mathrm{E}-01 \mathrm{um}\) & \(3.051 \mathrm{E}-13\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & \(7.823 \mathrm{E}-13\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 5 & \(3.440 \mathrm{E}-01 \mathrm{um}\) & \(5.474 \mathrm{E}-13\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & \(1.109 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 6 & \(3.760 \mathrm{E}-01 \mathrm{um}\) & 8.880E-13 & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & \(1.437 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 7 & \(4.080 \mathrm{E}-01 \mathrm{um}\) & \(1.314 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & 1.740E-12 & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 8 & \(4.400 \mathrm{E}-01 \mathrm{um}\) & 1.728E-12 & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & \(2.005 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 9 & \(4.720 \mathrm{E}-01 \mathrm{um}\) & \(2.092 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & 2.222E-12 & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 10 & \(5.040 \mathrm{E}-01 \mathrm{um}\) & \(2.352 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & 2.392E-12 & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 11 & \(5.360 \mathrm{E}-01 \mathrm{um}\) & \(2.496 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & 2.515E-12 & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 12 & \(5.680 \mathrm{E}-01 \mathrm{um}\) & \(2.554 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & \(2.596 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 13 & \(6.000 \mathrm{E}-01 \mathrm{um}\) & \(2.545 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & 2. \(640 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 14 & \(6.320 \mathrm{E}-01 \mathrm{um}\) & \(2.435 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & 2.654E-12 & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 15 & \(6.640 \mathrm{E}-01 \mathrm{um}\) & \(2.331 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & 2. \(643 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 16 & \(6.960 \mathrm{E}-01 \mathrm{um}\) & \(2.183 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & 2.612E-12 & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 17 & \(7.280 \mathrm{E}-01 \mathrm{um}\) & 1.992E-12 & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & 2.565E-12 & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 18 & \(7.600 \mathrm{E}-01 \mathrm{um}\) & \(1.697 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & \(2.506 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 19 & \(7.920 \mathrm{E}-01 \mathrm{um}\) & \(1.253 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & \(2.438 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 20 & \(8.240 \mathrm{E}-01 \mathrm{um}\) & \(5.992 \mathrm{E}-13\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & \(2.364 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 21 & \(8.560 \mathrm{E}-01 \mathrm{um}\) & \(5.117 \mathrm{E}-13\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & \(2.286 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 22 & \(8.880 \mathrm{E}-01 \mathrm{um}\) & \(4.294 \mathrm{E}-13\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & \(2.205 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 23 & \(9.200 \mathrm{E}-01 \mathrm{um}\) & \(3.486 \mathrm{E}-13\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & 2.123E-12 & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 24 & \(9.520 \mathrm{E}-01 \mathrm{um}\) & \(2.675 \mathrm{E}-13\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) & \(2.041 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline 25 & \(9.840 \mathrm{E}-01 \mathrm{um}\) & \(2.370 \mathrm{E}-13\) & C/um/s & \(1.961 \mathrm{E}-12\) & \(\mathrm{C} / \mathrm{um} / \mathrm{s}\) \\
\hline \multicolumn{6}{|c|}{Total power of incident ray \(=1.004 \mathrm{E}+02 \mathrm{mWatts} / \mathrm{cm}^{\wedge} 2\)} \\
\hline
\end{tabular}

Figure 16-5 Generation rate inside the cell from Photogen and file reg at line 33 in file mdex19a.inp, Figures 16-1 and 16-2
\begin{tabular}{|c|c|}
\hline 1... TITLE & MDEX19B: Plot results of a-silicon solar cell \\
\hline 2... MESH & IN.FILE=SSMSH2 \\
\hline 3... PLOT. 2 D
. \({ }^{\text {a }}\) + & TITLE="TOx=0.06 Microns" GRID FILL BOUND REGION SCALE X.OFF=7 \\
\hline 4... COMMENT & Transmittance of the ITO \\
\hline 5... LOOPS & STEPS=3 \\
\hline 6... ASSIGN & NAME=TOX N.VALUE \(=(0.03,0.06,0.09)\) \\
\hline 7... ASSIGN & NAME=L1 \(\quad \mathrm{N} . \operatorname{VALUE}=(1,2,3)\) \\
\hline 8... ASSIGN & NAME=CLEAR C1=CLEAR C2=^CLEAR C3=^CLEAR \\
\hline 9... PLOT.1D & IN.FILE="MDEX19.SPL"@L1 X.AXIS=WA Y.AXIS=TR \\
\hline . + & COLOR=@L1 SYMB=@L1 LEFT=0.2 RIGHT=1.0 \\
\hline . + & BOT=0.2 TOP=1 @CLEAR \\
\hline + & TITLE="MDEX19B Transmittance -vs- Wavelength" \\
\hline 10... LABEL & LABEL="TOx="@TOX" Microns" COLOR=@L1 SYMB=@L1 \\
\hline + & \(\mathrm{X}=0.6 \quad \mathrm{Y}=0.3+@ L 1 / 25 \quad\) C.SIZE=0.3 \\
\hline \multicolumn{2}{|l|}{11... L.END} \\
\hline 12... COMMENT & Short-Circuit Current \\
\hline 13... LOOPS & STEPS=3 \\
\hline 14... ASSIGN & NAME=TOX N.VALUE \(=(0.03,0.06,0.09)\) \\
\hline 15... ASSIGN & NAME \(=\mathrm{L} 1 \quad \mathrm{~N} . \operatorname{VALUE}=(1,2,3)\) \\
\hline 16... ASSIGN & NAME=CLEAR C1=CLEAR C2=^ CLEAR C3=^ CLEAR \\
\hline 17... PLOT.1D & IN.FILE="MDEX19.SPL"@L1 X.AXIS=WA Y.AXIS=I (1) ABS \\
\hline + & COLOR=@L1 SYMB=@L1 @CLEAR BOT=0 TOP=0.3E-11 \\
\hline + & TITLE="MDEX19B Short Circuit Current -vs- Wavelength" \\
\hline 18... LABEL & LABEL="Tox="@TOX" Microns" COLOR=@L1 SYMB=@L1 \\
\hline + & \(\mathrm{X}=0.25 \quad \mathrm{Y}=2.0 \mathrm{E}-12+@ \mathrm{~L} 1 * 1.5 \mathrm{E}-13\) \\
\hline \multicolumn{2}{|l|}{19... L.END} \\
\hline 20... COMMENT & External Collection Efficiency \\
\hline 21... LOOPS & STEPS=3 \\
\hline 22... ASSIGN & NAME=TOX \(\quad \mathrm{N} . \mathrm{VALUE}=(0.03,0.06,0.09)\) \\
\hline
\end{tabular}

Figure 16-6 First part of the simulation input file mdex19b
```

28... COMMENT IV Characteristics
29... LOOPS STEPS=3
30... ASSIGN NAME=TOX N.VALUE=(0.03,0.06,0.09)
31... ASSIGN NAME=L1 N.VALUE=(1, 2, 3)
32... ASSIGN NAME=CLEAR C1=CLEAR C2=^CLEAR C3=^CLEAR
33... PLOT.1D IN.FILE="MDEX19.IVL"@L1 X.AXIS=V(1) Y.AXIS=I (1)
... + COLOR=@L1 SYMB=@L1 @CLEAR
... + RIGHT=1.0 BOT=-0.3E-10 TOP=0
... + TITLE="MDEX19B Cell IV Characteristic"
34... LABEL LABEL="TOx="@TOX" Microns" COLOR=@L1 SYMB=@L1
... + X=0.2 Y=-0.3E-11-@L1*1.5E-12 C.SIZE=0.3
35... L.END
36... COMMENT Power/Load Characteristics
37... EXTRACT NAME=Power EXP="'-1e9*@I(1)*@V(1)" UNITS=Watts/cm^2
38... EXTRACT NAME=Load EXP="-1e-9*@V(1)/@I(1)" UNITS=Ohms-cm^2
39... LOOPS STEPS=3
40... ASSIGN NAME=TOX N.VALUE=(0.03,0.06,0.09)
41... ASSIGN NAME=L1 N.VALUE=(1, 2, 3)
42... ASSIGN NAME=CLEAR C1=CLEAR C2=^CLEAR C3=^^CLEAR
43... PLOT.1D IN.FILE="MDEX19.IVL"@L1 X.AXIS=LOAD Y.AXIS=POWER
... + COLOR=@L1 SYMB=@L1 @CLEAR

```

Figure 16-7 Second part of the simulation input file mdex 19b

Tox \(=0.06\) Microns


Figure 16-8 Mesh from pLot .2D at line 3 in file mdex19b.inp, Figures 16-6 and 16-7


Figure 16-9 Transmittance from lines 5-11 in file mdex19b.inp, Figure 16-6

MDEX19B Short Circuit Current -vs- Wavelength


Figure 16-10 Short circuit current plot generated in lines 13 through 19 in file mdex19b.inp, Figure 16-6


Figure 16-11 External collection efficiency plot generated in lines 21 through 27 in file mdex19b.inp, Figure 16-6


Figure 16-12 Cell IV plot generated in lines 29 through 35 in file mdex 19b.inp, Figure 16-6


Figure 16-13 Power vs. load plot generated in lines 39 through 45 in file mdex19b.inp, Figure 16-6

\section*{Simulation of a GaAs Photodetector}

In this example the use of the Medici OD-AAM is illustrated by performing some analysis on a GaAs photo detector. GaAs photo detectors have potential uses in a variety of optoelectronic integrated circuits (OEIC) because they are fast, have low background noise, and good off-state isolation.

\section*{Structure Generation and Solution Creation}

The input file \(m d e x 20 a\) creates the simulation structure and simulates the operation of the device when exposed to light with a wavelength of 0.82 microns and a flux of 1 e 20 photons \(/ \mathrm{sec} / \mathrm{cm}^{2}\). The purpose of the simulation is to calculate the photocurrent when the device is illuminated for 40 pS so that the transit time can be determined. The photo response is also determined when the light is modulated using an AC signal under various bias conditions. In this example, the semi insulating layer on which the active region is formed is ignored for convenience.

Referring to Figure 16-14 which shows the simulation input file mdex20a, lines 2 through 8 generate the simulation structure which consists of a GaAs block 5 microns wide and 3 microns deep with a uniform N -type doping of \(1 \mathrm{e} 14 / \mathrm{cm}^{3}\). Additional specifications are as follows:
- Ohmic contacts are placed on the top of the structure at the left and right corners.
- The models used are specified at line 10 .
- Since recombination effects are important, both CONSRH and AUGER are specified.
- At line 11, FLDMOB=2 specifies that the GaAs type mobility model (with negative differential velocity) is used.
- Line 12 specifies that both electrons and holes are solved for (since majority and minority carrier effects are important in optoelectronic devices).
- A plot of the device structure can be seen in Figure 16-15.

\section*{Steady State Solutions and Photogeneration}

Lines 16 to 24 calculate a series of bias points without illumination. These are the dark current values for each particular bias value. The solutions themselves are saved in the files \(P D C_{-} 03, P D C_{-} 05, P D C_{-} 1\), and \(P D C_{-} 5\). The values of the drain current at each bias are in turn saved in assigned variables I003, I005, I01, and I05 for use in subsequent EXTRACT statements.

Line 26 specifies photogeneration and ray tracing.
- Light is directed straight down onto the surface of the device since the default value of ANGLE is 90 degrees and the light source is located 5 microns above the device at \(\mathbf{Y}\). ORG=-5.
- The wavelength is 0.82 microns and the photon flux is \(1 \mathrm{e} 20 / \mathrm{cm}^{2} / \mathrm{sec}\).
- The time dependence is specified as PULSE type and gives a constant pulse which starts at 10 pS and stops at 50 pS .

Lines 27 through 30 create a rayplot and a plot of photogeneration contours for the structure. These are shown in Figures 16-16 and 16-17.

Transient Simulations

At line 31 , a loop is entered that calculates solutions at the 4 bias voltages ( 0.3 , \(0.5,1.05 .0\) ) Volts. Line 30 loads the steady state solutions (calculated previously). These solutions set up the initial conditions for the transient.

The EXTRACT statement at line 36 calculates the actual photocurrent (IPHOT) by subtracting the dark current ( \(@ \mathrm{I} 005 \ldots\)... @I01) from the terminal current (@I(DRAIN)).

This new user-defined current is stored in the log file along with the normal terminal current. The SOLVE at line 37 calculates the transient solution, with an initial time step size of 2 pS and a stopping time of 400 pS .

\section*{Small-Signal AC Analysis}

Lines 39 to 43 calculate the frequency dependent small-signal optical gain of the device by specifying LMODU on the SOLVE statement.
- The steady state solution is read back in at line 39 .
- The frequency is swept from 1 MHz to 100 Ghz in 3 steps per decade.
- The light modulation magnitude is specified as \(1 \mathrm{e}-4 \mathrm{~W} / \mathrm{cm}^{2}\) using LSS


Figure 16-14 Output of simulation input file mdex20a

GaAs Photoconductor Grid


Figure 16-15 GaAs photodetector structure

Example 20A: GaAs PHOTOCONDUCTIVE DETECTOR


Figure 16-16 Simple rayplot showing the top illumination of the structure


Figure 16-17 Photogeneration contours in the detector as a result of illumination

\section*{Examining Results}

The second file of this example mdex20b (Figure 16-18) generates some I-V plots of the simulation results.

The first 10 lines generate a plot of the total drain current as a function of time. This plot is shown in Figure 16-19.

Lines 12 to 19 generate a plot of the photo current (IPHOT) which was previously obtained by subtracting the dark current from the total terminal current which is shown in Figure 16-20.

Lines 23 to 30 generate a plot of the normalized gain as a function of frequency (Figure 16-21). The normalization is performed by the EXTRACT statements at lines 21 and 22 which divide the gain by its value at 1 Mhz .
```

 1... TITLE GaAs Photoconductive Dectector
 2... COMMENT Transient W illumination : Time vs. Contact current
 3... PLOT.1D IN.FILE=PDC_T03 X.AXIS=TIME Y.AXIS=I (DRAIN)
 ... + TOP=2.e-6 BOT=0 SYM=1
 ... + TITLE="GaAs PC type detector : Transient"
 4... PLOT.1D IN.FILE=PDC_T05 X.AXIS=TIME Y.AXIS=I (DRAIN) UNCH
... + SYM=2 COL=2
5... PLOT.1D IN.FILE=PDC_T1 X.AXIS=TIME Y.AXIS=I (DRAIN) UNCH
... + SYM=3 COL=3
6... PLOT.1D IN.FILE=PDC_T5 X.AXIS=TIME Y.AXIS=I (DRAIN) UNCH
... + SYM=4 COL=4
7... LABEL LABEL="V (DRAIN)=0.3V" Y=.5e-6 SYMB=1
8... LABEL LABEL="V(DRAIN)=0.5V" COL=2 SYMB=2
9... LABEL LABEL="V (DRAIN)= 1V" COL=3 SYMB=3
10... LABEL LABEL="V (DRAIN)= 5V" COL=4 SYMB=4
11... COMMENT Transient W illumination : Time vs. Photo current
12... PLOT.1D IN.FILE=PDC_T03 X.AXIS=TIME Y.AXIS=IPHOT TOP=4.e-7
... + TITLE="GaAs PC type detector : Photocurrent" SYM=1
13... PLOT.1D IN.FILE=PDC_T05 X.AXIS=TIME Y.AXIS=IPHOT UNCH
... + SYM=2 COL=2
14... PLOT.1D IN.FILE=PDC_T1 X.AXIS=TIME Y.AXIS=IPHOT UNCH
... + SYM=3 COL=3
15... PLOT.1D IN.FILE=PDC_T5 X.AXIS=TIME Y.AXIS=IPHOT UNCH
... + SYM=4 COL=4
16... LABEL LABEL="V (DRAIN)=0.3V" SYMB=1
17... LABEL LABEL="V (DRAIN)=0.5V" COL=2 SYMB=2
18... LABEL LABEL="V (DRAIN)= 1V" COL=3 SYMB=3
19... LABEL LABEL="V (DRAIN)= 5V" COL=4 SYMB=4
20... COMMENT Gain
21... EXTRACT NAME=Gain0 EXP=@IS(DRAIN) COND="@LF=1e6"
22... EXTRACT NAME=Gain EXP="20*LOG10(@IS(DRAIN)/@Gain0)"
... + UNIT=dB
23... PLOT.1D IN.FILE=LM_03 X.AXIS=LF Y.AXIS=Gain X.LOG TOP=1
... + SYM=1 TITLE="Normalized Gain vs Frequency"
24... PLOT.1D IN.FILE=LM_05 X.AXIS=LF Y.AXIS=Gain X.LOG UNCH
... + SYM=2 COL=2
25... PLOT.1D IN.FILE=LM_1 X.AXIS=LF Y.AXIS=Gain X.LOG UNCH
... + SYM=3 COL=3
26... PLOT.1D IN.FILE=LM_5 X.AXIS=LF Y.AXIS=Gain X.LOG UNCH
... + SYM=4 COL=4
27... LABEL LABEL="V (DRAIN)=0.3V" SYMB=1 Y=-10
28... LABEL LABEL="V(DRAIN)=0.5V" COL=2 SYMB=2
29... LABEL LABEL="V (DRAIN) = 1V" COL=3 SYMB=3
30... LABEL LABEl="V (DRAIN)= 5V" COL=4 SYMB=4

```

Figure 16-18 Output of the simulation input file mdex20b


Figure 16-19 Drain current plot generated in lines 3 through 10 file mdex20b, Figure 16-18

GaAs PC type detector : Photocurrent


Figure 16-20 Photocurrent plot generated in lines 12 through 19 of file mdex20b, Figure 16-18

Normalized Gain vs Frequency


Figure 16-21 Optical gain plots generated in lines 23 through 30 of file mdex20b, Figure 16-18

\section*{Anisotropic Material Examples}

\section*{Example Specifications}

The Anisotropic Material Advanced Application Module (AM-AAM) is an extension to Medici which allows simulation of advanced anisotropic material properties within semiconductor materials. These effects are important in certain semiconductor materials such as silicon carbide. This chapter presents examples which illustrate the use of the AM-AAM.

\section*{Anisotropic Block Example}

This example simulates a block of material with strongly anisotropic material properties. While no known material has such strongly anisotropic properties, the example is useful in that it illustrates the use of the AM-AAM and produces easily understood results.

\section*{Device Structure and Simulation}

Figure 17-1 shows the input file \(m d e x 22\). Lines 2 to 9 generate the structure which consists of a uniformly doped block of silicon with a small electrode on top and a flat electrode all along the bottom.

Tensor Mobility Line 12 specifies the anisotropic electron mobility tensor=(0.1,0.9,1.0). This tensor is a dimensionless vector which multiplies the normal electron mobility (as calculated using the currently-selected mobility models).

Solution Since no mobility models were selected in this example, the default isotropic mobility for electrons is 1000 . The anisotropic model, therefore, gives the final mobilities as 100 in the X direction and 900 in the Y direction. Line 13 solves with 0.1 Volts on the top electrode. Lines 16 and 17 generate a plot of current flow lines which is shown in Figure 17-2. This process is repeated 2 more times with mobility tensors of \((1,1,1)\) and \((0.9,0.1,1)\).

Plots Compare the three plots generated with the 3 different tensors (Figure 17-2).
- In the figure on the left \((0.1,0.9,1)\) (with the lowest \(X\) component of mobility) the current spreads out slowly in the X direction and the current must travel half way down the device before the current vectors align themselves with the Y axis.
- In the figure on the right \((0.9,0.1,1)\), however, the current spreads rapidly across the top of the device and then abruptly turns and travels straight down parallel to the Y axis.
This is to be expected since the mobility in the X direction is high and the current would initially rather travel horizontally in the high mobility direction.
- The center figure ( \(1,1,1\) ) corresponds to normal isotropic mobility
```

1... TITLE MDEX22 Anisotropic Material Example
2... MESH
3... X.MESH WIDTH=3 H1=0.1
4... Y.MESH WIDTH=3 H1=0.1
5... REGION SILICON
6...REGION OXIDE Y.MAX=0.1
7... ELECTRODE NAME=TOP X.MIN=1 X.MAX=2 Y.MAX=0.1
8... ELECTRODE NAME=BOT Y.MIN=2.9
9... PROFILE CONC=1e16 N.TYPE UNIF
10... \$
11... SYMB NEWT CARR=2
12... ANISOTROP MU.N=(0.1,0.9,1.0) SIL
13... SOLVE V (TOP)=0.1
14... PLOT.2D ^MARKS ^LABELS TITLE="MDEX22 Anisotropic Material"
15... LABEL Y=0.15 LABEL="Current Flow with Various Mobility Tensors"
... + C.SIZ=0.38
16... PLOT.2D X.LENG=4 FILL TITLE="(0.1,0.9,1)" SCALE ^CLEAR Y.OFF=5
17... CONTOUR FLOW
18... \$
19... ANISOTROP MU.N=(1.0,1.0,1.0) SIL
20... SOLVE V (TOP)=0.1
21... PLOT.2D X.OFF=8 X.LENG=4 FILL ^CLEAR TITLE=" (1,1,1)" SCALE
... + Y.OFF=5
22... CONTOUR FLOW
23... \$

```

Figure 17-1 Output for the simulation input file mdex22

\title{
MDEX22 Anisotropic Material
}

Current Flow with Various Mobility Tensor


Figure 17-2 Current density vectors with various mobility tensors from file mdex22, Figure 17-1

\title{
Appendix A: Template Files
}

\section*{Introduction}

Included with Medici are several template (CALL) files that automatically create, and apply biases to standard MOS and BIPOLAR structures. After you assign values to a few structure dimensions, the template will take care of the entire mesh generation process. Plots and printed information are provided to help verify the structure specification.

The impurity profiles used in these structures may be specified analytically or may come from the Synopsys TCAD's process simulation programs-TMA SUPREM-3 or TSUPREM-4. These templates make it easy to simulate standard MOS and BIPOLAR structures. The templates are written in standard Medici input language so advanced users can copy and customize the templates to model unusual structures.

\section*{Available Templates}

Brief descriptions of the presently available templates are given below. The following sections describe the templates in more detail and discuss how to use them. Examples of using the templates are given in Chapter 8.
\begin{tabular}{|c|c|}
\hline Template & Description \\
\hline mosdef0 & Defines default values for all parameters and device dimensions used in the MOS templates. This file must be called prior to calling mosstr0 or mosstrl. \\
\hline mosstr0 & Creates simulation structures for MOS devices. Both standard and LDD devices may be created. This template works well with both short- and long-channel devices. \\
\hline mosstr 1 & Creates simulation structures for MOS devices. Both standard and LDD devices may be created. This template is well suited for doping profiles read from files and works best with shortchannel devices. \\
\hline mosgat0 & Generates a family of gate characteristics (drain current versus gate voltage) for MOS devices and plots the results. This template may be used to bias any four-terminal MOS structure-it is not restricted to structures created by mosstr0 or mosstrl. \\
\hline mosdrn0 & Generates a family of drain characteristics (drain current versus drain voltage) for MOS devices and plots the results. This template may be used to bias any four-terminal MOS structure-it is not restricted to structures created by mosstr0 or mosstr1. \\
\hline bipdef0 & Defines default values for all parameters and device dimensions used in the bipolar templates. This file must be called prior to calling bipstro. \\
\hline bipstr0 & Creates simulation structures for bipolar junction transistors. \\
\hline bipgum0 & Generates the Gummel characteristics for bipolar devices. The output consists of plots of collector and base current versus base-emitter voltage, current gain versus collector current, and cutoff frequency versus collector current. This template may be used to bias any three terminal bipolar structure-it is not restricted to structures created by bipstr0. \\
\hline
\end{tabular}

\section*{MOS Templates}

This section describes the MOS templates which are available: mosdef0, mosstr0, mosstr1, mosgat0, and mosdrn0.

\section*{MOS Default Value File: mosdef07}

The standard MOS structure created by the MOS template files is illustrated in Figure \(0-1\). The templates can be used to create structures with or without LDD profiles. In addition to the dimensions shown, you must provide information about the impurity profiles and biases to be applied to the device.


Figure 0-1 MOS structure and definition used by the MOS templates

\section*{Default Value File}

Definitions and default values for all of the parameters and dimensions required by the templates are given in the Default Value File, mosdef0 (Figures 0-2 and 03). The Default Value File should be called before calling the Structure Definition Files mosstr0 or mosstr1.
```

\$----------
\$-------------------
COMMENT Structure Definitions

+ LGATE = gate length (microns)
+ LSOURCE = distance from left device edge
to gate edge (microns)
LSCONT = length of source contact (microns)
LDRAIN = distance from right device edge
to gate edge (microns)
LDCONT = length of drain contact (microns)
LSPACER = spacer thickness (microns)
TOX = gate oxide thickness (microns)
ASSIGN NAME=LGATE N.VALUE=1.0
ASSIGN NAME=LSOURCE N.VALUE=1.0
ASSIGN NAME=LSCONT N.VALUE=0.5
ASSIGN NAME=LDRAIN N.VALUE=1.0
ASSIGN NAME=LDCONT N.VALUE=0.5
ASSIGN NAME=LSPACER N.VALUE=0.2
ASSIGN NAME=TOX N.VALUE=0.0250
COMMENT Doping Information
+ TRANTYPE = transistor type (NMOS or PMOS)
PROFTYPE = profile type (ANALYTIC, SUPREM3, TSUPREM4,
or SUPRA)
LATD = source/drain and LDD lateral diffusion factor
Analytic Profile Parameters
NSUB = substrate doping (\#/cm^3)
VTTYPE = doping type for threshold adjust implant (N or P)
VTPEAK = peak doping for threshold adjust implant (\#/cm^3)
VTCHAR = characteristic length
for threshold implant (microns)
SDPEAK = peak doping for source/drain (\#/cm^3)
SDJUNC = junction depth for source/drain (microns)
LDDPEAK = peak doping for lightly doped drain (\#/cm^3)
LDDJUNC = junction depth for lightly doped drain (microns)
Profile File Parameters
CHFILE = SUPREM-3 output file containing channel doping
SDFILE = SUPREM-3 output file containing source/drain dop.
LDDFILE = SUPREM-3 output file containing LDD doping
2DFILE = TSUPREM-4 or SUPRA file containing 2D doping
X.OFFSET = x-offset for profile read from 2DFILE (microns)
Y.OFFSET = y-offset for profile read from 2DFILE (microns)
ASSIGN NAME=TRANTYPE C.VALUE=NMOS
ASSIGN NAME=PROFTYPE C.VALUE=ANALYTIC
ASSIGN NAME=LATD N.VALUE=0.80
ASSIGN NAME=NSUB N.VALUE=3E15
ASSIGN NAME=VTTYPE C.VALUE=P
ASSIGN NAME=VTPEAK N.VALUE=2E16
ASSIGN NAME=VTCHAR N.VALUE=0.25
ASSIGN
ASSIGN NAME=SDJUNC N.VALUE=0.25

```

Figure 0-2 First part of template file mosdefO listing parameters and their default values


Figure 0-3 Second part of template file mosdef0 listing parameters and their default values

\section*{Parameter and Dimension Values \\ If you want to change a parameter value or dimension you may either edit mosdef0, or specify the new value using an ASSIGN statement after calling mosdef0.}

For example, the default drawn gate length in mosdef0 is 1 micron. The following input statements use the template file mosstr0 to create a 1 micron long NMOS transistor:
```

CALL FILE=mosdef0
CALL FILE=mosstr0

```

To create a transistor with a 3 micron gate length, an ASSIGN statement is added to override the default value for LGATE:
\begin{tabular}{lll} 
CALL & FILE=mosdef0 \\
ASSIGN & NAME=LGATE & \\
CALL & FILE=mosstr0
\end{tabular}\(\quad\).

Any other parameter or device dimension defined in mosdef0 may be changed in a similar way.

Additional Parameters

There are several parameters in mosdef0 which deserve additional discussion.

The parameters LDRAIN, LSOURCE, NSUB, and VDMAX should be chosen carefully to ensure the boundary conditions at the left, right, and bottom of the simulation structure do not adversely affect the results.

If you intend to compare the simulation results with experimental data, LDRAIN and LSOURCE should be set equal to the distance from the gate edge to the center of the drain or source contacts, respectively, in your test structure layout.

The parameters NSUB, the substrate doping concentration, and VDBMAX, the maximum drain/substrate reverse bias, are used to calculate the maximum depth of the depletion region under the drain. The structure depth is chosen so the maximum depletion depth does not reach the bottom of the structure. Even if you are going to use impurity profiles from a process simulator it is important to specify NSUB.

Source and Drain Profiles

The parameter LATD defines the horizontal extent of the source and drain profiles when analytic or TMA SUPREM-3 profiles are used. This parameter can have a significant effect on the effective channel length of short channel transistors. Generally accepted values for LATD range from 0.7 to 0.8 .

Saved Files The parameters FILE and SAVE determine the name and number of saved files. The FILE parameter is a prefix used at the beginning of each saved file name. If you are using these templates in a loop, you may want to vary the FILE parameter to ensure each set of files has a unique name.

The SAVE parameter determines how many solution files are saved. By default, SAVE is set to "FALSE" so only a few required files are saved. If SAVE is set to "TRUE" then every solution will be saved to a file.

\section*{MOS Structure Definition Templates: mosstr0 and mosstr1}

Two different structure definition template files, mosstr0 and mosstr 1 , have been provided. Each template represents a different approach to mesh generation.

Template mosstr0

In mosstr0, a rectangular mesh is generated with fine mesh spacings located at important locations such as junctions. ELIMINATE statements are used to remove unnecessary mesh nodes.

Advantage The principle advantage of this technique is that the aspect ratio of the mesh can be quite large (the mesh aspect ratio is the horizontal grid spacing divided by the vertical grid spacing). Template mosstr0 can be used to simulate large structures without creating a prohibitively large number of grid nodes.

Limitation The principle limitation of this gridding technique is that it requires knowledge of the junction locations to ensure correct placement of the fine grid sections. Even if you are using impurity profiles from a one- or two-dimensional process simulator you must specify the profile parameters NSUB, VTTYPE, VTPEAK, VTCHAR, SDPEAK, SDJUNC, LDDPEAK, and LDDJUNC.

Template In mosstrl, a coarse rectangular mesh is generated and then several regrids are mosstr1 performed to add mesh nodes near the junctions and in the channel. When modeling short ( 3 microns or less) channel length devices using profiles from a one- or two-dimensional simulator, the mosstrl template is recommended. For longer channel devices, mosstr0 should be used.

Advantage The advantage of this technique is that the junction locations do not have to be known in advance. Because of this mosstrl can be used with profiles from any source. The profile parameters, such as NSUB and VTTYPE, do not have to be specified when using impurity profiles from one- or two-dimensional simulators in .

Limitation The main limitation is that to avoid the formation of obtuse triangles or mesh holes, the aspect ratio of the initial rectangular mesh is set to two. As a result, mosstrl does not allocate mesh nodes as efficiently as mosstr0-i.e. mosstrl structures will probably contain more mesh nodes than mosstr0 structures.

\section*{MOS Bias Templates: mosgat0 and mosdrn0}

The MOS Bias Template Files mosgat0 and mosdrn0 may be used to simulate the gate and drain characteristics for any four terminal MOS structure.

Required Variables

The following variables must be assigned values prior to calling mosgat0 or mosdrn0:

\section*{Variable}

TRANTYPE
MODELS
QSS
FILE
SAVE

VD0
VDSTEP
NDSTEP The number of drain voltage solutions. Not used in mosgat0.
VG0 The initial gate voltage.
VGSTEP The gate voltage step.
NGSTEP The number of gate voltage solutions.
VBO
VBSTEP The substrate voltage step. Not used in mosdrn0
NBSTEP The number of substrate voltage solutions. Not used in mosdrn0.

Default values for all of these variables are defined in mosdef0. However, the default biases given in mosdef0 should not be used when calling mosgat0 or mosdrn0 (the default biases are given in mosdef0 only to prevent undefined variable errors).

\section*{Template Examples}

This section contains examples of input statements showing the generation of gate and drain IV characteristics for NMOS and PMOS transistors.

NMOS The following input statements can be used to generate a set of gate and drain characteristics for an NMOS transistor:
```

\$ Specify transistor type, models, etc. These are the

+ default values normally set in mosdef0.
ASSIGN NAME=TRANTYPE C.VAL="NMOS"
ASSIGN NAME=MODELS C.VAL="CONMOB FLDMOB PRPMOB CONSRH AUGER BGN"
ASSIGN NAME=QSS N.VAL=0
ASSIGN NAME=FILE C.VAL="MOS"
ASSIGN NAME=SAVE C.VAL="FALSE"
ASSIGN NAME=DEVICE C.VAL="DEFAULT"
\$--
\$ Specify the bias conditions for the gate characteristics
\$---
\$ Set the drain bias to 0.1 volts.
ASSIGN NAME=VDO N.VAL=0.1
\$ Step the gate bias from 0 volts to 5 volts
+ in 0.2 volt steps.
ASSIGN NAME=VGO N.VAL=0
ASSIGN NAME=VGSTEP N.VAL=0.2
ASSIGN NAME=NGSTEP N.VAL=(5/0.2)+1
\$ Perform a gate sweep at two different substrate biases,
+ Vb=0 and Vb=-1 volts.
ASSIGN NAME=VB0 N.VAL=0
ASSIGN NAME=VBSTEP N.VAL=-1.0
ASSIGN NAME=NBSTEP N.VAL=2
\$ Perform the gate sweeps.
CALL FILE=mosgat0
\$---
\$ Specify the bias conditions for the drain characteristics
\$---
\$ Step the drain bias from 0 volts to 5 volts
+ in 0.2 volt steps.
ASSIGN NAME=VDO N.VAL=0
ASSIGN NAME=VDSTEP N.VAL=0.2
ASSIGN NAME=NDSTEP N.VAL=(5/0.2)+1
\$ Perform the drain sweeps with gate biases
+ of 1, 2, 3, 4, and 5 volts.
ASSIGN NAME=VGO N.VAL=1
ASSIGN NAME=VGSTEP N.VAL=1
ASSIGN NAME=NGSTEP N.VAL=5
\$ Perform the drain sweeps with the substrate grounded.
ASSIGN NAME=VB0 N.VAL=0
ASSIGN NAME=VBSTEP N.VAL=0
ASSIGN NAME=NBSTEP N.VAL=1
\$ Perform the drain sweeps.
CALL FILE=mosdrn0

```

PMOS The following input statements can be used to generate a set of gate and drain characteristics for a PMOS transistor:


\section*{Single Carrier Solutions}

The template files, mosgat0 and mosdrn0, perform single carrier solutions.
The TRANTYPE variable is used to determine whether electron or hole solutions are performed. TRANTYPE does not, however, control the polarity of the applied biases. Bias values should be chosen carefully so junctions are not forward biased. Since only single carrier solutions are calculated, breakdown analysis using the impact ionization model cannot be performed using these templates.

Note that variables NGSTEP, NDSTEP, and NBSTEP specify the number of solutions to be performed for the gate, drain, and substrate, respectively, not the number of steps. (This is slightly different than the SOLVE statement NSTEP parameter.) To be sure your bias sweeps do not end one step short of the desired final bias, choose a value equal to
```

NSTEP = 1 + (FINAL BIAS - INITIAL BIAS)/(BIAS STEP).

```

\section*{Bipolar Templates}

This section describes the bipolar templates which are available: bipdef0, bipstr0, and bipgum0.

\section*{Bipolar Default Value File: bipdef0}

The standard bipolar structure created by the bipolar template file is illustrated in Figure 0-4. The template can be used to create structures with or without a buried layer in the collector or an extrinsic base diffusion. In addition to the dimensions shown, you must provide information about the impurity profiles and biases to be applied to the device.


Figure 0-4 Bipolar structure and definitions used by the bipolar templates

\footnotetext{
Default Value File Definitions and default values for all of the parameters and dimensions required by the templates are given in the Default Value File, bipdef0 (Figures 0-5 and 0-6) The Default Value File should be called first, before calling the Structure Definition File bipstrO.
}
```

\$--------------------
bipdef0
\$--------------------
TITLE TMA MEDICI Default Value File for BJT Structure
COMMENT Structure Definitions
WEMIT = emitter width (microns)
WECONT = emitter contact width (microns)
WXBASE = extrinsic base width (microns)
WBCONT = base contact width (microns)
WEXB = emitter to extrinsic base distance (microns)
BEOVER = base diffusion edge
to emitter diffusion edge (microns)
BXOVER = base diffusion edge
to x-base diffusion edge (microns)
TEPI = structure depth (epi thickness) (microns)
ASSIGN NAME=WEMIT N.VALUE=1.0
ASSIGN NAME=WECONT N.VALUE=1.0
ASSIGN NAME=WXBASE N.VALUE=1.0
ASSIGN NAME=WBCONT N.VALUE=1.0
ASSIGN NAME=WEXB N.VALUE=0.5
ASSIGN NAME=BEOVER N.VALUE=0.5
ASSIGN NAME=BXOVER N.VALUE=0.5
ASSIGN NAME=TEPI N.VALUE=2.0
COMMENT Doping Information
TRANTYPE = transistor type (NPN or PNP)
PROFTYPE = profile type (ANALYTIC, SUPREM3, TSUPREM4,
or SUPRA)
LATD = lateral diffusion factor
Analytic Profile Parameters
NEPI = epitaxial layer doping (\#/cm^3)
BLPEAK = peak doping for buried layer (\#/cm^3)
BLDEPTH = depth of buried layer (microns)
BPEAK = peak doping for intrinsic base (\#/cm^3)
YBPEAK = distance from surface
to peak base doping (microns)
BCJUNC = base-collector junction depth (microns)
XBPEAK = peak doping for extrinsic base (\#/cm^3)
XBJUNC = extrinsic base-collector junction depth (microns)
EPEAK = peak doping for emitter (\#/cm^3)
EBJUNC = emitter-base junction depth (microns)
Profile File Parameters
EPIFILE = SUPREM-3 output file containing
epi and buried layer
BFILE = SUPREM-3 output file containing
intrinsic base doping
XBFILE = SUPREM-3 output file containing
extrinsic base doping
2DFILE = TSUPREM-4 or SUPRA file containing 2D doping
X.OFFSET = x-offset for profile read from 2DFILE (microns)
Y.OFFSET = y-offset for profile read from 2DFILE (microns)

```

Figure 0-5 First part of file bipdef0 listing available parameters and their defaults


Figure 0-6 Part 2 of file bipdef0 listing available parameters and defaults

\section*{Parameter and Dimension Values}

Additional Parameters

Simulation Structure Dimensions

If you want to change a parameter value or dimension you may either edit bipdef0, or specify the new value using an ASSIGN statement after calling bipdef0.

For example, the default emitter stripe width in bipdef0 is 1 micron. The following input statements use the template file bipstr0 to create a bipolar transistor with a 1 micron emitter stripe width:
```

CALL FILE=bipdef0
CALL FILE=bipstr0

```

To create a transistor with a 3 micron emitter stripe width, an ASSIGN statement is added to override the default value for WEMIT:
```

CALL FILE=bipdef0
ASSIGN NAME=WEMIT N.VALUE=3
CALL FILE=bipstr0

```

Any other parameter or device dimension defined in bipdef0 may be changed in a similar way.

There are several parameters in bipdef0 which need additional discussion.

The parameters TEPI, NEPI, and VCBMAX are used to determine the dimensions of the simulation structure.

TEPI is the depth of the structure. If a buried layer is not used, then TEPI should be deep enough that the collector-base depletion region does not extend to the bottom of the structure.

The epitaxial layer impurity concentration, NEPI, and the maximum collectorbase reverse bias, VCBMAX, are used to calculate the distance from the base profile to the left and right edges of the simulation structure.

The intent is to create a structure wide enough that the collector-base depletion region does not extend to the structure boundaries. Even if the impurity profiles used come from a one- or two-dimensional process simulator, NEPI must be specified to ensure the structure is large enough.

To allow modeling of self-aligned bipolar structures, the width of the diffused emitter stripe, WEMIT, may be set equal to the emitter contact width WECONT. Similarly, the width of the extrinsic base diffusion, WXBASE, may be set equal to the base contact width, WBCONT. Setting the contact widths greater than the diffusion widths will result in an error.

Specifying small, or zero, values for the emitter to extrinsic base distance, wexb, the base-emitter overlap distance, BEOVER, or the base to extrinsic base overlap distance, BXOVER, will also generate an error.

Lateral Diffusion The lateral diffusion factor, LATD, determines the horizontal extent of the extrinsic and intrinsic base profiles and the emitter profile. These horizontal extents may not be specified independently. It may be appropriate to specify different values of LATD, depending on the operating conditions you are interested in simulating.

For example, when simulating the normal operating characteristics of the transistor a value of LATD should be chosen which best represents the lateral emitter profile. But, when simulating the collector-base breakdown behavior of the device the lateral base profile is more important than the lateral emitter profile and LATD should be specified accordingly. Generally accepted values of LATD range between 0.7 and 0.8 .

Saved Files The parameters FILE and SAVE determine the name and number of saved files. The FILE parameter is a prefix used at the beginning of each saved file name. If you are using these templates in a loop, you may want to vary the FILE parameter to ensure each set of files has a unique name.

The SAVE parameter determines how many solution files are saved. By default, SAVE is set to FALSE so only a few required files are saved. If SAVE is set to TRUE then every solution will be saved to a file.

Grid and Mesh
Spacing

The parameters EBSP, BCSP, and RATIO determine the grid spacing at the emitter-base and base-collector junctions and the rate at which the mesh spacing can increase, respectively. The emitter-base grid spacing is critical for accurate modeling of bipolar gain and should not be changed.

The vertical mesh spacing under the emitter, between the emitter-base and basecollector junctions is important when modeling early voltage. Specifying a smaller value of RATIO may improve early voltage prediction at the expense of larger mesh counts and simulation times.

\section*{Bipolar Structure Definition Template: bipstr0}

The bipolar structure created by bipstr 0 begins as a rectangular mesh with fine mesh spacings located at important locations such as junctions. ELIMINATE statements are used to remove unnecessary mesh nodes.

Advantage The principle advantage of this technique is that the aspect ratio of the mesh can be quite large. (The mesh aspect ratio is the horizontal grid spacing divided by the vertical grid spacing.) Because of this bipstrO can be used to simulate large structures without using a prohibitively large number of grid nodes.

\title{
Limitation The principle limitation of this gridding technique is that it requires knowledge of the junction locations to ensure correct placement of the fine grid sections. Even if impurity profiles from a one- or two-dimensional process simulator are used, the profile parameters NEPI, BLPEAK, BLDEPTH, BPEAK, YPEAK, BCJUNC, XBPEAK, XBJUNC, EPEAK, and EBJUNC must still be specified.
}

Base and Emitter Contacts

FILE=bipdef0
CALL FILE=bipstr0
CONTACT
NUM=EMITTER SURF.REC VSURFN=1.07 VSURFP=1.04 WORKF=0

\section*{Bipolar Bias Template: bipgum0}

The bipolar bias template file, bipgum0, may be used to simulate the Gummel characteristics of any three terminal bipolar structure. The following variables must be assigned prior to calling bipgum0:

Variable
MODELS
FILE

TIFFILE

VC0 The collector voltage.
VBO The initial base voltage.
VBSTEP The base voltage step.
NBSTEP The number of base voltage solutions.

Default values for all of these variables are defined in bipdef0. However, the default biases given in bipdef0 should not be used when calling bipgum0 (the default biases are given in bipdef0 only to prevent undefined variable errors).

\section*{Examples}

This section contains examples detailing Gummel characteristics of the NPN and PNP bipolar transistors.

NPN The following input statements can be used to simulate the Gummel characteristics of an NPN transistor:
```

\$ Set the collector bias to 3 volts.
ASSIGN NAME=VCO N.VALUE=3.0
\$ Step the base voltage from 0 to 1 volts

+ in 0.1 volt increments.
ASSIGN NAME=VBO N.VALU=0.0
ASSIGN NAME=VBSTEP N.VALU=0.1
ASSIGN NAME=NBSTEP N.VALU=11
\$ Perform the base sweep.
CALL FILE=bipgum0

```

PNP The following input statements can be used to simulate the Gummel characteristics of a PNP transistor:
```

\$ Set the collector bias to -3 volts.
ASSIGN NAME=VCO N.VALUE=-3.0
\$ Step the base voltage from 0 to -1 volts

+ in -0.1 volt increments.
ASSIGN NAME=VBO N.VALU=0.0
ASSIGN NAME=VBSTEP N.VALU=-0.1
ASSIGN NAME=NBSTEP N.VALU=11
\$ Perform the base sweep.
CALL FILE=bipgum0

```

\section*{Cutoff Frequency}

In addition to calculating and plotting the Gummel characteristics and current gain of the transistor, bipgum0 also estimates the cutoff frequency, \(F_{t}\), as a function of collector current using the following approximation:
\[
F_{t}=\frac{G_{c b}}{2 \pi C_{b b}}
\]
where
- \(G_{c b}\) is the collector-base conductance
- \(C_{b b}\) is the base capacitance

At each base bias, an AC small-signal solution is obtained at a fixed frequency (1 MHz ) with the AC signal applied to the base.

CALCULATE statements are used to calculate \(F_{t}\) from the resulting conductance and capacitance values.

\section*{Appendix B: Synopsys TCAD Graphics}

\section*{Specifying the Graphics Device}

The DEVICE parameter on PLOT . 1D, PLOT . 2D, and PLOT . 3D statements specifies the graphics device name. This name determines which graphics device is used for graphical output. The value of the DEVICE parameter must match one of the valid graphics device names defined by the plot device definition file mdpdev (see Chapter 1, "Plot Device Definition File—mdpdev," p. 1-14). The valid graphics device names are described in "Graphics Devices," p. B-2.

\section*{Driver Subroutine}

The driver subroutine used for graphical output is determined by comparing the value of the DEVICE parameter with the NAME entry in each line of the plot device definition file mdpdev (see "Plot Device Definition File," p. B-9). The driver used corresponds to the first line for which the DEVICE parameter most closely matches the NAME entry. If the value of the DEVICE parameter is "DEFAULT", the driver used corresponds to the first line which contains an asterisk (*) as the first nonblank character.

The default graphics device defined by the file mdpdev can be changed by moving the asterisk to the beginning of another line in the file. Because the default graphics device may be redefined at your site, you should check the file \(m d p d e v\), rather than this Appendix, to determine the default graphics device.

The default value for the DEVICE parameter is "DEFAULT". This default may be overridden by setting the \(D E F P D E V\) environment variable to an alternate graphics device name before executing Medici.

\section*{Graphics Devices}

This section contains descriptions of the graphics devices and graphics software libraries supported by Medici.

\section*{Direct Device Drivers}

The direct device drivers generate graphics by producing FORTRAN formatted output. The LU entry in the plot device definition file mdpdev (see "Plot Device Definition File," p. B-9) controls whether the driver output is sent to your terminal. Output is sent to the terminal if \(\mathbf{L U}\) is 0 . No terminal output is generated if \(L U\) is negative.

Driver Output The driver output may also be sent simultaneously to an output file. Output is sent to the file specified by the PLOT. OUT parameter on PLOT .1D, PLOT . 2D, and PLOT . 3D statements if this parameter is specified. Otherwise, if the DF entry is " T " in the plot device definition file \(m d p d e v\), output is sent to the formatted plot output file <base >.dplt (see Chapter 1, "Formatted Plot Output Files," p. 1-10). The descriptions below indicate the default destination for the output produced by each direct device driver.

Available Drivers The following direct device drivers are available:

TEK4010 (4010) Tektronix 4010-series and compatible graphics terminals. This driver generates character sequences to directly control the device. It supports monochrome output. Output is sent to your terminal by default.

TEK4100 (4100) Tektronix 4100-series and compatible graphics terminals. This driver generates character sequences to directly control the device. It supports 14 -color output and filled polygons. Output is sent to your terminal by default.

\section*{HP 7550 (7550, L/HP7550, L/7550)}

Hewlett-Packard 7510, 7550, 7570, 7586, 7595, 7596, and compatible graphics plotters. This driver generates character sequences to directly control the plotter using HPGL and device control instructions. It supports 8 -color output and filled polygons with landscape orientation. Output is sent to the formatted plot output file <base>.dplt by default.

P/HP7550 (P/7550)
Same as HP7550 with portrait orientation.

\section*{HP7475 (7475, L/HP7475, L/7475)}

Hewlett-Packard 7470, 7475, 7580, 7585, and compatible graphics plotters. This driver generates character sequences to directly control the plotter using HPGL and device control instructions. It supports 8 -color output with landscape orientation. Output is sent to the formatted plot output file <base >.dplt by default.

P/HP7475 (P/7475)
Same as HP 7475 with portrait orientation.

\section*{POSTSCRIPT (P/POSTSCRIPT)}

Adobe Systems Postscript graphics printers. This driver generates character sequences to directly control the device. It supports 14 -level gray scale monochrome output and filled polygons with portrait orientation. Output is sent to the formatted plot output file <base >.dplt by default.

L/POSTSCRIPT Same as POSTSCRIPT with landscape orientation.

C/POSTSCRIPT (CP/POSTSCRIPT)

Adobe Systems Postscript color graphics printers. This driver generates character sequences to directly control the device. It supports 14 -color output and filled polygons with portrait orientation. Output is sent to the formatted plot output file <base >.dplt by default.

CL/POSTSCRIPT Same as C/POSTSCRIPT with landscape orientation.

XTERM X-Windows "xterm" graphics window. This driver generates character sequences to plot in the graphics window of the X-windows "xterm" terminal emulator program. It supports monochrome output. Output is sent to your terminal by default.

HP2 648 (2648) Hewlett-Packard 2648 graphics terminals. This driver generates character sequences to directly control the device using binary relative and absolute formats. It supports monochrome output. Output is sent to your terminal by default.

HP2623 (2623) Hewlett-Packard 2623 and compatible graphics terminals. This driver generates character sequences to directly control the device using binary relative and absolute formats. It supports monochrome output. Output is sent to your terminal by default.

REGIS Digital Equipment ReGIS and compatible graphics terminals. This driver generates character sequences to directly control the device. It supports 8 -color output with a dark background. Output is sent to your terminal by default.

I/REGIS Same as REGIS with a white background.

SELANAR Selanar HiRez and compatible graphics terminals. This driver generates character sequences to directly control the device. It supports monochrome output. Output is sent to your terminal by default.

CANON (P / CANON) Canon LBP-8II laser printer with full resolution. This driver generates character sequences to directly control the device. It supports monochrome output and filled polygons with portrait orientation and full resolution (requires 1536 Kbytes of RAM for full page output). Output is sent to the formatted plot output file <base>.dplt by default.

I/CANON Same as CANON with landscape orientation.

\section*{H/CANON (HP / CANON)}

Canon LBP-8II laser printer with half resolution. This driver generates character sequences to directly control the device. It supports monochrome output and filled polygons with portrait orientation and half resolution (only requires 512 Kbytes of RAM for full page output). Output is sent to the formatted plot output file <base>.dplt by default.

\section*{HL/CANON Same as H/CANON with landscape orientation.}

FORMAT Formatted plot output file. This driver generates one FORTRAN formatted line containing the subroutine arguments \((X, Y, I P E N)\) for each call to the driver subroutine. The \(X\) and \(Y\) arguments are multiplied by XPIX and YPIX, respectively, obtained from the plot device definition file \(m d p d e v\). It supports 14color output and filled polygons. Output is sent to the formatted plot output file <base>.dplt by default.

BINARY Binary plot output file. This driver generates one FORTRAN unformatted (binary) record containing the subroutine arguments ( \(X, Y, I P E N\) ) for each call to the driver subroutine. The \(X\) and \(Y\) arguments are written as real FORTRAN variables and the IPEN argument is written as an integer FORTRAN variable. It supports
14-color output and filled polygons. Output is sent to the binary plot output file <base >.bplt by default.

\section*{Graphics Software Library Drivers}

The graphics software library drivers generate graphics output by performing FORTRAN subroutine calls to subroutines in graphics software libraries. These graphics software libraries are not provided by Synopsys TCAD.

Enabling A graphics software library driver is enabled for use by performing the following steps:
1. Replace all occurrences of "C*" with two spaces in the FORTRAN source code file for the driver.
This enables calls to graphics software library subroutines and related FORTRAN statements. For example, the source code file TGPD19 must be modified to enable the IGL/PLOT-10 driver.
2. Recompile the FORTRAN source code file for the driver.
3. Relink Medici with the graphics software library included in the link.

\section*{Output Output may be generated on those graphics devices which are supported by the} graphics software library. The supported graphics devices and the methods used to specify the output device and obtain output will depend on the specific graphics software library and the options chosen during its installation. Consult with your computer systems administrator for assistance in the use of the graphics software library drivers.

\section*{Available Drivers}

CALCOMP

TCS/PLOT-10 Tektronix PLOT 10 Terminal Control System (TCS) graphics software library. This driver makes calls to library subroutines. It supports 8-color output.

IGL/PLOT-10 Tektronix PLOT 10 Interactive Graphics Library (IGL) graphics software library. This driver makes calls to library subroutines. It supports 8 -color output and filled polygons with a black background.

I/IGL/PLOT-10 Same as IGL/PLOT-10 with a white background.

DI-3000 Precision Visuals DI-3000 graphics software library. This driver makes calls to library subroutines. It supports 8-color output and filled polygons with a normal background.

I/DI-3000 Same as DI-3000 with a complement-of-normal background.

DISSPLA Integrated Software Systems DISSPLA graphics software library. This driver makes calls to library subroutines. It supports 8 -color output and filled polygons.

PLXY-11 Digital Equipment PLXY-11 graphics software library. This driver makes calls to library subroutines. It supports monochrome output.

GDDM IBM GDDM graphics software library for graphics terminals and auxiliary graphics plotters. This driver makes calls to library subroutines. It supports 8color output and filled polygons.

GKS Graphics Kernel System (GKS) graphics software library for graphics terminals. This driver makes calls to library subroutines. It supports 8 -color output and filled polygons.

\section*{Special Device Drivers}

The special device drivers generate graphics output by using system features which are only available for some computer systems. Some or all of these drivers are not provided with versions of Medici for which the necessary system features are not available. The descriptions below indicate the computer systems for which each special device driver is available.

Available Drivers The following special device drivers are available:

APOLLO Apollo GPR frame mode window. This driver generates character sequences and pipes them to the tmaplot program, which is executed by the driver. It supports 8color output and filled polygons with a white background. The tmaplot program generates a GPR graphics window in which graphical output is produced. Multiple graphics images are retained. The display window can be controlled with the following keys:
- downward vertical scroll: display next page
- upward vertical scroll: display previous page
- exit or abort: exit

This driver and the tmaplot program are only provided with versions of Medici for the Unix operating system. An Apollo version of the tmaplot program must be executed on the local Apollo computer which controls the monitor display.

I/APOLLO Same as APOLLO with a black background.

SUN SunView graphics window. This driver generates character sequences and pipes them to the tmaplot program, which is executed by the driver. It supports 14-color output and filled polygons with a white background. The tmaplot program generates a SunView graphics window in which graphical output is produced. Multiple graphics images are retained. The display window can be controlled with the following keys and mouse buttons:
- left mouse button: display next page
- right mouse button: display previous page
- z: Zoom—magnify the image by a factor of 2 and center it at the cursor location
- Z: Unzoom-demagnify the image by a factor of 2 and center it at the cursor location
- \(\quad p:\) Pan-center the image at the cursor location
- \(\quad r\) : Reset—restore the image to its initial state
- \(u\) : Undo-undo the previous Zoom, Unzoom, Pan, or Reset operation
- \(w\) : print the cursor location in image coordinates
- \(\quad d\) : use replot to convert the current image to a formatted plot file using the device specified by the TMAPLOT_REPLOT environment variable (the default is "FORMAT")
- control-C: exit

This driver and the tmaplot program are only provided with versions of Medici for the Unix operating system. A Sun version of the tmaplot program which supports SunView graphics must be executed on the local Sun computer which controls the monitor display.

I/SUN Same as SUN with a black background.
\(\mathbf{X} \quad \mathrm{X}\)-Windows graphics window. This driver generates character sequences and pipes them to the tmaplot program, which is executed by the driver. It supports 14color output and filled polygons with a white background. The tmaplot program generates a X-Windows graphics window in which graphical output is produced. Multiple graphics images are retained.

\section*{Display Window with Control Panel}

If tmaplot is executed on a Sun Sparc system and the TMAPLOT_XLIB environment variable is not set, the display window is controlled through a control panel. Complete help information is provided as part of the user interface. The help information is only available if the directory where the file studio_view.info is located is included in the directory list set in the HELPPATH environment variable. The display window can also be controlled with the following keys:
- \(f:\) display next page
- \(\quad b\) : display previous page
- \(w\) : print the cursor location in image coordinates
- \(\quad d\) : use replot to convert the current image to a formatted plot file using the device specified by the TMAPLOT_REPLOT environment variable (the default is "FORMAT")

\section*{Display Window without Control Panel}

If tmaplot is executed on any system other than a Sun Sparc or the
TMAPLOT_XLIB environment variable is set, no control panel is available. The display window can be controlled with the following keys and mouse buttons:
- left mouse button: display next page
- right mouse button: display previous page
- \(z\) : Zoom—magnify the image by a factor of 2 and center it at the cursor location
- Z: Unzoom-demagnify the image by a factor of 2 and center it at the cursor location
- \(p\) : Pan-center the image at the cursor location
- \(r\) : Reset—restore the image to its initial state
- \(u\) : Undo-undo the previous Zoom, Unzoom, Pan, or Reset operation
- \(w\) : print the cursor location in image coordinates
- \(d\) : use replot to convert the current image to a formatted plot file using the device specified by the TMAPLOT_REPLOT environment variable (the default is "FORMAT")
- control-C: exit

This driver and the tmaplot program are only provided with versions of Medici for the Unix operating system.

I/X Same as \(\mathbf{X}\) with a black background.
\(\mathbf{X 6 0}\) Same as \(\mathbf{X}\) with the addition of 41 shades of gray corresponding to color indices 20 through 60.

I/X60 Same as X60 with a black background.

GPR Apollo GPR frame mode window. This driver makes calls to GPR library subroutines. It supports 8 -color output and filled polygons with a white background. Multiple graphics images are retained. The display window can be controlled with the following keys:
- downward vertical scroll: display next page
- upward vertical scroll: display previous page
- exit or abort: exit

This driver is only provided with versions of Medici for Apollo computer systems.

I/GPR Same as GPR with a black background.

\section*{Plot Device Definition File}

Medici contains 30 subroutines (TGPD01-TGPD30) which are used to generate graphical output. These subroutines either control graphics devices directly or provide indirect control through graphics software libraries.

\section*{mdpdev File}

The plot device definition file \(m d p d e v\) contains information which controls use of the driver subroutines. It associates each graphics device name with a driver subroutine through a unique driver subroutine index. See "Specifying the Graphics Device," p. B-1 for a description of how to specify the graphics device name.

\section*{Syntax}

The plot device definition file mdpdev may contain blank lines which are ignored. Lines in the file which contain a slash (/) as the first nonblank character are ignored and can be used to document the file.

\section*{Graphics Device Characteristics}

Lines in the plot definition file define the characteristics for a single graphics device and contain the following 11 columns of information (see the listing of \(m d p d e v\) at the end of this section):

NAME-The character string defining the graphics device name.
The driver subroutine used for graphical output is the line in the file which exactly matches the graphics device name specified by the DEVICE parameter on the PLOT. OUT parameter on statements PLOT . 1D, PLOT. 2D, and PLOT. 3D. The name may not contain blanks.
"Graphics Devices," p. B-2 contains a description of the graphics devices and graphics software libraries supported by Medici.

DV-The graphics driver subroutine index.
The value of \(\boldsymbol{D V}\) determines which driver subroutine will be used for graphical output. Each driver subroutine is assigned a unique index (i.e. \(\mathbf{D V}=1\) corresponds to the subroutine TGPD01, \(\mathbf{D V}=30\) corresponds to the subroutine TGPD30). \(\mathbf{D V}\) should be an integer in the range 1 to 30 .

XSIZE-The horizontal size of the plotting area in centimeters.

The value of XSIZE should be the horizontal physical size of the output device to obtain correct character sizes and aspect ratios. XSIZE should be a positive floating point number containing a decimal point.

YSIZE-The vertical size of the plotting area in centimeters.
The value of YSIZE should be the vertical physical size of the output device to obtain correct character sizes and aspect ratios. YSIZE should be a positive floating point number containing a decimal point.

XPIX-The number of horizontal display pixels per centimeter.
The value of XPIX is only used for devices where display addressing is based on pixels. XPIX should be a non-negative floating point number containing a decimal point.

YPIX-The number of vertical display pixels per centimeter.
The value of YPIX is only used for devices where display addressing is based on pixels. YPIX should be a non-negative floating point number containing a decimal point.

LU-Controls whether graphics is output to a logical unit number or to the user's terminal.
- If \(\mathbf{L U}\) is positive, it is the FORTRAN logical unit number to which the graphics output will be sent. Medici does not explicitly perform a FORTRAN OPEN statement to associate this logical unit number with a file, but it will be associated automatically with a file by some computer systems.
- If \(\mathbf{L U}\) is 0 , graphics output is directed to the user's terminal using logical unit number PLLUNM which is initialized in subroutine COMMN.
- If LU is negative, graphics output is not sent to a logical unit number or to the user's terminal, but may still be sent to <base>.bplt and <base>.dplt. LU should be an integer.

BF-Indicates whether output is to be sent to the binary plot output file <base>.bplt in addition to the output device. BF should be " T " for true or " F " for false.

If \(\mathbf{B F}\) is " T ", then output is sent to <base>.bplt. <base>.bplt is a FORTRAN unformatted (binary) file with each line containing the arguments \(X\) (real), \(Y\) (real), and IPEN (integer) for one call to the driver subroutine. The arguments \(X\) and \(Y\) are in units of centimeters.

This output is not in the same format as the output sent to the output device. The output to <base>.bplt is the standard output produced by the BINARY graphics device driver ( \(\mathbf{D V}=16\) ). The value of \(\mathbf{B F}\) is independent of the value of \(\mathbf{D F}\). Output may be sent to either, both, or none of the files <base〉.bplt and <base >.dplt.

DF-Indicates whether output is to be sent to the formatted plot output file <base >.dplt in addition to the output device. DF should be "T" for true or "F" for false.

If DF is "T", then output is sent to <base>.dplt. <base>.dplt is a FORTRAN formatted file containing the character sequences which control the graphics device.

This file may be output to the graphics device to reproduce the graphical output. This can be accomplished with the cat command for Unix operating systems and with the type command for IBM/CMS and VAX/VMS operating systems.

Output has the following limitations and special characteristics:
- <base>.dplt is only available for the direct device drivers and some special device drivers ( \(\mathrm{DV}=1,2,3,4,5,6,8,9,10,15,28,29\), and 30)
- <base>.dplt is not available for the BINARY graphics device driver or the graphics software library drivers ( \(\mathbf{D V}=16,17,18,19,20,21,22,23,24\) )

The value of DF is independent of the value of BF. Output may be sent to either, both, or none of the files <base>.bplt and 〈base〉.dplt.

SCRI controls up to 10 adjacent feature flags. Each flag should be "T" for true or "F" for false.

Currently, the following four feature flags, as identified by their column headings, are recognized:
- \(\quad \mathbf{S}\) (flag 1): "T" means characters are produced with built-in character fonts. This feature is available for three device drivers ( \(D V=2,3,4\) ).
- C (flag 2): "T" means color output is produced. If this flag is "F", monochrome output is produced. This feature is available for fifteen device drivers (DV \(=2,3,4,8,15,16,18,19,20,21,23,24,28,29,30)\).
- \(\quad \mathbf{R}\) (flag 3): "T" means output is rotated 90 degrees from the default orientation. This feature is useful for generating both portrait and landscape orientation output on hardcopy devices. Although this feature is available for all device drivers, it is useful mainly for three device drivers ( \(\mathrm{DV}=3,4,10\) ).
- I (flag 4): "T" means the foreground and background colors are reversed (inverted). This feature is available for six device drivers ( \(\mathbf{D V}=8,19,20,28\), 29, 30).

MPLY-The maximum number of vertices supported by the device for the specification of filled polygons.
- Values of MPLY less than 9999 in mdpdev are maximum values which are determined by limitations imposed by graphics devices or by graphics software libraries.
- Values of MPLY less than 3 disable the filling of polygons.
- MPLY should be an integer less than 10000 .

\section*{Defaults}

The default graphics device is defined by the first line in the file \(m d p d e v\) which contains an asterisk (*) as the first nonblank character. The default graphics device should normally be defined as the graphics device which is most commonly available to the users of Medici.

\title{
Multiple Lines and Entries
}

Multiple lines may be present in the file \(m d p d e v\) for the same value of \(\mathbf{D V}\) (e.g. NAME=TEK4100 and NAME=4100 both refer to DV=2) with different entries for NAME, XSIZE, YSIZE, XPIX, YPIX, LU, BF, DF, SCRI, or MPLY. This allows a single driver subroutine to be used for multiple physical devices having different sizes, output characteristics, and methods of connection to the computer system.

Editing You can modify the existing lines or add new lines to change the characteristics of the available graphics devices. The plot device definition file is in standard text format and can be modified by any text editor.

\section*{mdpdev Listing}

The following is a listing of the plot device definition file mdpdev.
```

9040
/ The first line in this file is a revision code used to determine whether
/ the file format is consistent with the program.
/ Lines beginning with "/" represent comments and are ignored.
/ All other lines represent device definitions (one per line) containing
/ 11 fields, separated by spaces and/or tabs.
/
/ More information regarding this file is provided in the Appendix titled
/ "TCAD Graphics" in the User's Manual.
/
/ The default device can be identified by preceding a device definition
/ line with "*". This device will be used if the value of the DEVICE
/ parameter in input statements is "DEFAULT". The DEVICE parameter is given
/ the value "DEFAULT" if it is not specified. Only one such default device
/ should be identified. If more than one default device is identified, a
/ warning message will be issued and the first default device will be used.
/
/ The fields in each device definition line have the following meanings:
/
/ NAME character:device name specified with the DEVICE parameter in input
/ statements (abbreviations such as POST are recognized)
/ DV integer: index of the device driver - each index corresponds to a
/ FORTRAN subroutine name containing the index (e.g. DV=8 for TGPD08)
/ XSIZE float: horizontal size of the graphics output in cm
/ YSIZE float: vertical size of the graphics output in cm
/ XSIZE and YSIZE should match the physical size of the display
/ device to achieve proper aspect ratios and character sizes
/ XPIX float: number of horizontal pixels per cm
/ YPIX float: number of vertical pixels per cm
/ XPIX and YPIX are used for devices which are addressed by pixel
/ LU integer: controls the destination for output of character
/ sequences which directly control the graphics device as follows:
/ =0: output to terminal
<0: no output to terminal
>0: output to the logical unit specified by this field
/ BF T or F: T means a binary plot file is generated by default
|F T or F: T means a device plot file is generated by default
/ This file contains character sequences which control the device
/ SCRI T or F: up to 10 adjacent logical flags (each must be T or F)
/ The following four flags are currently recognized:
/ S (flag 1): T means characters produced with built-in symbols
/ C (flag 2): T means color is supported (F means monochrome)
/ R (flag 3): T means output is rotated 90 degrees
/ I (flag 4): T means foreground/background colors are inverted
/ MPLY integer: maximum number of vertices supported for filled polygons
/
/NAME DV XSIZE YSIZE XPIX YPIX LU BF DF SCRI MPLY
TEK4010 1 23.95 17.96 171.0 171.0 0 F F FFFF 0
4010 1 23.95 17.96 171.0 171.0 0 F F FFFF 0

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TEK4100 & 2 & 23.95 & 17.96 & 171.0 & 171.0 & 0 & F & F & TTFF & 9999 \\
\hline 4100 & 2 & 23.95 & 17.96 & 171.0 & 171.0 & 0 & F & F & TTFF & 9999 \\
\hline HP 7550 & 3 & 25.40 & 19.60 & 400.0 & 400.0 & -1 & F & T & TTFF & 100 \\
\hline 7550 & 3 & 25.40 & 19.60 & 400.0 & 400.0 & -1 & F & T & TTFF & 100 \\
\hline L/HP7550 & 3 & 25.40 & 19.60 & 400.0 & 400.0 & -1 & F & T & TTFF & 100 \\
\hline L/7550 & 3 & 25.40 & 19.60 & 400.0 & 400.0 & -1 & F & T & TTFF & 100 \\
\hline P/HP7550 & 3 & 19.60 & 25.40 & 400.0 & 400.0 & -1 & F & T & TTTF & 100 \\
\hline P/7550 & 3 & 19.60 & 25.40 & 400.0 & 400.0 & -1 & F & T & TTTF & 100 \\
\hline HP 7475 & 3 & 25.40 & 19.60 & 400.0 & 400.0 & -1 & F & T & FTFF & 0 \\
\hline 7475 & 3 & 25.40 & 19.60 & 400.0 & 400.0 & -1 & F & T & FTFF & 0 \\
\hline L/HP7475 & 3 & 25.40 & 19.60 & 400.0 & 400.0 & -1 & F & T & FTFF & 0 \\
\hline L/7475 & 3 & 25.40 & 19.60 & 400.0 & 400.0 & -1 & F & T & FTFF & 0 \\
\hline P/HP7475 & 3 & 19.60 & 25.40 & 400.0 & 400.0 & -1 & F & T & FTTF & 0 \\
\hline P/7475 & 3 & 19.60 & 25.40 & 400.0 & 400.0 & -1 & F & T & FTTF & 0 \\
\hline POSTSCRIPT & 4 & 19.05 & 25.40 & 118.1 & 118.1 & -1 & F & T & TFFF & 100 \\
\hline P/POSTSCRIPT & 4 & 19.05 & 25.40 & 118.1 & 118.1 & -1 & F & T & TFFF & 100 \\
\hline L/POSTSCRIPT & 4 & 25.40 & 19.05 & 118.1 & 118.1 & -1 & F & T & TFTF & 100 \\
\hline C/POSTSCRIPT & 4 & 19.05 & 25.40 & 118.1 & 118.1 & -1 & F & T & TTFF & 100 \\
\hline CP/POSTSCRIPT & 4 & 19.05 & 25.40 & 118.1 & 118.1 & -1 & F & T & TTFF & 100 \\
\hline CL/POSTSCRIPT & 4 & 25.40 & 19.05 & 118.1 & 118.1 & -1 & F & T & TTTF & 100 \\
\hline XTERM & 5 & 20.48 & 15.36 & 200.0 & 200.0 & 0 & F & F & FFFF & 0 \\
\hline HP 2648 & 6 & 25.40 & 12.70 & 28.34 & 28.34 & 0 & F & F & FFFF & 0 \\
\hline 2648 & 6 & 25.40 & 12.70 & 28.34 & 28.34 & 0 & F & F & FFFF & 0 \\
\hline HP 2623 & 6 & 21.50 & 16.40 & 23.81 & 23.78 & 0 & F & F & FFFF & 0 \\
\hline 2623 & 6 & 21.50 & 16.40 & 23.81 & 23.78 & 0 & F & F & FFFF & 0 \\
\hline NULL & 7 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & F & F & FFFF & 0 \\
\hline REGIS & 8 & 20.32 & 11.17 & 39.3 & 39.3 & 0 & F & F & FTFF & 0 \\
\hline I/REGIS & 8 & 20.32 & 11.17 & 39.3 & 39.3 & 0 & F & F & FTFT & 0 \\
\hline SELANAR & 9 & 21.56 & 16.42 & 190.0 & 190.0 & 0 & F & F & FFFF & 0 \\
\hline CANON & 10 & 19.05 & 25.40 & 118.1 & 118.1 & -1 & F & T & FFFF & 10 \\
\hline P/CANON & 10 & 19.05 & 25.40 & 118.1 & 118.1 & -1 & F & T & FFFF & 10 \\
\hline L/ CANON & 10 & 25.40 & 19.05 & 118.1 & 118.1 & -1 & F & T & FFTF & 10 \\
\hline H/CANON & 10 & 19.05 & 25.40 & 59.05 & 59.05 & -1 & F & T & FFFF & 10 \\
\hline HP / CANON & 10 & 19.05 & 25.40 & 59.05 & 59.05 & -1 & F & T & FFFF & 10 \\
\hline HL/CANON & 10 & 25.40 & 19.05 & 59.05 & 59.05 & -1 & F & T & FFTF & 10 \\
\hline NULL & 11 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & F & F & FFFF & 0 \\
\hline NULL & 12 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & F & F & FFFF & 0 \\
\hline NULL & 13 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & F & F & FFFF & 0 \\
\hline NULL & 14 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & F & F & FFFF & 0 \\
\hline FORMAT & 15 & 25.40 & 25.40 & 500.0 & 500.0 & -1 & F & T & FTFF & 9999 \\
\hline BINARY & 16 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & T & F & FTFF & 9999 \\
\hline CALCOMP & 17 & 25.40 & 27.94 & 0.0 & 0.0 & 0 & F & F & FFFF & 0 \\
\hline TCS/PLOT-10 & 18 & 25.40 & 19.50 & 0.0 & 0.0 & 0 & F & F & FTFF & 0 \\
\hline IGL/PLOT-10 & 19 & 25.40 & 19.50 & 0.0 & 0.0 & 0 & F & F & FTFF & 100 \\
\hline I/IGL/PLOT-10 & 19 & 25.40 & 19.50 & 0.0 & 0.0 & 0 & F & F & FTFT & 100 \\
\hline DI-3000 & 20 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & F & F & FTFF & 100 \\
\hline I/DI-3000 & 20 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & F & F & FTFT & 100 \\
\hline DISSPLA & 21 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & F & F & FTFF & 100 \\
\hline PLXY-11 & 22 & 25.40 & 27.94 & 0.0 & 0.0 & 0 & F & F & FFFF & 0 \\
\hline GDDM & 23 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & F & F & FTFF & 9999 \\
\hline GKS & 24 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & F & F & FTFF & 100 \\
\hline NULL & 25 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & F & F & FFFF & 0 \\
\hline NULL & 26 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & F & F & FFFF & 0 \\
\hline GPR & 27 & 16.40 & 16.40 & 30.5 & 30.5 & 0 & F & F & FTFF & 9999 \\
\hline I/GPR & 27 & 16.40 & 16.40 & 30.5 & 30.5 & 0 & F & F & FTFT & 9999 \\
\hline APOLLO & 28 & 16.40 & 16.40 & 30.5 & 30.5 & -1 & F & F & FTFF & 9999 \\
\hline I/APOLLO & 28 & 16.40 & 16.40 & 30.5 & 30.5 & -1 & F & F & FTFT & 9999 \\
\hline SUN & 29 & 20.32 & 15.24 & 33.0 & 33.0 & -1 & F & F & FTFF & 9999 \\
\hline I/SUN & 29 & 20.32 & 15.24 & 33.0 & 33.0 & -1 & F & F & FTFT & 9999 \\
\hline * X & 30 & 20.32 & 15.24 & 500.0 & 500.0 & -1 & F & F & FTFF & 9999 \\
\hline I/X & 30 & 20.32 & 15.24 & 500.0 & 500.0 & -1 & F & F & FTFT & 9999 \\
\hline X60 & 30 & 20.32 & 15.24 & 500.0 & 500.0 & -1 & F & F & FTFFF & FFT 9999 \\
\hline I/X60 & 30 & 20.32 & 15.24 & 500.0 & 500.0 & -1 & F & F & FTFTF & FFT 9999 \\
\hline
\end{tabular}

\section*{Unique This section details special specifications found in particular operating systems. Operating System Specifications}

Non-Unix For versions of Medici for operating systems other than Unix the lines for \(\mathbf{D V}=27\), \(\mathrm{DV}=28, \mathrm{DV}=29\), and \(\mathrm{DV}=30\) are replaced with the following:
\begin{tabular}{lllllllllll} 
NULL & 27 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & \(F\) & \(F\) & \(F F F F\) & 0 \\
NULL & 28 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & \(F\) & \(F\) & \(F F F F\) & 0 \\
NULL & 29 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & \(F\) & \(F\) & \(F F F F\) & 0 \\
NULL & 30 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & \(F\) & \(F\) & \(F F F F\) & 0
\end{tabular}

Non-Apollo For versions of Medici for computer systems other than Apollo the lines for \(\mathrm{DV}=27\) are replaced with the following:
\begin{tabular}{lllllllllllll} 
NULL & 27 & 25.40 & 25.40 & 0.0 & 0.0 & 0 & \(F\) & \(F\) & \(F F F F\) & 0
\end{tabular}

Default Graphics Device

The default graphics device is indicated here as \(\mathbf{x}\) because that is the most standard device available for a wide variety of computer systems. For some computer systems another default graphics device, such as TEK4010, GPR, APOLLO, or SUN, may be defined by moving the asterisk (*) to the beginning of another line. Since the default graphics device may be modified at your site, you should check the file mdpdev, rather than this Appendix, to determine the default graphics device.

\title{
Appendix C: Version 2002.4 Enhancements
}

\section*{Enhancements to Medici Version 2002.4}

The following enhancements have been made to Medici version 2002.4 relative to Medici version 2002.2:
- Schottky Barrier Tunneling (SBT) model
- Post-processing enhancements
- Miscellaneous enhancements

\section*{Schottky Barrier Tunneling}

A new model called the Schottky Barrier Tunneling (SBT) model has been added to Medici to augment the thermionic emission boundary condition at Schottky contacts to include tunneling through the potential barrier formed by a Schottky contact. This model is suitable for simulating Schottky barrier tunneling transistors as well as for modeling the contact resistance of silicided source and drain contacts. Following Ieong [1] and Matsuzawa [2], the model is implemented as a self-consistent, distributed generation rate and can be used for DC, AC, and transient analysis. The model is activated by specifying the new SBT parameter on the MODELS statement. The new parameter called SBT . nSEG, also on the MODELS statement, can be used to control the discretization of the tunneling barrier and obtain either the Ieong [1] or Matsuzawa [2] version of the model. To accelerate simulations using the SBT model, the new parameter DIST . SBT on the MATERIAL statement can be used to restrict the evaluation of the model to a small band around each contact. The effective tunneling mass of electrons and holes can also be set on the MATERIAL statement using the new parameters
called ME . SBT and MH. SBT, respectively. The resulting SBT generation rates for electrons and holes can be plotted using the new SBT. NGEN and SBT. PGEN parameters, respectively, on the PLOT. 1D, PLOT.3D, and CONTOUR statements and can be saved to a TIF file for subsequent visualization.

Figure C-1 shows an analysis of the forward and reverse currents in a Schottky diode formed by a \(\mathrm{TiSi}_{2}\) contact on n-type silicon. Three different simulations are compared against measured results. The solid curve is computed using the SBT model with an accurate discretization of the tunneling barrier and agrees well with the measured data. The diode turns on around 0.6 V and displays significant reverse bias current. Results using a very coarse discretization of the tunneling barrier (SBT.NSEG=1) are also shown and demonstrate that good results can still be obtained using the Matsuzawa [2] approach. Results using only the thermionic emission model are also shown demonstrating that tunneling dominates the current in this device, especially at reverse bias. More information on the SBT model can be found in Chapter 2, "Schottky Barrier Tunneling," p. 2-7.


Figure C-1 Current in a TiSi \(\mathrm{T}_{2} / \mathrm{n}\) - Si Schottky diode. Simulated currents using the SBT model with various SBT . NSEG values are compared against measured data. Data from Schenk et. al., SISDEP 1993.

\section*{Post-Processing Enhancements}

The following post-processing enhancements have been made.

Printing and Plotting Total Acceptors and Donors

Printing and Plotting lonized Impurities

\section*{Depletion Edges and Ionized Impurities}

\section*{Extraction of Nc and Nv}

Gradients of Spatially Varying Predefined Quantities

The printed output created when "PRINT IMPURITY" is specified has been expanded to include columns for the total donor concentration ( Nd ) and the total acceptor concentration (Na). In addition, the plot statements PLOT . 1D, CONTOUR, and PLOT . 3D now allow the total impurity concentration, the total donor concentration, and the total acceptor concentration to be plotted by specifying the new parameters N. TOTAL, DONORS, and ACCEPTOR, respectively.

A new parameter, INCOMPLE, is now available as a modifier to the IMPURITY parameter on the PRINT statement, and as a modifier to the IMPURITY, DOPING, N.TOTAL, DONORS, and ACCEPTOR parameters on the PLOT .1D, CONTOUR, and PLOT . 3D statements. When INCOMPLE is specified, the printed or plotted impurity concentrations will include the effects of the incomplete ionization of impurities model (if this model was selected on the MODELS statement) instead of concentration values that assume \(100 \%\) ionization. Some examples are included below:
```

PRINT IMPURITY INCOMPLE ...
PLOT.1D IMPURITY=AS INCOMPLE ...
CONTOUR DONORS INCOMPLE ...

```

The location of depletion edges that are plotted when the DEPLETIO is specified on the PLOT . 2D statement will now correctly account for the incomplete ionization of impurities, if this model is selected on the MODELS statement.

The conduction and valence band density of states, \(\mathbf{N C}\) and \(\mathbf{N V}\), have been added to the list of predefined quantities that can be used in expressions on the EXTRACT and TRAP statements.

Expressions used on the EXTRACT and TRAP statements can now include gradients of the spatially varying predefined quantities. The available gradient operations take the following functional form
\[
\begin{aligned}
\operatorname{gradx}(@ \text { name }) & =x \text {-component of the gradient of @ name } \\
\text { grady }(\text { @name }) & =y \text {-component of the gradient of @ name } \\
\text { gradz }(\text { @name }) & =\text { z-component of the gradient of @ name } \\
\operatorname{grad}(@ \text { name }) & =\text { magnitude of the gradient of @ name }
\end{aligned}
\]
where name represents any of the spatially varying predefined quantities described on the EXTRACT statement.

\section*{Traps Stored in TIF Files}

Medici has been enhanced so that trap parameters and quantities calculated as the result of processing the TRAP statement will be stored in TIF files. This makes it
possible to continue a simulation from a saved TIF file without having to respecify all the trap information.

\section*{Total Mobility Saved in TIF Files}

The quantities \(\mathbf{n}\). mobil and \(\mathbf{p}\). mobil, which represent the average total electron and hole mobility at each node, can now be saved in TIF files for visualization with Taurus Visual. These quantities can be saved by specifying either the CURRENTS or ALI parameters on the SAVE statement.

\section*{Miscellaneous Enhancements}

\section*{New Quadtree Mesh Generator Parameters}

Three new parameters have been added to the MESH and REGRID statements to allow more control over the Quadtree mesh generator. These are listed below:
\begin{tabular}{|c|c|c|c|c|}
\hline CRITICAL & number & Specifies the smallest feature size that should be resolved by the Quadtree mesh generator. & \(5.0 \mathrm{e}-4\) & microns \\
\hline ARC. ANGL & number & The boundary cutoff angle for sharp corner detection. & 0.53 & radians \\
\hline ARC. LENG & number & The boundary arclength for sharp corner detection. & \(20.0 \mathrm{e}-3\) & microns \\
\hline
\end{tabular}

The CRITICAL parameter specifies the smallest feature in the structure that should be considered by the mesh generator. This parameter allows for very small features in a device structure to be maintained during the Quadtree process as well as providing a way of preventing over refinement. The ARC. LENG and ARC. ANGL parameters work together to identify sharp corners on the original region boundaries that should be included in the Quadtree mesh. These parameters can be used to smooth a rippled boundary or to guarantee that curved arcs are faithfully reproduced. For more detail on these new parameters, see Chapter 3, "Quadtree Mesh Generation," p. 3-28.

The REGION statement has been enhanced to include a CONVERT parameter that will allow the material type of an existing region to be changed by the user. This is useful, for example for changing the OXIDE region in a structure created with TSUPREM-4 to S. OXIDE for device simulation. Some cases where this is necessary include modeling self-consistent Fowler-Nordheim tunneling in oxide, and charging/discharging of oxide traps.

As an example, the following statement converts a region named "oxide1" from its original material type to S.OXIDE:

REGION NAME=OXIDE1 CONVERT S.OXIDE
Note that only one region can be converted at a time, the user must know the region's name, and the entire region will get converted to the new material type.

Temperature Dependence of MLDA
Parameters

A new model has been added to calculate the temperature dependence of the carrier thermal wavelengths used in the MLDA quantum model. When the new parameter MLDA. TEM is specified on the MODELS statement, the thermal wavelengths are calculated from the appropriate temperature, i.e. the ambient temperature for an isothermal simulation or the lattice temperature if the heat equation is being solved. The values of the MLDA. LN and MLDA. LP parameters are then taken to specify the thermal wavelengths at 300 K .

\section*{Bug Fixes in Medici Version 2002.4}

The following miscellaneous bug fixes have been made to Medici version 2002.4 relative to version 2002.2.

\section*{Direct Tunneling Related Fixes}

MLDA Related Fixes

Mesh Related Fixes

\section*{Post-Processing Related Fixes}
- Fixed a problem in the evaluation of the direct tunneling model when used with bandgap narrowing or with the van Dort quantum model.
- Fixed a problem in the evaluation of the direct tunneling model at neutral contacts.
- Fixed a problem in the calculation of fast interface traps when used with the MLDA quantum correction model.
- Fixed a problem in the calculation of the incomplete ionization of impurities when used with the MLDA quantum correction model.
- Fixed a problem in the solution of the energy balance equations when using the MLDA quantum model.
- Fixed a problem in using the MLDA quantum model with the lattice temperature equation.
- Fixed a problem when saving a Quadtree mesh without the hidden support files. Previously, the program aborted with an error message. Now the program issues a warning message and continues.
- When the parameters H1, H2 and H3 were all specified on the \(\mathbf{X}\). MESH or Y.MESH statements, the program would sometimes try to create a negative number of grid spaces (information regarding the number of grid spaces and spacing for a grid section can be obtained by specifying the SUMMARY parameter). The program would not issue an error when this happened and a grid was created, but not surprisingly, it was not the desired grid. This problem has been fixed.
- Fixed a problem that caused an incorrect mesh to be created when using the STITCH statement to stitch together large mesh structures (dimensions on the order of 1000 microns).
- Fixed a problem that caused corrupt values for \(\mathrm{IE}(\langle\) name \(\rangle\) ) and \(\mathrm{IH}(\langle\) name \(\rangle\) ) to be written to the terminal data \(\log\) file. The problem occurred during frequency sweeps with AC small-signal analysis in cases where the solution method was (automatically) switched from SOR to HI FREQ mode due to convergence problems.
- Fixed a problem that caused the axis labels for projection plots, which are created using the PLOT. 3D statement, to be off center.
- Fixed a problem that caused an excessive number of warnings about flowlines to be printed to the output file.
- Fixed a problem that would sometimes cause the program to terminate abnormally during raytracing for photogeneration.

\section*{Miscellaneous Bug Fixes}
- Non-local impact ionization is specified using II . NLOC >-1 on the MODELS statement. It has been found that specifying a subsequent MODELS statement that doesn't include the II.NLOC parameter caused the program to reset II . NLOC=-1, it's default value, rather than retaining the previous value that was in effect. This problem has been fixed.
- Fixed a problem that sometimes caused the program to stop abruptly when using node based impact ionization (II . NODE >-1 on the MODELS statement). This problem occurred when the simulation structure contained a region that was split into separate parts by either an electrode or another region.
- Fixed a problem that occurred when using node based impact ionization (II . NODE >-1 on the MODELS statement) that caused the printed values for impact ionization generation rates due to electrons to be identical to the impact ionization generation rates due to holes.
- Fixed a problem that prevented QF and Q.INSULA from being specified on the same INTERFACE statement.
- Fixed a problem that prevented the user from changing the default value of the parameters MHO.X1, MLO.X1, and X1.AFFIN on the MATERIAL statement.

\section*{References}
[1] M.K. Ieong, P.M. Solomon, S.E. Laux, H.-S. P. Wong, and D. Chidambarrao, "Comparison of Raised and Schottky Source/Drain MOSFETs Using a Novel Tunneling Contact Model," Proceedings of IEDM 1998, 733 (1998).
[2] K. Matsuzawa, K. Uchida, and A. Hishiyama, "A Unified Simulation of Schottky and Ohmic Contacts," IEEE Trans. Elec. Devices, 47, 103 (2000)

\section*{Appendix D: Technology Interchange Format (TIF)}

\section*{Introduction}

The TIF file format provides a framework for seamless and direct integration of heterogeneous TCAD tools. The unified file format provides the ability to store technology simulation data created by various process and device simulators in a single, well-defined and self-documenting form. This includes the following:
- Structure information
- Material properties and model parameters using a library of materials and models
- Mesh information
- Field information (process and device simulation results)
- General table data
- Quantities calculated during a simulation such as currents, voltages, peak temperature, peak electric field, etc.

\section*{Current Applications}

The TIF format is currently used by Synopsys TCAD process and device simulation tools. It is an open format specification, which can be used to implement bi-directional interfaces between Synopsys TCAD's and nonSynopsys TCAD tools and simulators. The format should be used when integrating new simulators into Taurus WorkBench.

\section*{Format}

The TIF file consists of an arbitrary number of records. A record has the general form of:
\begin{tabular}{|l|l|}
\hline <recname> & <parameters> CR \\
\hline
\end{tabular}

Where recname is a character string that identifies each record type. Generally, any number of records of a particular type can appear in one file. However, because records may point to each other, certain restrictions apply.

\section*{Informational Group}

The informational group contains data identifying when and by whom the file was written, and is useful for describing the revision history of the file. This entry is also used by the simulators to determine that this is a TIF file and its revision.
\begin{tabular}{|l|l|}
\hline h & TIF V1.2.0 <char name> <char file> <char date> <char other> \\
\hline & \begin{tabular}{l} 
char name Name of the program that created the file. \\
char file Name of the input file (if any) to the creating program. \\
char date Date the file was created. \\
char \(\mathbf{~}\) ther Other information
\end{tabular} \\
\hline
\end{tabular}

\section*{Record Types}

A TIF file can contain a number of core records and some optional records. The core records are used by most of the tools/simulators and must be generated when creating a TIF file (see "Core Records," p. D-3). Optional records can be generated by certain tools to store tool-specific data (see "Optional Records," p. D-5). These records are ignored by tools which do not need the information contained in them. The core records are as follows:
\begin{tabular}{rl} 
Nodal coordinate & c \\
Edge record & e \\
Region record & r \\
Boundary record & b \\
Interface record & i \\
Interface boundary record & j \\
Triangle record & t \\
Solution record & s \\
Nodal solution record & n
\end{tabular}

\section*{Note:}

Core records must be maintained in a consistent manner and written in the order indicated above.

All other records are considered optional. Optional records may be grouped together at the end of the TIF file. The order of the optional records with respect to each other and with respect to the core records should not matter.

A device may be thought of to consist of regions and interfaces. Electrodes are also represented as interfaces and regions. "Thin" electrodes are represented only as interfaces. "Thick" electrodes are represented as both regions and interfaces. Regions are in turn composed of triangles and boundary edges. Interfaces are composed of interface edges. Triangles are composed of three coordinate points.

\section*{Core Records}

\section*{Nodal Coordinates Record}
\begin{tabular}{|l|l|}
\hline c & lint index><float x -coord> <float y -coord><float \(\mathrm{h}>\) \\
\hline & \begin{tabular}{l} 
int index node index (sequential, starts at 1) \\
float \(\mathbf{x}\)-coord X-coordinate of node \\
float \(\mathbf{y}\)-coord Y-coordinate of node \\
float \(\mathbf{h}\) mesh spacing parameter associated with the node
\end{tabular} \\
\hline
\end{tabular}

Note:
Node numbers must be sequential, starting from 1 with no gaps.

\section*{Edge Record}
\begin{tabular}{|l|l|}
\hline e & <int index> <int point1><int point2> <int bcode> \\
\hline & \begin{tabular}{l} 
int index edge index (sequential, starts at 1). \\
int point1 index of the starting coordinate node. \\
int point2 index of the ending coordinate node. \\
int bcode has the value 2 for edges on exposed boundaries, and zero \\
otherwise (important for TSUPREM-4).
\end{tabular} \\
\hline
\end{tabular}

\section*{Region Record}
\begin{tabular}{|l|l|}
\hline r & <int index> <char type> <char name> \\
\hline & \begin{tabular}{l} 
int index region index (sequential, starts at 1). \\
char type material type (refers to the material symbol from the material \\
database file. \\
char name name of the region.
\end{tabular} \\
\hline
\end{tabular}

\section*{Boundary Record}
\begin{tabular}{|l|l|}
\hline b & <int edge> \\
\hline & \begin{tabular}{l} 
int edge index for edge on boundary of a region. The specified edge is part of \\
the region started by a preceding region " r " record.
\end{tabular} \\
\hline
\end{tabular}

These entries must follow a region " r " entry.

\section*{Interface or Electrode Record}
\begin{tabular}{|l|l|}
\hline i & <int index> <char type> <char name> <int region> \\
\hline & \begin{tabular}{l} 
int index interface index number (sequential, starts at 1). \\
char type Interface type (refers to the interface symbol from the material \\
database file). Can specify an electrode. \\
char name name of the interface. \\
int region Region index if an entire region is the electrode. (Used for thick, \\
i.e. regional electrodes.) if <=0, the interface is defined by following " \(\mathrm{j} "\) \\
entries.
\end{tabular} \\
\hline
\end{tabular}

\section*{Interface Edge Record}
\begin{tabular}{|l|l|}
\hline j & <int edge> \\
\hline & int edge index for edge on an interface \\
\hline
\end{tabular}

This entry must follow an interface (i) entry if and only if the region entry on the preceding interface " i " entry is \(<=0\).

\section*{Triangle Record}
\begin{tabular}{|c|c|}
\hline t & ```
<int index> <int region> <int c1> <int c2> <int c3> <int t1> <int t2>
<int t3>
``` \\
\hline & int index triangle index (sequential, starts at 1) int region region index of the region the triangle is part of int \(\mathbf{c} 1\) coordinate index of the triangle node 1 int \(\mathbf{c} 2\) coordinate index of the triangle node 2 int \(\mathbf{c} 3\) coordinate index of the triangle node 3 int \(\mathbf{t 1}\) triangle index of neighbor triangle opposite node c1 int \(\mathbf{t} \mathbf{2}\) triangle index of neighbor triangle opposite node c2 int \(\mathbf{t} \mathbf{3}\) triangle index of neighbor triangle opposite node c3 \\
\hline
\end{tabular}

A code of -1024 is used instead of a neighbor triangle index for nodes opposite a reflecting boundary, and -1022 is used instead of a neighbor triangle index for nodes opposite an exposed boundary.

\section*{Fields Record (Solution Functions)}
\begin{tabular}{|l|l|}
\hline s & <int \(\mathrm{n}>\) <char name1> <char name2> ... <char nameN> \\
\hline & \begin{tabular}{l}
int \(\mathbf{n}\) Number of solution variables to follow. \\
char name1-nameN Names of the solution variables. Names of solution \\
variables are defined in the solutions database.
\end{tabular} \\
\hline
\end{tabular}

These entries are used to store solution quantities which exist on the mesh. Examples are doping, potential, and electron concentrations.

\section*{Node Record}
\begin{tabular}{|l|l|}
\hline n & <int index> <char material> <float vall> ... <float valN> \\
\hline & \begin{tabular}{l}
int index coordinate node index to which this node record belongs. \\
char material material symbol from the materials database to which this node \\
record belongs. Several node records can point to the same coordinate node \\
if multiple material regions join at that node. \\
float val1-valN values for the solutions at the nodes.
\end{tabular} \\
\hline
\end{tabular}

\section*{Optional Records}

The general convention is that any tool using TIF can create additional records for its own use. Tools which encounter records unknown to them while reading a TIF file ignore those records. Only some of the most important optional records are documented in this specification.

\section*{Curve Data Records}

The following data records are used for storing the terminal voltages and currents as well as calculated or derived quantities, device dimensions, etc. This information is typically created by a device simulator and used for visualization purposes.
\begin{tabular}{|l|l|}
\hline ds & <char name> \\
\hline & char name Name of the following data set. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline di & <char name1> <char name2> ...<char nameN> \\
\hline & char name1-nameN Names of the data items in the data set. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline du & <char units1><char units2> \(\ldots\) <char unitsN> \\
\hline & char units1-unitsN Units of the data items in the data set. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline dd & \(\langle\) float value1> <float value2> ... <float valueN> \\
\hline & float value1-valueN Values of the data items. \\
\hline
\end{tabular}

Because some of these lines (di, du, dd) can become very long, the length is restricted to about 110 characters. Longer lines are continued over several statements. A line is continued by placing the continuation character " + " at its end.

\section*{Three-Dimensional Structure Records}

3D extensions to TIF are currently under development and will be published at a later time.

\section*{TIF Example}

The example TIF file shown below was created by Michelangelo, an interactive TIF editor and visualizer. Note that the example file contains a number of optional Michelangelo-specific records, such as Creator, File, Date, refine, dop2ing, viewport, and biasing. These records are ignored by other tools reading this file.
```

h TIF V1.2.0 TMA Michelangelo V 1.1.4 Fri Jul 22 18:54:35 199
Creator TMA Michelangelo V 1.1.4
File test.tif
Date Fri Jul 22 18:54:35 1994
refine 0 0 1 1 0.1 0.1 0.5 0
doping Asa 0 0 0.6 0.6 1e+20 0 0
viewport 0 1.05689 0 1 0.1 0.1 1
c 1 0.1 0.1 1
c 2 0.1 0.9 1
c 3 0.9 0.9 1
C 4 0.9 0.1 1
c 5 0.1 0.5 1
C 6 0.5 0.9 1
c 7 0.9 0.5 1
c 8 0.5 0. 1 1
c 9 0.633333 0.5 1
e 1 1 5 0
e 2 2 6 0
e 3 370
e 4 4 8 2
e 5 5 2 0
e 6 6 3 0
e 7 7 4 0
e 8 8 1 2
r 1 Si Region1
b 5
b 1
b }
b 4
b }
b}
b 6
b }
biasing 1 0 0 0
t 11 1
t 2 1 1 1 8 5 5 6 -1024 -1022
t 3 1 1 9 7 7 3 -1024 1 8
t 4 1 9 6 5 5 5 6 1

```

```

t 6
t 7 1 8 8 4 9 8 8 6 -1022
t 8 1 1 7 9 4 4 7 -1024 3
s 3 Asa Net Total
n 3 Si 1.000000e-12 1.000000e-12 1.000000e-12

```

Figure D-1 TIF file created by Michelangelo

\title{
Appendix E: Medici and STUDIO Command Editor
}

\section*{Introduction}

Beginning with Medici V2.0, the use of arbitrary electrode names has been allowed. This makes it possible to refer to applied voltages and current using meaningful names that are representative of the simulated structure. For example, a MOSFET structure might specify biases similar to this:

SOLVE \(\quad V(\) Gate \()=3.0 \quad V(\) Drain \()=5.0 \quad V(\) Substrate \()=-5.0\)

\section*{Restrictions}

The additional flexibility that is now allowed in the Medici input language, however, imposes some restrictions when using the STUDIO Command Editor to create or modify Medici input files.

Bias or current specifications on the SOLVE statement using arbitrary electrode names can only be created or used when the Command Editor is in text mode. In command mode, a specification using an arbitrary electrode name will result in a parameter name unknown error. The remainder of this appendix describes the restrictions in more detail.

\section*{Creating Input Files with the STUDIO Command Editor}

This section details creating input files with the STUDIO Command Editor. The following topics are discussed:
- Command mode
- Text mode
- parameter name unknown error message

\section*{Command Mode}

When creating input files in command mode, you are restricted to using numbers for the electrode names for bias and current specifications on the SOLVE statement. This is consistent with the usage in versions of the program prior to V2.0. That is, only specifications such as the following will be allowed:
\[
\text { SOLVE } \quad V 1=3.0 \quad V 4=5.0 \quad V 2=-5.0
\]

\section*{Text Mode}

If it is necessary to refer to an electrode that has an arbitrary name on the SOLVE statement, this can be accomplished by first choosing View as Text from the View menu to switch the Command Editor into text mode. Once the program is in text mode, it is possible to edit the input file to enter the appropriate specification. For example, the following line could be created in text mode:

SOLVE \(\quad V(\) Whatever \()=3.2 \quad I(\) Dog \()=1.2 e-4 \quad V(\) Poppyseed \()=-3.8\)

\section*{Parameter Error Message}

After making modifications to a SOLVE statement in text mode, it is possible to switch back to command mode to do further editing. When the switch is made, the Command Editor will issue an error message stating parameter name unknown for the various specifications involving electrode names (such as \(\mathbf{V}\) (Whatever) in the above example). Although these parameters will not appear in command mode, they still actually exist as long as no editing is performed on the SOLVE statement that contains the parameter.

To see the parameters, you can either switch back to text mode or temporarily change the line containing it to a comment (by selecting Comment from the Edit menu).

\section*{Reading Existing Input Files into the STUDIO Command Editor}

The restrictions described in the previous section also apply to existing input files that are loaded into the Command Editor.

Specifically, if an input file is loaded that contains SOLVE statements containing references to named electrodes, the Command Editor will issue error messages stating parameter name unknown.

As described in the previous section, the unknown parameters will not appear in command mode, but still in fact exist and can be seen by switching to text mode. See the previous section for more details regarding editing input files from the Command Editor.

If an input file is loaded and SOLVE statements in the input file only contain references to numbered electrodes (such as V1, V3, I7, etc.), then there are no limitations for editing this file from the Command Editor.

\title{
Appendix F: Limitations of IBM SP2 Versions of Medici
}

The IBM SP2 version of Medici allows you to take the advantage of the computational power offered by this parallel computer systems. Due to the enormous effort needed to make fully parallel a comprehensive device simulation program like Medici, there are certain features that are not yet available in the present IBM SP2 version of Medici.

\section*{Energy Balance and Lattice Temperature Equations}

Only one such equation may be solved in the present IBM SP2 version of Medici. In addition, only the coupled Newton method is available for the solution method when such an equation is solved.

\section*{Flowline Plots}

Specifying FLOWLINE in a CONTOUR statement is not available in the present IBM SP2 version of Medici.

\section*{Linear Matrix Solution in Medici}

Iterative solutions are not available in the present IBM SP2 version of Medici.

\title{
Appendix G: Format of Mask Data Files
}

Medicii can read mask layout data from specially formatted files. These mask files can be created interactively with Taurus Layout or manually by using a text editor. When used with Medici, the polygonal corners are extracted for the appropriate layer name and are used to generate cross-sectional boundaries for areas of constant doping. This appendix describes the format of the mask data files used by Medici. It is intended for use by experienced programmers, who wish to generate simple mask files by hand.

\section*{Mask File Format}

Figure G-1 shows an example of a mask data file.
The first line identifies the format of the file. It contains the characters "TL2" followed by a space and a version number. The number represents the version of Taurus Layout that created the file. Current versions of Taurus Layout used with Medici are 0003 and 0004.

The identification line is followed by any number of comment lines, identified by a " \(/\) " character in the first column. The comments are followed by any number of lines beginning with a "\%" character. These lines are for use by Taurus Layout and are ignored by Medici.

The first line following the "\%" lines contains the number of layers in the mask data file. In this example there are four layers. Following this, there are three lines for each layer that provide information about the layer.
first line: name_of_layer (e.g., diel_1)
second line: GDS_index (plus four other integers ignored by Medici)
third line: three integers ignored by Medici
Following the layer information is a single floating-point number that represents the scale factor (units per micron) used for coordinates in the mask file. In example Figure G-1 there are 1000 units per micron, so the quantity 1600, for example, is used in the mask file to represent a value of 1.60 microns.

Figure G-1 Example of a mask data file created by Taurus Layout
Following the scale factor is a line containing the minimum and maximum \(x\) and \(y\) coordinates in the mask specification, in scaled units. In this example, the mask specification extends from 0 to 3.8 microns horizontally and from 0 to 1.8 microns vertically.

The next line gives the number of cutlines. If this number is greater than zero, there will be additional lines that contain the coordinate information for each cutline. This information will be ignored by Medici.

The next line gives the number of polygons in the mask file. Following this line is the data for each polygon:
first line: GDS_index number_of_vertices next number_of_vertices lines: (\(\mathrm{x}, \mathrm{y}\)) pairs for the polygon vertices

\section*{Note:}

Medici does not distinguish between upper and lower case in layer names.

\section*{Glossary}

This glossary contains terms frequently used in the Medici User's Manual. Refer to the Index for more information about individual terms. A list of acronyms is included as the last section in the Glossary.

\section*{A}
\begin{tabular}{rl}
ABC mesh & \begin{tabular}{l}
(Automatic Boundary Conforming) gridding algorithm capable of \\
a mesh in such a way that grid lines conform to region boundaries
\end{tabular} \\
abrupt heterojunction & A heterojunction with abrupt change of the bandgap \\
acceptor scattering & Mechanism of Coloumbic carrier scattering on ionized acceptors \\
acceptor states & States in forbidden energy gap near the valence band \\
acoustic phonon & Mechanism of carrier scattering involving acoustic phonons \\
scattering & \\
anisotropic mobility & Direction-dependent mobility
\end{tabular}

\section*{B}
\begin{tabular}{ll}
back-lit & \begin{tabular}{l}
When light enters from the back side of the wafer, away from the side with the contacts \\
and diffusions
\end{tabular} \\
back surface electrode & \begin{tabular}{l}
Electrode at bottom of the substrate \\
band-to-band \\
recombination
\end{tabular} \\
band-to-band tunneling & \begin{tabular}{l}
Phenomenon of a valence band electron tunneling through the forbidden energy gap to the \\
conduction band (leaving behind a hole)
\end{tabular} \\
Boltzmann statistics & \begin{tabular}{l}
Carrier statistics for non-degenerate semiconductors between valence and conductive bands
\end{tabular} \\
box method & \begin{tabular}{l}
A discretization method where each equation is integrated over a small volume enclosing \\
each node (Voronoi volume), yielding nonlinear algebraic equations for the unknown \\
variables.
\end{tabular}
\end{tabular}
\begin{tabular}{cl}
breakdown walk-out & \begin{tabular}{l}
A phenomenon where the breakdown voltage of a MOSFET is increased with time due to \\
the trapping of carriers within the oxide and at the interface of the device
\end{tabular} \\
bulk mobility & Mobility of carriers in the bulk, away from surface without any surface scattering
\end{tabular}

\section*{C}
```

            carrier velocity
            overshoot
            carrier-carrier
        scattering
    ```

Cartesian coordinate system

\section*{Caughey-Thomas expression}
charged impurity scattering

Chynoweth law
continuation method
continuity equations
Coulombic scattering
current boundary condition
current density
cylindrical coordinates

Non-monotonic dependence of carrier velocity from the electric field

Scattering mechanism due to Coulombic interaction between the carriers

A coordinate system that utilizes perpendicular coordinate axes (\(x\) and \(y\))

Describes mobility reduction due to the component of electric field parallel to current flow

Carrier scattering mechanism due to Coulombic interaction with ionized impurity

A model for impact ionization
A method where voltage-current steps are automatically selected to trace complex I-V curves

Partial differential equations that govern the carrier concentrations for electrons and holes
Carrier scattering mechanism due to interaction of charged particles
A boundary condition where a fixed current is assigned to a terminal

Current per unit area
A coordinate system that utilizes radial and height coordinate axes (r and z).

\section*{D}
decoupled method
Dirichlet boundary condition
distributed resistance
donor states
drift diffusion

A method where one set of variables is held fixed while another set is solved for

A boundary condition where a constant value is assigned to a boundary

Resistance, distributed over the area of a contact
States in forbidden energy gap near the conductive band

A standard approach for carrier transport simulation, assuming that the transport mechanisms are drift in the electric field and gradient-driven diffusion

\section*{E}
\begin{tabular}{rl}
\begin{tabular}{r}
electron-hole \\
scattering
\end{tabular} & Scattering mechanism due to Coloumbic interaction of electrons and holes \\
energy balance \\
equations
\end{tabular}\(\quad\) Device equations that govern the carrier temperatures for electrons and holes

F
fast traps A type of trap where the trap occupation function adjusts instantaneously to the carrier concentrations.
floating electrode
floating region
Fowler-Nordheim tunneling

An electrode in memory cells that is completely surrounded by insulating material
A semiconductor region which is not connected to any electrodes
A mechanism of field-driven carrier tunneling through insulators

G

\section*{Gaussian (or Gauss) elimination} graded heterojunction

Gummel's method

Algorithm for eliminating unknowns when using a direct method for the solution of a linear system of equations

A heterojunction with a gradual change of the bandgap
Sequential (decoupled) solution of a system of equations

\section*{H}
hot carrier injection
Injection of energetic (hot) carriers into insulators

\section*{I}
impact ionization
impurity freeze-out
impurity profiles
intrinsic carrier concentration
intrinsic Fermi energy

A mechanism of generation of electrons and holes by ionizing an atom due to impact by an energetic carrier

A mechanism of impurity deactivation due to reduction of the carriers at low temperature
Distribution of acceptor and donor impurities in semiconductors
Carrier concentration in an undoped semiconductor

Fermi level in an undoped semiconductors
\begin{tabular}{cl}
ionization integral & \begin{tabular}{l}
An integral involving impact ionization coefficients along an electric field line, which is \\
used to estimate the amount of carrier multiplication occurring in a device
\end{tabular} \\
isothermal simulation & Simulation under the assumption of constant temperature throughout the device
\end{tabular}

\section*{J}

Jacobian matrix A matrix containing derivatives of the device equations with respect to the device variables at each node of the structure

\section*{L}
\begin{tabular}{rl}
lattice heat equation & Heat transfer equation for the semiconductor lattice temperature \\
lattice scattering & Carrier scattering mechanism with the lattice atoms
\end{tabular}

\section*{M}
majority carrier concentration
mesh aspect ratio
minority carrier concentration

Concentration of electrons in n-type regions and holes in p-type regions

Horizontal grid spacing divided by the vertical grid spacing.
Concentration of electrons in p-type regions and holes in n-type regions

Neumann boundary condition

\section*{Newton damping}

Newton's method

\section*{Newton-Raphson}
method

A boundary condition imposed on flux

An approach to improve convergence of the Newton iterations
Simultaneous (coupled) solution of a system of equations
A modification of Newton's method with fewer updates of the Jacobian matrix to speed up the solution

\section*{O}

\footnotetext{
Ohmic contacts Contacts that are implemented as simple Dirichlet boundary conditions
}
P
\begin{tabular}{rl}
permittivity tensor & Representation of permittivity for an anisotropic material \\
preconditioning & Process of transforming a matrix to an approximate identity matrix.
\end{tabular}
quadtree mesh generation

The quadtree mesh used by Medici is generated and refined using an external mesh generator. This mesh generator makes use of two support files in addition to the primary mesh file used by Medici.
\begin{tabular}{rl}
saturated drift velocity & Carrier velocity at high parallel electric fields \\
Schottky contacts & \begin{tabular}{l}
Contacts defined by a work function of the electrode metal and an optional surface \\
recombination velocity.
\end{tabular} \\
thermal runaway & A usually destructive phenomena caused by lattice heating \\
transverse field effects & Mobility reduction due to high transverse fields \\
trap energy level & Energy level of a trap in the bandgap \\
trap-assisted tunneling & Tunneling with intermediate trapping
\end{tabular}
virtual nodes A separate data structure associated with a node at heterojunctions. The program accounts separately for the different properties associated with different materials that meet at the same point in space.

\section*{Acronyms}
\begin{tabular}{|c|c|}
\hline ABC & Automatic Boundary Conforming Mesh \\
\hline AM-AAM & Anisotropic Material Advanced Application Module \\
\hline BDF & Backward Differentiation Formula \\
\hline Bi-CGSTAB & Bi-Conjugate Gradient stabilized Method \\
\hline BJT & Bipolar Junction Transistor \\
\hline CA-AAM & Circuit Analysis Advance Application Module \\
\hline CCD & Charge Coupled Device \\
\hline CMOS & Complementary Metal-Oxide Semiconductor \\
\hline DOS & Density of States \\
\hline DRAM & Dynamic Random Access Memory \\
\hline EEPROM & Electrically Erasable Programmable Read Only Memory \\
\hline EPROM & Erasable Programmable ROM \\
\hline ESD & Electrostatic Discharge \\
\hline HBT & Heterojunction Bipolar Transistor \\
\hline HD-AAM & Heterojunction Device Advanced Application Module \\
\hline HEMT & High Electron Mobility Transistor \\
\hline ICCG & Incomplete Cholesky Conjugate Gradients \\
\hline ILUCGS & Incomplete LU Conjugate Gradient Square Method \\
\hline JFET & Junction Field-Effect Transistors \\
\hline LDD & Lightly Doped Drain \\
\hline LT-AAM & Lattice Temperature Advanced Application Module \\
\hline MESFET & Metal-Semiconductor Field-Effect Transistor \\
\hline MOSFET & Metal-Oxide Semiconductor Field-Effect Transistor \\
\hline N-FET & N-Field Effect Transistor \\
\hline NMOS & N-channel MOSFET \\
\hline OD-AAM & Optical Device Advanced Application Module \\
\hline PD-AAM & Programmable Device Advanced Application Module \\
\hline PDE & Partial Differential Equation \\
\hline PMOS & P-channel MOSFET \\
\hline SCR & Silicon Controlled Rectifier \\
\hline
\end{tabular}
\begin{tabular}{rl}
SEU & Single-Event Upset \\
SOI & Silicon On Insulator \\
SOR & Successive Over-Relaxation \\
SRAM & Static Random Access Memory \\
SRH & Shockley-Read-Hall Recombination \\
TC-AAM & Trapped Charge Advanced Application Module \\
TFT & Thin Film Transistor
\end{tabular}

\section*{Index}

\section*{Symbols}
() 3-11
(> 3-11
\{\} 3-11
| 3-11

\section*{Numerics}

\footnotetext{
1D.PROC parameter, PROFILE statement
Interface Examples 10-7
2D.PROC parameter, BOUNDARY statement
Interface Examples 10-25
3D doping plot from PLOT . 3D and
3D . SURF lines 340 to 341, file mdex7b Fig. 8-15
3D.SURF
Template Examples 8-15
3D.SURFACE
C.AUTO parameter 3-230

COLOR parameter 3-230
description 3-231
HIDDEN parameter 3-230
Lattice Temperature Examples 13-3 limitations 3-231
LINE.TYP parameter 3-230
LOWER parameter 3-230
MASK parameter 3-230
parameter definition table 3-230
PAUSE parameter 3-230
plotting combinations 3-231
quantity ranges 3-231
UPPER parameter 3-230
VISIBLE parameter 3-230
X.LINE parameter 3-230
Y.LINE parameter 3-230
Z.MAX parameter 3-230
Z.MIN parameter 3-230

3D. SURFACE 3-230

\section*{A}

A3 parameter, P HOTOGEN statement
Photogeneration Examples 7-7
A4 parameter, PHOTOGEN statement
Photogeneration Examples 7-7
AAMs, licenses required ix
ABC.MESH
ALGAAS parameter 3-39
ALINAS parameter 3-40
A.SILICO parameter 3-39
automatic MOSFET meshing 3-48
BOUNDARY parameter 3-39
CRITICAL parameter 3-40
description 3-42
DIAMOND parameter 3-39
GAAS parameter 3-39
GAASP parameter 3-40
GATE.NFA parameter 3-41
GERMANIU parameter 3-39
GRDCNTR parameter 3-40
GRDDOWN parameter 3-40
GRDLEFT parameter 3-40
GRDRIGHT parameter 3-40
GRDUP parameter 3-40
gridding region boundaries 3-42
H1 parameter 3-40
H2 parameter 3-40
HGCDTE parameter 3-39
INAS parameter 3-39
INASP parameter 3-40
INGAAS parameter 3-39
INP parameter 3-40
LATERAL parameter 3-41
MAX.CHAN parameter 3-41
MAX.SD parameter 3-41
MOSFET parameter 3-41
N.CHANN parameter 3-41

NEIGHBOR parameter 3-41
N.GATEOX parameter 3-41

NITRIDE parameter 3-40
N.JUNC parameter 3-41

NORMAL parameter 3-41
NORMAL1 parameter 3-41
NORMAL2 parameter 3-41
}

NORMGROW parameter 3-41
N.POLY parameter 3-41

OXIDE parameter 3-40
OXYNITRIDE parameter 3-40
parameter definition table 3-38
POLYSILI parameter 3-39
RATIO parameter 3-41
REGION parameter 3-38
REGION1 parameter 3-39
REGION2 parameter 3-39
SAPPHIRE parameter 3-40
SIC parameter 3-39
SIGE parameter 3-39
SILICON parameter 3-39
SI.NFACT parameter 3-41
S.OXIDE parameter 3-40
spacing boxes 3-42
X.MAX parameter 3-38
X.MIN parameter 3-38
Y.MAX parameter 3-38
Y.MIN parameter 3-38

ZNSE parameter 3-40
ZNTE parameter 3-40
ABC. MESH 3-38
absorption distance of light in silicon as function of wavelength Fig. 7-2
AC analysis
basic concepts 2-104
beyond the basic equations 2-108
Bi-CGSTAB method 2-107
CMOS inverter from PLOT . 1D
line 12, file mdex13e Fig. 12-32
CMOS pair with compact load simulation 12-31
electrodes with charge boundary conditions 2-104
floating regions 2-143
ILUCGS solver 2-87
Newton's method 2-104, 3-176
parameters, SOLVE statement
3-167
restrictions in Medici 2-104
sinusoidal steady-state analysis 2-105
successive over-relaxation (SOR)
2-107
with a circuit, SOLVE statement 3-168
AC charge analysis parameter
SOLVE statement 3-168
AC small-signal analysis
see AC analysis
AC small-signal analysis quantity parameters
CONTOUR statement 3-235
PLOT . 1D statement 3-204
PLOT . 3D statement 3-224
AC small-signal analysis vector quantity parameters, VECTOR statement
3-241, 3-242
AC.ANALY parameter, SOLVE statement
Circuit Analysis Examples 12-31
advanced band structure parameters,
ANISOTROPIC statement 3-349
AM-AAM
Anisotropic Material Examples 17-1
overview 2-180
tensor 2-180
thermal diffusion 2-182
analytic mobility model 2-24
analytic mobility model parameters,
MOBILITY statement 3-310, 3-323
ANALYTIC parameter, MODELS
statement
Lattice Temperature Examples 13-2
analytic polygonal profiles, PROFILE
statement 3-86
analytic profiles
impurity dose 3-91
junction depth 3-91
lateral direction variation 3-90
polygonal profiles 3-91
profile rotation 3-92
vertical variation 3-90
analytic profiles, PROFILE statement 3-85
analytic rotated profiles, PROFILE statement 3-86
angle dependent gate current model 2-116
ANGLE parameter, PHOTOGEN statement
Optical Device Examples 16-14
angle-dependent gate model
electron scattering 2-118
insulator probability 2-117
surface generation 2-118
ANISOTROPIC
advanced application module 2-180
advanced band structure parameters 3-355
ALGAAS parameter 3-345

ALPH0.N parameter 2-182, 3-349
ALPH0.P parameter 2-182, 3-349
ALPHJ.N parameter 3-349
ALPHJ.P parameter 3-349
ANIIN parameter 3-347
ANIIP parameter 3-347
ANTHCON parameter 3-348
A-SILICO parameter 3-346
A.TH.CON parameter 3-348
B.TH.CON parameter 3-348
carrier thermal diffusivities 3-353
C.TH.CON parameter 3-349
description 3-350
DIAMOND parameter 3-346
D.TH.CON parameter 3-349

ECN.II parameter 3-347
ECP.II parameter 3-348
EJ.N parameter 3-349
EJ.P parameter 2-182, 3-349
E.TH.CON parameter 3-349

EXN.II parameter 3-347
EXP.II parameter 3-348
GAAS parameter 3-345
general anisotropic models 3-353
GERMANIU parameter 3-345
HGCDTE parameter 3-345
II.N parameter 3-346
II.P parameter 3-346

INAS parameter 3-346
INGAAS parameter 3-345
INP parameter 3-345
INSULATO parameter 3-350
MJ.N parameter 2-182, 3-349
MJ.P parameter 2-182, 3-349
MU.N parameter 3-346
MU.P parameter 3-346
N.ION. 0 parameter 3-347
N.ION. 1 parameter 3-347
N.ION. 2 parameter 3-347

NITRIDE parameter 3-350
OXIDE parameter 3-349
OXYNITRI parameter 3-350
parameter definition table 3-345
parameters and statements 2-183
PERM parameter 2-181
PERMITTI parameter 3-346, 3-350
P.ION. 0 parameter 3-347
P.ION. 1 parameter 3-348
P.ION. 2 parameter 3-348

POLYSILI parameter 3-345
PRINT parameter 3-345, 3-346
properties of materials 3-351
REGION parameter 3-346, 3-350
SAPPHIRE parameter 3-350
SEMICOND parameter 3-345
SIC parameter 3-345
SIGE parameter 3-345
SILICON parameter 3-345
simple anisotropic models 3-351
S.OXIDE parameter 3-345

STRUCTUR parameter 3-350
TH.COND parameter 3-346, 3-350
ZNSE parameter 3-346
ZNTE parameter 3-346
ANISOTROPIC 3-344
anisotropic component factors,
ANISOTROP IC statement 3-346
Anisotropic Material Advanced Application Module see AM-AAM
Anisotropic Material Examples 17-1 to 17-3
anisotropic block 17-1
device structure and simulation 17-1
example specifications 17-1
plots 17-2
simulation input file, mdex22 (anisotropic) 17-2
anisotropic mobility and electron-hole scattering specifications 2-60
Arora mobility model 2-24
Arora mobility model parameters defaults 2-25
Arora mobility model parameters, MOBILITY statement 3-311, 3-324
array
parameter type 3-4
parameter type with numerical expressions 3-5
A-silicon solar cell example 16-1
ASSIGN
C1 parameter 3-434
C10 parameter 3-435
C2 parameter 3-434
C3 parameter 3-434
C4 parameter 3-434
C5 parameter 3-434
C6 parameter 3-434
C7 parameter 3-434
C8 parameter 3-435
C9 parameter 3-435
character values 3-437
C.VALUE parameter 3-434
definitions 3-436
DELTA parameter 3-433
description 3-435
E.NAME parameter 3-435
environment variable 3-438
examples 3-439, 3-440
incrementing 3-437
INITIAL parameter 3-435
interactive input prompt 3-439
Lattice Temperature Examples 13-2
LEVEL parameter 3-435
logical values 3-437
LOWER parameter 3-434
L.VALUE parameter 3-434
multiple values 3-436
NAME parameter 3-433
numerical values 3-436
N.VALUE parameter 3-433
optimization 3-438
OPTIMIZE parameter 3-434
overriding values 3-438
parameter definition table 3-433
Photogeneration Examples 7-6
PRINT parameter 3-433
PROMPT parameter 3-435
RATIO parameter 3-433
SENSITIV parameter 3-434
Template Examples 8-2, 8-13
UPPER parameter 3-434
values 3-436
ASSIGN 3-433
assigned names
as numerical expressions 3-5
initially assigned names 1-5
AUGER parameter, MODELS statement Optical Device Examples 16-14 Photogeneration Examples 7-4
Aurora
converting Medici files 10-29
Interface Examples 10-1
interface to Medici 10-29
output of input file auex9d and extraction results Fig. 10-31
parameter initialization file lev3par for MOS/SPICE model Fig. 10-30 plot of model fit to simulated data Fig. 10-32
simulation with converted Medici file \(10-30\)
AURORA parameter, LOG statement Interface Examples 10-29
authorization file dvauth, Cray system 1-14
authorization file mdauth 1-14
automatic boundary conforming mesh generation 3-24
automatic MOSFET meshing 3-48
ABC. MESH statement 3-41
automatic splitting of ray at discontinuous points Fig. 3-133
avalanche breakdown
impact ionization model 4-35
N-Channel MOSFET Examples 4-28
avalanche simulation mesh from PLOT . 2D line 42, file mdex1 a Fig. 4-32
axes and labels, PLOT . 3D statement 3-226

\section*{B}
backward compatibility vii
band diagram with two different materials forming a heterojunction Fig. 2-155
band structure generated by lines 57 to 62 , file mdex17 Fig. 14-13
bandgap and effective density of states 2-11
bandgap narrowing parameters 2-29
band-to-band tunneling
N-Channel MOSFET Examples 4-25
base and collector current as function of base-emitter voltage from PLOT . 1D and LABEL lines 41 to 45, input file \(m\) dex \(2 m\) Fig. 5-73
basic equations 2-2
Boltzmann transport theory 2-2
continuity for electrons and holes 2-2
Poisson's 2-2

\section*{BATCH}
description 3-413
BATCH 3-413
BB.GENER parameter, REGRID statement
N-Channel MOSFET Examples 4-26
BB.RAD parameter, PHOTOGEN statement Optical Device Examples 16-2
BB.TEMP parameter, P HOTOGEN statement
Optical Device Examples 16-2
BDF1 formula 2-101
BDF2 formula 2-102
beta vs. collector current
PLOT. 1D and LABEL lines 11 to 12, file mdex2fp Fig. 5-59
PLOT . 1D and LABEL lines 11 to 12, file \(m\) dex2pp Fig. 5-66
BGN parameter, MODELS statement Photogeneration Examples 7-13
Bi-CGSTAB
AC analysis 2-107
convergence problems 2-107 warning messages 2-107
Bi-Conjugate Gradient Stabilized see Bi-CGSTAB 2-107
bipolar junction transistor parameters, . MODEL statement 3-384
bipolar structure and definitions used by bipolar templates Fig. A-11
bipolar transistor
energy balance simulation \(9-8\) heterojunction simulation 14-2 insulated gate example 13-16 resistive load Fig. 12-2
resistive load simulation 12-1
Template Examples 8-12
thermal run-away analysis 13-7
turn-off with traps simulation 15-7
BJT device structure and grid Fig. 9-12
BJT doping concentration contour lines Fig. 9-12
black-body radiation 3-135
black-body radiation at 5800 K and AM0
solar spectrum Fig. 16-7
blow-up of the automatic MOSFET
gridding scheme around the drain
junction point Fig. 3-49
Boltzmann
statistics 2-10
transport theory 2-2
BOUNDARY
2D.PROC parameter 3-56
analysis 3-61
ANGLE.CR parameter 3-57
ASCII.IN parameter 3-56
ASCII.OU parameter 3-56
ASPECT parameter 3-57
aspect ratio 3-63
compatibility 3-60
description 3-57
examples 3-65
file I/0 3-58
gridlines removed error 3-65
HIGH.ASP parameter 3-57
IN.FILE parameter 3-56
input and boundaries 3-58
Interface Examples 10-17
intersect 3-59
intersections 3-63
kinks 3-61
LOW.ASPE parameter 3-57
mesh statements 2-92
OUT.FILE parameter 3-56
overlap 3-59
overwriting region error 3-64
parameter definition table 3-56
periodic conditions 3-23
SHARP parameter 3-57
subdivision error 3-63
termination 3-59
transformation and truncating 3-61
troubleshooting 3-63
TSUPREM4 parameter 3-56
unassigned elements error 3-64
X.AVERAG parameter 3-57
X.MAX parameter 3-56
X.MIN parameter 3-56
X.OFFSET parameter 3-56
X.SCALE parameter 3-56
X.TOLER parameter 3-57
Y.AVERAG parameter 3-57
Y.MAX parameter 3-57
Y.MIN parameter 3-57
Y.OFFSET parameter 3-56
Y.SCALE parameter 3-56
Y.TOLER parameter 3-57

\section*{BOUNDARY 3-56}
boundary conditions
compound semi-conductors convergence 2-137
contacts to insulators 2-64
current boundary 2-68
distributed contact resistance 2-69
interface charge and traps 2-65
lumped resistance, capacitance, and
inductive elements 2-66
majority carrier contact 2-70
Neumann boundaries 2-65
ohmic contacts 2-62
overview 2-61
periodic 3-23
Schottky contacts 2-62
boundary information 10-25
breakdown
avalanche breakdown analysis of N-channel MOS 4-28
walk-out in MOS simulation 15-10
BTBT parameter, MODELS statement
N-Channel MOSFET Examples 4-27
BTBT simulation grid from PLOT .2D
line 21, file mdexlt Fig. 4-26

\section*{C}

C
example 3-365
name parameter 3-365
node- parameter 3-365
node+ parameter 3-365
value parameter 3-365
C 3-365
C1 parameter, ASSIGN statement Lattice Temperature Examples 13-2
C2 parameter, ASSIGN statement Lattice Temperature Examples 13-3
CA-AAM
Circuit Analysis Examples 12-1
circuit and device equations 2-146
multiple devices 2-147
numerical method 2-146
overview 2-146
periodic boundary conditions 3-23
CALCULATE
A parameter 3-446
B parameter 3-446
C parameter 3-446
description 3-447
DIFFEREN parameter 3-446
NAME parameter 3-446
parameter definition table 3-446

PRODUCT parameter 3-447
RATIO parameter 3-446
specifying quantities 3-447
SQRTA parameter 3-446
SQRTB parameter 3-446
SUM parameter 3-446
UNITS parameter 3-447
CALCULATE 3-446
CALL
CALL contents and parameters 3-406
Circuit Analysis Examples 12-5
EXPAND parameter 3-406
FILE parameter 3-406
FIRST parameter 3-406
generating template files 3-409
LAST parameter 3-406
Lattice Temperature Examples 13-9 to 13-15
ONCE parameter 3-406
parameter definition table 3-406
PRINT parameter 3-406
Template Examples 8-1 to 8-17
CALL 3-406
CAPACITA parameter, CONTACT statement
Diode and Lumped Element Examples 6-18
carrier and impurity concentrations
PLOT . 1D and LABEL lines 32 to 39, file mdex2fp Fig. 5-61
PLOT . 1D and LABEL lines 32 to 39, file mdex2pp Fig. 5-68
carrier density of states model 2-161
carrier temperature dependent gate current models 2-119
carrier-carrier scattering mobility model 2-26
carrier-carrier scattering mobility model parameters, MOBILITY statement 3-312, 3-324
CARRIERS parameter, SYMBOLIC statement
Lattice Temperature Examples 13-10
N-Channel MOSFET Examples 4-7
cartesian coordinates 2-89
Caughey-Thomas expression 2-41
CCSMOB parameter, MODELS statement
Photogeneration Examples 7-13
cell current vs. voltage from PLOT . 1D line 38, file mdex5 Fig. 7-7
cell IV plot generated lines 29 to 35, file mdex19b.inp Fig. 16-12
cell power vs. load resistance from PLOT . 1D line 43, file mdex5 Fig. 7-9
channel profile
file s3ex9a Fig. 10-6
PLOT . 1D line 15, file mdex9b Fig. 10-22
characters
expression examples 3-9
expressions 3-9
parameter type 3-4
parameter type with character
expressions 3-9
special 3-11
charge column
Photogeneration Examples 7-17
charge from PLOT. 1D line 47, input
file \(m\) dexl2b Fig. 12-14
CHECK
description 3-449
IN.FILE parameter 3-449
IN.MESH parameter 3-449
parameter definition table 3-449
CHECK 3-449
C.IMAX parameter, SOLVE statement N-Channel MOSFET Examples 4-39
Circuit Analysis 3-357
character parameters 3-361
circuit mode overview 3-358
logical parameters 3-361
numerical parameters 3-360
old statement use 3-357
regional parameters 3-361
similiar syntax, SPICE program 3-358
syntax and use 3-358, 3-361
circuit analysis AAM parameters
ANISOTROP IC statement 3-350
CONTACT statement 3-338
IMPURITY statement 3-334
LOAD statement 3-267
MATERIAL statement 3-293
PHOTGEN statement 3-121
PLOT . 1D statement 3-210
PLOT . 2D statement 3-218
PLOT . 3D statement 3-227
SOLVE statement 3-168
Circuit Analysis Advanced Application Module
see CA-AAM
Circuit Analysis Examples 12-1 to 12-32
AC analysis of CMOS pair 12-31
AC . ANALY parameter, SOLVE statement 12-31
bipolar transistor with resistive load 12-1
CALL statement 12-5
CONTACT statement 12-1
CONTOUR statement 12-6
. DC statement 12-3

DELVMAX parameter, . OPTIONS statement 12-3
DT . MAX parameter, SOLVE statement 12-27
example specifications \(12-1\)
EXTRACT statement 12-9
FILE parameter, \(\mathbf{P}\) statement 12-3, 12-21
FINISH statement 12-3
FSTEP parameter, SOLVE statement 12-31
generation of circuit and DC simulations 12-21
. LOAD statement 12-26
LOGFILE statement 12-9
METHOD statement 12-9
. MODEL statement 12-8
MULT . FRE parameter, SOLVE statement 12-31
NFSTEP parameter, SOLVE statement 12-31
. NODESET statement 12-3 to 12-22
. OP parameter, \(\mathbf{P}\) statement 12-3
. OP statement 12-3
. OPTIONS statement 12-3
PHOTOGEN statement 12-8
PLOT . 1D statement 12-13 to 12-32
PLOT . 2D statement 12-6 to
12-22
RESISTAN parameter, CONTACT statement 12-1
SAVE statement 12-15
SEU of SRAM cell 12-7
SEU schematic 12-7
simulation input files mdexll (bipolar transistor) 12-4 mdex12a (SEU cylindrical node) 12-10 \(m d e x 12 b\) (SEU circuit mode) 12-12, 12-13
mdexl3a (transfer curve structure) 12-17, 12-18 mdexl3b (transfer curve structure) 12-19, 12-20 mdex13c (circuit and DC) 12-23, 12-24 mdexl3d (transient simulation) 12-28 mdex \(13 e\) (AC analysis) 12-32
SOLVE statement 12-21
START statement 12-3

STRUCTUR parameter, PHOTOGEN statement 12-9
STRUCTUR parameter,
PLOT . 2D statement 12-22
SYMBOLIC statement 12-31
transfer curves for CMOS pair 12-15
transient simulation of CMOS pair 12-26
TSTOP parameter, SOLVE statement 12-27
W. MODELS parameter, SAVE statement 12-3
Y.AXIS parameter, PLOT.1D statement 12-9
circuit analysis formatted key file \(m d f k y 1\) 1-15
circuit analysis parameters
PRINT statement 3-198
Circuit Analysis, input statements
C 3-365
D 3-365
E 3-366
F 3-367
FINISH 3-393
G 3-368
H 3-368
I 3-369
. IC 3-389
K 3-371
L 3-371
. LOAD 3-392
M 3-372
. MODEL 3-380
. NODESET 3-388
. OPTIONS 3-390
P 3-373
Q 3-374
R 3-374
START 3-364
v 3-375
W 3-378
circuit analysis, old statement use 3-357
circuit for example mdex14b showing transistor with feedback amplifier attached Fig. 13-8
CIRCUIT parameter, START statement Lattice Temperature Examples 13-10
circuit with two devices and Jacobian matrix Fig. 2-148
CMOS pair with compact load Fig. 12-16
Coefficients, input statements
ANISOTROPIC 3-344
CONTACT 3-335
IMPURITY 3-332
INTERFACE 3-341
MATERIAL 3-278
MOBILITY 3-306

\section*{COMMENT}

Lattice Temperature Examples 13-2
COMMENT 3-402
common MOS capacitance parameters,
. MODEL statement 3-385
comparing mobility models 2-55
comparison of a TSUPREM-4 grid and one possible Medici counterpart Fig. 3-67
comparison of leakage currents produced with PLOT . 1D statement, input file mdexstress.inp Fig. 6-13
compatibility with previous versions of Medici vii
component precedence, conversion 3-8
compound semi-conductors, convergence 2-137
concentration dependent lifetimes 2-4
concentration dependent mobility model 2-22
COND parameter, IF statement Lattice Temperature Examples 13-3
CONDITIO parameter, TRAPS statement
Trapped Charge Examples 15-5
CONMOB parameter, MODELS statement
Lattice Temperature Examples 13-2
N-Channel MOSFET Examples 4-7
Photogeneration Examples 7-4
connection in grid 2-100
connection of device and circuit Fig. 2-147
CON.RESI parameter, CONTACT statement
Diode and Lumped Element
Examples 6-15
CONSRH parameter, MODELS statement
Optical Device Examples 16-14
Photogeneration Examples 7-4
constant mobility model 2-22
constant mobility parameters,
MOBILITY statement 3-309, 3-323
CONTACT
A.CONRES parameter 3-337

ALL parameter 3-336
ALPHA parameter 3-337
ALUMINUM parameter 3-336
BARRIERL parameter 2-64, 3-337
B.CONRES parameter 3-337
boundary conditions 3-339
CAPACITA parameter 2-67, 3-336
cautions 3-339
C.CONRES parameter 3-337

CHARGE parameter 2-145, 3-336
Circuit Analysis Examples 12-1
CON.RESI parameter 2-69, 3-337

CRS.CON parameter 3-337
C.THERMA parameter 2-153, 3-337
CURRENT parameter 2-68
description 3-338
Diode and Lumped Element Examples 6-14
INDUCTAN parameter 2-67, 3-337
Lattice Temperature Examples 13-9
MO.DISIL parameter 3-336
MOLYBDEN parameter 3-336
NAME parameter 3-336
N -Channel MOSFET Examples 4-7
NEUTRAL parameter 3-336
Newton's method requirements 3-338
N.POLYSI parameter 3-336
parameter definition table 3-336
PIN parameter 3-336
P.POLYSI parameter 3-336

PRINT parameter 3-336
REFLECTI parameter 3-338
RESISTAN parameter 2-67, 3-337
R.THERMA parameter 2-153, 3-337
Schottky contacts 3-340
STRUCTUR parameter 3-338
SURF.REC parameter 2-63, 3-337
TRANSELE parameter 3-338
TU.DISIL parameter 3-336
TUNGSTEN parameter 3-336
use accuracy cautions 3-339
V.CAPAC parameter 3-336

VOLTAGE parameter 3-337
VSURFN parameter 2-63, 3-337
VSURFP parameter 2-63, 3-337
work function potentials 3-338
WORKFUNC parameter 2-63, 3-336
CONTACT 3-335
contact resistance from PLOT . 2D and VECTOR lines 23 to 24 , file \(m d e x 4 r\) Fig. 6-16
contact voltage from PLOT . 1D line 32, file mdex3 Fig. 6-6
contacts to insulators 2-64
continuation method
becomes confused and retraces same curve Fig. 3-174
cautions, use 2-80
overview 2-79
parameters, SOLVE statement 3-164
specifying the first step 2-80
steps 2-80
tracing IV curves 2-79
used by Medici Fig. 2-81
CONTINUE parameter, SOLVE
statement

\section*{N-Channel MOSFET Examples 4-39}
continuity equations for electrons and holes 2-2
CONTOUR
ABSOLUTE parameter 3-236
AC.IMAG parameter 3-235
AC.MAGN parameter 3-235
AC.PHAS parameter 3-235
AC.REAL parameter 3-235
ARRAY1 parameter 3-233
ARRAY2 parameter 3-233
ARRAY3 parameter 3-233
BB.GENER parameter 2-132, 3-234
C.INCREM parameter 3-236

Circuit Analysis Examples 12-6
COLOR parameter 3-236
CONDUC.B parameter 3-232
C.START parameter 3-236

DEL.VALU parameter 3-236
description 3-237
DOPING parameter 3-233
E.FIELD parameter 3-233

ELECTRON parameter 3-233
ELE.TEMP parameter 2-140, 3-234
ELE.VEL parameter 2-140, 3-234
examining results 2-113
examples 3-239
FILL parameter 3-236
FLOWLINE parameter 3-233
G.GAMN parameter 2-146, 3-234
G.GAMP parameter 3-234
G.GAMT parameter 2-146, 3-234
G.IN parameter 2-146, 3-235
G.IP parameter 2-146, 3-235
G.IT parameter 2-146, 3-235

HOLES parameter 3-233
HOL.TEMP parameter 2-140, 3-234
HOL.VEL parameter 2-140, 3-234
II.GENER parameter 3-234

IMPURITY parameter 3-233
Interface Examples 10-11
J.CONDUC parameter 3-233
J.DISPLA parameter 3-233
J.EFIELD parameter 3-234
J.ELECTR parameter 3-233
J.HOLE parameter 3-233
J.TOTAL parameter 3-233

LAT.TEMP parameter 3-235
Lattice Temperature Examples 13-21
LEVEL parameter 3-234
LINE.TYP parameter 3-236
LOGARITH parameter 3-236
MAX.VALU parameter 3-235
MIN.VALU parameter 3-235

N-Channel MOSFET Examples 4-10 to 4-43
NCONTOUR parameter 3-236
NET.CARR parameter 3-233
NET.CHAR parameter 3-233
NIE parameter 3-233
N.MOBILI parameter 3-234

NPN Transistor Examples 5-61
N.RECOMB parameter 3-234

OTHER parameter 3-233
parameter definition table 3-232
PAUSE parameter 3-236
PHOTOGEN parameter 3-234
P.MOBILI parameter 3-234

POTENTIA parameter 3-232
P.RECOMB parameter 3-234

QFN parameter 3-232
QFP parameter 3-232
RECOMBIN parameter 3-234
SIGMA parameter 3-234
TRAP.OCC parameter 3-234
TRAPS parameter 3-234
VACUUM parameter 3-232
VALENC.B parameter 3-232
values for minimum, maximum, interval 3-238
WINDOW parameter 3-235
X.COMPON parameter 3-236
X.MOLE parameter 3-235
Y.COMPON parameter 3-236

CONTOUR 3-232
contour controls, CONTOUR statement 3-235
contour lines of electric potential generated by lines 9 to 11, file mdex8bp Fig. 9-15 electron temperature generated lines 12 to 15 , file mdex8bp Fig. 9-16
contour quantities, CONTOUR statement 3-232
control parameters, E.LINE statement 3-251
convergence 2-148
conversion between logical and numerical values 3-8
conversion from microns to \(\mathrm{cm} 3-130\)
conversion processes specified 10-29
core records, TIF files D-3
boundary D-4
edge D-3
fields (solution function) D-5
interface edge D-4
interface or electrode D-4
maintenance D-2
nodal coordinates D-3
node D-5
region D-3
sequential node numbers D-3
triangle D-4

COUP.LAT parameter, SYMBOLIC statement
Lattice Temperature Examples 13-3
coupled solutions
see Newton's method
cross-sectional plot of
electric potential generated by lines 18 to 19, file mdex8bp Fig. 9-16 electric potential generated by lines 25 to 29, file mdex8bp Fig. 9-17
electron velocity generated by lines 30 to 31, file mdex8bp Fig. 9-17
C.TOLER parameter, SOLVE statement

N-Channel MOSFET Examples 4-39
current boundary conditions 2-68
current density vectors with various mobility tensors, file mdex 22 Fig. 17-3
current flow generated by lines 64 to 66, file mdex17 Fig. 14-13
current from PLOT . 1D line 46, input file mdex12b Fig. 12-14
current gain
generated by line 18 , file mdexl6f Fig. 14-7
vs. collector current from CALL to template file bipgum0 line 348, file mdex7b Fig. 8-16
vs. collector current from
EXTRACT, PLOT .1D, and LABEL lines 47 to 49 , file \(m d e x 2 m\) Fig. 5-74
current vs. time from PLOT .1D line 31, file mdex3 Fig. 6-5
cutoff frequency vs. collector current
CALL to template file bipgum0 line 348, file mdex7b Fig. 8-17
EXTRACT, PLOT. 1D, and LABEL lines 52 to 54 , mdex \(2 m\) Fig. 5-74
C.VMAX parameter, SOLVE statement

N-Channel MOSFET Examples 4-39
C.VSTEP parameter, SOLVE statement

N-Channel MOSFET Examples 4-39
CYLINDRI parameter, MESH statement
Photogeneration Examples 7-11
cylindrical coordinates 2-89
cylindrical diode from PLOT . 2D line
18, file mdexl2a Fig. 12-11

\section*{D}

D
AREA parameter 3-365
example 3-366
mname parameter 3-365
name parameter 3-365
node- parameter 3-365
node+ parameter 3-365
D 3-365
DAMPED parameter, METHOD
statement
N-Channel MOSFET Examples 4-7
Photogeneration Examples 7-13

\section*{DC}

Circuit Analysis Examples 12-3
different bias point densities 3-453
first bias point failure,
troubleshooting 3-455
fixed voltages and nodes 3-453
impact ionization, troubleshooting 3-457
Lattice Temperature Examples 13-11
MULT parameter 3-452
parameter definition table 3-452
procedures 3-454
RESET parameter 3-452
scrname parameter 3-452
SPICE compatibility 3-452
too many iterations, troubleshooting 3-456
troubleshooting 3-454
UIC parameter 3-452
VINCR parameter 3-452
VSTART parameter 3-452
VSTOP parameter 3-452
. DC 3-452
decoupled solutions
see Gummel's method
default values
GAAS vs SILICON 3-323
semiconductor material parameters 3-298
definition of interface nodes and
PRP.DIST Fig. 3-142
definitions for modified current model Fig. 2-118
degradation factors, surface mobility 2-29
DELVMAX parameter, . OPTIONS statement
Circuit Analysis Examples 12-3
density of states
see DOS
DEPOSITION
ANGLE parameter 3-450
CONCENTR parameter 3-450
description 3-451
ELECTRON parameter 3-450
examples 3-451
HOLE parameter 3-450
LENGTH parameter 3-450
parameter definition table 3-450
specifying density of carriers 3-451

WIDTH parameter 3-450
X.START parameter 3-450
Y.START parameter 3-450

DEPOSITION 3-450
device bounds, PLOT . 3D statement 3-225
DEVICE parameter, SAVEFILE statement
Interface Examples 10-5
device selection (circuit analysis AAM),
MOBILITY statement 3-321
device structure
grid for flash EEPROM from
PLOT . 2D line 34, input file
mdex10a Fig. 11-5
grid on left, doping concentration
contours on right Fig. 9-6
PLOT. 2D and LABEL lines 21 to
25, file mdex2m Fig. 5-73
device structure and band diagram for direct tunneling Fig. 2-122
Device Structure Specification 3-13
Device Structure Specification, input statements
BOUNDARY 3-56
ELECTRODE 3-77
ELIMINATE 3-51
MESH 3-15
PROFILE 3-83
REGION 3-71
REGRID 3-95
RENAME 3-82
SPREAD 3-53
TSUPREM4 3-68
X.MESH 3-32
Y. MESH 3-35
device to extract (circuit analysis AAM),
EXTRACT statement 3-183
diagram of three main types of carrier
injection through an insulator Fig. 2-123
Diode and Lumped Element Examples
6-1
CAPACITA parameter,
CONTACT statement 6-18
CON.RES (CON. RESI)
parameter, CONTACT statement 6-15
CONTACT statement 6-14
DOP ING parameter, REGRID
statement 6-3
ELECTRODE statement 6-2
example specifications 6-1
generation of the simulation
structure 6-1
INDUCTAN parameter,
CONTACT statement 6-18
IN.FILE parameter, REGRID statement 6-3
LABEL statement 6-7, 6-9
lumped resistance and distributed contact resistance 6-13
MESH statement 6-2
MOSFET with inductive load 6-16
N. DVLIM parameter, METHOD statement 6-17, 6-18
one-dimensional plots of electron concentrations 6-8
one-dimensional plots of hole
concentrations 6-6
OUT.FILE parameter,
PROFILE statement 6-3
OUT FFILE parameter, SOLVE
statement 6-4
PLOT . 1D statement 6-5 to 6-19
PLOT . 2D statement 6-3 to 6-15
PROFILE statement 6-3
REGION statement 6-2
REGRID statement 6-3
RESISTAN parameter,
CONTACT statement 6-15
simulation input files mdex3 (simulation structure) 6-2 mdex3 (transient simulation) 6-2
\(m d e x 3 e\) (one-dimensional electron concentration) 6-8
mdex3h (one-dimensional hole concentrations) 6-7
\(m d e x 4 l\) (MOSFET with inductive load) 6-17
\(m d e x 4 r\) (lumped and contact resistance) 6-14
SOLVE statement 6-4
stress-induced leakage example 6-9
SYMBOLIC statement 6-4
transient simulation 6-1
TSTEP parameter, SOLVE statement 6-4
TSTOP parameter, SOLVE statement 6-4
UNCHANGE parameter,
PLOT.1D statement 6-6
VECTOR statement 6-14
X. MESH statement 6-2
\(\mathbf{Y}\). MESH statement 6-2
direct solution method 2-84
direct tunneling 2-120
parameter specification 2-122
relationship to Fowler-Nordheim tunneling 2-123
direct tunneling analysis in a P-MOSCAP 4-43
direct tunneling analysis 4-46
mesh 4-43
models 4-46
regions 4-45
tunneling parameters 4-46
direct tunneling analysis parameters,
SOLVE statement 3-166
direct tunneling model 2-123
discretization
box method 2-72
carrier flux formulation 2-72
overview 2-71
display parameters, PLOT . 3D
statement 3-226
distance plot
quantities, PLOT . 1D statement 3-200
DISTRIB parameter, TRAP S statement
Trapped Charge Examples 15-5, 15-6
distributed contact resistance 2-69
Diode and Lumped Element
Examples 6-13
Documentation and Control
control statements 3-396
controlling program execution 3-398
currently available input statements 3-397
interactive and batch input modes 3-396
obtaining help 3-396
optimization 3-400
output of statement information 3-398
output to terminal 3-398
sensitivity analysis 3-400
statement line numbers 3-397
Documentation and Control, input
statements
ASSIGN 3-433
BATCH 3-413
CALL 3-406
COMMENT 3-402
ECHO 3-441
ELSE 3-421
HELP 3-405
IF 3-419
IF. END 3-422
IGNORE 3-443
INTERACTIVE 3-411
I.PRINT 3-414
I. SAVE 3-416
L. END 3-431
L. MODIFY 3-429

LOOP 3-423
OPTION 3-404
RETURN 3-442
STOP 3-442
TITLE 3-402
doping and electron concentration
generated by lines 52 to 55 , file mdex17 Fig. 14-11
doping and mole fraction generated by lines 27 to 32, file mdex16 Fig. 14-5
doping concentration along three vertical lines from lines 50 to 55 , file mdex15a Fig. 13-21
doping contours from CALL line 64
file mdexl4b Fig. 13-14
input file mdexll Fig. 12-5
doping contours from CALL to template file
bipstr0 line 63, file mdex7b Fig. 8-14
mosstr0 line 69, file mdex7p Fig. 8-10
mosstrl line 64, file mdex7n Fig. 8-6
DOPING parameter, REGRID
Diode and Lumped Element Examples 6-3
DOPING parameter, REGRID statement Photogeneration Examples 7-4
doping regrid from PLOT . 2D statement line 33, file mdexl Fig. 4-7
doping slices from CALL line 64, input file mdexll Fig. 12-6
DOS
example 15-2
TFT 15-2
drain characteristics
CALL to template file mosstrl line 245, file mdex7n Fig. 8-7
N-Channel MOSFET Examples 4-12
PLOT. 1D and LABEL lines 18 to 19, file mdexld Fig. 4-14
SOI example 13-1
drain current
plot generated lines 3 to 10 , file mdex20b Fig. 16-19
PLOT . 1D line 37, file mdex6 Fig. 7-15
snapback from PLOT .1D and
LABEL lines 52 to 53 , file \(m d e x 1 b\) Fig. 4-40, 4-42
vs. Vgs from PLOT .1D and
LABEL lines 33 to 34, file mdexlt Fig. 4-27
drain curves from lines 61 to 65 of mdex14s Fig. 13-6
DRAIN parameter, LOG statement Interface Examples 10-29
DT.MAX parameter, SOLVE statement
Circuit Analysis Examples 12-27
DVLIMIT parameter, ME THOD statement
N-Channel MOSFET Examples 4-16
Trapped Charge Examples 15-13
dynamic error tolerance, time steps 2-103

\section*{E}

E
cnode- parameter 3-366
cnode+ parameter 3-366
example 3-366
name parameter 3-366
node- parameter 3-366
node+ parameter 3-366
value parameter 3-366
E 3-366
E1 parameter, TRAP S statement
Trapped Charge Examples 15-8

\section*{ECHO}
description 3-441
examples 3-441
steps not specified 3-441
steps specified 3-441
ЕСНО 3-441
EEPROM
flash 11-1
Programmable Device Examples 11-1
effect of grid consistency requirements on elements with extreme aspect ratios Fig. 3-64
effective field parameters, MOBILTY statement 3-313, 3-325
EG.MODEL parameter, MATERIAL statement
Heterojunction Examples 14-6
ELEC.BOT parameter, MESH statement Interface Examples 10-17
electric field calculation for mobility models 2-52
electric field distribution from PLOT . 2D, CONTOUR, and LABEL lines 49 to 55, file mdex9c Fig. 10-28
electric field terms 2-151
ELECTROD parameter, SOLVE
statement
N-Channel MOSFET Examples 4-39

\section*{ELECTRODE}
adding to existing structures 3-81
BOTTOM parameter 3-77
boundaries 3-79
description 3-79
Diode and Lumped Element
Examples 6-2
INTERFAC parameter 3-77
Interface Examples 10-13
IX.MAX parameter 3-78
IX.MIN parameter 3-78

IY.MAX parameter 3-78
IY.MIN parameter 3-78
Lattice Temperature Examples 13-9 LEFT parameter 3-77

MAJORITY parameter 3-79
mesh statements 2-92
NAME parameter 3-77
N -Channel MOSFET Examples 4-5
nodes 3-81
NPN Transistor Examples 5-53
parameter definition table 3-77
PERIMETE parameter 3-78
Photogeneration Examples 7-4
POLYGON parameter 3-78
REGION parameter 2-145, 3-78
RIGHT parameter 3-77
R.INNER parameter 3-78

ROTATE parameter 3-78
R.OUTER parameter 3-78

THERMAL parameter 2-153, 3-79
TOP parameter 3-77
VOID parameter 3-77
X parameter 3-78
X.CENTER parameter 3-78
X.MAX parameter 3-78
X.MIN parameter 3-78
X.POLY parameter 3-78

Y parameter 3-78
Y.CENTER parameter 3-78
Y.MAX parameter 3-78
Y.MIN parameter 3-78
Y.POLY parameter 3-78

ELECTRODE 3-77
electrode parameters, MATERIAL statement 3-292
electrodes
converted from regions 10-18 spacing \(10-13\)
electrodes and regions, define in structure 10-25
electron concentration
Diode and Lumped Element Examples 6-8
PLOT. 1D odd lines 7 to 19 and LABEL lines 20 to 26, file mdex3e Fig. 6-9
electron current components at an abrupt heterojunction Fig. 2-166
ELECTRON parameter, SYMBOLIC statement
N-Channel MOSFET Examples 4-11
electron scattering, angle-dependent gate model 2-118
electron temperature from lines 559 to 562, file mdex8a Fig. 9-8
electron trapped charge 2-170
electron, hole, and doping concentrations, PLOT . 1D and LABEL lines 57 to 64, file mdex2m Fig. 5-75
electron-hole scattering 2-59 anisotropic mobilities 2-60
model specifications 2-60
electrons and current flow from PLOT . 2D and CONTOUR lines 370 to 372, input file mdexll Fig. 12-6
ELIMINATE
COLUMNS parameter 3-51
description 3-52
IX.MAX parameter 3-51
IX.MIN parameter 3-51

IY.MAX parameter 3-51
IY.MIN parameter 3-51
mesh statements 2-91
N-Channel MOSFET Examples 4-4
parameter definition table 3-51
restrictions 3-52
ROWS parameter 3-51
X.MAX parameter 3-51
X.MIN parameter 3-51
Y.MAX parameter 3-51
Y.MIN parameter 3-51

ELIMINATE 3-51
E.LINE

ANGLE parameter 3-249
ARRAY1 parameter 3-248
ARRAY2 parameter 3-249
ARRAY3 parameter 3-249
BB.GENER parameter 3-250
COLOR parameter 3-252
CONDUC.B parameter 3-248
description 3-252
DOPING parameter 3-249
E.FIELD parameter 3-249

ELECTRON parameter 3-249
ELE.TEMP parameter 3-250
ELE.VEL parameter 3-250
E.MARK parameter 3-251

FILE parameter 3-252
first potential gradient path 3-253
G.GAMN parameter 3-250
G.GAMP parameter 3-250
G.GAMT parameter 3-250
G.IN parameter 3-250
G.IP parameter 3-250
G.IT parameter 3-250

HOLES parameter 3-249
HOL.TEMP parameter 3-250
HOL.VEL parameter 3-250
HORZ.STA parameter 3-251
identifying input and output 3-253
I.ELECTR parameter 3-251
I.HOLES parameter 3-251
II.GENER parameter 3-250

INSULATO parameter 3-251
J.CONDUC parameter 3-249
J.DISPLA parameter 3-249
J.EFIELD parameter 3-250
J.ELECTR parameter 3-249
J.HOLE parameter 3-249
J.TOTAL parameter 3-249

LAT.TEMP parameter 3-251
line type 3-253
LINE.TYP parameter 3-252
M.SIZE parameter 3-251

N-Channel MOSFET Examples 4-32
NET.CARR parameter 3-249
NET.CHAR parameter 3-249
N.LINES parameter 3-251
parameter definition table 3-248
PAUSE parameter 3-252
PHOTOGEN parameter 3-250
PLOT parameter 3-252
POTENTIA parameter 3-248
previously defined solution 3-253
QFN parameter 3-248
QFP parameter 3-248
RECOMBIN parameter 3-249
S.DELTA parameter 3-251

SUMMARY parameter 3-252
VACUUM parameter 3-248
VALENC.B parameter 3-248
X.MOLE parameter 3-251
X.START parameter 2-130, 3-251
Y.START parameter 2-130, 3-251
E.LINE 3-248

ELSE
COND parameter 3-421
Lattice Temperature Examples 13-2
ELSE 3-421
E.MARK parameter, E.LINE
statement
N-Channel MOSFET Examples
4-32
ENCROACH parameter, SPREAD statement
N -Channel MOSFET Examples 4-4
energy balance equation parameters,
MATERIAL statement 3-288
energy balance equations
boundary 2-135
coupled solution 2-141
decoupled solution 2-140
implemented differential equation 2-132
initial guesses, uncoupled method 2-132
overview 2-132
physical models 2-135
plotting 2-140
statement specification limitations 2-132
Energy Balance Examples 9-1 to 9-18
bipolar junction transistor 9-8
example specifications \(9-1\)
FLDMOB parameter, MODELS statement 9-3
II.TEMP parameter, MODELS statement 9-3

IMPACT.I parameter, SOLVE statement 9-2
MODELS statement 9-2
simulation input files
mdex8a (substrate current)
9-2, 9-3, 9-5
mdex \(8 b\) (bipolar junction transistor) 9-11
mdex8bp (bipolar junction transistor) 9-13, 9-14, 9-15
SOLVE statement 9-2
substrate current, LDD MOSFET
9-1
TMPDIFF parameter, MODELS statement 9-3
TMPMOB parameter, MODELS statement 9-3
energy balance parameters, METHOD
statement 3-153
energy bandgap models 2-157
electron affinity 2-158
lattice temperature-dependent 2-158
strained 2-158
unstrained 2-159
energy bands for AlGaAs and InGaAs Fig. 2-160
energy level creation, TRAPS statement 3-136
enhanced surface mobility model 2-30, 2-36
appropriate use 2-31
parameters MOBILITY statement 3-316, 3-327
enhancements \(\mathrm{C}-1\)
environment variables 1-7
EPROM
Programmable Device Examples 11-1
Equation
Equation 2-110 2-28
equilibrium band generated by lines 36 to
43, file mdex16 Fig. 14-5
errors
execution 1-3
message file mderr0 1-15
syntax 1-2
examining results 16-17
example of a symmetric MOSFET
automatically meshed Fig. 3-50
examples of different gridding directions Fig. 3-43
examples, illustrations only vii, 3-1
execution command 1-1
external collection efficiency plot generated lines 21 to 27, file
mdex19b.inp Fig. 16-12

EXTRACT
APPLIED parameter 3-183
AT.BIAS parameter 3-181
Circuit Analysis Examples 12-9
CLEAR parameter 3-181
CONDITIO parameter 3-180, 3-183
CONTACT parameter 3-182
description 3-183
DRAIN parameter 3-183
ELECTRON parameter 3-181
EXPRESSI parameter 3-180
extraction of MOS parameters 3-191
extraction with expressions and names 3-184
GATE parameter 3-183
HOLE parameter 3-181
I.DRAIN parameter 3-183
II.GENER parameter 3-182

IN.FILE parameter 3-183
INITIAL parameter 3-181
IONIZATI parameter 2-128, 3-181
METAL.CH parameter 3-182
MIN.ABS parameter 3-181
MIN.REL parameter 3-181
MOS.PARA parameter 3-183
NAME parameter 3-180
N -Channel MOSFET Examples 4-11
N.CURREN parameter 3-182

NET.CARR parameter 3-181
NET.CHAR parameter 3-181
NOW parameter 3-181
NPN Transistor Examples 5-58
N.RESIST parameter 3-182

Optical Device Examples 16-14
optimization 3-188
optimization guidelines 3-189
OUT.FILE parameter 3-181, 3-183
parameter definition table 3-180
P.CURREN parameter 3-182

Photogeneration Examples 7-8
predefined quantities in expressions 3-191
P.RESIST parameter 3-182

PRINT parameter 3-181
RECOMBIN parameter 3-181
REGIONS parameter 3-182
RESISTAN parameter 3-182
SHEET.RE parameter 3-182
simple extraction 3-190
STRUCTUR parameter 3-183
TARGET parameter 3-181
TARREL parameter 3-181
TARTOL parameter 3-181
TOP parameter 3-182
TWB parameter 3-181
UNITS parameter 3-180
WEIGHT parameter 3-181
X.MAX parameter 2-129, 3-182
X.MIN parameter 2-129, 3-182
X.POINT parameter 3-182
Y.MAX parameter 2-129, 3-183
Y.MIN parameter 2-129, 3-182

EXTRACT 3-180
extract MOS parameters, EXTRACT statement 3-183
extract physical quantities from solution,
EXTRACT statement 3-181
extraction using names and expressions,
EXTRACT statement 3-180

\section*{F}

F
example 3-367
name parameter 3-367
node- parameter 3-367
node + parameter 3-367
value parameter 3-367
vname parameter 3-367
F 3-367
fast interface states
N-Channel MOSFET Examples 4-19
Fermi-Dirac statistics 2-14
Fermi-Dirac statistics, incomplete ionization of impurities 2-15
field-dependent electron velocity in AlGaAs Fig. 2-164
field-dependent mobility model parameters, MOBILITY statement 3-318, 3-329
file output, PLOT . 3D statement 3-227
FILE parameter, \(\mathbf{P}\) statement
Circuit Analysis Examples 12-3
file specifications
command input file indentifiers 1-5
environment variables 1-7
initially assigned names 1-5
library directory 1-7
output file identifiers 1-4
files
authorization file dvauth, Cray
system 1-14
input files 1-7
miscellaneous 1-13
necessary miscellaneous 1-13
output file indentifiers 1-4
output files 1-9
specifications 1-4
specifications, must conform to conventions 1-2

\section*{FILL}
C.ALGAAS parameter 3-246
C.A-SILI parameter 3-246
C.DIAMON parameter 3-246
C.ELECTR parameter 3-246
C.GAAS parameter 3-245
C.GERMAN parameter 3-246
C.HGCDTE parameter 3-246
C.INAS parameter 3-246
C.INGAAS parameter 3-246
C.INP parameter 3-246
C.INSUL parameter 3-246
C.NITRID parameter 3-246
C.NTYPE parameter 3-246

COLOR parameter 3-245
C.OXIDE parameter 3-246
C.OXYNIT parameter 3-246
C.POLYSI parameter 3-245
C.PTYPE parameter 3-246
C.SAPPHI parameter 3-246
C.SEMI parameter 3-246
C.SIC parameter 3-246
C.SIGE parameter 3-246
C.SILIC parameter 3-245
C.S.OXID parameter 3-246
C.ZNSE parameter 3-246
C.ZNTE parameter 3-246
description 3-246
Heterojunction Examples 14-12
NP.COLOR parameter 3-246
N-TYPE parameter 3-245
parameter definition table 3-245
parameters 3-247
PAUSE parameter 3-245
properties 3-247
P-TYPE parameter 3-245
REGION parameter 3-245
SET.COLO parameter 3-245
FILL 3-245
film quantities, PHOTOGEN statement 3-124
final mesh from PLOT. 2D line 18, file mdex6 Fig. 7-12
final structure Fig. 3-105
final value specification, SOLVE statement 3-173
FINISH
Circuit Analysis Examples 12-3
CIRCUIT parameter 3-393
example 3-393
Lattice Temperature Examples 13-11
FINISH 3-393
first doping regrid from PLOT . 2D line 23, file mdex2 Fig. 5-54
FIRST parameter, MOBILITY
statement
NPN Transistor Examples 5-64
first part of file bipdef0 listing available parameters and their default Fig. A-13
first part of simulation input file mdex12b Fig. 12-12
mdex13a Fig. 12-17
mdex13b Fig. 12-19
mdex13c Fig. 12-23
mdex14b Fig. 13-12
mdex15a Fig. 13-19
mdex15p Fig. 13-23
mdex16 Fig. 14-3
mdex18a Fig. 15-3
mdex19a Fig. 16-5
mdex19b Fig. 16-9
mdex1a Fig. 4-30
mdexlb Fig. 4-37
mdexldt Fig. 4-44
mdexlf Fig. 4-19
mdex2m Fig. 5-71
mdex2pp Fig. 5-64
mdex5 Fig. 7-3
mdex6 Fig. 7-11
mdex8a (structure specification) Fig. 9-2
mdex8bp, used to generate plots Fig.
9-13
mdex9a Fig. 10-7
s3ex9a Fig. 10-3
first part of simulation output file mdex14s Fig. 13-4
first part of template file mosdef0 listing parameters and their default values Fig. A-4
first part of TSUPREM-4 input file s4ex9b Fig. 10-14
first pass through outermost loop from PLOT . 1D and LABEL lines 34 to 57, file mdexlf Fig. 4-23
first portion of listing of file mdexl Fig. 4-2
five percent flowlines from PLOT . 2D, CONTOUR, and LABEL lines 55 to 58, file mdexlb Fig. 4-43
flash EEPROM
Programmable Device Examples 11-1
writing and erasing of cell 11-1
FLDMOB parameter, MODELS
statement
Energy Balance Examples 9-3
N -Channel MOSFET Examples 4-7
Optical Device Examples 16-14
Photogeneration Examples 7-13
floating electrodes
see charge boundary condition
floating gate
charge during erase from
PLOT. 1D line 21, input file
mdex10c Fig. 11-10
charge during writing from
PLOT . 1D line 22, input file
mdex10b Fig. 11-7
potential during writing from PLOT.1D line 23, input file mdex10b Fig. 11-8
FN.CUR parameter, SOLVE statement Programmable Device Examples 11-3
format, input statements 3-2
formatted key file \(m d f k y 01-14\)
forward bias
NPN Transistor Examples 5-56
forward bias current-voltage lines 5 to 9 , file mdex15p Fig. 13-24
Fowler-Nordheim tunneling 2-143
Fowler-Nordheim tunneling current during erase from PLOT . 1D line 20, input file mdex10c Fig. 11-10
FSTEP parameter, SOLVE statement Circuit Analysis Examples 12-31
Ft vs. collector current
PLOT . 1D and LABEL lines 15 to 16, file \(m d e x 2 f p\) Fig. 5-60
PLOT . 1D and LABEL lines 15 to 16, file mdex2pp Fig. 5-67
funneling
Photogeneration Examples 7-18

\section*{G}

G
cnode- parameter 3-368
cnode + parameter 3-368
example 3-368
name parameter 3-368
node- parameter 3-368
node + parameter 3-368
value parameter 3-368
G 3-368
GaAs photodetector simulation 16-13 examining results 16-17
structure generation and solution creation 16-13
GaAs photodetector structure Fig. 16-16 gallium arsenide-like mobility 2-42
gate characteristics
before writing from PLOT . 1D line 41 of input file mdex10a Fig. 11-5
CALL to file mosstr0 line 502, file mdex7p Fig. 8-12
erase from PLOT . 1D line 29, input file mdex10c Fig. 11-11
flash EEPROM after writing from PLOT . 1D line 30 output file mdex10b Fig. 11-8
generated by line 71 , file mdex 17 Fig. 14-14
N-Channel MOSFET Examples 4-11

PLOT . 1D and LABEL lines 15 to 16, file mdexlg Fig. 4-12
PLOT . 1D and LABEL lines 44 to 45, file mdex9a Fig. 10-11
TFT device with and without traps lines 46 to 49, file mdex18a Fig. 15-7
gate current
N-Channel MOSFET Examples 4-15
vs. Vgs from PLOT . 1D and
LABEL lines 23 to 24, file mdexli Fig. 4-18
gate current analysis
angle dependent model 2-116
carrier temperature dependent models 2-119
lucky-electron model 2-114
non-maxwellian hot carrier
generation 2-118
overview 2-113
gate current parameters, lucky-electron model 2-115
gate impurity profile PLOT . 1D
line 31, input file mdex9a Fig. 10-10
line 49, file mdexl Fig. 4-10
GATE parameter, LOG statement Interface Examples 10-29
GATE2 parameter, MODELS statement
Trapped Charge Examples 15-12
GATE.CUR parameter, SOLVE statement
N-Channel MOSFET Examples 4-16
Programmable Device Examples 11-3
GAUSSIAN parameter, P HOTOGEN statement
Photogeneration Examples 7-14
general anisotropic
electron impact ionization,
ANSIOTROP IC statement 3-347
hole impact ionization,
ANISOTROP IC statement 3-347
thermal conductivity,
ANISOTROP IC statement 3-348
generalized mobility curve mobility model 2-34
generalized mobility curve model parameters, MOBILITY statement 3-315, 3-326
generation of virtual nodes at abrupt heterojunction mesh node with four different materials in contact Fig. 2-165
generation rate contours

PLOT. 2D, CONTOUR, and LABEL lines 26 to 32, file mdexli Fig. 4-18
PLOT. 2D, CONTOUR, and
LABEL lines 36 to 41, file mdexlt Fig. 4-28
generation rate inside cell from
PHOTOGEN and FILE. REG
line 33, file mdex19a.inp Fig. 16-8
graphics
output types 1-4
TCAD Graphics B-1
graphics device parameters \(\mathrm{B}-1\)
graphics direct device drivers B-2
BINARY B-4
C/POSTSCRIPT (CP/ POSTSCRIPT) B-3
CANON (P/CANON) B-4
CL/POSTSCRIPT B-3
FORMAT B-4
H/CANON (HP/CANON) B-4
HL/CANON B-4
HP2 623 (2623) B-3
HP2 648 (2648) B-3
HP7475 (7475, L/
HP7475, L/7475) B-3
HP7550 (7550, L/
HP7550, L/7550) B-2
I/REGIS B-4
L/CANON B-4
L/POSTSCRIPTB-3
P/HP7475 (P/7475) B-3
P/HP7550 (P/7550) B-2
POSTSCRIPT (P/
POSTSCRIPT) B-3
REGIS B-3
SELANAR B-4
TEK4010 (4010) B-2
TEK4100 (4100) B-2
XTERM B-3
graphics software library drivers B-4
CALCOMP B-5
DI-3000 B-5
DISSPLA B-5
GDDM B-6
GKS B-6
I/DI-3000 B-5
I/IGL/PLOT-10 B-5
IGL/PLOT-10 B-5
PLXY-11 B-6
TCS/PLOT-10 B-5
graphics special device drivers B-6
APOLLO B-6
GPR B-8
I/APOLLO B-6
I/GPR B-8
I/SUN B-7
I/X B-8
I/X60 B-8
SUN B-6

\section*{x B-7 \\ X60 B-8}
grid
allocation 2-89
coordinate systems 2-89
initial generation 2-91
initial mesh specification 2-92
maximum number of nodes 2-90
mesh smoothing 2-98
mesh statements 2-91
nodes connection 2-100
overview 2-88
rectangular mesh specification 2-91
rectangular structure, universal
mobility model 2-32
rectangular, problems 2-92, 3-14
refinement criteria 3-99
refining restrictions 2-91
regrid 2-96
spacing parameters 2-93
spacings 2-92
specifications 2-91
specifying mesh within a section 2-94
spill over 2-89
grid and doping concentration contours
from PLOT . 2D, CONTOUR, and
LABEL lines 42 to 49 , file mdex \(15 a\)
Fig. 13-21
grid refinement 3-99
Quadtree example 3-102
refinement levels 3-99
regridding a Quadtree mesh 3-100
using the FACTOR option 3-100
grid structure from PLOT .2D line 29, file mdex9a Fig. 10-9
gridding region boundaries 3-42
gridding region boundaries using the new ABC mesh generator Fig. 3-45
grids in various states with and without smoothing Fig. 2-100
Gummel plots
CALL to template file bipgum0 line 348, file \(m d e x 7 b\) Fig. 8-16 generated by lines 13 to 16 , file mdex16f Fig. 14-7
generated by lines 34 to 42 , file mdex8bp Fig. 9-18
Gummel's method
accelerating 2-79
damping 2-79
overview 2-78
parameters, METHOD statement 3-150
use options 2-78
with ICCG 2-79

\section*{H}

H
example 3-368
name parameter 3-368
node- parameter 3-368
node + parameter 3-368
value parameter 3-368
vname parameter 3-368
H 3-368
H1 parameter, X.MESH statement
N-Channel MOSFET Examples 4-3
NPN Transistor Examples 5-53
Photogeneration Examples 7-11
H2 parameter, X. MESH statement
Photogeneration Examples 7-12

\section*{HBT}
see Heterojunction Examples 14-2
HBT (Heterojunction Bipolar Transistors)
sample statements 2-156
HD-AAM
device equations 2-156
energy bandgap models 2-157
Heterojunction Examples 14-1
material parameters 2-155
overview 2-154

\section*{HELP}
description 3-405
NAME parameter 3-405
PARAMETE parameter 3-405
parameter definition table 3-405
VERBOSE parameter 3-405

\section*{HELP 3-405}

HEMT
see high electron mobility transistor simulation 14-8
heterojunction AAM parameters,
MATERIAL statement 3-290
heterojunction bipolar transistor simulation 14-2
heterojunction device AAM parameters
CONTOUR statement 3-235
E. LINE statement 3-251

PLOT .1D statement 3-204
SAVE statement 3-273
Heterojunction Device Advanced
Application Module
see HD-AAM
Heterojunction Examples 14-1 to 14-14
EG.MODEL parameter,
MATERIAL statement 14-6
example specifications 14-1
FILL statement 14-12
forward bias 14-6
high electron mobility transistor 14-8
MATERIAL statement 14-6
NEGATIVE parameter,
PLOT . 1D statement 14-12

PLOT . 1D statement 14-12
REGION statement 14-2
SiGe heterojunction bipolar transistor 14-2
SIGE parameter, MATERIAL statement 14-6
SIGE parameter, REGION statement 14-2
simulation input files mdex16 (SiGe
heterojunction
bipolar transistor)
14-3, 14-4
mdex16f(forward bias) 14-6
SOLVE statement 14-6
Hewlett-Packard mobility model 2-44
Hewlett-Packard mobility model
parameters, MOBILITY statement 3-317, 3-328
high electron mobility transistor simulation 14-8
high field effects 2-40
high-field mobility model 2-164
HMET device generated lines 34 to 41, file mdex17 Fig. 14-11
hole concentrations
Diode and Lumped Element
Examples 6-6
PLOT. 1D odd lines 7 to 19, and
LABEL lines 20 to 26, file mdex3h Fig. 6-7
hole trapped charge 2-170
holes and potential
100.00 psec , generated in fourth pass
of loop from PLOT . 2D and
CONTOUR lines 11 to 13 , file mdex6h Fig. 7-19
14 psec , generated in third pass of
loop from PLOT . 2D and
CONTOUR lines 11 to 13 , file mdex6h Fig. 7-19
1.5 psec , generated in first pass of
loop from PLOT . 2D and
CONTOUR lines 11 to 13, file mdex6h Fig. 7-17
5.2 psec , generated in second pass of loop from PLOT . 2D and
CONTOUR lines 11 to 13 , file mdex6h Fig. 7-18
hot carrier and parasitic analysis
parameters, SOLVE statement 3-166
HPMOB parameter, MODELS statement Lattice Temperature Examples 13-2

\section*{I}

I
equations 3-369, 3-370
example 3-371
EXP parameter 3-369
fc parameter 3-369
freq parameter 3-369
fs parameter 3-369
i0 parameter 3-369
ia parameter 3-369
id parameter 3-369
mdi parameter 3-369
name definition table 3-369
name parameter 3-369
node- parameter 3-369
node + parameter 3-369
per parameter 3-369
PULSE parameter 3-369
SFFM parameter 3-369
SIN parameter 3-369
tau1 parameter 3-369
tau2 parameter 3-369
td1 parameter 3-369
td2 parameter 3-369
tds parameter 3-369
tf parameter 3-369
theta parameter 3-369
tp parameter 3-369
tr parameter 3-369
value parameter 3-369
I 3-369
IBM SP2
limitations, see Appendix F
system execution 1-2
.IC
example 3-389
nodex parameter 3-389
. IC 3-389
Ic and Ib vs. Vbe
PLOT. 1D and LABEL lines 4 to
8, file mdex2fp Fig. 5-58
PLOT. 1D and LABEL lines 4 to
8, file mdex2pp Fig. 5-66
IC-CAP
converting Medici files 10-32
Interface Examples 10-1
interface to Medici 10-32
ICCAP parameter, LOG statement
Interface Examples 10-32
ICCG
direct method 2-84
Gummel 2-79
ICCG parameter, METHOD statement
N-Channel MOSFET Examples 4-7
Ics vs. Vds from PLOT . 1D and
LABEL lines 28 to 29 , file \(m d e x 9 b\)
Fig. 10-23
ID doping profiles from CALL to template file
bipstr0 line 63, file mdex7b Fig. 8-15
mosstr0 line 69, file mdex7p Fig. 8-11
mosstrl line 64, file mdex7n Fig. 8-6
IF
block sequence 3-419
COND parameter 3-419
Lattice Temperature Examples 13-2
parameter definition table 3-419
processing 3-419
statement block examples 3-420
IF 3-419
IF.END
Lattice Temperature Examples 13-2
IF.END 3-422
IGBT
see insulated gate bipolar transistor example 13-16
IGNORE parameter, REGRID statement N-Channel MOSFET Examples 4-6
III-V compound semiconductor field-dependent mobility model parameters, MOBILITY statement 3-320
III-V compound semiconductor-specific analytic mobility model parameters, MOBILITY statement 3-310, 3-323
III-V compound semiconductor-specific mobility model parameters, MOBILITY statement 3-330
II.TEMP parameter, MODELS statement Energy Balance Examples 9-3
illustration of gridding scheme used by automatic meshing algorithm for symmetric MOSFETs Fig. 3-48
ILUCGS solver
AC implications 2-87
advantages 2-87
convergence problems 2-87
improving convergence 2-88
Newton implications 2-87
overview 2-86
parameters, METHOD statement 3-150
imaginary refractive index or absorption coefficient, MATERIAL statement 3-294
impact ionization analysis electron-hole generation rate 2-109 overview 2-108
post processing 2-108
self-consistent 2-109
impact ionization lines 29 to 41 , file mdexl8d Fig. 15-16
impact ionization model EFI . TMP incompatibility 2-139
impact ionization rate calculated carrier temperature based impact ionization model Fig. 9-8
local electric field impact ionization model Fig. 9-7
IMPACT.I parameter, MODELS statement
N -Channel MOSFET Examples 4-35
IMPACT.I parameter, SOLVE statement
Energy Balance Examples 9-2
N-Channel MOSFET Examples 4-16
Trapped Charge Examples 15-13
IMPURITY
ALGAAS parameter 3-332
ALINAS parameter 3-333
ALPHA parameter 3-333
A-SILICO parameter 3-333
BETA parameter 3-333
description 3-334
DIAMOND parameter 3-333
EB0 parameter 3-333
GAAS parameter 3-332
GAASP parameter 3-333
GAMMA parameter 3-333
GB parameter 3-333
GERMANIU parameter 3-332
HDT.MAX parameter 3-334
HDT.MIN parameter 3-333
HGCDTE parameter 3-333
INAS parameter 3-333
INASP parameter 3-333
INGAAS parameter 3-333
INGAP parameter 3-333
INP parameter 3-333
NAME parameter 3-332
parameter definition table 3-332
POLYSILI parameter 3-332
PRINT parameter 3-332
REGION parameter 3-333
SEMICOND parameter 3-332
SIC parameter 3-332
SIGE parameter 3-332
SILICON parameter 3-332
S.OXIDE parameter 3-333

STRUCTUR parameter 3-334
ZNSE parameter 3-333
ZNTE parameter 3-333
IMPURITY 3-332
impurity contours
PLOT . 1D and CONTOUR lines 16 to 18, file mdex9b Fig. 10-22
PLOT. 2D and CONTOUR lines 50 to 52, file mdexl Fig. 4-10
impurity profile from PLOT. 2D and CONTOUR lines 32 to 34, file mdex9a Fig. 10-11
incident ray quantities, PHOTOGEN statement 3-121
Incomplete Cholesky Conjugate Gradients
see ICCG
incomplete ionization of impurities 2-15
incomplete ionization of impurities, Fermi-Dirac statistics 2-15
incomplete ionization parameters
IMPURITY statement 3-333
INDUCTAN parameter, CONTACT statement
Diode and Lumped Element Examples 6-18
IN.FILE parameter
BOUNDARY statement, Interface Examples 10-25
LOG statement, Interface Examples 10-29
MESH statement, Interface
Examples 10-17
PROFILE statement, Interface Examples 10-7
REGRID, Diode and Lumped Element Examples 6-3
InGaAs low-field mobility as function of mole fraction and doping Fig. 2-163
initial grid
PLOT . 2D line 20, file mdex2 Fig. 5-54
PLOT . 2D line 30, file mdexl Fig. 4-6
initial guesses
biasing, and fermi potentials,
SOLVE statement 3-162
selecting 2-75
specification 12-21
types used in Medici 2-74
uncoupled method 2-132
values for internal circuit 12-3
initial mesh generation, MESH statement 3-16
initial structure and structure to be stitched Fig. 3-104
initially assigned names, file specifications 1-5
INP1 parameter, LOG statement Interface Examples 10-33
INP2 parameter, LOG statement Interface Examples 10-33
INP3 parameter, LOG statement Interface Examples 10-33
INP4 parameter, LOG statement Interface Examples 10-33
input file mdex10a creating EEPROM device structure and an initial solution Fig. 11-4
input file \(m d e x 10 b\) for writing characteristics of flash EEPROM Fig. 11-6
input file mdex1qt Fig. 4-48
input files
command 1-7
one-dimensional process 1-8
two-dimensional process 1-8
Input Statement Descriptions 3-1 to ??, 4-1 to ??, 5-51 to ??, 6-1 to ??, 7-1 to ??, 8-1 to ??, 9-1 to ??, \(10-1\) to ??, 11-1 to ??, 12-1 to ??, 16-1 to ??, 17-1 to ??, A-1 to ??
Circuit Analysis 3-357
coefficients and material parameters 3-277
Device Structure Specification 3-13
Documentation and Control 3-395
Input/Output 3-179
introduction 3-1
Old Statements 3-445
Solution Specification 3-107
Statement Summary 3-461
Input/Output, input statements
3D. SURFACE 3-230
CONTOUR 3-232
E.LINE 3-248

EXTRACT 3-180
FILL 3-245
LABEL 3-254
LOAD 3-267
LOG 3-259
PLOT.1D 3-199
PLOT.2D 3-215
PLOT. 3D 3-221
PRINT 3-196
SAVE 3-270
VECTOR 3-240
insulated gate bipolar transistor example 13-16
insulator materials, REGION statement 3-73
insulator parameters
ANISOTROP IC statement 3-349
MATERIAL statement 3-291
insulator probability, angle-dependent gate model 2-117
INTERACTIVE
ONCE parameter 3-411
parameter definition table 3-411
starting interactive mode 3-411
statement looping 3-412
terminating interactive mode 3-411
INTERACTIVE 3-411
INTERFACE
ALL.CLEA parameter 3-342
CLEAR parameter 3-342
D.CHAR parameter 3-342
description 3-342
Interface Examples 10-8
MATERIAL parameter 3-341
N.ACCEPT parameter 2-66, 3-341

N -Channel MOSFET Examples 4-5
N.DONOR parameter 2-66, 3-341
P.ACCEPT parameter 2-66, 3-341
parameter definition table 3-341
P.DONOR parameter 2-66, 3-342

QF parameter 2-4, 3-341
Q.INSULA parameter 3-342

REGION parameter 3-341
reusing interface parameters 3-343
selecting the interface 3-342
S.N parameter 2-4, 3-341
S.P parameter 2-4, 3-341
X.MAX parameter 3-341
X.MIN parameter 3-341
Y.MAX parameter 3-341
Y.MIN parameter 3-341

INTERFACE 3-341
interface charge and traps 2-65
Interface Examples 10-1 to 10-33
1D. PROC parameter, PROFILE
statement 10-7
2D. PROC parameter,
BOUNDARY statement 10-25
Aurora 10-29
Aurora extraction 10-30
AURORA parameter, LOG
statement 10-29
BOUNDARY statement 10-17
CONTOUR statement 10-11
converting Medici log to Aurora 10-29
converting Medici log to IC-CAP 10-32
DEVICE parameter, SAVEFILE statement 10-5
DRAIN parameter, LOG statement 10-29
ELEC. BOT parameter, MESH statement 10-17
electric field distribution with
Taurus-Lithography 10-25
ELECTRODE statement 10-13
GATE parameter, LOG statement 10-29
IC-CAP 10-32
ICCAP parameter, LOG statement 10-32
IN.FILE parameter,
BOUNDARY statement 10-25
IN. FILE parameter, LOG statement 10-29
IN F FILE parameter, MESH
statement 10-17
IN. FILE parameter, PROFILE
statement 10-7
INP 1 parameter, LOG statement 10-33
INP2 parameter, LOG statement 10-33
INP 3 parameter, LOG statement 10-33
INP 4 parameter, LOG statement 10-33
INTERFACE statement 10-8
interfaces to parameter extractors 10-2
interfaces to process simulators 10-1
introduction 10-1
LABEL statement 10-11 to 10-28
LD parameter, MODELS statement (Aurora) 10-30
LINE statement 10-12
LOG statement 10-29
Medici drain characteristics with TSUPREM-4 10-17
MEDICI parameter, STRUCTUR statement (TSUPREM-4) 10-13
Medici simulation of gate characteristics 10-7
MESH statement 10-17
OUT1 parameter, LOG statement 10-33
OUT.FILE parameter, LOG statement 10-29
OUT.FILE parameter, SAVE statement 10-18
PLOT . 1D statement 10-10 to 10-23
PLOT . 2D statement 10-9 to 10-28
POLY .ELEC parameter, MESH
statement 10-17, 10-18
PROFILE statement 10-7
REFLECT parameter, STRUCTUR statement (TSUPREM-4) 10-13
REGION statement 10-25
RENAME statement 10-17
SAVE statement 10-5
simulation input files auex9d (Aurora to Medici) 10-31
deex9c
(Taurus-Lithograp hy to Medici) 10-24
lev3par (Aurora to Medici) 10-30
mdex9a (TMA SUPREM-3 to Medici) 10-7, 10-8
mdex9c
(Taurus-Lithograp hy to Medici)
10-26
mdex9d (Aurora to Medici) 10-29
mdex9e (IC-CAP to Medici)
10-33
s3ex9a (TMA SUPREM-3 to Medici) 10-3 to 10-5

\section*{s4ex9b (TSUPREM-4 to Medici) 10-14, 10-15}

SOURCE parameter, LOG
statement 10-32
STRUCTUR statement 10-13
STRUCTUR statement
(TSUPREM-4) 10-13
SUBSTRAT parameter, LOG statement 10-29
SUPRA parameter, SAVE
statement (TSUPREM-4) 10-24
Taurus-Lithography 10-23
TMA SUPREM-3 10-2
TSUPREM-4 10-12
TSUPREM4 parameter, MESH statement 10-17
WIDTH parameter, LOG statement 10-29
WIDTH parameter, PROFILE statement 10-7
X parameter, ELECTRODE statement 10-25
\(\mathbf{X}\) parameter, REGION statement 10-25
X.CHAR parameter, PROFILE statement 10-8
X.ERFC parameter, PROFILE statement 10-8
X. MESH statement 10-25
X. MIN parameter, PROFILE statement 10-7
X. PEAK parameter, PROFILE statement 10-7
XY. RATIO parameter, PROFILE statement 10-8
Y parameter, ELECTRODE statement 10-25
Y parameter, REGION statement 10-25
Y . MAX parameter, MESH
statement 10-17
Y. MESH statement 10-25
interpolated Method 1 (solid) vs.
Solution-Method 2 (dashed) regrid Fig. 2-97
INT.RATI parameter, PHOTOGEN statement
Optical Device Examples 16-2
introduction to Medici v to x
additional features vi
advanced application modules vi, ix
analyzing devices and effects v
manual overview vii
Medici grid vi
overview v
physical models vi
problems and troubleshooting x
reference materials x
related publications x
submicron simulation V
typeface conventions X
IONIZATI parameter, EXTRACT
statement
N-Channel MOSFET Examples 4-31
ionization integrals
calculations 2-128
electric field lines 2-130
overview 2-128
specification 2-129
I.PRINT

ALL parameter 3-414
EXPAND parameter 3-414
FIRST parameter 3-414
LAST parameter 3-414
output 3-415
parameter definition table 3-414
range parameters 3-414
statement modification 3-414
I.PRINT 3-414
I.SAVE
description 3-416
EXPAND parameter 3-416
FILE parameter 3-416
FIRST parameter 3-416
LAST parameter 3-416
NOW parameter 3-416
parameter definition table 3-416
saving a range of statements 3-417
saving input statements 3-416
I . SAVE 3-416

\section*{J}

Jacobian matrix
linear matrix solution 2-82
Newton's method 2-76
junction conforming mesh 3-28

\section*{K}

K
example 3-371
lnamel parameter 3-371
lname 2 parameter 3-371
name parameter 3-371
value parameter 3-371
K 3-371
Kink Definition Fig. 3-62

\section*{L}

L
example 3-372
name parameter 3-372
node- parameter 3-372
node + parameter 3-372
value parameter 3-372
L 3-371
LABEL
ANGLE parameter 3-254
ARROW parameter 3-255
CM parameter 3-255
COLOR parameter 3-255
C.SIZE parameter 3-255
default, in location 3-256
default, starting coordinates 3-258
description 3-256
Diode and Lumped Element
Examples 6-7, 6-9
example 3-256
Interface Examples 10-11 to 10-28
LABEL parameter 3-254
Lattice Temperature Examples 13-15 to 13-25
line and arrowhead 3-257
LINE.TYP parameter 3-255
location 3-256
LX.FINIS parameter 3-255
LX.START parameter 3-255

LY.FINIS parameter 3-255
LY.START parameter 3-255
N-Channel MOSFET Examples 4-12 to 4-42
NPN Transistor Examples 5-56 to 5-75
parameter definition table 3-254
parameters 3-256
PAUSE parameter 3-255
sizing 3-256
START.CE parameter 3-255
starting coordinates 3-258
START.LE parameter 3-255
START.RI parameter 3-255
SYMBOL parameter 3-254
X parameter 3-254
Y parameter 3-254
LABEL 3-254
LAST parameter, MOBILITY statement
NPN Transistor Examples 5-64
LAT.TEMP parameter, SYMBOLIC
statement
Lattice Temperature Examples 13-10
lattice temperature AAM parameters
CONTACT statement 3-337
CONTOUR statement 3-235
ELECTRODE statement 3-79
E. LINE statement 3-251
insulators, MATERIAL statement 3-292
METHOD statement 3-154
PLOT . 1D statement 3-204
REGRID statement 3-96

SAVE statement 3-273
semiconductors, MATERIAL statement 3-289
Lattice Temperature Advanced
Application Module
see LT-AAM
Lattice Temperature Examples 13-1 to 13-25
3D. SURFACE statement 13-3
ANALYTIC parameter, MODELS statement 13-2
ASSIGN statement 13-2
bipolar thermal run-away 13-7
C1 parameter, ASSIGN statement 13-2
C2 parameter, ASSIGN statement 13-3
CALL statement 13-9 to 13-15
CARRIERS parameter, SYMBOLIC statement 13-10
CIRCUIT parameter, START
statement 13-10
COMMENT statement 13-2
COND parameter, IF statement 13-3
CONMOB parameter, MODELS statement 13-2
CONTACT statement 13-9
CONTOUR statement 13-21
COUP. LAT parameter, SYMBOLIC statement 13-3
.DC statement 13-11
ELECTRODE statement 13-9
ELSE statement 13-2
example specifications 13-1
FINISH statement 13-11
HPMOB parameter, MODELS statement 13-2
IF statement 13-2
IF . END statement 13-2
insulated gate bipolar transistor 13-16
LABEL statement 13-15 to 13-25
LAT. TEMP parameter,
SYMBOLIC statement 13-10
L. END statement 13-2
. LOAD statement 13-11
LOOP statement 13-2
MESH statement 13-9
MODELS statement 13-10
NEWTON parameter, SYMBOLIC statement 13-10
. NODESET statement 13-11
. OPTIONS statement 13-10
PLOT. 1D statement 13-3 to 13-15
PLOT. 2D statement 13-21
PLOT. 3D statement 13-3
SAVE statement 13-10
simulation input files
\(m d e x 14 b\) (thermal run-away) 13-12, 13-13
mdex14s (SOI) 13-4, 13-5
mdex15a (insulated gate) 13-19, 13-20
SOI drain characteristics 13-1
SOLVE statement 13-10
SYMBOLIC statement 13-3
THERMAL parameter,
ELECTRODE statement 13-2
TITLE statement 13-2
lattice temperature-dependent energy bandgap models 2-158
lifetimes 2-5
LD parameter, MODEL statement
(Aurora)
Interface Examples 10-30
LEFT parameter, SPREAD statement N-Channel MOSFET Examples 4-4 L.END

ALL parameter 3-431
BREAK parameter 3-431
Lattice Temperature Examples 13-2
parameter definition table 3-431
prevent subsequent passes 3-431
terminating all loops 3-431

\section*{L. END 3-431}
length dependence, silicon 3-127
level 2 MOS parameters, .MODEL statement 3-385
levels of regrid in triangular based mesh Fig. 2-96
library directory 1-7
licenses required for AAMs ix
Limitations of IBM SP2 Versions of Medici
energy balance and lattice
temperature equations F-1
linear matrix solution F-1
LINE
Interface Examples 10-12
linear matrix solution
direct method 2-84
ICCG solver 2-84
ILUCGS solver 2-86
Jacobian matrix 2-82
overview 2-82
L.MODIFY

BREAK parameter 3-429
description 3-430
LEVEL parameter 3-429
modifying passes through the loop 3-430
NEXT parameter 3-429
parameter definition table 3-429
PRINT parameter 3-429
STEPS parameter 3-429
L. MODIFY 3-429
.LOAD
ASCII parameter 3-392
Circuit Analysis Examples 12-26
example 3-392
Lattice Temperature Examples 13-11
MESH parameter 3-392
SOLUTION parameter 3-392
STRUCTURE parameter 3-392
. LOAD 3-392
LOAD
ASCIIIIN parameter 3-267
ASCII.OU parameter 3-267
CHECK.ER parameter 3-267
description 3-267
DIFFEREN parameter 3-267
IN.FILE parameter 3-267
IN.PREV parameter 3-267
N-Channel MOSFET Examples 4-11
NPN Transistor Examples 5-60
OUT.FILE parameter 3-267
parameter definition table 3-267
parameters 3-268
parameters and statements 2-183
setup information 3-269
solution data file 3-269
solutions 3-268
STRUCTUR parameter 3-267
TIF parameter 3-267
LOAD 3-267
LOCAL parameter, SOLVE statement
N-Channel MOSFET Examples 4-16
location, REGION statement 3-73
LOCOS device structure and mesh generated by the PLOT . 2D
statement, line 16 in input file
mdexstress.inp Fig. 6-11
LOG
Aurora data files 3-263
AURORA parameter 3-259
BASE parameter 3-262
CLOSE parameter 3-259
COLLECT parameter 3-262
description 3-262
DEVID parameter 3-260
DRAIN parameter 3-262
EMITTER parameter 3-262
example, for IC-CAP 3-265
EXTRA parameter 3-262
GATE parameter 3-262
IC-CAP data files 3-263
ICCAP parameter 3-260
IN.FILE parameter 3-262
INP1 parameter 3-260
INP2 parameter 3-260
INP3 parameter 3-260

INP4 parameter 3-260
Interface Examples 10-29
LENGTH parameter 3-259
Medici data files 3-263
N-Channel MOSFET Examples 4-13
OUT1 parameter 3-261
OUT2 parameter 3-261
OUT3 parameter 3-261
OUT.FILE parameter 3-259
parameter definition table 3-259
P.CHANNE parameter 3-260

Photogeneration Examples 7-7
REGION parameter 3-260
SOURCE parameter 3-262
STANFORD parameter 3-262
SUBSTRAT parameter 3-262
TIF parameter 3-259
WIDTH parameter 3-259
LOG 3-259
\(\log (\mathrm{Id})\) vs. Vgs from PLOT . 1D and
LABEL lines 27 to 32, file mdexlf Fig. 4-23
LOGARITH parameter, CONTOUR statement
Photogeneration Examples 7-17
LOGARITH parameter, REGRID statement
N-Channel MOSFET Examples 4-8
Photogeneration Examples 7-4
LOGFILE
Circuit Analysis Examples 12-9
logical, parameter type 3-3
logical, parameter type with numerical expressions 3-5
Lombardi surface mobility model 2-33
Lombardi surface mobility model
parameters, MOBILTY statement
3-313, 3-326
LOOP
examples 3-427
Lattice Temperature Examples 13-2
N-Channel MOSFET Examples 4-34
nested statements 3-424
numerical and array values 3-425
OPTIMIZE parameter 3-423
parameter definition table 3-423
parameter values 3-426
PRINT parameter 3-423
SENSITIV parameter 3-423
statement sequence 3-423
STEPS parameter 3-423
syntax 3-425
unique counters 3-424
LOOP 3-423
low temperature simulations 2-17
low-field mobility 2-22
low-field mobility model 2-163

LT-AAM
current density equation 2-151
heat equation model 2-149
Lattice Temperature Examples 13-1
numeric methods 2-152
overview 2-148
physical models 2-154
Poisson's equation 2-151
thermal electrodes 2-153
thermal lumped elements 2-153
Lucent mobility model parameters,
MOBILITY statement 3-318
lucky-electron model
gate current 2-114
gate current parameters 2-115
probability factors 2-114
lumped elements
capacitance 2-66
implementing boundary conditions 2-66
inductance 2-66
resistance 2-66
specification 2-67
lumped resistance
Diode and Lumped Element
Examples 6-13
overview 2-66
PLOT. 2D and VECTOR lines 15
to 16, file mdex4 Fig. 6-15
M
M
AD parameter 3-372
AS parameter 3-372
example 3-372
L parameter 3-372
mname parameter 3-372
name parameter 3-372
nodeb parameter 3-372
noded parameter 3-372
nodeg parameter 3-372
nodes parameter 3-372
PD parameter 3-372
PS parameter 3-372
W parameter 3-372
M 3-372
majority carrier contact 2-70
mask data files
formatting G-1
mask layout used in file s3ex9a Fig. 10-5
MATERIAL
A0N.VALD parameter 3-285
A0P.VALD parameter 3-285
A1N.VALD parameter 3-285
A1P.VALD parameter 3-286
A2N.VALD parameter 3-285
A2P.VALD parameter 3-286

ABS.FILE parameter 3-294
ABSORPTI parameter 3-294
A.BTBT parameter 2-130, 2-131, 3-287
A.EHS parameter 2-59, 3-284

AFFINITY parameter 2-63, 3-282, 3-291
A.FN parameter 2-144, 3-287, 3-293
AF.X1 to AF . X5 parameters 3-290
AF.X2 parameter 3-290
AF.XL parameter 3-290
ALGAAS parameter 3-281
ALINAS parameter 3-281
ALPHJ.N parameter 2-182
ALPHJ.P parameter 2-182
AN parameter 2-5, 3-283
AP parameter 2-5, 3-283
applicable regions 3-295
ARICHN parameter 2-63, 3-283
ARICHP parameter 2-63, 3-284
A-SILICO parameter 3-281
A.SP.HEA parameter 2-154, 3-289
A.STRESS parameter 3-288
A.TH.CON parameter 2-154, 3-289
AUGN parameter 2-3, 3-283
AUGP parameter 2-3, 3-283
B0N.VALD parameter 3-285
B0P.VALD parameter 3-286
B1N.VALD parameter 3-285
B1P.VALD parameter 3-286
BARLN parameter 2-115, 3-292
BARLP parameter 2-115, 3-292
BARR.DT parameter 3-293
BATA.AB parameter 3-295
B.BB parameter 2-177, 3-294
B.BTBT parameter 2-131, 3-287
B.EHS parameter 2-59, 3-284
B.FN parameter 2-144, 3-287, 3-293
BN parameter 2-5, 3-283
BP parameter 2-5, 3-283
B.RTUN parameter 2-7, 3-283
B.SP.HEA parameter 2-154, 3-289, 3-292
B.STRESS parameter 3-288

BTBT.AB parameter 2-176, 3-294
B.TH.CON parameter 2-154, 3-289
CON.VALD parameter 3-285
COP.VALD parameter 3-286
C1N.SOFT parameter 3-286
C1N.VALD parameter 3-285
C1P.SOFT parameter 3-286
C1P.VALD parameter 3-286
C2N.SOFT parameter 3-286
C2N.VALD parameter 3-285
C2P.SOFT parameter 3-286

C2P.VALD parameter 3-286
C3N.VALD parameter 3-285
C3P.VALD parameter 3-286
C.DIRECT parameter 2-3, 3-283
C.EHS parameter 2-59, 3-284

CN parameter 2-5, 3-283
CN.IIGAP parameter 3-286
CN.IILAM parameter 3-287
CON.BGN parameter 2-12, 3-284
CP parameter 2-5, 3-283
CP.IIGAP parameter 3-286
CP.IILAM parameter 3-287
C.SP.HEA parameter 2-154, 3-289, 3-292
C.STRESS parameter 3-288
C.TH.CON parameter 2-154, 3-289
D0N.VALD parameter 3-285
D0P.VALD parameter 3-286
D1N.VALD parameter 3-285
D1P.VALD parameter 3-286
D2N.VALD parameter 3-285
D2P.VALD parameter 3-286
default parameters 3-298
DENSITY parameter 2-154, 3-289
description 3-295
DIAMOND parameter 3-281
DN.LAT parameter 2-182, 3-289
DP.LAT parameter 2-182, 3-289
DREF . QM parameter 3-287
D.SP.HEA parameter 2-154, 3-289, 3-292
D.STRESS parameter 3-288
D.TH.CON parameter 2-154, 3-289
E1.BB parameter 2-178, 3-294
E1.BT parameter 2-178, 3-295
E1N.SOFT parameter 3-286
E1P.SOFT parameter 3-286
E2N.SOFT parameter 3-286
E2P.SOFT parameter 3-286
E3N.SOFT parameter 3-286
E3P.SOFT parameter 3-286
EAB parameter 3-282
ECN.GC parameter 2-115, 3-292
ECN.II parameter 2-110, 3-285
ECP.GC parameter 2-115, 3-292
ECP.II parameter 2-110, 3-285
EDB parameter 3-282
EG300 parameter 2-11, 3-282, 3-291
EGALL parameter 3-290
EGALPH parameter 2-11, 3-282
EGALX parameter 3-290
EGBEL parameter 3-291
EGBETA parameter 2-11, 3-282
EGBEX parameter 3-290
EGGAL parameter 3-291
EGGAX parameter 3-290

EG.MODEL parameter 2-157, 2-158, 2-159, 3-282
EGO300 parameter 2-179, 3-293
EGOALPH parameter 2-179, 3-293
EGOBETA parameter 2-179, 3-293
EG.X0 to EG. X14 parameters 3-290
EJ.N parameter 2-182
ELE.CQ parameter 3-288
ELECTROD parameter 3-293
EL.EMAS parameter 2-179, 3-295
ELE.TAUW parameter 2-137, 3-288
EL.MAS parameter 2-179
EM.MODEL parameter 3-290
EN parameter 2-5, 3-283
EP parameter 2-5, 3-283
E.PHONON parameter 2-177, 3-294
E.RTUN parameter 2-7, 3-283
E.TH.CON parameter 3-289, 3-292
ETRAP parameter 2-3, 3-283
E.URBACH parameter 3-295

EXN.II parameter 3-285
EXN.TAU parameter 2-5, 3-283
EXP.BB parameter 2-177, 3-294
EXP.II parameter 3-285
EXP.TAU parameter 2-5
FIRST parameter 3-294
FRCA.AB parameter 3-295
F.SP.HEA parameter 2-154,

3-289, 3-292
GAAS parameter 3-281
gate current parameters 2-116
G.BT parameter 2-178, 3-295

GCB parameter 3-282
GERMANIU parameter 3-281
G.SP.HEA parameter 2-154,

3-289, 3-292
GVB parameter 3-282
Heterojunction Examples 14-6
HGCDTE parameter 3-281
HO.EMAS parameter 2-179, 3-295
HOL.CQ parameter 3-289
HOL.TAUW parameter 2-137, 3-289
HO.MAS parameter 2-179
INAS parameter 3-281
INASP parameter 3-282
INDEX.IM parameter 3-294
INDEX.RE parameter 3-293
INGAAS parameter 3-281
INGAP parameter 3-282
INP parameter 3-281
INSULATO parameter 2-113, 3-291
IRI.FILE parameter 3-294

KAPPA.N parameter 2-18, 3-287
KAPPA.P parameter 2-18, 3-287
KAPPA.QM parameter 3-287
LAMHN parameter 2-115 to
2-119, 3-287
LAMHP parameter 3-287
LAMRN parameter 2-114 to
2-119, 3-287
LAMRP parameter 2-115, 3-287
LAN300 parameter 2-110, 3-289
LAP300 parameter 2-110, 3-290
LAST parameter 3-294
material parameters from solution files 3-295
ME.DT parameter 3-288, 3-292
MEG parameter 3-291
MEG.X1 parameter 3-291
MEL parameter 3-291
MEL.X1 parameter 3-291
MEX parameter 3-291
MEX.X1 parameter 3-291
MH0 parameter 3-291
MH0.X1 parameter 3-291
MHH.DT parameter 3-288
ML0.X1 parameter 3-291
MLDA.LN parameter 3-287
MLDA.LP parameter 3-287
MLH.DT parameter 3-288
M.RTUN parameter 2-6, 3-283

N0.BGN parameter 2-12, 3-284
N.ACCUM parameter 3-287

NC300 parameter 2-11, 3-282
NC.F parameter 3-282
N.ION parameter 2-110
N.ION. 1 parameter 3-284
N.ION. 2 parameter 2-110, 3-284
N.IONIZA parameter 2-110, 3-284

NITRIDE parameter 2-113, 3-291
NSRHN parameter 2-5, 3-283
NSRHP parameter 2-5, 3-283
NV300 parameter 3-282
NV.F parameter 2-11, 3-282
OP.PH.EN parameter 2-110, 3-289
Optical Device AAM 3-296
Optical Device Examples 16-2
other semiconductor parameters 3-305
OXIDE parameter 2-113, 3-291
OXYNITRI parameter 3-291
P.ACCUM parameter 3-287
parameter definition table 3-281
PERMITTI parameter 2-181, 3-282, 3-291
P.ION. 1 parameter 2-110, 3-285
P.ION. 2 parameter 2-110, 3-285
P.IONIZA parameter 2-110, 3-285

POLYSILI parameter 3-281
PRINT parameter 3-281
PR.TABLE parameter 3-293
QM.EFIEL parameter 3-288

QM.NORP parameter 3-287
REGION parameter 2-142, 3-282, 3-291
RRI.FILE parameter 3-294
R.TUNNEL parameter 2-7

SAPPHIRE parameter 3-291
SEMICOND parameter 3-281
SIC parameter 3-281
SIGE parameter 3-281
SILICON parameter 3-281
S.OXIDE parameter 2-113, 3-281
S.RTUN parameter 3-283

STRUCTUR parameter 3-293
TAUN0 parameter 2-5, 3-282
TAUP0 parameter 2-5, 3-283
TNL parameter 3-289
TPL parameter 3-289
TUNLN parameter 2-115, 3-292
TUNLP parameter 2-115, 3-292
U.STRESS parameter 3-288

V0.BGN parameter 2-12, 3-284
WAVE.IM parameter 3-294
WAVE.RE parameter 3-293
WTN0 parameter 3-288
WTN1 parameter 3-288
WTN2 parameter 3-288
WTN3 parameter 3-288
WTN4 parameter 3-288
WTN5 parameter 3-288
WTNL parameter 3-288
WTP0 parameter 3-289
WTP1 parameter 3-289
WTP2 parameter 3-289
WTP3 parameter 3-289
WTP4 parameter 3-289
WTP5 parameter 3-289
WTPL parameter 3-289
X1AFFIN parameter 3-290
X.MOLE parameter 3-290
X.OTHER parameter 3-290

ZNSE parameter 3-281
ZNTE parameter 3-281
MATERIAL 3-278
material or region name
IMPURITY statement 3-332
MAX.LEVE parameter, REGRID statement
N-Channel MOSFET Examples 4-8
Medici
introduction to v
overview of features v
using 1-1
Medici and STUDIO Command Editor
command mode E-2
creating input files E-2
introduction E-1
parameter error message E-2
reading existing input files E-3 restrictions E-1
text mode E-2
Medici and STUDIO Command Editor E-1 to E-3
Medici Description
AC analysis 2-104
AM-AAM 2-180
bandgap and effective density of states 2-11
band-to-band tunneling 2-130
basic equations 2-2
Boltzmann statistics 2-10
boundary conditions 2-61
CA-AAM 2-146
concentration dependent lifetimes 2-4
direct tunneling 2-120
energy balance equations 2-132
Fermi-Dirac statistics 2-14
gate current analysis 2-113
grid in Medici 2-88
HD-AAM 2-154
impact ionization 2-108
incomplete ionization of impurities 2-15
introduction 2-1
ionization integrals 2-128
lattice temperature-dependent lifetimes 2-5
low field simulations 2-17
low temperature simulation 2-17
LT-AAM 2-148
mobility models 2-22
numerical methods 2-70
OD-AAM 2-171
PD-AAM 2-142
physical description 2-2
recombination including tunneling 2-5
references 2-196
regional specification of semiconductor parameters 2-142
SRH, Auger, and direct recombination 2-3
stress-induced badgap change 2-13
stress-induced mobility 2-60
surface recombination 2-4
symbol definitions 2-184
TC-AAM 2-168
transient device simulation 2-101
Medici Description 2-1 to 2-203
MEDICI parameter, STRUCTUR
statement (TSUPREM-4)
Interface Examples 10-13
MESH
boundary conforming 3-24
2NDORDER parameter 2-103
ABC parameter 3-17
ABC.OLD parameter 3-18
ADJUST parameter 3-20
ANGLE parameter 3-18

ASCII.IN parameter 3-16
ASCII.OU parameter 3-21
ATTEMPTS parameter 3-19
boundary conditions 3-23
CENTROID parameter 3-21
coordinate systems 2-89
coordinates 3-22
CORNER parameter 3-19
CRITICAL parameter 3-17
CYLINDRI parameter 3-16
CYND parameter 2-25, 2-146
description 3-21
DIAG.FLI parameter 3-16
Diode and Lumped Element Examples 6-2
ELEC.BOT parameter 3-16
ELIMINAT parameter 3-18
EXTERNAL parameter 3-19
FLIP.y parameter 3-17
generating initial mesh 3-22
GRIDTOP parameter 3-17
IN.FILE parameter 3-16
Interface Examples 10-17
JUNC.ABC parameter 3-17
LATERAL parameter 3-18
Lattice Temperature Examples 13-9
LAYERS parameter 3-19
MAX.SPAC parameter 3-18
mesh statements 2-91
N.ALGAAS parameter 3-19
N.A-SILI parameter 3-20
N.BPSG parameter 3-19

N-Channel MOSFET Examples 4-3
N.CONDUC parameter 3-17
N.DIAMON parameter 3-20
N.GAAS parameter 3-19
N.GERMAN parameter 3-20
N.HGDCTE parameter 3-20
N.INAS parameter 3-19
N.INGAAS parameter 3-20
N.INP parameter 3-20
N.INSULA parameter 3-17
N.NITRID parameter 3-19

NORMGROW parameter 3-18
NO.TTINF parameter 3-21
N.OXIDE parameter 3-19
N.OXYNIT parameter 3-19

NPN Transistor Examples 5-52
N.POLYSI parameter 3-19
N.SAPPHI parameter 3-19
N.SEMICO parameter 3-17
N.SIC parameter 3-20
N.SIGE parameter 3-19
N.SILICO parameter 3-19
N.S.OXID parameter 3-20
N.SPACES parameter 2-93, 3-21
N.ZNSE parameter 3-20
N.ZNTE parameter 3-20

OPTIMIZE parameter 3-19
ORDER parameter 3-20

OUT.FILE parameter 3-21
parameter definition table 3-16
parameters and statements 2-183
PBC.TOL parameter 3-20
PERIODIC parameter 3-20
Photogeneration Examples 7-3
POLY.ELE parameter 3-17
previously generated meshes 3-30
PROFILE parameter 3-16
quadtree mesh generation 3-28
QUADTREE parameter 3-20
RATIO parameter 3-18
RE.CRNR parameter 3-17
RECTANGU parameter 3-16
RELAX parameter 3-18
restrictions and limitations 3-30
SCALE.Y parameter 3-17
SMOOTH.K parameter 3-21
SPACING parameter 3-17
statements 3-22
TCAD compatibility 2-95
terminals 3-28
TIF 3-31
TIF parameter 3-17
TMPTAUW parameter 2-137
TSUPREM-4 3-31
TSURPREM4 parameter 3-16
virtual nodes 2-165
VIRTUAL parameter 2-165, 3-21
VOIDELEC parameter 3-17
WIDTH parameter 2-95, 3-21
X.MAX parameter 3-17
X.MIN parameter 2-93, 3-17
X.SPLIT parameter 3-21
Y.MAX parameter 3-17
Y.MIN parameter 3-17
Y.TOLER parameter 3-16

MESH 3-15
mesh
algorithm 3-24
aspect ratios 3-27
Delaunay 3-27
electrodes spacing 10-13
failure 3-28
geometry features 3-28
junction conforming 3-28
obtuse elements 3-28
order statements, importance 2-92, 3-14
rectangular 3-14
rectangular grid problems 2-92, 3-14
regrid 2-96
regrid operation 3-100
smoothing 2-98, 3-23, 3-31
spacing 2-92 to 2-94, 3-27
specifying initial 2-92
specifying rectangular 2-91
specifying within a section 2-94
statements 2-91, 3-14
vertical grid spacing 10-12
mesh adjustments, MESH statement 3-20
mesh after
first doping regrid from CALL to template file mosstr 1 line 64, file mdex7n Fig. 8-3
potential regrids from PLOT . 2D
line 40, file mdex9c Fig. 10-27
second doping regrid from CALL to
template file mosstr1 line 64, file
mdex7n Fig. 8-4
second potential regrid from CALL
to template file mosstr 1 line 64, file mdex7n Fig. 8-5
third potential regrid from CALL to
template file mosstr 1 line 64, file mdex7n Fig. 8-5
mesh and structure files modify with Michelangelo 14-8
mesh and structure generated by lines 21 to 26, file mdex16 Fig. 14-4
mesh file input, MESH statement 3-16
mesh from PLOT.2D line 3, file mdex19b.inp Fig. 16-10
mesh from Taurus-Lithography-2
from PLOT. 2D line 29, file mdex9c Fig. 10-27
mesh output file, MESH statement 3-21
METHOD
2NDORDER parameter 3-152
ACCELERA parameter 3-151
ACCSTART parameter 3-151
ACCSTEP parameter 3-151
ACCSTOP parameter 3-151
ACONTINU parameter 3-152
ASMB.OLD parameter 3-149
AUTONR parameter 2-77, 3-151
CARR.FAC parameter 3-153
CARR.MIN parameter 3-153
Circuit Analysis Examples 12-9
CONT.ITL parameter 3-152
CONT.PIV parameter 3-152
CONT.RHS parameter 3-152
CONT.STK parameter 3-152
convergence criteria 3-155
CR.TOLER parameter 3-149
C.VCOUP parameter 3-151
CX.TOLER parameter 3-148

DAMP.CON parameter 3-153
DAMPED parameter 2-79, 3-150
DAMPLOOP parameter 3-150
default 3-155
DELTA parameter 3-150
description 3-154
DFACTOR parameter 3-150
DT.DC.LO parameter 3-153
DT.DC.UP parameter 3-153
DT.JACOB parameter 3-154
DT.MIN parameter 3-153

DVLIMIT parameter 2-79, 3-150
ELEC.VCP parameter 3-151
energy balance solution 3-157 error tolerances 3-156
ERR.RAT parameter 3-151
ETR.TOLE parameter 2-141, 3-154
ETX.TOLE parameter 3-153
EXTRAPOL parameter 3-153
EXT.TOLE parameter 2-140
FIX.QF parameter 3-149
Gummel's method 3-158
ICCG parameter 3-150
ILUCGS and Bi-CGSTAB 3-157
ILU.ITER parameter 2-88, 3-150
ILU.TOL parameter 2-87, 3-150
ILU.XTOL parameter 2-88, 3-150
ITER.TTY parameter 3-149
ITLIMIT parameter 2-17, 3-148
ITRHS parameter 3-152
L2NORM parameter 3-152
lattice temperature solution 3-157
LIMIT parameter 3-149
LTR.FACT parameter 2-153, 3-154
LTR.TOLE parameter 2-152, 3-154
LTX.FACT parameter 2-153, 3-154
LTX.TOLE parameter 2-152, 3-154
LU1CRIT parameter 2-79, 3-150
LU2CRIT parameter 2-79, 3-151
MAXINNER parameter 3-151
MAX.TEMP parameter 3-154
N0.CARR parameter 3-149
N -Channel MOSFET Examples 4-7
NCRITER parameter 2-77
N.DAMP parameter 2-78, 3-153
N.DVLIM parameter 2-77, 3-153
N.DVMAX parameter 3-153

Newton's method 3-158
N.MAXBL parameter 2-140, 3-154
N.MAXEB parameter 2-140, 3-154
NODE.ERR parameter 3-148
NRCRITER parameter 3-151
parameter definition table 3-148
Photogeneration Examples 7-13
PRINT parameter 3-149
PR.TOLER parameter 3-148
PX.TOLER parameter 2-85, 3-148
relevant statements 2-71
RHSNORM parameter 3-148
SINGLEP parameter 3-151
solution methods 3-155
specifying larger values, limitations 3-156
STACK parameter 3-152

STOP.ITL parameter 3-152
TAUTO parameter 3-152
TH.DAMP1 parameter 3-153
TH.DAMP2 parameter 3-153
TH.VCOUP parameter 3-151
TOL.TIME parameter 2-103, 3-152
transient simulation 3-160
V0.VCOUP parameter 3-152
VC.COUPL parameter 3-151
XNORM parameter 3-148
XRI.NORM parameter 3-149
XRI.THI parameter 3-149
XRI.THXC parameter 3-149
XRI.THXV parameter 3-149
XRI.TOLE parameter 3-149
XRNORM parameter 3-148
METHOD 3-147
Michelangelo modify structure and
mesh files 14-8
MIN.VALU parameter, CONTOUR statement
Photogeneration Examples 7-17
MOBILITY
ACC.N.UT parameter 3-321
ACC.P.UT parameter 3-321
A.CCS parameter 3-312

ALGAAS parameter 3-308
A.LIC parameter 2-26, 3-312

ALINAS parameter 3-309
ALPHAN parameter 2-24, 3-310
ALPHAP parameter 2-24, 3-310, 3-311
ALPN.UM parameter 3-312
ALPP.UM parameter 3-313
AN.ARORA parameter 2-25, 3-311
AN.IIS parameter 2-26, 3-312
AN.LUC parameter 3-318, 3-319
AP.ARORA parameter 2-25, 3-311
AP.IIS parameter 2-26, 3-312
AP.LUC parameter 3-318
A-SILICO parameter 3-309
B.CCS parameter 2-26, 3-312

BETAN parameter 2-40, 3-318
BETAN.HA parameter 3-318
BETAP parameter 2-40, 3-318
BETAP.HA parameter 3-318
B.LIC parameter 2-26, 3-312

BN.GMC parameter 2-36, 3-315
BN.IAL parameter 3-319
BN.IIS parameter 2-26, 3-312
BN.LSM parameter 3-313
BN.LUC parameter 3-318
BP.GMC parameter 2-36, 3-315
BP.IAL parameter 3-319
BP.IIS parameter 2-26, 3-312
BP.LSM parameter 3-314
BP.LUC parameter 3-318
C.LIC parameter 2-26, 3-312

CN.ARORA parameter 2-25, 3-311
CN.GMC parameter 2-36, 3-315
CN.IAL parameter 3-319
CN.LSM parameter 3-314
CN.LUC parameter 3-318
CONCENTR parameter 3-309
COULN.UT parameter 2-38, 3-321
COULP.UT parameter 3-321
CP.ARORA parameter 2-25, 3-311
CP.GMC parameter 2-36, 3-315
CP.IAL parameter 3-319
CP.LSM parameter 3-314
CP.LUC parameter 3-319
CRFA.UM parameter 2-28, 3-313
CRFD.UM parameter 2-28, 3-313
CRN.LSM parameter 3-313
CRP.LSM parameter 3-314
CSN.LSM parameter 3-313
CSP.LSM parameter 3-314
D1N.GMC parameter 2-36, 3-315
D1N.IAL parameter 3-319
D1P.GMC parameter 2-36, 3-315
D1P.IAL parameter 3-320
D2N.GMC parameter 2-36, 3-315
D2N.IAL parameter 3-320
D2P.GMC parameter 2-36, 3-315
D2P.IAL parameter 3-320
default parameters 3-323
default parameters, GAAS vs
SILICON 3-323
description 3-322
DIAMOND parameter 3-309
DN.GMC parameter 2-36, 3-315
DN.IAL parameter 3-319
DN.LSM parameter 3-314
DN.LUC parameter 3-319
DP.GMC parameter 2-36, 3-315
DP.IAL parameter 3-319
DP.LSM parameter 3-314
DP.LUC parameter 3-319
EON parameter 3-318
EOP parameter 3-318
E1N.SHI parameter 3-315
E1P.SHI parameter 3-316
E2N.SHI parameter 3-316
E2P.SHI parameter 3-316
ECN.HP parameter 2-44, 3-317
ECN.MU parameter 3-317
ECN.UNI parameter 3-317
ECP.HP parameter 2-44, 3-317
ECP.MU parameter 3-317
ECP.UNI parameter 3-317
ELECTRON parameter 3-309
EN.X1 parameter 3-320
EN.X2 parameter 3-321
EON parameter 2-42
EOP parameter 2-42
EREFN parameter 3-316
EREFP parameter 3-316

ETAN parameter 2-52, 3-313
ETAP parameter 2-52, 3-313
EX1N.SHI parameter 3-316
EX1P.SHI parameter 3-316
EX2N.SHI parameter 3-316
EX2P.SHI parameter 3-316
EX.LIC parameter 2-26, 3-312
EXN0.UNI parameter 3-317
EXN1.ARO parameter 3-311
EXN1.LSM parameter 3-314
EXN1.SM parameter 3-316
EXN2.ARO parameter 3-311
EXN2.LSM parameter 3-314
EXN2.SM parameter 3-316
EXN3.ARO parameter 3-311
EXN3.LSM parameter 3-314
EXN3.SM parameter 3-316
EXN4.ARO parameter 3-311
EXN4.GMC parameter 3-315
EXN4.IAL parameter 3-320
EXN4.LSM parameter 3-314
EXN4.LUC parameter 3-319
EXN5.GMC parameter 3-315
EXN5.IAL parameter 3-320
EXN6.GMC parameter 3-315
EXN6.IAL parameter 3-320
EXN7.GMC parameter 3-315
EXN7.IAL parameter 3-320
EXN8.GMC parameter 3-315
EXN8.LSM parameter 3-314
EXN9.LUC parameter 3-319
EXN.LAT parameter 3-312
EXN.SM parameter 3-316
EXN.UNI parameter 3-317
EXPO.UNI parameter 3-317
EXP1.ARO parameter 3-311
EXP1.LSM parameter 3-314
EXP1.SM parameter 3-317
EXP2.ARO parameter 3-311
EXP2.LSM parameter 3-314
EXP2.SM parameter 3-317
EXP3.ARO parameter 3-311
EXP3.LSM parameter 3-314
EXP3.SM parameter 3-317
EXP4.ARO parameter 3-312
EXP4.GMC parameter 3-315
EXP4.IAL parameter 3-320
EXP4.LSM parameter 3-314
EXP4.LUC parameter 3-319
EXP5.GMC parameter 3-315
EXP5.IAL parameter 3-320
EXP6.GMC parameter 3-315
EXP6.IAL parameter 3-320
EXP7.GMC parameter 3-315
EXP7.IAL parameter 3-320
EXP8.GMC parameter 3-315
EXP8.LSM parameter 3-314
EXP9.LUC parameter 3-319
EXP.LAT parameter 3-312

EXP.SM parameter 3-316
EXP.UNI parameter 3-317
FIRST parameter 3-310
FLDMOB parameter 2-40, 3-318
FP.LUC parameter 3-319
GAAS parameter 3-308
GAASP parameter 3-309
GERMANIU parameter 3-308
GN.HP parameter 2-44, 3-317
GP.HP parameter 2-45, 3-318
GSURFN parameter 2-29, 3-313
GSURFP parameter 2-29, 3-313
HGCDTE parameter 3-309
high field effects 2-41
HOLE parameter 3-310
INAS parameter 3-309
INASP parameter 3-309
INGAAS parameter 3-309
INGAP parameter 3-309
INP parameter 3-309
INV.N.UT parameter 3-321
INV.P.UT parameter 3-321
KN.LUC parameter 3-319
KP.LUC parameter 3-319
LAST parameter 3-310
MAN.X1 parameter 3-310
MAN.X2 parameter 3-311
MAP.X1 parameter 3-311
MAP.X2 parameter 3-311
MASSN.IA parameter 3-320
MIN.X1 parameter 3-310
MIN.X2 parameter 3-310
MIP.X1 parameter 3-311
MIP.X2 parameter 3-311
MMNN.UM parameter 2-27, 3-312
MMNP.UM parameter 3-313
MMXN.UM parameter 2-27, 3-312
MMXP.UM parameter 3-313
mobility tables 3-322
MUL0.STR parameter 3-321
MUN0 parameter 2-22, 3-309
MUN0.HP parameter 2-44, 3-317
MUN0.LAT parameter 2-27, 3-312
MUN0.LSM parameter 3-313
MUN1.ARO parameter 2-25, 3-311
MUN1.LSM parameter 3-313
MUN1.SM parameter 3-316
MUN2.ARO parameter 3-311
MUN2.LSM parameter 3-313
MUN2.SM parameter 3-316
MUN3.SM parameter 3-316
MUN.MAX parameter 2-24, 3-310
MUN.MIN parameter 2-24, 3-310
MUN.UNI parameter 3-317
MUP0 parameter 2-22, 3-309
MUP0.HP parameter 2-44, 3-317
MUP0.LAT parameter 2-27, 3-312

MUP0.LSM parameter 3-314
MUP1.ARO parameter 2-25, 3-311
MUP1.LSM parameter 3-314
MUP1.SM parameter 3-316
MUP2.ARO parameter 2-25, 3-311
MUP2.LSM parameter 3-314
MUP2.SM parameter 3-316
MUP3.SM parameter 3-317
MUP.MAX parameter 2-24, 3-310
MUP.MIN parameter 2-24, 3-310
MUP.UNI parameter 3-317
MUREFN parameter 3-316
MUREFP parameter 3-316
MUT.STR parameter 3-321
NEREFP2 parameter 3-311
NREFN parameter 2-24, 3-310
NREFP parameter 2-24, 3-310
NRFA.UM parameter 3-313
NRFD.UM parameter 3-312
NRFN.HP parameter 2-45, 3-317
NRFN.UM parameter 2-27, 3-312
NRFP.HP parameter 2-45, 3-318
NRFP.UM parameter 3-313
NUN parameter 2-24, 3-310
NUP parameter 2-24, 3-310
parameter definition table 3-308
PC.LSM parameter 3-315
PHONN.UT parameter 3-321
PHONP.UT parameter 3-321
POLYSILI parameter 3-308
PRINT parameter 3-309
PR.TABLE parameter 3-310
REGION parameter 2-142, 3-309
SEMICOND parameter 3-308
SIC parameter 3-308
SIGE parameter 3-308
SILICON parameter 3-308
solution files 3-322
S.OXIDE parameter 3-308

STRUCTUR parameter 3-321
SURFN.UT parameter 3-321
SURFP.UT parameter 3-321
TEMPN.UT parameter 3-321
TEMPP.UT parameter 3-321
TETN.UM parameter 3-312
TETP.UM parameter 3-313
VCN.HP parameter 2-45, 3-317
VCP.HP parameter 2-45, 3-318
VSATN parameter 2-37, 3-318
VSATNparameter ?? to 2-38
VSATP parameter 3-318
VSATP parameter<\$endtrange 2-40
VSATPparameter 2-38 to ??
VSN.HP parameter 2-44, 3-317
VSN.X1 parameter 3-320
VSN.X2 parameter 3-320
VSP.HP parameter 2-45, 3-318
XIN parameter 2-24, 3-310
XIP parameter 2-24, 3-310

ZETAN parameter 2-52, 3-313
ZETAP parameter 2-52, 3-313
ZNSE parameter 3-309
ZNTE parameter 3-309
MOBILITY 3-306
mobility model choices 2-55
mobility models 2-22
analytic mobility 2-24
Aurora mobility 2-24
bandgap narrowing parameters 2-29
carrier-carrier scattering mobility 2-26
concentration dependent mobility 2-22
constant mobility 2-22
electric field calculations 2-52
electron-hole scattering 2-59
enhanced surface mobility model 2-30
generalized mobility curve 2-34
Hewlett-Packard mobility 2-44
high field effects 2-40
Lombardi surface mobility model 2-33
low field mobility 2-22
model choices 2-55
model comparisons 2-55
perpendicular electric field reduction of mobility 2-32
Philips Unified mobility 2-27
shirahata mobility model 2-36
specific to III-V compound semiconductors 2-162
surface mobility 2-29
surface scattering and transverse field effects 2-29
transverse field-dependent mobility 2-36
universal mobility 2-31
mobility table parameters, MOBILITY
statement 3-309
.MODEL
parameter 3-386
BF parameter 3-384
BR parameter 3-384
BSIM3SOI parameter 3-383
BSIM3v3 parameter 3-383
BV parameter 3-383
CGDO parameter 3-386
CGSO parameter 3-385
Circuit Analysis Examples 12-8
CJ parameter 3-386
CJC parameter 3-384
CJE parameter 3-384
CJO parameter 3-383
CJSW parameter 3-386
D parameter 3-383
DELTA parameter 3-385
EG parameter 3-383, 3-385
ETA parameter 3-385
example 3-387
FC parameter 3-383, 3-384, 3-386
FE parameter 3-384
GAMMA parameter 3-385
HSPICE parameter 3-383
HSPICE28 parameter 3-383
IKF parameter 3-384
IKR parameter 3-384
IS parameter 3-384
ISC parameter 3-384
ISE parameter 3-384
ITF parameter 3-384
JS parameter 3-385
K1 parameter 3-386
KAPPA parameter 3-385
KP parameter 3-385
LAMBDA parameter 3-385
LD parameter 3-385
LEVEL parameter 3-385
M parameter 3-383
MCAP parameter 3-386
MJ parameter 3-386
MJC parameter 3-384
MJE parameter 3-384
MJSW parameter 3-386
mod.nam parameter 3-383
N parameter 3-383
name/parameter definition table 3-383
NC parameter 3-384
NE parameter 3-384
NEFF parameter 3-385
NF parameter 3-384
NFS parameter 3-385
NMOS parameter 3-383
NPN parameter 3-383
NR parameter 3-384
NSS parameter 3-385
NSUB parameter 3-385
PB parameter 3-386
PHI parameter 3-385
PMOS parameter 3-383
PNP parameter 3-383
RB parameter 3-384
RBM parameter 3-384
SPICE models 3-387
TF parameter 3-384
THETA parameter 3-385
TOX parameter 3-385
TPG parameter 3-385
TR parameter 3-384
TT parameter 3-383
TYPE parameter 3-383
UCRIT parameter 3-385
UEXP parameter 3-385
UO parameter 3-385
VAF parameter 3-384
VAR parameter 3-384
VJ parameter 3-383
VJC parameter 3-384

VJE parameter 3-384
VMAX parameter 3-385
VTF parameter 3-384
VTO parameter 3-385
XJ parameter 3-385
XQC parameter 3-386
XTB parameter 3-385
XTF parameter 3-384
XTI parameter 3-383, 3-384
. MODEL 3-380
MODELS
3KT.LT parameter 2-150, 3-114
ANALYTIC parameter 2-22, 3-110
ARORA parameter 2-22, 3-110
AUGER parameter 3-108
BGN parameter 3-108
BOLTZMAN parameter 3-109
BT.ATOL parameter 3-110
BTBT parameter 2-130, 3-110
BT.LOCAL parameter 3-110
BT.MODEL parameter 3-110
BT.QUAD parameter 3-110
BT.RTOL parameter 3-110
BT.TINY parameter 3-110
CCSMOB parameter 2-22, 3-110
C.ND.MOB parameter 3-112

COMP.ET parameter 2-135, 3-114
CONMOB parameter 2-22, 3-110
CONSRH parameter 3-108
description 3-115
DT.CBET parameter 3-109
DT.CUR parameter 3-109
DT.METH parameter 3-109
DT.VBET parameter 3-109
DT.VBHT parameter 3-109
EBLT.HT parameter 2-149, 3-114
EB.SRH.G parameter 2-134, 3-114
ECII.LAT parameter 3-114
E.EFFECT parameter 3-112

EFI.TMP parameter 2-139, 3-114
EF.TMP parameter 2-136, 3-114
EHSCAT parameter 2-59, 3-112
EJ.MOBIL parameter 2-32, 3-112
Energy Balance Examples 9-2
ENERGY.L parameter 3-110
ET.MODEL parameter 2-133, 3-113
FERMIDIR parameter 2-15, 3-109
FLDMOB parameter 2-40, 3-111
FN.CUR parameter 3-109
Fowler-Nordheim tunneling 3-116
gate current analysis 2-114
GATE1 parameter 2-114, 3-113
GATE2 parameter 2-113, 3-113
GATE.GEN parameter 2-119, 3-113
GATE.SUR parameter 2-118, 3-113

GATE.TEM parameter 2-120, 3-113
GMCMOB parameter 2-29, 3-111
high field effects 2-41
HIGH.DOP parameter 3-110
HJSC2 parameter 2-166, 3-114
HJTEM parameter 2-167, 3-114
HJTUN parameter 2-168, 3-115
HPMOB parameter 2-29, 3-111
IALMOB parameter 3-111
II.NLOC parameter 3-109
II.NODE parameter 3-109
II.TEMP parameter 2-138, 3-109
II.VALDI parameter 3-109
impact ionization 3-115
IMPACT.I parameter 2-109, 3-109
IMPURITY parameter 3-110
INCOMPLE parameter 3-110
Lattice Temperature Examples 13-10
LSMMOB parameter 2-29, 3-111
models in solution files 3-117
N-Channel MOSFET Examples 4-27
ND.MOB parameter 2-137, 3-111
NPN Transistor Examples 5-53
parameter definition table 3-108
PHUMOB parameter 2-22, 3-111
PRINT parameter 3-115
PRPMOB parameter 2-29, 3-111
QM.AC parameter 3-112
QM.EFIEL parameter 3-113
QM.EMIN parameter 3-113
QM.EXTEN parameter 2-18,
3-113
QM.METHO parameter 3-112
QM.NORP parameter 3-112
QM.PHILI parameter 2-18, 3-112
quantum mechanical effects in
MOSFET inversion layers 3-116
REGION parameter 3-109
R.TUNNEL parameter 2-5, 3-108

SHIRAMOB parameter 3-111
SRFMOB parameter 2-29, 3-111
SRFMOB2 parameter 2-29, 3-111
SRH parameter 3-108
STRESS parameter 3-115
stress-induced effects in silicon 3-116
STRMOB parameter 3-112
TEMPERAT parameter 2-2, 3-114
TFLDMOB parameter 2-29, 3-111
THPMOB parameter 2-137
TMPDIFF parameter 2-139, 3-113
TMPMOB parameter 2-41, 3-111
TMPTAUWN parameter 3-114
TMPTAUWP parameter 3-114
UNIMOB parameter 2-29, 3-111
VSATP parameter 2-38
Y.ORIENT parameter 3-115

MODELS 3-108
models
carrier density of states 2-161
enhanced surface mobility 2-31
high-field mobility 2-164
low-field mobility 2-163
perpendicular electric field mobility 2-33, 2-36
Richardson's Constant 2-161
specific to III-V compound semiconductors 2-159
SRFMOB, interface applied 2-30
surface mobility 2-29, 2-30
transvers field-dependent mobility 2-40
universal mobility 2-32
models in solution files 3-117
modified emitter region
NPN Transistor Examples 5-62
modified simulation mesh from
PLOT . 2D line 28, file mdex2p Fig. 5-63
MOS
common and level 1 model
parameters, . MODEL statement 3-385
level 3 model parameters, . MODEL statement 3-385
structure and definition used by MOS templates Fig. A-3
MOSFET
drain voltage from PLOT . 1D line 24, file mdex4l Fig. 6-19
inductive load 6-16
inversion layers, quantum
mechanical effects 3-116
LDD substrate current simulation 9-1
n-channel LDD template example 8-1
p-channel template example 8-7
MOS.PARA parameter, EXTRACT statement
N -Channel MOSFET Examples 4-11
MULT.FRE parameter, SOLVE
statement
Circuit Analysis Examples 12-31
N
N.ACCEPT parameter, INTERFACE statement
N-Channel MOSFET Examples 4-21
n-channel
device from PLOT. 2D line 45, file mdex13a Fig. 12-18
mosfet PNMOS from PLOT . 1D
line 13, file mdex13d Fig. 12-30
n-channel MOSFET
EJ.MOBIL with and without, selected Fig. 2-58
parameter specifications 2-40
simulation, seven mobility choices
Fig. 2-57
N-Channel MOSFET Examples 4-1
analysis including fast interface
states 4-19
avalanche breakdown analysis 4-28
BB. GENER parameter, REGRID statement 4-26
breakdown simulation, impact
ionization model 4-35
BTBT parameter, MODELS
statement 4-27
CARRIERS parameter, SYMBOLIC statement 4-7
C. IMAX parameter, SOLVE
statement 4-39
CONMOB parameter, MODELS
statement 4-7
CONTACT statement 4-7
CONTINUE parameter, SOLVE statement 4-39
CONTOUR statement 4-10 to 4-43
C. TOLER parameter, SOLVE statement 4-39
C. VMAX parameter, SOLVE
statement 4-39
C. VSTEP parameter, SOLVE
statement 4-39
DAMPED parameter, METHOD
statement 4-7
direct tunneling analysis in a
P-MOSCAP 4-43
DVLIMIT parameter, METHOD
statement 4-16
ELECTROD parameter, SOLVE
statement 4-39
ELECTRODE statement 4-5
ELECTRON parameter,
SYMBOLIC statement 4-11
ELIMINATE statement 4-4
E. LINE statement 4-32
E. MARK parameter, E.LINE statement 4-32
ENCROACH parameter, SPREAD statement 4-4
example specifications 4-1
EXTRACT statement 4-11
FLDMOB parameter, MODELS statement 4-7
GATE . CUR parameter, SOLVE statement 4-16
generation of the simulation
structure 4-2
H1 parameter, X. MESH statement 4-3

ICCG parameter, METHOD
statement 4-7
IGNORE parameter, REGRID
statement 4-6
IMPACT . I parameter, MODELS
statement 4-35
IMPACT.I parameter, SOLVE
statement 4-16
INTERFACE statement 4-5
IONIZATI parameter,
EXTRACT statement 4-31
LABEL statement 4-12 to 4-42
LEFT parameter, SPREAD statement 4-4
LOAD statement 4-11
LOCAL parameter, SOLVE statement 4-16
LOG statement 4-13
LOGARITH parameter, REGRID
statement 4-8
LOOP statement 4-34
MAX . LEVE parameter, REGRID statement 4-8
MESH statement 4-3
METHOD statement 4-7
MODELS statement 4-27
MOS . PARA parameter,
EXTRACT statement 4-11
N. ACCEPT parameter,

INTERFACE statement 4-21
N. DONOR parameter,

INTERFACE statement 4-21
PLOT . 1D statement 4-9 to 4-42
PLOT . 2D statement 4-6 to 4-43
PROFILE statement 4-5
quadtree mesh for a MOSFET 4-47
RATIO parameter, REGRID statement 4-8
RATIO parameter, Y.MESH statement 4-31
REGION statement 4-4
REGRID statement 4-6
RIGHT parameter, SPREAD statement 4-4
S.DELTA parameter, E.LINE statement 4-32
simulation input files mdexl (simulation structure) 4-2, 4-3
mdexla (avalanche breakdown) 4-31
\(m d e x l b\) (breakdown with gate drive) 4-37, 4-38
mdexlf (analysis including fast interface states) 4-19, 4-20
mdexlg (drain characteristics) 4-13
mdexli (substrate and gate current calculation) 4-15
mdexlt (band-to-band tunneling) 4-25
simulation of drain characteristics 4-12
simulation of gate characteristics 4-11
SOLVE statement 4-7 to 4-39
SPREAD statement 4-3
SRFMOB2 parameter, MODELS statement 4-7
substrate and gate current calculation 4-15
SYMBOLIC statement 4-7 to 4-36
VOL . RAT parameter, SPREAD statement 4-4
WIDTH parameter, PROFILE statement 4-31
WIDTH parameter, SPREAD statement 4-4
X. MESH statement 4-3
X. MIN parameter, EXTRACT statement 4-31
Y. MESH statement 4-3
N.DONOR parameter, INTERFACE statement
N-Channel MOSFET Examples 4-21
N.DVLIM parameter, METHOD statement
Diode and Lumped Element Examples 6-17, 6-18
NEGATIVE parameter, PLOT.1D statement
Heterojunction Examples 14-12
Neumann boundaries 2-65
new automatic boundary conforming mesh generator, MESH statement 3-17
NEWTON parameter, SYMBOLIC statement
Lattice Temperature Examples 13-10
Newton's method
AC analysis 2-104, 3-176
accelerating the iteration 2-77
charge boundary conditions 2-143
CONTACT statements requirements 3-338
continuation method use 2-80
current boundary conditions 2-68
damping 2-77
full Newton 2-77
iteration problems 2-77

Jacobian matrix 2-76
Neumann boundary, element
specification 2-66
overview 2-76
parameters, METHOD statement 3-151
stability of iteration 2-77
NFSTEP parameter, SOLVE statement
Circuit Analysis Examples 12-31
nodes
maximum number 2-90
sequential order D-3
smoothing 3-23
virtual heterojunction devices 2-165
virtual memory requirements 2-90
.NODESET
Circuit Analysis Examples 12-3 to 12-22
example 3-388
Lattice Temperature Examples 13-11
nodex parameter 3-388
. NODESET 3-388
nonlinear system solutions
common concepts 2-72
continuation method 2-79
convergence criteria 2-73
convergence rate 2-73
coupled solutions, Newton's method 2-76
decoupled solutions, Gummel's method 2-78
error norm selection 2-73
error norms 2-73
initial guesses 2-74
linear solution options 2-74
overview 2-72
quasi-Fermi level adjustments 2-75
NPN Transistor Examples 5-51
CONTOUR statement 5-61
ELECTRODE statement 5-53
example specifications 5-51
EXTRACT statement 5-58
FIRST parameter, MOBILITY statement 5-64
generation of the simulation
structure 5-51
H1 parameter, X. MESH statement 5-53
LABEL statement 5-56 to 5-75
LAST parameter, MOBILITY statement 5-64
LOAD statement 5-60
MESH statement 5-52
MODELS statement 5-53
N . SPACES parameter, X . MESH statement 5-70
OUT F FILE parameter, SOLVE statement 5-54

PLOT . 1D statement 5-58 to 5-75
PLOT . 2D statement 5-54 to 5-73
post-processing of forward bias results 5-56
post-processing with modified

\section*{emitter 5-64}

PROFILE statement 5-53
REGION statement 5-53
REGRID statement 5-70
simulation input files
mdex2 (simulation structure) 5-52
\(m d e x 2 f p\) (bias point post-processing) 5-57
\(m d e x 2 m\) (one-dimensional mode) 5-72
\(m d e x 2 p\) (modified emitter region) 5-62
\(m d e x 2 p p\) (modified emitter post-processing) 5-64, 5-65
simulation of forward characteristics 5-55
simulation with modified emitter region 5-62
simulation with one-dimensional mode 5-69
SOLVE statement 5-56
TERMINAL parameter, SOLVE
statement 5-56
VECTOR statement 5-60
WIDTH parameter, PROFILE statement 5-70
WIDTH parameter, X. MESH statement 5-70
X.MIN parameter, PROFILE statement 5-70
Y. MAX parameter, REGION statement 5-63
Y.MESH statement 5-52, 5-53
N.SPACES parameter, X.MESH statement
NPN Transistor Examples 5-70
N.TOTAL parameter, TRAPS statement Trapped Charge Examples 15-5, 15-6
numerical expressions 3-5
components and use 3-5
examples 3-8
numerical methods
discretization 2-71
linear matrix solution 2-82
nonlinear system solutions 2-72
overview 2-70
relevant statements 2-71
selecting equations to solve 2-71
numerical, parameter type 3-3
numerical, parameter type with numerical expressions 3-5

\section*{0}

OD-AAM
absorption models 2-176
optical device examples 16-1
overview 2-171
photogeneration model 2-175
transmittance and reflectance
calculation 2-171
OEIC
optical device examples 16-13
ohmic contacts 2-62
old automatic boundary conforming mesh
generation, MESH statement 3-18
old statements
use 3-357
use discouraged 3-445
Old Statements, input statements
CALCULATE 3-446
CHECK 3-449
. DC 3-452
DEPOSITION 3-450
. SAVE 3-458
. TRAN 3-459
one-dimensional analysis
creating device structure 5-69
NPN Transistor Examples 5-69
plots of electron concentration 6-8
plots of hole concentrations 6-6
process files 1-8
true results of analysis 5-69
one-dimensional bipolar transistor Fig. 5-70
one-dimensional profiles from data files,
PROFILE statement 3-87
.OP
Circuit Analysis Examples 12-3
optical device AAM parameters
CONTACT statement 3-338
film quantities, PHOTOGEN
statement 3-124
imaginary refractive index or
absorption coefficient,
MATERIAL statement 3-294
incident ray quantities,
PHOTOGEN statement 3-121
MATERIAL statement 3-293
optical energy gap, MATERIAL
statement 3-293
PHOTGEN statement 3-121
PLOT. 1D statement 3-210
PLOT. 2D statement 3-218
ray-tracing quantities, P HOTOGEN statement 3-123
real refractive index, MATERIAL
statement 3-293
VECTOR statement 3-241, 3-242
Optical Device Advanced Application Module
see OD-AAM
Optical Device Examples 16-1 to 16-20
ANGLE parameter, PHOTOGEN statement 16-14
A-silicon solar cell 16-1
AUGER parameter, MODELS
statement 16-14
BB. RAD parameter, PHOTOGEN statement 16-2
BB. TEMP parameter,
PHOTOGEN statement 16-2
CONSRH parameter, MODELS
statement 16-14
description of light source 16-2
example specifications \(16-1\)
EXTRACT statement 16-14
FLDMOB parameter, MODELS
statement 16-14
GaAs photodetector 16-13
INT. RATI parameter,
PHOTOGEN statement 16-2
MATERIAL statement 16-2
PHOTOGEN statement \(16-2\) to 16-8
PLOT . 2D statement 16-10
RAYTRACE parameter,
PHOTOGEN statement 16-2
simulation input files mdex19a (A-silicon solar cell structure) 16-5, 16-6
mdex19b (A-silicon solar cell plots) 16-9, 16-10
mdex20a (GaAs
photodetector
structure) 16-15
\(m d e x 20 b\) (GsAs
photodetector plots) 16-18
solutions for spectral response and I/
V characteristics 16-3
SOLVE statement 16-14
WAVE parameter, SOLVE statement 16-3
Y. ORG parameter, PHOTOGEN statement 16-14
optical device parameters, SOLVE statement 3-169
optical energy gap, MATERIAL statement 3-293
optical gain plots generated lines 23 to 30 , file mdex20b Fig. 16-20
optical ray geometry Fig. 3-132
optimization using targets and expressions, EXTRACT statement 3-181
OPTION
CUP.FILE parameter 3-404
CUP.STAT parameter 3-404
description 3-404
G.DEBUG parameter 3-404
I.ERROR parameter 3-404

MAXNODES parameter 2-91, 3-404
N.DEBUG parameter 3-404
parameter definition table 3-404
SAVE.SOL parameter 3-404
SOL.FILE parameter 3-404
OPTION 3-404
optional records, TIF files D-5
curve data D-6
.OPTIONS
2ND parameter 3-390
ALT parameter 3-390
AUTO parameter 3-390
Circuit Analysis Examples 12-3
COUP.LAT parameter 3-390
C.TOL parameter 3-390

DELVMAX parameter 3-390
ELE.TEMP parameter 3-391
example 3-391
G.FORCE parameter 3-390

HOL.TEMP parameter 3-391
HSPICE parameter 3-391
ILUCGS parameter 3-390
ITLIM parameter 3-390
LAT.TEMP parameter 3-390
Lattice Temperature Examples 13-10
parameter definition table 3-390
P.TOL parameter 3-390

TIF parameter 3-391
T.MIN parameter 3-390
T.NOM parameter 3-390
T.TOL parameter 3-390

VMAX parameter 3-390
VMIN parameter 3-390
. OPTIONS 3-390
optoelectronic integrated circuits see OEIC
original Medici mesh prior to importing structure Fig. 3-70
OUT1 parameter, LOG statement
Interface Examples 10-33
OUT.FILE parameter, LOG statement Interface Examples 10-29
OUT.FILE parameter, PROFILE Diode and Lumped Examples 6-3
OUT.FILE parameter, SAVE statement Interface Examples 10-18
OUT.FILE parameter, SOLVE statement

Diode and Lumped Element Examples 6-4
NPN Transistor Examples 5-54
output
graphical 1-4
printed 1-3
output choices, SOLVE statement 3-168
output doping files, PROFILE statement 3-85
output file specification 4-5
output files, overview
binary plot 1-10
boundary 1-11
diagnostic 1-9
execution time 1-13
formatted plot 1-10
graphical 1-10
informational 1-9
\(\log 1-12\)
mesh 1-11
profile 1-11
saved solution 1-12
solution 1-11
standard 1-9
TIF 1-11
output from file mdex9e and results of conversion to an IC-CAP data file
Fig. 10-33
output from MESH line 5 , file \(m d e x 9 b\) Fig. 10-20
output of file mdex10c that erases flash EEPROM Fig. 11-9
output voltage
compact inverter from PLOT . 1D
line 12, file mdexl3d Fig. 12-29
inverter from PLOT . 1D line 11, file mdex13d Fig. 12-29
PLOT. 1D line 39, file mdex13c Fig. 12-24

\section*{P}

P
example 3-373
FILE parameter 3-373
name parameter 3-373
nodex parameter 3-373
termx parameter 3-373
WIDTH parameter 3-373
P 3-373
Parallel Field Mobility 2-41
parameter definition of pulse type light source Fig. 3-126
parameter specification 2-122
parameters
AC analysis parameters, SOLVE statement 3-167

AC analysis with a circuit, SOLVE statement 3-168
AC charge analysis parameter
SOLVE statement 3-168
AC small-signal analysis quantity parameters

CONTOUR statement 3-235
AC small-signal analysis quantity
parameters, PLOT . 1D statement 3-204
AC small-signal analysis quantity parametersPLOT . 3D statement 3-224
AC small-signal analysis vector quantity parameters

VECTOR statement 3-241, 3-242
advanced band structure parameters,
ANISOTROPIC statement 3-349
analytic mobility model parameters,
MOBILITY statement 3-310, 3-323
analytic polygonal profiles,
PROFILE statement 3-86
analytic profiles, PROFILE statement 3-85
analytic rotated profiles,
PROF ILE statement 3-86
anisotropic component factors,
ANISOTROPIC statement 3-346
Arora mobility model parameters,
MOBILITY statement 3-311, 3-324
array 3-4
automatic MOSFET meshing
ABC. MESH statement 3-41
axes and labels, PLOT . 3D
statement 3-226
bipolar junction transistor parameters, . MODEL statement 3-384
carrier-carrier scattering mobility model parameters, MOBILITY statement 3-312, 3-324
character 3-4
circuit analysis AAM parameters

\section*{ANISOTROPIC statement}

3-350
CONTACT statement 3-338
IMPURITY statement 3-334
LOAD statement 3-267
MATERIAL statement 3-293
PHOTOGEN statement 3-121
PLOT . 1D statement 3-210

PLOT. 2D statement 3-218
PLOT . 3D statement 3-227
SOLVE statement 3-168
circuit analysis parameters
PRINT statement 3-198
common MOS capacitance
parameters, . MODEL statement 3-385
constant mobility parameters,
MOBILITY statement 3-309, 3-323
continuation method parameters, SOLVE statement 3-164
contour controls, CONTOUR statement 3-235
contour quantities, CONTOUR statement 3-232
control parameters, E.LINE statement 3-251
conversion processes specified 10-29
device bounds, PLOT . 3D
statement 3-225
device selection (circuit analysis
AAM), MOBILITY statement 3-321
device to extract (circuit analysis
AAM), EXTRACT statement 3-183
direct tunneling analysis parameters,
SOLVE statement 3-166
display parameters, PLOT . 3D
statement 3-226
distance plot
quantities, PLOT.1D
statement 3-200
effective field parameters,
MOBILITY statement 3-313, 3-325
electrode parameters, MATERIAL statement 3-292
energy balance equation parameters,
MATERIAL statement 3-288
energy balance parameters,
METHOD statement 3-153
energy level creation, TRAPS
statement 3-136
enhanced surface mobility model
parameters, MOBILITY
statement 3-316, 3-327
extract MOS parameters,
EXTRACT statement 3-183
extract physical quantities from solution, EXTRACT statement 3-181
extraction using names and expressions, EXTRACT statement 3-180
field-dependent mobility model parameters, MOBILITY statement 3-318, 3-329
file output, PLOT . 3D statement 3-227
film quantities, PHOTOGEN
statement 3-124
general anisotropic
electron impact ionization, ANISOTROPIC statement 3-347
thermal conductivity, ANISOTROPIC statement 3-348
generalized mobility curve model parameters, MOBILITY
statement 3-315, 3-326
Gummel's method parameters,
METHOD statement 3-150
heterojunction AAM parameters,
MATERIAL statement 3-290
heterojunction device AAM
parameters
CONTOUR statement 3-235
E. LINE statement 3-251

PLOT . 1D statement 3-204
SAVE statement 3-273
Hewlett-Packard mobility model
parameters, MOBILITY
statement 3-317, 3-328
hot carrier and parasitic analysis
parameters, SOLVE statement 3-166
III-V compound semiconductor
field-dependent mobility model
parameters, MOBILITY
statement 3-320
III-V compound
semiconductor-specific analytic mobility model parameters,
MOBILITY statement 3-310, 3-323, 3-330
ILUCGS solver parameters,
METHOD statement 3-150
imaginary refractive index or absorption coefficient,
MATERIAL statement 3-294
incident ray quantities,
PHOTOGEN statement 3-121
incomplete ionization parameters
IMPURITY statement

> 3-333
initial guesses, biasing, and fermi
potentials, SOLVE statement
3-162
initial mesh generation, MESH
statement 3-16
insulator materials, REGION
statement 3-73
insulator parameters
ANISOTROP IC statement
3-349

MATERIAL statement
3-291
interface, solution files 4-21
lattice temperature AAM parameters
CONTACT statement 3-337
CONTOUR statement 3-235
ELECTRODE statement 3-79
E. LINE statement 3-251
insulators, MATERIAL statement 3-292
METHOD statement 3-154
PLOT . 1D statement 3-204
REGRID statement 3-96
SAVE statement 3-273
semiconductors,

\section*{MATERIAL}
statement 3-289
level 2 MOS parameters, . MODEL statement 3-385
location, REGION statement 3-73
logical 3-3
Lombardi surface mobility model
parameters, MOBILITY
statement 3-313, 3-326
Lucent mobility model parameters,
MOBILITY statement 3-318
material or region name
IMPURITY statement
3-332
mesh adjustments, MESH statement 3-20
mesh file input, MESH statement 3-16
mesh output file, MESH statement 3-21
mobility table parameters,
MOBILITY statement 3-309
MOS common and level 1 model
parameters, . MODEL statement 3-385
MOS level 3 model parameters,
. MODEL statement 3-385
new automatic boundary conforming mesh generator, MESH statement 3-17
Newton's method parameters,
METHOD statement 3-151
numerical 3-3
numerical expressions 3-5
old automatic boundary conforming
mesh generation, MESH statement 3-18
one-dimensional profiles from data
files, PROFILE statement 3-87
optical device AAM parameters
CONTACT statement 3-338
film quantities, PHOTOGEN statement 3-124
imaginary refractive index or absorption coefficient, MATERIAL statement 3-294
incident ray quantities, PHOTOGEN statement 3-121
MATERIAL statement 3-293
optical energy gap,
MATERIAL
statement 3-293
PHOTOGEN statement 3-121
PLOT . 1D statement 3-210
PLOT. 2D statement 3-218
ray-tracing quantities,
PHOTOGEN
statement 3-123
real refractive index,
MATERIAL
statement 3-293
VECTOR statement 3-241, 3-242
optical device parameters, SOLVE
statement 3-169
optical energy gap, MATERIAL statement 3-293
optimization using targets and expressions, EXTRACT statement 3-181
output choices, SOLVE statement 3-168
output doping files, PROFILE statement 3-85
parameter definition table 3-10
perpendicular field mobility
parameters, MOBILITY
statement 3-317, 3-328
Philips unified mobility model parameters, MOBILITY statement 3-312, 3-325
plot controls
PLOT . 1D statement 3-207
PLOT . 3D statement 3-225
VECTOR statement 3-241, 3-242
plot quantities, PLOT . 3D
statement 3-222
programmable device AAM
parameters, SOLVE statement 3-166
quadtree mesh generator, MESH statement 3-20
quadtree regrid controls, REGRID statement 3-98
ray-tracing quantities, P HOTOGEN statement 3-123
real refractive index, MATERIAL statement 3-293
regrid controls, REGRID statement 3-97
regrid criteria, REGRID statement 3-95
scalar quantities, SAVE statement 3-272
semiconductor material parameters, REGION statement 3-73
semiconductor materials, REGION statement 3-71
semiconductor parameters
ANISOTROP IC statement
3-345
MATERIAL statement 3-281
shirahata mobility model
parameters, MOBILITY
statement 3-315
spatial terms, PHOTOGEN
statement 3-119
Star-Hspice MOSFET model
parameters, . MODEL statement 3-386
steady state analysis parameters,
SOLVE statement 3-164
stress-induced mobility,
MOBILITY statement 3-321
structure parameters, SAVE statement 3-272
surface degradation factors,
MOBILITY statement 3-313, 3-325
surface mobility model parameters,
MOBILITY statement 3-316, 3-327
syntax of lists 3-11
temporal terms, PHOTOGEN
statement 3-120
terminal characteristics plot
parameters, PLOT . 1D statement
3-206
TIF files
heterojunction device AAM
parameters, SAVE statement 3-273
lattice temperature AAM
parameters, SAVE
statement 3-273
SAVE statement 3-271
scalar quantities, SAVE
statement 3-272
structure parameters, SAVE
statement 3-272
vector quantities, SAVE
statement 3-273
time application 3-128
transient analysis parameters,
SOLVE statement 3-165
transient parameter, TRAPS statement 3-138
transverse field-dependent mobility model parameters, MOBILITY statement 3-321, 3-330
trap parameters, TRAP statement 3-137
two-dimensional profiles from data
files, PROFILE statement 3-88
uniform profile, PROFILE statement 3-85
universal mobility model parameter, MOBILITY statement 3-328
universal mobility model parameters, MOBILITY statement 3-317
vector quantities, SAVE statement 3-273
viewing parameters, PLOT . 3D
statement 3-225
with statements 3-2
parameters, 3D. SURFACE statement
C. AUTO 3-230

COLOR 3-230
HIDDEN 3-230
LINE . TYP 3-230
LOWER 3-230
MASK 3-230
PAUSE 3-230
UPPER 3-230
VISIBLE 3-230
X.LINE 3-230
Y.LINE 3-230
Z. MAX 3-230
Z.MIN 3-230
parameters, ABC. MESH statement
ALGAAS 3-39
ALINAS 3-40
A.SILICO 3-39

BOUNDARY 3-39
CRITICAL 3-40
DIAMOND 3-39
GAAS 3-39
GAASP 3-40
GATE . NFA 3-41
GERMANIU 3-39
GRDCNTR 3-40
GRDDOWN 3-40
GRDLEFT 3-40
GRDRIGHT 3-40
GRDUP 3-40
H1 3-40
H2 3-40
HGCDTE 3-39
INAS 3-39
```

        INASP 3-40
        INGAAS 3-39
        INP 3-40
    LATERAL 3-41
    MAX.CHAN 3-41
    MAX. SD 3-41
    MOSFET 3-41
    N. CHANN 3-41
    NEIGHBOR 3-41
    N. GATEOX 3-41
    NITRIDE 3-40
    N. JUNC 3-41
    NORMAL 3-41
    NORMAL1 3-41
    NORMAL2 3-41
    NORMGROW 3-41
    N. POLY 3-41
    OXIDE 3-40
    OXYNITRIDE 3-40
    POLYSILI 3-39
    RATIO 3-41
    REGION 3-38
    REGION1 3-39
    REGION2 3-39
    SAPPHIRE 3-40
    SIC 3-39
    SIGE 3-39
    SILICON 3-39
    SI.NFACT 3-41
    S.OXIDE 3-40
    X. MAX 3-38
    X.MIN 3-38
    Y.MAX 3-38
    Y.MIN 3-38
    ZNSE 3-40
    ZNTE 3-40
    parameters, ANISOTROPIC statement
ALGAAS 3-345
ALPHO.N 2-182, 3-349
ALPHO.P 2-182, 3-349
ALPHJ.N 2-182, 3-349
ALPHJ.P 2-182, 3-349
ANIIN 3-347
ANIIP 3-347
ANTHCON 3-348
A-SILICO 3-346
A.TH.CON 3-348
B.TH.CON 3-348
C. TH. CON 3-349
DIAMOND 3-346
D.TH.CON 3-349
ECN.II 3-347
ECP.II 3-348
EJ.N 3-349
EJ.P 2-182, 3-349
E.TH.CON 3-349
EXN.II 3-347
EXP.II 3-348
GAAS 3-345

```
```

    GERMANIU 3-345
    ```
 GERMANIU 3-345
 HGCDTE 3-345
 HGCDTE 3-345
 II.N 3-346
 II.N 3-346
 II.P 3-346
 II.P 3-346
 INAS 3-346
 INAS 3-346
 INGAAS 3-345
 INGAAS 3-345
 INP 3-345
 INP 3-345
 INSULATO 3-350
 INSULATO 3-350
 MJ.N 2-182, 3-349
 MJ.N 2-182, 3-349
 MJ.P 2-182, 3-349
 MJ.P 2-182, 3-349
 MU.N 3-346
 MU.N 3-346
 MU.P 3-346
 MU.P 3-346
 N.ION.O 3-347
 N.ION.O 3-347
 N.ION.1 3-347
 N.ION.1 3-347
 N.ION.2 3-347
 N.ION.2 3-347
 NITRIDE 3-350
 NITRIDE 3-350
 OXIDE 3-349
 OXIDE 3-349
 OXYNITRI 3-350
 OXYNITRI 3-350
 PERM 2-181
 PERM 2-181
 PERMITTI 3-346, 3-350
 PERMITTI 3-346, 3-350
 P.ION.O 3-347
 P.ION.O 3-347
 P.ION.1 3-348
 P.ION.1 3-348
 P.ION. 2 3-348
 P.ION. 2 3-348
 POLYSILI 3-345
 POLYSILI 3-345
 PRINT 3-345, 3-346
 PRINT 3-345, 3-346
 REGION 3-346, 3-350
 REGION 3-346, 3-350
 SAPPHIRE 3-350
 SAPPHIRE 3-350
 SEMICOND 3-345
 SEMICOND 3-345
 SIC 3-345
 SIC 3-345
 SIGE 3-345
 SIGE 3-345
 SILICON 3-345
 SILICON 3-345
 S.OXIDE 3-345
 S.OXIDE 3-345
 STRUCTUR 3-350
 STRUCTUR 3-350
 TH.COND 3-346, 3-350
 TH.COND 3-346, 3-350
 ZNSE 3-346
 ZNSE 3-346
 ZNTE 3-346
 ZNTE 3-346
parameters, ASSIGN statement
parameters, ASSIGN statement
 C1 3-434
 C1 3-434
 C10 3-435
 C10 3-435
 C2 3-434
 C2 3-434
 C3 3-434
 C3 3-434
 C4 3-434
 C4 3-434
 C5 3-434
 C5 3-434
 C6 3-434
 C6 3-434
 C7 3-434
 C7 3-434
 C8 3-435
 C8 3-435
 C9 3-435
 C9 3-435
 C. VALUE 3-434
 C. VALUE 3-434
 DELTA 3-433
 DELTA 3-433
 E.NAME 3-435
 E.NAME 3-435
 INITIAL 3-435
 INITIAL 3-435
LEVEL 3-435
LEVEL 3-435
LOWER 3-434
LOWER 3-434
L. VALUE 3-434
L. VALUE 3-434
NAME 3-433
NAME 3-433
N.VALUE 3-433
N.VALUE 3-433
OPTIMIZE 3-434
OPTIMIZE 3-434
PRINT 3-433
PRINT 3-433
PROMPT 3-435
```

PROMPT 3-435

```

ALUMINUM 3-336
BARRIERL 2-64, 3-337
B. CONRES 3-337

CAPACITA 2-67, 3-336
C. CONRES 3-337

CHARGE 2-145, 3-336
CON. RESI 2-69, 3-337
CRS. CON 3-337
C. THERMA 2-153, 3-337

CURRENT 2-68
INDUCTAN 2-67, 3-337
MO.DISIL 3-336
MOLYBDEN 3-336
NAME 3-336
NEUTRAL 3-336
N. POLYSI 3-336

PIN 3-336
P.POLYSI 3-336

PRINT 3-336
REFLECTI 3-338
RESISTAN 2-67, 3-337
R. THERMA 2-153, 3-337

STRUCTUR 3-338
SURF . REC 2-63, 3-337
TRANSELE 3-338
TU.DISIL 3-336
TUNGSTEN 3-336
V. CAPAC 3-336

VOLTAGE 3-337
VSURFN 2-63, 3-337
VSURFP 2-63, 3-337
WORKFUNC 2-63, 3-336
parameters, CONTOUR statement
ABSOLUTE 3-236
AC. IMAG 3-235
AC. MAGN 3-235
AC. PHAS 3-235
AC. REAL 3-235
ARRAY1 3-233
ARRAY2 3-233
ARRAY3 3-233
BB. GENER 2-132, 3-234
C. INCREM 3-236

COLOR 3-236
CONDUC. B 3-232
C. START 3-236

DEL. VALU 3-236
DOPING 3-233
E.FIELD 3-233

ELECTRON 3-233
ELE.TEMP 2-140, 3-234
ELE. VEL 2-140, 3-234
FILL 3-236
FLOWLINE 3-233
G. GAMN 2-146, 3-234
G. GAMP 2-146, 3-234
G. GAMT 2-146, 3-234
G. IN 2-146, 3-235
G. IP 2-146, 3-235
G.IT 2-146, 3-235

HOLES 3-233
HOL. TEMP 2-140, 3-234
HOL. VEL 2-140, 3-234
II. GENER 3-234

IMPURITY 3-233
J. CONDUC 3-233
J.DISPLA 3-233
J.EFIELD 3-234
J. ELECTR 3-233
J. HOLE 3-233
J.TOTAL 3-233

LAT.TEMP 3-235
LEVEL 3-234
LINE. TYP 3-236
LOGARITH 3-236
MAX.VALU 3-235
MIN. VALU 3-235
NCONTOUR 3-236
NET. CARR 3-233
NET. CHAR 3-233
NIE 3-233
N. MOBILI 3-234
N. RECOMB 3-234

OTHER 3-233
PAUSE 3-236
PHOTOGEN 3-234
P.MOBILI 3-234

POTENTIA 3-232
P. RECOMB 3-234

QFN 3-232
QFP 3-232
RECOMBIN 3-234
SIGMA 3-234
TRAP. OCC 3-234
TRAPS 3-234
VACUUM 3-232
VALENC. B 3-232
WINDOW 3-235
X. COMPON 3-236
X. MOLE 3-235
Y. COMPON 3-236
parameters, D statement
AREA 3-365
example 3-366
mname 3-365
name 3-365
node- 3-365
node \(+3-365\)
parameters, .DC statement
MULT 3-452
RESET 3-452
scrname 3-452
UIC 3-452
VINCR 3-452
VSTART 3-452
VSTOP 3-452
parameters, DEPOSITION statement
ANGLE 3-450

CONCENTR 3-450
ELECTRON 3-450
HOLE 3-450
LENGTH 3-450
WIDTH 3-450
X.START 3-450
Y.START 3-450
parameters, \(\mathbf{E}\) statement
cnode- 3-366
cnode \(+3-366\)
example 3-366
name 3-366
node- 3-366
node \(+3-366\)
value 3-366
parameters, ELECTRODE statement
BOTTOM 3-77
INTERFAC 3-77
IX. MAX 3-78
IX. MIN 3-78

IY. MAX 3-78
IY.MIN 3-78
LEFT 3-77
MAJORITY 3-79
NAME 3-77
PERIMETE 3-78
POLYGON 3-78
REGION 2-145, 3-78
RIGHT 3-77
R. INNER 3-78

ROTATE 3-78
R. OUTER 3-78

THERMAL 2-153, 3-79
TOP 3-77
VOID 3-77
x 3-78
X.CENTER 3-78

X . MAX 3-78
X.MIN 3-78
X. POLY 3-78

Y 3-78
Y.CENTER 3-78
Y. MAX 3-78
Y.MIN 3-78
Y. POLY 3-78
parameters, ELIMINATE statement
COLUMNS 3-51
IX. MAX 3-51
IX. MIN 3-51

IY. MAX 3-51
IY.MIN 3-51
ROWS 3-51
X. MAX 3-51
X. MIN 3-51
Y.MAX 3-51
Y.MIN 3-51
parameters, E.LINE statement
ANGLE 3-249
ARRAY1 3-248
```

    ARRAY2 3-249
    ARRAY3 3-249
    BB. GENER 3-250
    COLOR 3-252
    CONDUC.B 3-248
    DOPING 3-249
    E.FIELD 3-249
    ELECTRON 3-249
    ELE.TEMP 3-250
    ELE.VEL 3-250
    E.MARK 3-251
    FILE 3-252
    G. GAMN 3-250
    G. GAMP 3-250
    G. GAMT 3-250
    G. IN 3-250
    G.IP 3-250
    G.IT 3-250
    HOLES 3-249
    HOL.TEMP 3-250
    HOL.VEL 3-250
    HORZ.STA 3-251
    I.ELECTR 3-251
    I. HOLES 3-251
    II .GENER 3-250
    INSULATO 3-251
    J. CONDUC 3-249
    J.DISPLA 3-249
    J.EFIELD 3-250
    J.ELECTR 3-249
    J. HOLE 3-249
    J.TOTAL 3-249
    LAT.TEMP 3-251
    LINE.TYP 3-252
    M.SIZE 3-251
    NET. CARR 3-249
    NET.CHAR 3-249
    N.LINES 3-251
    PAUSE 3-252
    PHOTOGEN 3-250
    PLOT 3-252
    POTENTIA 3-248
    QFN 3-248
    QFP 3-248
    RECOMBIN 3-249
    S.DELTA 3-251
    SUMMARY 3-252
    VACUUM 3-248
    VALENC.B 3-248
    X.MOLE 3-251
    X.START 2-130, 3-251
    Y.START 2-130, 3-251
    parameters, ELSE statement
COND 3-421
parameters, EXTRACT statement
APPLIED 3-183
AT.BIAS 3-181
CLEAR 3-181
CONDITIO 3-180, 3-183

```

CONTACT 3-182
DRAIN 3-183
ELECTRON 3-181
EXPRESSI 3-180
GATE 3-183
HOLE 3-181
I. DRAIN 3-183
II. GENER 3-182

IN.FILE 3-183
INITIAL 3-181
IONIZATI 2-128, 3-181
METAL. CH 3-182
MIN. ABS 3-181
MIN . REL 3-181
MOS . PARA 3-183
NAME 3-180
N. CURREN 3-182

NET. CARR 3-181
NET CHAR 3-181
NOW 3-181
N. RESIST 3-182

OUT.FILE 3-181, 3-183
P. CURREN 3-182
P.RESIST 3-182

PRINT 3-181
RECOMBIN 3-181
REGIONS 3-182
RESISTAN 3-182
SHEET . RE 3-182
STRUCTUR 3-183
TARGET 3-181
TARREL 3-181
TARTOL 3-181
TOP 3-182
TWB 3-181
UNITS 3-180
WEIGHT 3-181
X. MAX 2-129, 3-182
X.MIN 2-129, 3-182
X.POINT 3-182
Y. MAX 2-129, 3-183
Y.MIN 2-129, 3-182
parameters, \(\mathbf{F}\) statement
example 3-367
name 3-367
node- 3-367
node \(+3-367\)
value 3-367
vname 3-367
parameters, FILL statement
C. ALGAAS 3-246
C.A-SILI 3-246
C. DIAMON 3-246
C. ELECTR 3-246
C. GAAS 3-245
C. GERMAN 3-246
C. HGCDTE 3-246
C. INAS 3-246
C. INGAAS 3-246
C.INP 3-246
C. INSUL 3-246
C. NITRID 3-246
C. NTYPE 3-246

COLOR 3-245
C. OXIDE 3-246
C. OXYNIT 3-246
C. POLYSI 3-245
C. PTYPE 3-246
C. SAPPHI 3-246
C. SEMI 3-246
C. SIC 3-246
C. SIGE 3-246
C.SILIC 3-245
C.S.OXID 3-246
C. ZNSE 3-246
C. ZNTE 3-246

NP . COLOR 3-246
N-TYPE 3-245
PAUSE 3-245
P-TYPE 3-245
REGION 3-245
SET. COLO 3-245
parameters, FINISH statement
CIRCUIT 3-393
parameters, FINISH statement
example 3-393
parameters, \(\mathbf{G}\) statement
cnode- 3-368
cnode \(+3-368\)
example 3-368
name 3-368
node- 3-368
node \(+3-368\)
value 3-368
parameters, \(\mathbf{H}\) statement
3-368
example 3-368
name 3-368
node- 3-368
node \(+3-368\)
value 3-368
parameters, HELP statement
NAME 3-405
PARAMETE 3-405
VERBOSE 3-405
parameters, \(\mathbf{I}\) statement
example 3-371
EXP 3-369
fc 3-369
freq 3-369
fs 3-369
i0 3-369
ia 3-369
id 3-369
mdi 3-369
name 3-369
node- 3-369
node \(+3-369\)
per 3-369
PULSE 3-369
SFFM 3-369
SIN 3-369
tau1 3-369
tau2 3-369
td1 3-369
td2 3-369
tds 3-369
tf 3-369
theta 3-369
tp 3-369
tr 3-369
value 3-369
parameters, . IC statement nodex 3-389
parameters, . IC statement example 3-389
parameters, IF statement COND 3-419
parameters, IMPURITY statement
ALGAAS 3-332
ALINAS 3-333
ALPHA 3-333
A-SILICO 3-333
BETA 3-333
DIAMOND 3-333
EBO 3-333
GAAS 3-332
GAASP 3-333
GAMMA 3-333
GB 3-333
GERMANIU 3-332
HDT . MAX 3-334
HDT. MIN 3-333
HGCDTE 3-333
INAS 3-333
INASP 3-333
INGAAS 3-333
INGAP 3-333
INP 3-333
NAME 3-332
POLYSILI 3-332
PRINT 3-332
REGION 3-333
SEMICOND 3-332
SIC 3-332
SIGE 3-332
SILICON 3-332
S. OXIDE 3-333

STRUCTUR 3-334
ZNSE 3-333
ZNTE 3-333
parameters, INTERACTIVE statement ONCE 3-411
parameters, INTERFACE statement
ALL. CLEA 3-342
CLEAR 3-342
D. CHAR 3-342

MATERIAL 3-341
N. ACCEPT 2-66, 3-341
N. DONOR 2-66, 3-341
P. ACCEPT 2-66, 3-341
P. DONOR 2-66, 3-342

QF 2-4, 3-341
Q. INSULA 3-342

REGION 3-341
S.N 2-4, 3-341
S.P 2-4, 3-341
X. MAX 3-341
X. MIN 3-341
Y. MAX 3-341
Y. MIN 3-341
parameters, I.PRINT statement
ALL 3-414
EXPAND 3-414
FIRST 3-414
LAST 3-414
parameters, I. SAVE statement
EXPAND 3-416
FILE 3-416
FIRST 3-416
LAST 3-416
NOW 3-416
parameters, \(\mathbf{K}\) statement example 3-371
lname1 3-371
lname2 3-371
name 3-371
value 3-371
parameters, \(\mathbf{L}\) statement
example 3-372
name 3-372
node- 3-372
node \(+3-372\)
value 3-372
parameters, LABEL statement
ANGLE 3-254
ARROW 3-255
CM 3-255
COLOR 3-255
C.SIZE 3-255

LABEL 3-254
LINE.TYP 3-255
LX.FINIS 3-255
LX. START 3-255

LY.FINIS 3-255
LY.START 3-255
PAUSE 3-255
START . CE 3-255
START.LE 3-255
START.RI 3-255
SYMBOL 3-254
x 3-254
Y 3-254
parameters, L. END statement
ALL 3-431
BREAK 3-431
parameters, L. MODIFY statement
BREAK 3-429
LEVEL 3-429
NEXT 3-429
PRINT 3-429
STEPS 3-429
parameters, . LOAD statement
ASCII 3-392
MESH 3-392
SOLUTION 3-392
STRUCTURE 3-392
parameters, . LOAD statement
example 3-392
parameters, LOAD statement
ASCII. IN 3-267
ASCII. OU 3-267
CHECK. ER 3-267
DIFFEREN 3-267
IN.FILE 3-267
IN. PREV 3-267
OUT.FILE 3-267
STRUCTUR 3-267
TIF 3-267
parameters, LOG statement
AURORA 3-259
BASE 3-262
CLOSE 3-259
COLLECT 3-262
DEVID 3-260
DRAIN 3-262
EMITTER 3-262
EXTRA 3-262
GATE 3-262
ICCAP 3-260
IN.FILE 3-262
INP 1 3-260
INP2 3-260
INP 3 3-260
INP 4 3-260
LENGTH 3-259
OUT1 3-261
OUT2 3-261
OUT3 3-261
OUT.FILE 3-259
P. CHANNE 3-260

REGION 3-260
SOURCE 3-262
STANFORD 3-262
SUBSTRAT 3-262
TIF 3-259
WIDTH 3-259
parameters, LOOP statement
OPTIMIZE 3-423
PRINT 3-423
SENSITIV 3-423
STEPS 3-423
parameters, \(\mathbf{M}\) statement
AD 3-372
AS 3-372
example 3-372
L 3-372
mname 3-372
name 3-372
nodeb 3-372
noded 3-372
nodeg 3-372
nodes 3-372
PD 3-372
PS 3-372
W 3-372
parameters, MATERIAL statement
A. SP . HEAMATERIAL
A.SP.HEA parameter 3-292
A.TH. CONMATERIAL
A.TH.CON parameter 3-292
B.TH. CONMATERIAL
B.TH.CON parameter 3-292
C. TH. CONMATERIAL
C.TH.CON parameter 3-292

DENSITYMATERIAL
DENSITY parameter 3-292
D.TH. CONMATERIAL
D.TH.CON parameter 3-292
EPS.X1MATERIAL
EPS.X1 parameter 3-290
EPS. X2MATERIAL
EPS.X2 parameter 3-290
ME. DTMATERIAL
ME.DT parameter 3-293
NC. OMATERIAL
NC. 0 parameter 3-290
NC. EMATERIAL
NC.E parameter 3-290
NV. OMATERIAL
NV. 0 parameter 3-290
NV. EMATERIAL
NV.E parameter 3-290
S.OXIDEMATERIAL
S.OXIDE parameter 3-291
parameters, MATERIAL statement
AON. VALD 3-285
AOP . VALD 3-285
A1N. VALD 3-285
A1P . VALD 3-286
A2N. VALD 3-285
A2P . VALD 3-286
ABS.FILE 3-294
ABSORPTI 3-294
A. BTBT 2-130, 2-131, 3-287
A. EHS 2-59, 3-284

AFFINITY 2-63, 3-282, 3-291
A. FN 2-144, 3-287, 3-293

AF . X1 to AF . X5 3-290
AF. X2 3-290

AF. XL 3-290
ALGAAS 3-281
ALINAS 3-281
AN 2-5, 3-283
AP 2-5, 3-283
ARICHN 2-63, 3-283
ARICHP 2-63, 3-284
A-SILICO 3-281
A. SP . HEA 2-154, 3-289
A. STRESS 3-288
A. TH. CON 2-154, 3-289

AUGN 2-3, 3-283
AUGP 2-3, 3-283
BON . VALD 3-285
BOP . VALD 3-286
B1N. VALD 3-285
B1P. VALD 3-286
BARLN 2-115, 3-292
BARLP 2-115, 3-292
BARR.DT 3-293
BATA. AB 3-295
В. BB 2-177, 3-294
B. BTBT 2-131, 3-287
B. EHS 2-59, 3-284
B. FN 2-144, 3-287, 3-293

BN 2-5, 3-283
BP 2-5, 3-283
B. RTUN 2-7, 3-283
B. SP . HEA 2-154, 3-289, 3-292
B. STRESS 3-288

BTBT. AB 2-176, 3-294
B. TH. CON 2-154, 3-289

CON. VALD 3-285
COP. VALD 3-286
C1N.SOFT 3-286
C1N. VALD 3-285
C1P. SOFT 3-286
C1P. VALD 3-286
C2N. SOFT 3-286
C2N. VALD 3-285
C2P. SOFT 3-286
C2P. VALD 3-286
C3N.VALD 3-285
C3P. VALD 3-286
C. DIRECT 2-3, 3-283
C. EHS 2-59, 3-284

CN 2-5, 3-283
CN. IIGAP 3-286
CN. IILAM 3-287
CON. BGN 2-12, 3-284
CP 2-5, 3-283
CP. IIGAP 3-286
CP . IILAM 3-287
C. SP . HEA 2-154, 3-289,

3-292
C. STRESS 3-288
C. TH. CON 2-154, 3-289

DON. VALD 3-285
DOP . VALD 3-286

D1N. VALD 3-285
D1P. VALD 3-286
D2N. VALD 3-285
D2P . VALD 3-286
DENSITY 2-154, 3-289
DIAMOND 3-281
DN. LAT 2-182, 3-289
DP. LAT 2-182, 3-289
DREF. QM 3-287
D . SP . HEA 2-154, 3-289, 3-292
D.STRESS 3-288
D. TH. CON 2-154, 3-289

E1. BB 2-178, 3-294
E1. BT 2-178, 3-295
E1N.SOFT 3-286
E1P. SOFT 3-286
E2N. SOFT 3-286
E2P. SOFT 3-286
E3N. SOFT 3-286
E3P. SOFT 3-286
EAB 3-282
ECN. GC 2-115, 3-292
ECN.II 2-110, 3-285
ECP . GC 2-115, 3-292
ECP . II 2-110, 3-285
EDB 3-282
EG300 2-11, 3-282, 3-291
EGALL 3-290
EGALPH 2-11, 3-282
EGALX 3-290
EGBEL 3-291
EGBETA 2-11, 3-282
EGBEX 3-290
EGGAL 3-291
EGGAX 3-290
EG. MODEL 2-157, 2-158, 2-159, 3-282
EGO300 2-179, 3-293
EGOALPH 2-179, 3-293
EGOBETA 2-179, 3-293
EG. XO to EG. X14 3-290
EJ.N 2-182
ELE.CQ 3-288
ELECTROD 3-293
EL. EMAS 2-179, 3-295
ELE . TAUW 2-137, 3-288
EM. MODEL 3-290
EN 2-5, 3-283
EP 2-5, 3-283
E. PHONON 2-177, 3-294
E. RTUN 2-7, 3-283
E.TH. CON 3-289, 3-292

ETRAP 2-3, 3-283
E. URBACH 3-295

EXN. II 3-285
EXN. TAU 2-5, 3-283
EXP . BB 2-177, 3-294
EXP. II 3-285
EXP.TAU 2-5

FIRST 3-294
FRCA. AB 3-295
F.SP. HEA 2-154, 3-289, 3-292
GAAS 3-281
G. BT 2-178, 3-295

GCB 3-282
GERMANIU 3-281
G. SP . HEA 2-154, 3-289, 3-292
GVB 3-282
HGCDTE 3-281
HO. EMAS 2-179, 3-295
HOL. CQ 3-289
HOL. TAUW 2-137, 3-289
HO.MAS 2-179
INAS 3-281
INASP 3-282
INDEX. IM 3-294
INDEX. RE 3-293
INGAAS 3-281
INGAP 3-282
INP 3-281
INSULATO 2-113, 3-291
IRI.FILE 3-294
KAPPA.N 2-18, 3-287
KAPPA. P 2-18, 3-287
KAPPA. QM 3-287
LAMHN 2-115 to 2-119, 3-287
LAMHP 3-287
LAMRN 2-114 to 2-119, 3-287
LAMRP 2-115, 3-287
LAN300 2-110, 3-289
LAP300 2-110, 3-290
LAST 3-294
ME.DT 3-288, 3-292
MEG 3-291
MEG. X1 3-291
MEL 3-291
MEL. X1 3-291
MEX 3-291
MEX. X1 3-291
MHO 3-291
MHH.DT 3-288
MLO. X1 3-291
MLDA. LN 3-287
MLDA. LP 3-287
MLH.DT 3-288
M. RTUN 2-6, 3-283

NO . BGN 2-12, 3-284
N. ACCUM 3-287

NC300 2-11, 3-282
NC.F 3-282
N. ION 2-110
N. ION. 1 3-284
N. ION. 2 2-110, 3-284
N. IONIZA 2-110, 3-284

NITRIDE 2-113, 3-291
NSRHN 2-5, 3-283
NSRHP 2-5, 3-283

NV300 3-282
NV. F 2-11, 3-282
OP . PH . EN 2-110, 3-289
OXIDE 2-113, 3-291
OXYNITRI 3-291
P. ACCUM 3-287

PERMITTI 2-181, 3-282, 3-291
P.ION. 1 2-110, 3-285
P. ION. 2 2-110, 3-285
P. IONIZA 2-110, 3-285

POLYSILI 3-281
PRINT 3-281
PR. TABLE 3-293
QM.EFIEL 3-288
QM. NORP 3-287
REGION 2-142, 3-282, 3-291
RRI.FILE 3-294
R.TUNNEL 2-7

SAPPHIRE 3-291
SEMICOND 3-281
SIC 3-281
SIGE 3-281
SILICON 3-281
S. OXIDE 2-113, 3-281
S.RTUN 3-283

STRUCTUR 3-293
TAUNO 2-5, 3-282
TAUPO 2-5, 3-283
TNL 3-289
TPL 3-289
TUNLN 2-115, 3-292
TUNLP 2-115, 3-292
U.STRESS 3-288

VO . BGN 2-12, 3-284
WAVE. IM 3-294
WAVE. RE 3-293
WTNO 3-288
WTN1 3-288
WTN2 3-288
WTN3 3-288
WTN4 3-288
WTN5 3-288
WTNL 3-288
WTP 0 3-289
WTP1 3-289
WTP2 3-289
WTP 3 3-289
WTP 4 3-289
WTP5 3-289
WTPL 3-289
X1. AFFIN 3-290
X. MOLE 3-290
X. OTHER 3-290

ZNSE 3-281
ZNTE 3-281
parameters, MESH statement
ABC 3-17
ABC. OLD 3-18

ADJUST 3-20
ANGLE 3-18
ASCII. IN 3-16
ASCII. OU 3-21
ATTEMPTS 3-19
CENTROID 3-21
CORNER 3-19
CRITICAL 3-17
CYLINDRI 3-16
DIAG.FLI 3-16
ELEC. BOT 3-16
ELIMINAT 3-18
EXTERNAL 3-19
FLIP. Y 3-17
GRIDTOP 3-17
IN.FILE 3-16
JUNC. ABC 3-17
LATERAL 3-18
LAYERS 3-19
MAX.SPAC 3-18
N. ALGAAS 3-19
N.A-SILI 3-20
N. BPSG 3-19
N. CONDUC 3-17
N. DIAMON 3-20
N. GAAS 3-19
N. GERMAN 3-20
N. HGCDTE 3-20
N. INAS 3-19
N. INGAAS 3-20
N. INP 3-20
N. INSULA 3-17
N.NITRID 3-19

NORMGOW 3-18
NO. TTINF 3-21
N. OXIDE 3-19
N. OXYNIT 3-19
N.POLYSI 3-19
N. SAPPHI 3-19
N. SEMICO 3-17
N. SIC 3-20
N.SIGE 3-19
N.SILICO 3-19
N.S.OXID 3-20
N. SPACES 2-93, 3-21
N. ZNSE 3-20
N. ZNTE 3-20

OPTIMIZE 3-19
ORDER 3-20
OUT.FILE 3-21
PBC. TOL 3-20
PERIODIC 3-20
POLY.ELE 3-17
PROFILE 3-16
QUADTREE 3-20
RATIO 3-18
RECTANGU 3-16
REF . CRNR 3-17
RELAX 3-18

SCALE. Y 3-17
SMOOTH.K 3-21
SPACING 3-17
TIF 3-17
TSUPREM4 3-16
VIRTUAL 2-165, 3-21
VOIDELEC 3-17
WIDTH 2-95, 3-21
X. MAX 3-17
X. MIN 2-93, 3-17
X. SPLIT 3-21
Y. MAX 3-17
Y.MIN 3-17
Y. TOLER 3-16
parameters, METHOD statement
DAMP. ONEMETHOD
DAMP.ONE parameter 3-153
parameters, METHOD statement
2NDORDER 2-103, 3-152
ACCELERA 3-151
ACCSTART 3-151
ACCSTEP 3-151
ACCSTOP 3-151
ACONTINU 3-152
ASMB. OLD 3-149
AUTONR 2-77, 3-151
CARR.FAC 3-153
CARR.MIN 3-153
CONT. ITL 3-152
CONT . PIV 3-152
CONT. RHS 3-152
CONT.STK 3-152
CR. TOLER 3-149
C. VCOUP 3-151
CX. TOLER 3-148

DAMP. CON 3-153
DAMPED 2-79, 3-150
DAMPLOOP 3-150
DELTA 3-150
DFACTOR 3-150
DT.DC.LO 3-153
DT.DC.UP 3-153
DT. JACOB 3-154
DT.MIN 3-153
DVLIMIT 2-79, 3-150
ELEC. VCP 3-151
ERR.RAT 3-151
ETR.TOLE 2-141, 3-154
ETX.TOLE 3-153
EXTRAPOL 3-153
EXT.TOLE 2-140
FIX. QF 3-149
ICCG 3-150
ILU. ITER 2-88, 3-150
ILU. TOL 2-87, 3-150
ILU. XTOL 2-88, 3-150
ITER.TTY 3-149
ITLIMIT 2-17, 3-148

ITRHS 3-152
L2NORM 3-152
LIMIT 3-149
LTR.FACT 2-153, 3-154
LTR.TOLE 2-152, 3-154
LTX. FACT 2-153, 3-154
LTX.TOLE 2-152, 3-154
LU1CRIT 2-79, 3-150
LU2CRIT 2-79, 3-151
MAXINNER 3-151
MAX. TEMP 3-154
NO. CARR 3-149
N. DAMP 2-78, 3-153
N. DVLIM 2-77, 3-153
N. DVMAX 3-153
N. MAXBL 2-140, 3-154
N. MAXEB 2-140, 3-154

NODE. ERR 3-148
NRCRITER 2-77, 3-151
PRINT 3-149
PR. TOLER 3-148
PX. TOLER 2-85, 3-148
RHSNORM 3-148
SINGLEP 3-151
STACK 3-152
STOP. ITL 3-152
TAUTO 3-152
TH. DAMP1 3-153
TH. DAMP2 3-153
TH. VCOUP 3-151
TOL.TIME 2-103, 3-152
VO.VCOUP 3-152
V. COUPL 3-151

XNORM 3-148
XRI.NORM 3-149
XRI.THI 3-149
XRI.THXC 3-149
XRI.THXV 3-149
XRI.TOLE 3-149
XRNORM 3-148
parameters, MOBILITY statement
ACC.N.UT 3-321
ACC.P.UT 3-321
A. CCS 2-26, 3-312

ALGAAS 3-308
A. LIC 2-26, 3-312

ALINAS 3-309
ALPHAN 2-24, 3-310
ALPHAP 2-24, 3-310, 3-311
ALPN. UM 3-312
ALPP. UM 3-313
AN . ARORA 2-25, 3-311
AN. IIS 2-26, 3-312
AN. LUC 3-318, 3-319
AP . ARORA 2-25, 3-311
AP. IIS 2-26, 3-312
AP. LUC 3-318
A-SILICO 3-309
B. CCS 2-26, 3-312

BETAN 2-40, 3-318
BETAN . HA 3-318
BETAP 2-40, 3-318
BETAP . HA 3-318
B.LIC 2-26, 3-312

BN. GMC 2-36, 3-315
BN. IAL 3-319
BN. IIS 2-26, 3-312
BN. LSM 3-313
BN. LUC 3-318
BP. GMC 2-36, 3-315
BP. IAL 3-319
BP. IIS 2-26, 3-312
BP . LSM 3-314
BP. LUC 3-318
C.LIC 2-26, 3-312

CN. ARORA 2-25, 3-311
CN. GMC 2-36, 3-315
CN. IAL 3-319
CN. LSM 3-314
CN. LUC 3-318
CONCENTR 3-309
COULN. UT 2-38, 3-321
COULP. UT 3-321
CP . ARORA 2-25, 3-311
CP . GMC 2-36, 3-315
CP. IAL 3-319
CP . LSM 3-314
CP. LUC 3-319
CRFA. UM 2-28, 3-313
CRFD. UM 2-28, 3-313
CRN. LSM 3-313
CRP. LSM 3-314
CSN. LSM 3-313
CSP. LSM 3-314
D1N. GMC 2-36, 3-315
D1N. IAL 3-319
D1P. GMC 2-36, 3-315
D1P. IAL 3-320
D2N. GMC 2-36, 3-315
D2N. IAL 3-320
D2P . GMC 2-36, 3-315
D2P. IAL 3-320
DIAMOND 3-309
DN. GMC 2-36, 3-315
DN. IAL 3-319
DN. LSM 3-314
DN. LUC 3-319
DP. GMC 2-36, 3-315
DP. IAL 3-319
DP. LSM 3-314
DP. LUC 3-319
EON 3-318
EOP 3-318
E1N.SHI 3-315
E1P.SHI 3-316
E2N.SHI 3-316
E2P.SHI 3-316
ECN. HP 2-44, 3-317

ECN.MU 3-317
ECN. UNI 3-317
ECP. HP 2-44, 3-317
ECP .MU 3-317
ECP. UNI 3-317
ELECTRON 3-309
EN. X1 3-320
EN. X2 3-321
EON 2-42
EOP 2-42
EREFN 3-316
EREFP 3-316
ETAN 2-52, 3-313
ETAP 2-52, 3-313
EX1N.SHI 3-316
EX1P.SHI 3-316
EX2N.SHI 3-316
EX2P. SHI 3-316
EX.LIC 2-26, 3-312
EXNO.UNI 3-317
EXN1. ARO 3-311
EXN1. LSM 3-314
EXN1. SM 3-316
EXN2 . ARO 3-311
EXN2 . LSM 3-314
EXN2 . SM 3-316
EXN3. ARO 3-311
EXN3. LSM 3-314
EXN3. SM 3-316
EXN4 . ARO 3-311
EXN4. GMC 3-315
EXN4. IAL 3-320
EXN4. LSM 3-314
EXN4.LUC 3-319
EXN5. GMC 3-315
EXN5. IAL 3-320
EXN6. GMC 3-315
EXN6. IAL 3-320
EXN7. GMC 3-315
EXN7. IAL 3-320
EXN8. GMC 3-315
EXN8. LSM 3-314
EXN9. LUC 3-319
EXN. LAT 3-312
EXN. SM 3-316
EXN. UNI 3-317
EXPO.UNI 3-317
EXP1. ARO 3-311
EXP1. LSM 3-314
EXP1.SM 3-317
EXP2. ARO 3-311
EXP2.LSM 3-314
EXP2. SM 3-317
EXP3.ARO 3-311
EXP3. LSM 3-314
EXP3. SM 3-317
EXP4.ARO 3-312
EXP4. GMC 3-315
EXP4.IAL 3-320

EXP 4 . LSM 3-314
EXP4. LUC 3-319
EXP5. GMC 3-315
EXP5. IAL 3-320
EXP 6. GMC 3-315
EXP 6. IAL 3-320
EXP 7. GMC 3-315
EXP7. IAL 3-320
EXP8. GMC 3-315
EXP8.LSM 3-314
EXP9. LUC 3-319
EXP.LAT 3-312
EXP.SM 3-316
EXP. UNI 3-317
FIRST 3-310
FLDMOB 2-40, 3-318
FP.LUC 3-319
GAAS 3-308
GAASP 3-309
GERMANIU 3-308
GN. HP 2-44, 3-317
GP . HP 2-45, 3-318
GSURFN 2-29, 3-313
GSURFP 2-29, 3-313
HGCDTE 3-309
HOLE 3-310
INAS 3-309
INASP 3-309
INGAAS 3-309
INGAP 3-309
INP 3-309
INV.N.UT 3-321
INV.P.UT 3-321
KN. LUC 3-319
KP. LUC 3-319
LAST 3-310
MAN. X1 3-310
MAN. X2 3-311
MAP. X1 3-311
MAP. X2 3-311
MASSN. IA 3-320
MASSP. IA 3-320
MIN.X1 3-310
MIN. X2 3-310
MIP. X1 3-311
MIP. X2 3-311
MMNN . UM 2-27, 3-312
MMNP . UM 3-313
MMXN . UM 2-27, 3-312
MMXP. UM 3-313
MULO . STR 3-321
MUNO 2-22, 3-309
MUNO . HP 2-44, 3-317
MUNO. LAT 2-27, 3-312
MUNO . LSM 3-313
MUN1 . ARO 2-25, 3-311
MUN1. LSM 3-313
MUN1. SM 3-316
MUN2 . ARO 2-25, 3-311

MUN2 . LSM 3-313
MUN2 . SM 3-316
MUN3 . SM 3-316
MUN . MAX 2-24, 3-310
MUN . MIN 2-24, 3-310
MUN . UNI 3-317
MUPO 2-22, 3-309
MUPO. HP 2-44, 3-317
MUP O. LAT 2-27, 3-312
MUP O. LSM 3-314
MUP1 . ARO 2-25, 3-311
MUP1. LSM 3-314
MUP1. SM 3-316
MUP2 . ARO 2-25, 3-311
MUP2 . LSM 3-314
MUP2 . SM 3-316
MUP 3 . SM 3-317
MUP . MAX 2-24, 3-310
MUP . MIN 2-24, 3-310
MUP . UNI 3-317
MUREFN 3-316
MUREFP 3-316
MUT . STR 3-321
NREFN 2-24, 3-310
NREFP 2-24, 3-310
NREFP2 3-311
NRFA. UM 3-313
NRFD. UM 3-312
NRFN. HP 2-45, 3-317
NRFN. UM 2-27, 3-312
NRFP. HP 2-45, 3-318
NRFP. UM 3-313
NUN 2-24, 3-310
NUP 2-24, 3-310
PC. LSM 3-315
PHONN. UT 3-321
PHONP.UT 3-321
POLYSILI 3-308
PRINT 3-309
PR. TABLE 3-310
REGION 2-142, 3-309
SEMICOND 3-308
SIC 3-308
SIGE 3-308
SILICON 3-308
S.OXIDE 3-308

STRUCTUR 3-321
SURFN.UT 3-321
SURFP.UT 3-321
TEMPN.UT 3-321
TEMPP. UT 3-321
TETN. UM 3-312
TETP. UM 3-313
VCN. HP 2-45, 3-317
VCP . HP 2-45, 3-318
VSATN 2-37, 3-318
VSATP 2-40 to ??, 3-318
VSN. HP 2-44, 3-317
VSN. X1 3-320

VSN. X2 3-320
VSP. HP 2-45, 3-318
XIN 2-24, 3-310
XIP 2-24, 3-310
ZETAN 2-52, 3-313
ZETAP 2-52, 3-313
ZNSE 3-309
ZNTE 3-309
parameters, .MODEL statement
3-386
BF 3-384
BR 3-384
BSIM3SOI 3-383
BSIM3v3 3-383
BV 3-383
CGDO 3-386
CGSO 3-385
CJ 3-386
CJC 3-384
CJE 3-384
CJO 3-383
CJSW 3-386
D 3-383
DELTA 3-385
EG 3-383, 3-385
ETA 3-385
FC 3-383, 3-384, 3-386
FE 3-384
GAMMA 3-385
HSPICE 3-383
HSPICE28 3-383
IKF 3-384
IKR 3-384
IS 3-384
ISC 3-384
ISE 3-384
ITF 3-384
JS 3-385
K1 3-386
KAPPA 3-385
KP 3-385
LAMBDA 3-385
LD 3-385
LEVEL 3-385
M 3-383
MCAP 3-386
MJ 3-386
MJC 3-384
MJE 3-384
MJSW 3-386
mod.nam 3-383
N 3-383
NC 3-384
NE 3-384
NEFF 3-385
NF 3-384
NFS 3-385
NMOS 3-383
NPN 3-383

NR 3-384
NSS 3-385
NSUB 3-385
PB 3-386
PHI 3-385
PMOS 3-383
PNP 3-383
RB 3-384
RBM 3-384
TF 3-384
THETA 3-385
TOX 3-385
TPG 3-385
TR 3-384
TT 3-383
TYPE 3-383
UCRIT 3-385
UEXP 3-385
UO 3-385
VAF 3-384
VAR 3-384
vJ 3-383
VJC 3-384
VJE 3-384
VMAX 3-385
VTF 3-384
VTO 3-385
XJ 3-385
XQC 3-386
Хтв 3-385
XTF 3-384
XTI 3-383, 3-384
parameters, MODELS statement
LUCMOBMODELS
LUCMOB parameter 3-111
parameters, MODELS statement
3KT.LT 2-150, 3-114
ANALYTIC 2-22, 3-110
ARORA 2-22, 3-110
AUGER 3-108
BGN 3-108
BOLTZMAN 3-109
BT . ATOL 3-110
BTBT 2-130, 3-110
BT. LOCAL 3-110
BT. MODEL 3-110
BT. QUAD 3-110
BT. RTOL 3-110
BT . TINY 3-110
CCSMOB 2-22, 3-110
C. ND. MOB 3-112

COMP. ET 2-135, 3-114
CONMOB 2-22, 3-110
CONSRH 3-108
DT. CBET 3-109
DT. CUR 3-109
DT. METH 3-109
DT. VBET 3-109
DT. VBHT 3-109

EBLT. HT 2-149, 3-114
EB. SRH. G 2-134, 3-114
ECII. LAT 3-114
E.EFFECT 3-112

EFI. TMP 2-139, 3-114
EF.TMP 2-136, 3-114
EHSCAT 2-59, 3-112
EJ.MOBIL 2-32, 3-112
ENERGY.L 3-110
ET. MODEL 2-133, 3-113
FERMIDIR 2-15, 3-109
FLDMOB 2-40, 3-111
FN. CUR 3-109
GATE1 2-114, 3-113
GATE2 2-113, 3-113
GATE . GEN 2-119, 3-113
GATE. SUR 2-118, 3-113
GATE . TEM 2-120, 3-113
GMCMOB 2-29, 3-111
HIGH. DOP 3-110
HJSC2 2-166, 3-114
HJTEM 2-167, 3-114
HJTUN 2-168, 3-115
HPMOB 2-29, 3-111
IALMOB 3-111
II.NLOC 3-109
II.NODE 3-109
II.TEMP 2-138, 3-109
II. VALDI 3-109

IMPACT.I 2-109, 3-109
IMPURITY 3-110
INCOMPLE 3-110
LSMMOB 2-29, 3-111
ND . MOB 2-137, 3-111
P HUMOB 2-22, 3-111
PRINT 3-115
PRPMOB 2-29, 3-111
QM. AC 3-112
QM. EFIEL 3-113
QM. EMIN 3-113
QM. EXTEN 2-18, 3-113
QM. METHO 3-112
QM. NORP 3-112
QM.PHILI 2-18, 3-112
REGION 3-109
R.TUNNEL 2-5, 3-108

SHIRAMOB 3-111
SRFMOB 2-29, 3-111
SRFMOB2 2-29, 3-111
SRH 3-108
STRESS 3-115
STRMOB 3-112
TEMPERAT 2-2, 3-114
TFLDMOB 2-29, 3-111
THPMOB 2-137
TMPDIFF 2-139, 3-113
TMPMOB 2-41, 3-111
TMP TAUW 2-137
TMPTAUWN 3-114

TMPTAUWP 3-114
UNIMOB 2-29, 3-111
VSATP 2-38
Y. ORIENT 3-115
parameters, . NODESET statement nodex 3-388
parameters, . NODESET statement example 3-388
parameters, OPTION statement
CPU.FILE 3-404
CPU.STAT 3-404
G. DEBUG 3-404
I.ERROR 3-404

MAXNODES 2-91, 3-404
N. DEBUG 3-404

SAVE. SOL 3-404
SOL.FILE 3-404
parameters, . OPTIONS statement
2ND 3-390
ALT 3-390
AUTO 3-390
COUP. LAT 3-390
C. TOL 3-390

DELVMAX 3-390
ELE. TEMP 3-391
G. FORCE 3-390

HOL. TEMP 3-391
HSPICE 3-391
ILUCGS 3-390
ITLIM 3-390
LAT.TEMP 3-390
P.TOL 3-390

TIF 3-391
T.MIN 3-390
T. NOM 3-390
T.TOL 3-390

VMAX 3-390
VMIN 3-390
parameters, \(\mathbf{P}\) statement
example 3-373
FILE 3-373
name 3-373
nodex 3-373
termx 3-373
WIDTH 3-373
parameters, PHOTOGEN statement

> A1 3-119

A2 3-120
A3 3-120
A4 3-120
A. ELLIPS 3-123

AMB REFR 3-123
ANGLE 3-121
BB. RADIA 3-122
BB.TEMP 3-122
BOT RFLT 3-123
C1 3-120
C2 3-120
C3 3-120

C4 3-120
CLEAR 3-120
DELTA 3-121
ELECTRON 3-119
FILM. REG 3-124
FLUX 3-121
GAUSSIAN 3-121
G. INTEG 3-120

HOLES 3-119
IN.FILE 3-120
INTENSIT 3-122
INT.LIMI 3-123
INT.RATI 3-123
INT.SCAL 3-122
N. INTEG 3-120

PC.UNITS 3-120
PHASE.DI 3-123
POLARIZA 3-122
PRINT . AB 3-124
PULSE 3-121
QUAN. EFF 2-175, 3-123
RAY.NUM 3-122
RAYTRACE 3-121
RAY.WIDT 3-122
R. CHAR 3-119

RD. CHAR 3-120
RECO 3-120
R.ELLIPS 3-123

SID.INCI 3-123
SID.RFLT 3-123
SP.FILE 3-122
SPLIT . RA 3-121
STRUCTUR 3-121
TO 3-120
TC 3-121
TFS 3-121
TOP . RFLT 3-123
TPD 3-121
TPRD 3-121
TRANSPAR 3-123
TRS 3-121
UNIFORM 3-120
WAVE. END 3-122
WAVELENG 3-122
WAVE. NUM 3-122
WAVE. SCA 3-122
WAVE. STA 3-122
WIDTH. CH 3-123
X.END 3-119
X. MAX 3-119
X.MIN 3-119
X. ORG 3-121
X.START 3-119
Y.END 3-119
Y. MAX 3-119
Y.MIN 3-119
Y. ORG 3-121
Y.START 3-119
parameters, PLOT. 1D statement
Q.FIXPLOT.1D
Q.FIX parameter 3-202
parameters, PLOT . 1D statement
ABSOLUTE 3-208
AC. IMAG 3-204
AC. MAGN 3-204
AC. PHAS 3-204
AC. REAL 3-204
ARRAY1 3-200
ARRAY2 3-200
ARRAY3 3-200
AXES 3-208
BB. GENER 2-132, 3-202
BOTTOM 3-208
CLEAR 3-208
COLOR 3-209
CONDITIO 3-207
CONDUC. B 3-200
C.SIZE 3-209

CURVE 3-209
DEVICE 3-209
DOPING 3-201
E.FIELD 3-200

ELECTRON 3-201
ELE .TEMP 2-140, 3-202
ELE.VEL 2-140, 3-202
FIND.DIS 3-206
FIND. MAX 3-205
FIND.MIN 3-205
G. GAMN 2-146, 3-202
G. GAMP 2-146, 3-202
G. GAMT 2-146, 3-203
G. IN 2-146, 3-203
G.IP 2-146, 3-203
G.IT 2-146, 3-203

HOLES 3-201
HOL. TEMP 2-140, 3-202
HOL . VEL 2-140, 3-202
HORZ. STA 3-204
II. GENER 3-202

IMPURITY 3-201
IN. FILE 3-207
INSULATO 3-205
INTEGRAL 3-208
J. CONDUC 3-201
J.DISPLA 3-201
J.EFIELD 3-202
J.ELECTR 3-201
J. HOLE 3-201
J. TOTAL 3-201

LABELS 3-208
LAT.TEMP 3-204
LEFT 3-208
LEVEL 3-202
LINE . TYP 3-209
MARKS 3-208
NEGATIVE 3-208
NET . CARR 3-201
NET CHAR 3-201

NIE 3-201
N. MOBILI 3-202

NSPLINE 3-207
ORDER 3-207
OTHER 3-200
OUT.FILE 3-210
PAUSE 3-209
PHOTOGEN 3-202
PLOT .BIN 3-209
PLOT. OUT 3-209
P.MOBILI 3-202

POINTS 3-209
POTENTIA 3-200
PRINT 3-209
QFN 3-200
QFP 3-200
RECOMBIN 3-201
RIGHT 3-208
SEMICOND 3-205
SIGMA 3-202
S.LOGARI 3-208

SPLINE 3-207
STRUCTUR 3-210
SYMBOL 3-209
TIME.SIZ 3-210
TIMESTAM 3-210
TITLE 3-208
TOP 3-208
TRAP.OCC 3-202
TRAPS 3-202
T.SIZE 3-208

UNCHANGE 3-208
VACUUM 3-200
VALENC. B 3-200
WAVE . NUM 3-210
X.AXIS 3-206
X. COMPON 3-204
X. END 3-205
X. LENGTH 3-208
X. LOGARI 3-208
X. MAX 3-207
X. MIN 3-207
X. MOLE 3-204
X. OFFSET 3-208
X.SIZE 3-208
X.START 3-204
Y. AXIS 2-145, 3-207
Y. COMPON 3-204
Y.END 3-205
Y. LENGTH 3-208
Y. LOGARI 3-208
Y. OFFSET 3-208
Y.SIZE 3-208
Y.START 3-204
parameters, PLOT . 2D statement
BOUNDARY 3-215
C. BOUND 3-217
C. DEPLE 3-217
C.ELECT 3-217
C. GRID 3-217
C. JUNCT 3-217

CLEAR 3-216
CON.RESI 3-215
CROSSES 3-216
DEPLETIO 3-215
DEVICE 3-217
ELEM. NUM 3-215
FILL 3-216
GRID 3-215
JUNCTION 3-215
LABELS 3-216
L. BOUND 3-216
L. DEPLE 3-216
L. ELECT 3-217
L. GRID 3-217
L. JUNCT 3-216

LUMPED 3-215
MARKS 3-216
NODE . NUM 3-215
N.SIZE 3-216

OBTUSE 3-216
PAUSE 3-217
PLOT. BIN 3-217
PLOT. OUT 3-217
RAYPLOT 3-218
REGION 3-215
REG.NUM 3-216
SCALE 3-216
STRUCTUR 3-218
TIME.SIZ 3-218
TIMESTAM 3-217
TITLE 3-216
TOP. MARK 3-216
T.SIZE 3-216

WAVE . NUM 3-218
X. LENGTH 3-217
X. MAX 3-216
X. MIN 3-216
X. OFFSET 3-217
X.SIZE 3-217
Y. LENGTH 3-217
Y. MAX 3-216
Y.MIN 3-216
Y. OFFSET 3-217
Y.SIZE 3-217
parameters, PLOT. 3D statement
ABSOLUTE 3-225
AC. IMAGE 3-224
AC. MAGN 3-225
AC. PHAS 3-225
AC. REAL 3-224
ARRAY1 3-222
ARRAY2 3-222
ARRAY 3 3-222
AXES 3-226
BB. GENER 3-223
C. BOX 3-227

CENTER 3-226

CLEAR 3-226
CONDUC. B 3-222
DEVICE 3-227
DOPING 3-222
E.FIELD 3-222

ELECTRON 3-222
ELE. TEMP 2-140, 3-224
ELE. VEL 2-140, 3-224
EQUIDIST 3-226
FILL.VIE 3-226
FRAME 3-226
G. GAMN 3-224
G. GAMP 3-224
G. GAMT 3-224
G. IN 3-224
G. IP 3-224
G.IT 3-224

HOLES 3-222
HOL. TEMP 2-140, 3-224
HOL. VEL 2-140, 3-224
II. GENER 3-223

IMPURITY 3-222
J. CONDUC 3-223
J.DISPLA 3-223
J.EFIELD 3-224
J.ELECTR 3-223
J. HOLE 3-223
J.TOTAL 3-223

LABELS 3-226
LAT. TEMP 3-224
L. BOX 3-227

LEVEL 3-223
LOGARITH 3-225
MARKS 3-226
NET . CARR 3-223
NET CHAR 3-223
NIE 3-223
N. MOBILI 3-223

OTHER 3-222
PAUSE 3-227
PHI 3-225
PHOTOGEN 3-223
PLOT.BIN 3-227
PLOT. OUT 3-227
P.MOBILI 3-224

POTENTIA 3-222
QFN 3-222
QFP 3-222
RECOMBIN 3-223
SIGMA 3-224
STRUCTUR 3-227
THETA 3-225
TIME.SIZ 3-227
TIMESTAM 3-227
TITLE 3-226
TRAP. OCC 3-223
TRAPS 3-223
T.SIZE 3-226

VACUUM 3-222

VALENC. B 3-222
X. COMPON 3-225
X. LABEL 3-226
X.LENGTH 3-226
X. LINES 3-225
X. MAX 3-225
X. MIN 3-225
X. MOLE 3-224
X. OFFSET 3-227
X.SIZE 3-226
XV. LENGT 3-226
XV. OFFSE 3-227
Y. COMPON 3-225
Y. LABEL 3-226
Y. LENGTH 3-226
Y.LINES 3-225
Y. MAX 3-225
Y.MIN 3-225
Y. OFFSET 3-227
Y.SIZE 3-226

YV.LENGT 3-227
YV. OFFSE 3-227
Z. LABEL 3-226
Z. LENGTH 3-226
Z. MAX 3-225
Z. MIN 3-225
Z.SIZE 3-226
parameters, PRINT statement
BAND . STR 3-198
BB.EG 3-198
BB. GENER 2-131, 3-197
CONC. DEP 3-197
CURRENT 3-197
E.FIELD 3-197

ELEMENTS 3-197
GEOMETRY 3-197
II.EJG 3-197
II. GENER 3-197

IMPURITY 3-197
INTERFAC 3-197
IX. MAX 3-196
IX.MIN 3-196

IY. MAX 3-196
IY.MIN 3-196
NET. CHAR 3-197
OTHER 3-197
POINTS 3-196
RECOMBIN 3-197
SOLUTION 3-197
STRUCTUR 3-198
TEMPERAT 3-198
X. COMPON 3-197
X. MAX 3-196
X. MIN 3-196
Y. COMPON 3-197
Y. MAX 3-196
Y. MIN 3-196
parameters, PROFILE statement 1D.ASCII 3-87

1D. PROC 3-87
2D. ASCII 3-88
2D. PROC 3-88
D. COLUMN 3-88

DEPTH 3-84
DOSE 3-85
IMPURITY 3-85
IN.FILE 3-87
INSULATO 3-88
MEDICI 3-88
N. CHAR 3-86
N. COLUMN 3-87
N. ERFC 3-86
N. OFFSET 3-87
N. PEAK 3-85

N-TYPE 3-85
OTHER 3-85
OUT.FILE 3-85
P. COLUMN 3-87

POLYGON 3-86
P-TYPE 3-85
R. CHAR 3-87

REGION 3-84
R. ERFC 3-87
R. INNER 3-87

ROTATE 3-87
R. OUTER 3-87

SUPRA 3-88
SUPREM2 3-87
TIF 3-88
TSUPREM4 3-88
UNIFORM 3-85
WIDTH 3-84
X. CENTER 3-87
X. CHAR 3-86
X. COLUMN 3-88
X. ERFC 3-86
X. MAX 3-84
X.MIN 3-84
X. OFFSET 3-88
X. POLY 3-86

XY.RATIO 3-86
Y. CENTER 3-87
Y. CHAR 3-85
Y. COLUMN 3-87
Y.JUNCTI 3-86
Y. MAX 3-85
Y.MIN 3-84
Y. OFFSET 3-87
Y. POLY 3-86
parameters, \(\mathbf{Q}\) statement
AREA 3-374
example 3-374
mname 3-374
name 3-374
nodeb 3-374
nodec 3-374
nodee 3-374
parameters, \(\mathbf{R}\) statement
example 3-375
name 3-374
node- 3-374
node \(+3-374\)
T1 3-375
T2 3-375
value 3-374
parameters, REGION statement
ALGAAS 2-42, 3-72
ALINAS 3-72
A-SILICO 3-72
DIAMOND 3-72
GAAS 2-42, 3-71
GERMANIU 2-42, 3-72
HGCDTE 3-72
INAS 3-72
INASP 3-72
INGAAS 3-72
INGAP 3-72
INP 3-72
INSULATO 3-73
IX. MAX 3-74
IX. MIN 3-74

IY. MAX 3-74
IY.MIN 3-74
NAME 3-71
NITRIDE 3-73
OXIDE 3-73
OXYNITRI 3-73
POLYGON 3-74
POLYSILI 2-42, 3-72
R. INNER 3-74

ROTATE 3-74
R. OUTER 3-74

SAPPHIRE 3-73
SEMICOND 2-42, 3-72
SIC 2-42, 3-72
SIGE 2-42, 3-72
SILICON 2-42, 3-71
S.OXIDE 3-72

VOID 3-74
x 3-74
X . CENTER 3-74
X.END 3-73
X. LINEAR 3-73
X. MAX 3-74
X.MIN 3-73
X. MOLE 2-156, 3-73
X. POLY 3-74
X.SLOPE 3-73

Y 3-74
Y.CENTER 3-74
Y.LINEAR 3-73
Y. MAX 3-74
Y.MIN 3-74
Y.POLY 3-74

ZNSE 3-72
ZNTE 3-72
parameters, REGRID statement

ABSOLUTE 3-97
ARRAY1 3-96
ARRAY2 3-96
ARRAY3 3-96
ASCII 3-98
ASINH 3-98
BB. GENER 3-96
BOUNDARY 3-98
CHANGE 3-97
COS. ANGL 3-98
DOPING 3-95
E.FIELD 3-95

ELECTRON 3-96
ELE. TEMP 3-96
FACTOR 3-97
HOLES 3-96
HOL.TEMP 3-96
IGNORE 3-98
II. GENER 3-96

IMPURITY 3-96
IN.FILE 2-97, 3-97
LAT. TEMP 3-96
LOCALDOP 3-96
LOGARITH 3-97
MAX. LEVE 3-97
MIN. CARR 3-96
NET. CARR 3-96
NET. CHAR 3-96
NO.TTINF 3-98
OTHER 3-96
OUT.FILE 3-98
PHOTOGEN 3-96
POTENTIA 3-95
QFN 3-95
QFP 3-95
RATIO 3-97
REGION 3-98
SMOOTH.K 3-97
TRUNC 3-96
UNREFINE 3-98
X. COMPON 3-95
X. MAX 3-97
X. MIN 3-97
Y. COMPON 3-95
Y. MAX 3-98
Y. MIN 3-97
parameters, RENAME statement
ELECTROD 3-82
NEWNAME 3-82
OLDNAME 3-82
REGION 3-82
T.ELECTR 3-82
parameters, . SAVE statement
ASCII 3-458
IVFILE 3-458
MESH 3-458
SOLUTION 3-458
parameters, SAVE statement
AC. CN 3-271

AC. COMP 3-272
AC. CP 3-271
AC. JCOND 3-271
AC.JDISP 3-271
AC. JN 3-271
AC. JP 3-271
AC. JTOT 3-271
AC. POTEN 3-271
AC. SCOMP 3-272
AC. TL 3-271
AC. TN 3-271
AC. TP 3-271
ALL 3-271
ASCII 3-270
BANDS 3-271
BB. GENER 3-272
BOUND 3-272
COMPONEN 3-271
CONDUC. B 3-272
CURRENTS 3-271
DOPING 3-272
E.FIELD 3-273

ELECTRON 3-272
ELE.TEMP 3-272
ELE.VEL 3-273
GENERATI 3-271
G. GAMN 3-273
G. GAMP 3-273
G. GAMT 3-273
G. IN 3-273
G. IP 3-273
G.IT 3-273

HOLES 3-272
HOL. TEMP 3-272
HOL.VEL 3-273
II. GENER 3-272
J. CONDUC 3-273
J. DISPLA 3-273
J.EFIELD 3-273
J. ELECTR 3-273
J. HOLE 3-273
J.TOTAL 3-273

LAT.TEMP 3-273
MESH 3-270
NET . CARR 3-272
NET. CHAR 3-272
OUT.FILE 3-270
PHOTOGEN 3-272
POTENTIA 3-272
QFN 3-272
QFP 3-272
RECOMBIN 3-272
SOLUTION 3-270
STRUCTUR 3-270
TIF 3-271
VACUUM 3-272
VALENC.B 3-272
W. MODELS 3-271
X. MOLE 3-273
parameters, SOLVE statement
C. DVMINSOLVE
C.DVMIN parameter 3-165
parameters, SOLVE statement
AC. ANALY 3-167
AC. CHARG 3-168
AC. SOURC 3-168
ALL 3-169
ASCII 3-169
BANDS 3-169
C. AUTO 3-164
C. DVMAX 2-81, 3-165
C. IMAN 2-81
C. IMAX 2-81, 3-165
C. IMIN 3-165

COMPONEN 3-169
CONTINUE 2-79, 3-164
C. RMAX 3-165
C. TOLER 2-80, 3-164

CURRENTS 3-169
C. VMAX 2-81, 3-165
C. VMIN 2-81, 3-165
C.VSTEP 2-80, 3-164

DQDV 3-166
DT. CBET 3-167
DT. MAX 3-165
DT. VBET 3-167
DT. VBHT 3-167
ELECTROD 3-164
ELEMENT 3-168
ENDRAMP 3-166
FLUX 3-170
FN. CUR 3-166
FREQUENC 3-167
FSTEP 3-167
GATE . CUR 2-113, 3-166
GENERATI 3-169
HI.FREQ 2-107, 3-168
I name 3-163
IMPACT.I 3-166
INITIAL 3-162
INTENSIT 3-170
INT.STEP 3-170
ISTEP 3-164
IT.CUR 3-167
IT.METH 3-167
LAMBDA 3-170
LAMBDA.E 3-170
LAMBDA.N 3-170
LAMBDA.S 3-170
L. MODULA 3-171

LOCAL 3-163
LSS 3-171
MAX. INNE 3-167
MULT .FRE 3-167
N. BIAS 3-164

NFSTEP 3-167
N. REGION 3-163

NSTEPS 3-164

OUT.FILE 3-169
P2QFN 3-163
P2QFP 3-163
P.BIAS 3-164
P. LOCAL 3-163
P. REGION 3-164

PREVIOUS 3-162
PROJECT 3-163
Q name 3-163
RAMPTIME 3-166
R. SPARA 3-168
S.AMPLIT 3-166

SAVE BIA 3-169
S.FREQ 3-166

SINE 3-166
S. OMEGA 3-167
S. PARAM 3-168

SPECTR 3-170
S. PHASE 3-166

STRUCTUR 3-169
T name 2-153, 3-163
T0 3-166
TD. STOP 3-166
TERMINAL 3-167
TIF 3-169
T. INCREM 3-166

TMULT 3-165
TOLERANC 2-87, 3-168
TSTEP 3-165
TSTOP 3-165
UIC 3-168
V name 3-163
V. ELEMEN 3-168

VSS 3-167
VSTEP 3-164
WAVE 3-169
WAVE . END 3-170
WAVE . STA 3-170
parameters, SPREAD statement
ENCROACH 3-53
FIX. LOWE 3-53
GR1 3-54
GR2 3-54
GRADING 3-54
LEFT 3-53
LOWER 3-53
MIDDLE 3-54
RIGHT 3-53
THICKNES 3-53
UPPER 3-53
VOL. RAT 3-53
WIDTH 3-53
Y. LOWER 3-53
Y.MIDDLE 3-54
parameters, START statement
CIRCUIT 3-364
example 3-364
INITIAL 3-364
parameters, STITCH statement

ASCII. IN 3-103
BOTTOM 3-103
ELEC. MER 3-103
FLIP.X 3-103
FLIP.Y 3-103
IN.FILE 3-103
LEFT 3-103
POLY.ELE 3-103
REG. MERG 3-103
RIGHT 3-103
TIF 3-103
TOP 3-103
TSUPREM4 3-103
X. OFFSET 3-103
Y. OFFSET 3-103
parameters, SYMBOLIC statement

\section*{BICGS 3-145}

BLOCK . MA 3-145
CARRIERS 2-152, 3-144
COUP. ELE 2-132, 3-144
COUP. HOL 2-132, 3-144
COUP. LAT 2-132, 3-145
EB. POST 2-139, 3-144
ELECTRON 3-144
ELE.TEMP 2-132, 3-144
GUMMEL 2-152, 3-144
HOLES 3-144
HOL. TEMP 2-132, 3-144
ILUCGS 2-107, 3-145
LAT .TEMP 2-149, 3-144
MIN. DEGR 2-84, 3-145
NEWTON 2-152, 3-144
PRINT 3-145
STRIP 2-82, 3-145
VIRTUAL 2-166, 3-145
parameters, . TRAN statement
DT 3-459
TMAX 3-459
TSTOP 3-459
UIC 3-459
parameters, TRAPS statement
ALL . CHAR 3-137
CHARGE \(i\) 3-137
CONDITIO 3-137
DGEN 2-169
DGEN \(i\) 3-137
DISTRIB 3-136
E i 3-137
FREEZE 3-138
MIDGAP 3-137
N. LEVEL 3-136
N. TOTAL 2-169, 3-137

OUTFILE 3-136
Q.FIX 3-137

TAUN 2-169, 3-137
TAUP 2-169, 3-137
TIME. DEP 3-138
X.PLOT 3-136
Y.PLOT 3-136
parameters, TSUPREM4 statement
FLIP 3-69
IMPURITY 3-69
IN.FILE 3-68
SYMMETRI 3-69
X. INTERF 3-69
X. LEFT 3-68
X. MAX 3-68
X.MIN 3-68
X. OFFSET 3-68
X.RIGHT 3-68
Y. BOT 3-68
Y. MAX 3-68
Y.MIN 3-68
Y. OFFSET 3-69
Y.TOP 3-68
parameters, \(\mathbf{V}\) statement
example 3-377
EXP 3-376
fc 3-376
freq 3-376
fs 3-376
mdi 3-376
name 3-375
node- 3-375
node \(+3-375\)
per 3-376
PULSE 2-103, 3-376
SFFM 3-376
SIN 3-376
tau1 3-376
tau2 3-376
td 3-376
td1 3-376
td2 3-376
tds 3-376
tf 3-376
theta 3-376
tp 3-376
tr 3-376
v0 3-376
va 3-376
value 3-375
parameters, VECTOR statement
AC. CN 3-240
AC. CP 3-240
AC. IMAG 3-241, 3-242
AC. MAGN 3-241, 3-242
AC. PHAS 3-241, 3-242
AC. POTEN 3-240
AC. REAL 3-241, 3-242
AC. TL 3-240
AC. TN 3-240
AC. TP 3-240
AC. VECT 3-241, 3-242
AC. XCOMP 3-241, 3-242
AC. YCOMP 3-241, 3-242
CLIPFACT 3-241, 3-242
COLOR 3-243
E.FIELD 3-240

EXITING 3-241, 3-242
INCIDENT 3-241, 3-242
INTERNAL 3-241, 3-242
J. CONDUC 3-240
J. DISPLA 3-240
J.ELECTR 3-240
J. HOLE 3-240
J. TOTAL 3-240

LINE.TYP 3-243
LOGARITH 3-241, 3-242
MAXIMUM 3-243
MINIMUM 3-243
NORM. LOG 3-241, 3-242
PAUSE 3-243
RAYTRACE 3-241, 3-242
V.SIZE 3-241, 3-242
parameters, \(\mathbf{W}\) statement
example 3-378
name 3-378
node- 3-378
node \(+3-378\)
nodec 1-3-378
nodec 1+ 3-378
nodec2-3-378
nodec \(2+3-378\)
value 3-378
parameters, X. MESH statement
H1 2-93, 3-32
H2 2-93, 3-32
H3 2-93, 3-32
LOCATION 2-95, 3-32
MIN. SPAC 2-93, 3-32
NODE 2-93, 3-32
N. SPACES 2-93, 3-32

RATIO 2-93, 2-95, 3-32
SPACING 2-93, 3-32
SUMMARY 3-32
WIDTH 2-93, 3-32
X. MAX 2-93, 3-32
X.MIN 3-32
parameters, \(\mathbf{Y}\). MESH statement
DEPTH 2-93, 3-35
H1 2-93, 3-35
H2 2-93, 3-35
H3 2-93, 3-35
LOCATION 2-93, 3-35
MIN. SPAC 2-93, 3-35
NODE 2-93, 3-35
N. SPACES 2-93, 3-35

RATIO 2-93, 3-35
SPACING 3-35
SUMMARY 3-35
Y. MAX 2-93, 3-35
Y.MIN 2-93, 3-35
parameters,MOBILITY 2-38 to ??
parametersMOBILITY ?? to 2-38
path file mdpath 1-13
p-channel device from PLOT . 2D line

45, file mdex 13b Fig. 12-20
p-channel MOSFETs, parameter specifications 2-40
PC.UNITS parameter, PHOTOGEN statement
Photogeneration Examples 7-15
PD-AAM
charge boundary condition 2-143
charges 2-145
Fowler-Nordheim tunneling 2-143
graphical output 2-145
hot carrier injection 2-144
overview 2-142
Programmable Device Examples 11-1
periodic boundary conditions 3-23
perpendicular electric field mobility model
interface factors 2-33, 2-36
perpendicular field mobility parameters, MOBILITY statement 3-317, 3-328
Philips unified mobility model 2-27
Philips unified mobility model
parameters, MOBILITY statement 3-312, 3-325
photocurrent plot generated lines 12 to 19 , file mdex20b Fig. 16-19
PHOTOGEN
A1 parameter 3-119
A2 parameter 3-120
A3 parameter 3-120
A4 parameter 3-120
A.ELLIPS parameter 3-123

AMB.REFR parameter 3-123
ANGLE parameter 3-121
BB.RADIA parameter 3-122
BB.TEMP parameter 3-122
black-body radiation 3-135
BOT.RFLT parameter 3-123
C1 parameter 3-120
C2 parameter 3-120
C3 parameter 3-120
C4 parameter 3-120
Circuit Analysis Examples 12-8
CLEAR parameter 3-120
convert from microns to \(\mathrm{cm} 3-130\)
DELTA parameter 3-121
description 3-124
ELECTRON parameter 3-119
examples 3-128
FILM.REG parameter 3-124
FLUX parameter 3-121
GAUSSIAN parameter 3-121
G.INTEG parameter 3-120

HOLES parameter 3-119
IN.FILE parameter 3-120
INTENSIT parameter 3-122
INT.LIMI parameter 3-123

INT.RATI parameter 3-123
INT.SCAL parameter 3-122
length dependence, silicon 3-127
model 3-124
N.INTEG parameter 3-120

Optical Device Examples 16-2 to 16-8
parameter definition table 3-119
PC.UNITS parameter 3-120
PHASE.DI parameter 3-123
Photogeneration Examples 7-5
POLARIZA parameter 3-122
PRINT.AB parameter 3-124
PULSE parameter 3-121
QUAN.EFF parameter 2-175, 3-123
ray tracing 3-131
RAY.NUM parameter 3-122
RAYTRACE parameter 3-121
RAY.WIDT parameter 3-122
R.CHAR parameter 3-119

RD.CHAR parameter 3-120
RECO parameter 3-120
R.ELLIPS parameter 3-123

Shockley-Read-Hall lifetime modifier 3-128
SID.INCI parameter 3-123
SID.RFLT parameter 3-123
SP.FILE parameter 3-122
SPLIT.RA parameter 3-121
STRUCTUR parameter 3-121
T0 parameter 3-120
TC parameter 3-121
TFS parameter 3-121
time parameters 3-128
TOP.RFLT parameter 3-123
TPD parameter 3-121
TPRD parameter 3-121
transmittance of a stack of material layers 3-134
TRANSPAR parameter 3-123
TRS parameter 3-121
UNIFORM parameter 3-120
WAVE.END parameter 3-122
WAVELENG parameter 3-122
WAVE.NUM parameter 3-122
WAVE.SCA parameter 3-122
WAVE.STA parameter 3-122
WIDTH.CH parameter 3-123
X.END parameter 3-119
X.MAX parameter 3-119
X.MIN parameter 3-119
X.ORG parameter 3-121
X.START parameter 3-119
Y.END parameter 3-119
Y.MAX parameter 3-119
Y.MIN parameter 3-119
Y.ORG parameter 3-121
Y.START parameter 3-119

PHOTOGEN 3-118
photogeneration contours in detector as result of illumination Fig. 16-17
Photogeneration Examples
A3 parameter, PHOTOGEN statement 7-7
A4 parameter, PHOTOGEN statement 7-7
ASSIGN statement 7-6
AUGER parameter, MODELS statement 7-4
back-lit solar cell 7-1
BGN parameter, MODELS statement 7-13
CCSMOB parameter, MODELS statement 7-13
CONMOB parameter, MODELS statement 7-4
CONSRH parameter, MODELS statement 7-4
CYLINDRI parameter, MESH statement 7-11
DAMPED parameter, METHOD statement 7-13
DOPING parameter, REGRID statement 7-4
ELECTRODE statement 7-4
examination of internal device behavior 7-16
example specifications 7-1
EXTRACT statement 7-8
FLDMOB parameter, MODELS statement 7-13
GAUSSIAN parameter, PHOTOGEN statement 7-14
generation of simulation structure 7-2
H1 parameter, \(\mathbf{X}\). MESH statement 7-11
H2 parameter, X. MESH statement 7-12
LOG statement 7-7
LOGARITH parameter, CONTOUR statement 7-17
LOGARITH parameter, REGRID statement 7-4
MESH statement 7-3
METHOD statement 7-13
MIN. VALU parameter, CONTOUR statement 7-17
PC. UNITS parameter, PHOTOGEN statement 7-15
PHOTOGEN statement 7-5
PLOT .1D statement 7-7
PLOT. 2D statement 7-5
RATIO parameter, REGRID statement 7-4
REGION statement 7-4
REGRID statement 7-4
simulation input files \(m d e x 5\) (back-lit solar cell)
\[
7-3,7-6
\]
mdex6 (single-event upset) 7-11, 7-14
\(m d e x 6 h\) (internal device behavior) 7-17
single-event upset of SRAM cell 7-9
SYMBOLIC statement 7-7
TO parameter, PHOTOGEN statement 7-14
TC parameter, PHOTOGEN statement 7-14
wavelength of light 7-2
X.END parameter, PHOTOGEN statement 7-7
X. MESH statement 7-3
X.START parameter, P HOTOGEN statement 7-7
Y.END parameter, PHOTOGEN statement 7-7
Y. MESH statement 7-3
Y.START parameter, P HOTOGEN statement 7-7
PLOT
ELE.VEL parameter 2-140
plot control parameters
VECTOR statement 3-241, 3-242
plot controls
PLOT . 1D statement 3-207
PLOT. 3D statement 3-225
plot device definition file \(m d p d e v\) 1-14
plot electron current during writing from
PLOT. 1D line 21, input file mdex10b Fig. 11-7
plot produced by line 18 in input file mdexlqt Fig. 4-50
plot produced by line 8 in input file mdexlqt Fig. 4-49
plot produced by lines 45 through 52 in input file mdex1dt Fig. 4-47
plot quantities, PLOT . 3D statement 3-222
PLOT.1D
ABSOLUTE parameter 3-208
AC.IMAG parameter 3-204
AC.MAGN parameter 3-204
AC.PHAS parameter 3-204
AC.REAL parameter 3-204
ARRAY1 parameter 3-200
ARRAY2 parameter 3-200
ARRAY3 parameter 3-200
AXES parameter 3-208
BB.GENER parameter 2-132, 3-202
BOTTOM parameter 3-208
Circuit Analysis Examples 12-13
to 12-32
CLEAR parameter 3-208
COLOR parameter 3-209
CONDITIO parameter 3-207
CONDUC.B parameter 3-200
C.SIZE parameter 3-209

CURVE parameter 3-209
description 3-211
DEVICE parameter 3-209
Diode and Lumped Element
Examples 6-5 to 6-19
distance plots 3-211
DOPING parameter 3-201
E.FIELD parameter 3-200

ELECTRON parameter 3-201
ELE.TEMP parameter 2-140,
3-202
ELE.VEL parameter 3-202
examining results 2-113
FIND.DIS parameter 3-206
FIND.MAX parameter 3-205
FIND.MIN parameter 3-205
G.GAMIN parameter 2-146
G.GAMN parameter 3-202
G.GAMP parameter 2-146, 3-202
G.GAMT parameter 3-203
G.GMAT parameter 2-146
G.IN parameter 2-146, 3-203
G.IP parameter 2-146, 3-203
G.IT parameter 2-146, 3-203

Heterojunction Examples 14-12
HOLES parameter 3-201
HOL.TEMP parameter 2-140, 3-202
HOL.VEL parameter 2-140, 3-202
HORZ.STA parameter 3-204
II.GENER parameter 3-202

IMPURITY parameter 3-201
IN.FILE parameter 3-207
INSULATO parameter 3-205
INTEGRAL parameter 3-208
Interface Examples 10-10 to 10-23
J.CONDUC parameter 3-201
J.DISPLA parameter 3-201
J.EFIELD parameter 3-202
J.ELECTR parameter 3-201
J.HOLE parameter 3-201
J.TOTAL parameter 3-201

LABELS parameter 3-208
LAT.TEMP parameter 3-204
Lattice Temperature Examples 13-3
to 13-15
LEFT parameter 3-208
LEVEL parameter 3-202
LINE.TYP parameter 3-209
MARKS parameter 3-208
N -Channel MOSFET Examples 4-9 to 4-42
NEGATIVE parameter 3-208
NET.CARR parameter 3-201
NET.CHAR parameter 3-201
NIE parameter 3-201
N.MOBILI parameter 3-202

NPN Transistor Examples 5-58 to 5-75

NSPLINE parameter 3-207
ORDER parameter 3-207
OTHER parameter 3-200
other parameters and processes 3-213
OUT.FILE parameter 3-210
parameter definition table 3-200
PAUSE parameter 3-209
PHOTOGEN parameter 3-202
Photogeneration Examples 7-7
PLOT.BIN parameter 3-209
PLOT.OUT parameter 3-209
plots of log file data 3-212
P.MOBILI parameter 3-202

POINTS parameter 3-209
POTENTIA parameter 3-200
PRINT parameter 3-209
Programmable Device Examples
11-5 to 11-11
QFN parameter 3-200
QFP parameter 3-200
RECOMBIN parameter 3-201
RIGHT parameter 3-208
SEMICOND parameter 3-205
SIGMA parameter 3-202
S.LOGARI parameter 3-208

SPLINE parameter 3-207
STRUCTUR parameter 3-210
SYMBOL parameter 3-209
TIME.SIZ parameter 3-210
TIMESTAM parameter 3-210
TITLE parameter 3-208
TOP parameter 3-208
TRAP.OCC parameter 3-202
TRAPS parameter 3-202
T.SIZE parameter 3-208

UNCHANGE parameter 3-208
VACUUM parameter 3-200
VALENC.B parameter 3-200
WAVE.NUM parameter 3-210
X.AXIS parameter 3-206
X.COMPON parameter 3-204
X.END parameter 3-205
X.LENGTH parameter 3-208
X.LOGARI parameter 3-208
X.MAX parameter 3-207
X.MIN parameter 3-207
X.MOLE parameter 3-204
X.OFFSET parameter 3-208
X.SIZE parameter 3-208
X.START parameter 3-204
Y.AXIS parameter 2-145, 3-207
Y.COMPON parameter 3-204
Y.END parameter 3-205
Y.LENGTH parameter 3-208
Y.LOGARI parameter 3-208
Y.OFFSET parameter 3-208
Y.SIZE parameter 3-208
Y.START parameter 3-204

PLOT.1D 3-199

PLOT.2D
BOUNDARY parameter 3-215
C.BOUND parameter 3-217
C.DEPLE parameter 3-217
C.ELECT parameter 3-217
C.GRID parameter 3-217

Circuit Analysis Examples 12-6 to 12-22
C.JUNCT parameter 3-217

CLEAR parameter 3-216
CON.RESI parameter 3-215
CROSSES parameter 3-216
DEPLETIO parameter 3-215
depletion regions 3-219
description 3-218
DEVICE parameter 3-217
device structure 3-219
Diode and Lumped Element
Examples 6-3 to 6-15
disabling clear 3-218
ELEM.NUM parameter 3-215
FILL parameter 3-216
grid 3-219
GRID parameter 3-215
Interface Examples 10-9 to 10-28
JUNCTION parameter 3-215
junctions 3-219
LABELS parameter 3-216
Lattice Temperature Examples 13-21
L.BOUND parameter 3-216
L.DEPLE parameter 3-216
L.ELECT parameter 3-217
L.GRID parameter 3-217
L.JUNCT parameter 3-216

LUMPED parameter 3-215
MARKS parameter 3-216
N-Channel MOSFET Examples 4-6 to 4-43
NODE.NUM parameter 3-215
NPN Transistor Examples 5-54 to 5-73
N.SIZE parameter 3-216

OBTUSE parameter 3-216
Optical Device Examples 16-10
parameter definition table 3-215
PAUSE parameter 3-217
Photogeneration Examples 7-5
physical device boundaries 3-219
PLOT.BIN parameter 3-217
PLOT.OUT parameter 3-217
Programmable Device Examples 11-5
RAYPLOT parameter 3-218
REGION parameter 3-215
REG.NUM parameter 3-216
required solutions 3-220
SCALE parameter 3-216
schematic representations 3-219
STRUCTUR parameter 3-218

TIME.SIZ parameter 3-218
TIMESTAM parameter 3-217
TITLE parameter 3-216
TOP.MARK parameter 3-216
T.SIZE parameter 3-216

WAVE.NUM parameter 3-218
X.LENGTH parameter 3-217
X.MAX parameter 3-216
X.MIN parameter 3-216
X.OFFSET parameter 3-217
X.SIZE parameter 3-217
Y.LENGTH parameter 3-217
Y.MAX parameter 3-216
Y.MIN parameter 3-216
Y.OFFSET parameter 3-217
Y.SIZE parameter 3-217

PLOT. 2D 3-215
PLOT.3D
ABSOLUTE parameter 3-225
AC.IMAG parameter 3-224
AC.MAGN parameter 3-225
AC.PHAS parameter 3-225
AC.REAL parameter 3-224
ARRAY1 parameter 3-222
ARRAY2 parameter 3-222
ARRAY3 parameter 3-222
AXES parameter 3-226
BB.GENER parameter 3-223
C.BOX parameter 3-227

CENTER parameter 3-226
CLEAR parameter 3-226
CONDUC.B parameter 3-222
description 3-228
DEVICE parameter 3-227
DOPING parameter 3-222
E.FIELD parameter 3-222

ELECTRON parameter 3-222
ELE.TEMP parameter 2-140, 3-224
ELE.VEL parameter 2-140, 3-224
EQUIDIST parameter 3-226
examining results 2-113
FILL.VIE parameter 3-226
FRAME parameter 3-226
G.GAMN parameter 3-224
G.GAMP parameter 3-224
G.GAMT parameter 3-224
G.IN parameter 3-224
G.IP parameter 3-224
G.IT parameter 3-224

HOLES parameter 3-222
HOL.TEMP parameter 2-140, 3-224
HOL.VEL parameter 2-140, 3-224
II.GENER parameter 3-223

IMPURITY parameter 3-222
J.CONDUC parameter 3-223
J.DISPLA parameter 3-223
J.EFIELD parameter 3-224
J.ELECTR parameter 3-223
J.HOLE parameter 3-223
J.TOTAL parameter 3-223

LABELS parameter 3-226
LAT.TEMP parameter 3-224
Lattice Temperature Examples 13-3
L.BOX parameter 3-227

LEVEL parameter 3-223
LOGARITH parameter 3-225
MARKS parameter 3-226
NET.CARR parameter 3-223
NET.CHAR parameter 3-223
NIE parameter 3-223
N.MOBILI parameter 3-223

OTHER parameter 3-222
parameter definition table 3-222
PAUSE parameter 3-227
PHI parameter 3-225
PHOTOGEN parameter 3-223
plot axes 3-228
PLOT.BIN parameter 3-227
PLOT.OUT parameter 3-227
P.MOBILI parameter 3-224

POTENTIA parameter 3-222
QFN parameter 3-222
QFP parameter 3-222
RECOMBIN parameter 3-223
rotation angles 3-228
SIGMA parameter 3-224
STRUCTUR parameter 3-227
Template Examples 8-13
THETA parameter 3-225
TIME.SIZ parameter 3-227
TIMESTAM parameter 3-227
TITLE parameter 3-226
TRAP.OCC parameter 3-223
TRAPS parameter 3-223
T.SIZE parameter 3-226

VACUUM parameter 3-222
VALENC.B parameter 3-222
viewport 3-228
X.COMPON parameter 3-225
X.LABEL parameter 3-226
X.LENGTH parameter 3-226
X.LINES parameter 3-225
X.MAX parameter 3-225
X.MIN parameter 3-225
X.MOLE parameter 3-224
X. OFFSET parameter 3-227
X.SIZE parameter 3-226
XV.LENGT parameter 3-226
XV.OFFSE parameter 3-227
Y.COMPON parameter 3-225
Y.LABEL parameter 3-226
Y.LENGTH parameter 3-226
Y.LINES parameter 3-225
Y.MAX parameter 3-225
Y.MIN parameter 3-225
Y.OFFSET parameter 3-227
Y.SIZE parameter 3-226

YV.LENGT parameter 3-227
YV.OFFSE parameter 3-227
Z.LABEL parameter 3-226
Z.LENGTH parameter 3-226
Z.MAX parameter 3-225
Z.MIN parameter 3-225
Z.SIZE parameter 3-226

PLOT. 3D 3-221
plotted contour values and the calculated ionization integrals from
CONTOUR and E.LINE lines 55 to 56, file mdexla Fig. 4-34
Poisson's equation 2-2
POLY.ELEC parameter, MESH statement
Interface Examples 10-17, 10-18
portion of ionization integral results from loop lines 47 to 51, file mdexla Fig. 4-33
post-processing results for input file mdex2fp Fig. 5-57
potential contours
E-lines from PLOT . 2D,
CONTOUR, E.LINE, and LOOP lines 54 to 58, file mdexla Fig. 4-34
PLOT. 2D, CONTOUR, and LABEL lines 21 to 24, file mdexld Fig. 4-14
PLOT. 2D, CONTOUR, and LABEL lines 26 to 29, file \(m d e x 2 f p\) Fig. 5-61
PLOT. 2D, CONTOUR, and LABEL lines 26 to 29, file mdex2pp Fig. 5-68
PLOT. 2D, CONTOUR, and LABEL lines 41 to 48 , file \(m d e x 9 c\) Fig. 10-28
potential distribution
n-channel device from lines 42 to 43 , file mdex13c Fig. 12-25
p-channel device (PPMOS) from lines 45 to 46, file mdexl3c Fig. 12-26
potential regrid from PLOT . 2D line 43, file mdexl Fig. 4-8
power MOS device structure lines 26 to 30, file mdex18c Fig. 15-12
power supply current from PLOT . 1D line 14, file mdex13d Fig. 12-30 line 40, file mdexl3c Fig. 12-25
power vs. load plot generated lines 39 to 45, file mdex 19b.inp Fig. 16-13
PRINT
BAND.STR parameter 3-198
BB.EG parameter 3-198
BB.GENER parameter 2-131, 3-197
CONC.DEP parameter 3-197

CURRENT parameter 3-197
description 3-198
E.FIELD parameter 3-197

ELEMENTS parameter 3-197
examining results 2-113
GEOMETRY parameter 3-197
II.EJG parameter 3-197
II.GENER parameter 3-197

IMPURITY parameter 3-197
INTERFAC parameter 3-197
IX.MAX parameter 3-196
IX.MIN parameter 3-196

IY.MAX parameter 3-196
IY.MIN parameter 3-196
NET.CHAR parameter 3-197
OTHER parameter 3-197
parameter definition table 3-196
POINTS parameter 3-196
RECOMBIN parameter 3-197
SOLUTION parameter 3-197
STRUCTUR parameter 3-198
TEMPERAT parameter 3-198
X.COMPON parameter 3-197
X.MAX parameter 3-196
X.MIN parameter 3-196
Y.COMPON parameter 3-197
Y.MAX parameter 3-196
Y.MIN parameter 3-196

PRINT 3-196
PRINT parameter, CALL statement
Template Examples 8-1
probability factors, lucky-electron model 2-114
problems and troubleshooting x
PROFILE
1D.PROC parameter 3-87
2D.ASCII parameter 3-88
2D.PROC parameter 3-88
analytic profiles 3-90
D.COLUMN parameter 3-88

DEPTH parameter 3-84
description 3-88
Diode and Lumped Element
Examples 6-3
DOSE parameter 3-85
ID.ASCII parameter 3-87
IMPURITY parameter 3-85
IN.FILE parameter 3-87
INSULATO parameter 3-88
Interface Examples 10-7
MEDICI parameter 3-88
N-Channel MOSFET Examples 4-5
N.CHAR parameter 3-86
N.COLUMN parameter 3-87
N.ERFC parameter 3-86
N.OFFSET parameter 3-87
N.PEAK parameter 3-85

NPN Transistor Examples 5-53
N-TYPE parameter 3-85
one-dimensional from data files 3-92
OTHER parameter 3-85
OUT.FILE parameter 3-85
parameter definition table 3-84
P.COLUMN parameter 3-87

POLYGON parameter 3-86
profile types 3-89
P-TYPE parameter 3-85
R.CHAR parameter 3-87

REGION parameter 3-84
R.ERFC parameter 3-87
R.INNER parameter 3-87

ROTATE parameter 3-87
R.OUTER parameter 3-87

SUPRA parameter 3-88
SUPREM2 parameter 3-87
TIF parameter 3-88
TSUPREM4 parameter 3-88
two-dimensional from data files 3-94
UNIFORM parameter 3-85
WIDTH parameter 3-84
X.CENTER parameter 3-87
X.CHAR parameter 3-86
X.COLUMN parameter 3-88
X.ERFC parameter 3-86
X.MAX parameter 3-84
X.MIN parameter 3-84
X.OFFSET parameter 3-88
X.POLY parameter 3-86

XY.RATIO parameter 3-86
Y.CENTER parameter 3-87
Y.CHAR parameter 3-85
Y.COLUMN parameter 3-87
Y.JUNCTI parameter 3-86
Y.MAX parameter 3-85
Y.MIN parameter 3-84
Y.OFFSET parameter 3-87
Y.POLY parameter 3-86

PROFILE 3-83
profile types
specifying individual impurity profiles 3-89
specifying profiles for other quantities 3-89
programmable device AAM parameters,
SOLVE statement 3-166
Programmable Device Advanced
Application Module
see PD-AAM
Programmable Device Examples 11-1 to
11-11
example specifications \(11-1\)
FN. CUR parameter, SOLVE
statement 11-3
GATE . CUR parameter, SOLVE
statement 11-3
PLOT . 1D statement 11-5 to 11-11

PLOT . 2D statement 11-5
procedures 11-2
simulation input files mdex10a (EEPROM device
structure) 11-4
mdex10b (writing
EEPROM) 11-6
mdex10c (erasing
EEPROM) 11-9
SOLVE statement 11-3
TSTEP parameter, SOLVE statement 11-3
TSTOP parameter, SOLVE statement 11-3
writing and erasing flash EEPROM cell 11-1
Pulse Type Current Source Parameters
Fig. 3-370
Pulse Type Voltage Source Fig. 3-377
pulse waveform used in transient simulation Fig. 12-27

\section*{Q}

Q
AREA parameter 3-374
example 3-374
mname parameter 3-374
name parameter 3-374
nodeb parameter 3-374
nodec parameter 3-374
nodee parameter 3-374
Q 3-374
Quadtree example 3-102
quadtree mesh for a MOSFET 4-47
initial quadtree mesh 4-48
potential regrid 4-49
two-carrier solve 4-50
quadtree mesh generation 3-28
algorithm 3-29
immediate regridding 3-29
quadtree mesh generator, MESH statement 3-20
quadtree regrid controls, REGRID statement 3-98
quantum mechanical effects in MOSFET inversion layers 2-17, 3-116
example 3-375
name parameter 3-374
node- parameter 3-374
node + parameter 3-374
T1 parameter 3-375

T2 parameter 3-375
value parameter 3-374
R 3-374
RATIO parameter, REGRID statement N -Channel MOSFET Examples 4-8 Photogeneration Examples 7-4
RATIO parameter, Y. MESH statement N -Channel MOSFET Examples 4-31
ray tracing 3-131
ray tracing, features 3-131
RAYTRACE parameter, PHOTOGEN statement
Optical Device Examples 16-2
ray-tracing quantities, P HOTOGEN statement 3-123
reading and specification of the device structure 6-10
real refractive index, MATERIAL statement 3-293
recombination
auger 2-3
direct 2-3
including tunneling 2-5
SRH 2-3
surface 2-4
trapped charge 2-168
recombination process 3-139
rectangular grid specification problems 2-92
references 2-196
refinement levels 3-99
refining the mesh 2-96
REFLECT parameter, STRUCTURE
statement (TSUPREM-4)
Interface Examples 10-13
reflection and transmission of a ray Fig. 2-172
REGION
ALGAAS parameter 2-42, 3-72
ALINAS parameter 3-72
A-SILICO parameter 3-72
boundaries 3-75
description 3-75
DIAMOND parameter 3-72
Diode and Lumped Element
Examples 6-2
examples 3-76
GAAS parameter 2-42, 3-71
GERMANIU parameter 2-42, 3-72
Heterojunction Examples 14-2
HGCDTE parameter 3-72
INAS parameter 3-72
INASP parameter 3-72
INGAAS parameter 3-72
INGAP parameter 3-72
INP parameter 3-72
INSULATO parameter 3-73
Interface Examples 10-25
IX.MAX parameter 3-74
IX.MIN parameter 3-74

IY.MAX parameter 3-74
IY.MIN parameter 3-74
material types 3-75
NAME parameter 3-71
N -Channel MOSFET Examples 4-4
NITRIDE parameter 3-73
NPN Transistor Examples 5-53
OXIDE parameter 3-73
OXYNITRI parameter 3-73
parameter definition table 3-71
Photogeneration Examples 7-4
POLYGON parameter 3-74
POLYSILI parameter 2-42, 3-72
R.INNER parameter 3-74

ROTATE parameter 3-74
R.OUTER parameter 3-74

SAPPHIRE parameter 3-73
SEMICOND parameter 2-42, 3-72
SIC parameter 2-42, 3-72
SIGE parameter 2-42, 3-72
SILICON parameter 2-42, 3-71
S.OXIDE parameter 3-72

VOID parameter 3-74
X parameter 3-74
X.CENTER parameter 3-74
X.END parameter 3-73
X.LINEAR parameter 3-73
X.MAX parameter 3-74
X.MIN parameter 3-73
X.MOLE parameter 2-156, 3-73
X.POLY parameter 3-74
X.SLOPE parameter 3-73

Y parameter 3-74
Y.CENTER parameter 3-74
Y.LINEAR parameter 3-73
Y.MAX parameter 3-74
Y.MIN parameter 3-74
Y.POLY parameter 3-74

ZNSE parameter 3-72
ZNTE parameter 3-72
REGION 3-71
regional specification of semiconductor parameters 2-142
regions and electrodes, define in structure 10-25
regions converted to electrodes 10-18
REGRID
ABSOLUTE parameter 3-97
approximate grid size 3-100
ARRAY1 parameter 3-96
ARRAY2 parameter 3-96
ARRAY3 parameter 3-96
ASCII parameter 3-98
ASINH parameter 3-98
BB.GENER parameter 3-96
BOUNDARY parameter 3-98
CHANGE parameter 3-97

COS.ANGL parameter 3-98
description 3-99
Diode and Lumped Element
Examples 6-3
DOPING parameter 3-95
E.FIELD parameter 3-95

ELECTRON parameter 3-96
ELE.TEMP parameter 3-96
FACTOR parameter 3-97
grid refinement 3-99
grid refinement criteria 3-99
HOLES parameter 3-96
HOL.TEMP parameter 3-96
IGNORE parameter 3-98
II.GENER parameter 3-96

IMPURITY parameter 3-96
IN.FILE parameter 2-97, 3-97
LAT.TEMP parameter 3-96
LOCALDOP parameter 3-96
LOGARITH parameter 3-97
MAX.LEVE parameter 3-97
MIN.CARR parameter 3-96
N-Channel MOSFET Examples 4-6
NET.CARR parameter 3-96
NET.CHAR parameter 3-96
node management 3-100
NO.TTINF parameter 3-98
NPN Transistor Examples 5-70
other notes 3-100
OTHER parameter 3-96
OUT.FILE parameter 3-98
parameter definition table 3-95
PHOTOGEN parameter 3-96
Photogeneration Examples 7-4
POTENTIA parameter 3-95
QFN parameter 3-95
QFP parameter 3-95
RATIO parameter 3-97
REGION parameter 3-98
SMOOTH.K parameter 3-97
Template Examples 8-2
TRUNC parameter 3-96
UNREFINE parameter 3-98
virtual nodes 2-165
X.COMPON parameter 3-95
X.MAX parameter 3-97
X.MIN parameter 3-97
Y.COMPON parameter 3-95
Y.MAX parameter 3-98
Y.MIN parameter 3-97

REGRID 3-95
regrid
algorithm 2-96
limiting refinement 2-96
overview 2-96
refinement criterion 2-98
regrid controls, REGRID statement 3-97
regrid criteria, REGRID statement 3-95
regridding a Quadtree mesh 3-100
relationship to Fowler-Nordheim tunneling 2-123
RENAME
description 3-82
ELECTROD parameter 3-82
examples 3-82
Interface Examples 10-17
NEWNAME parameter 3-82
OLDNAME parameter 3-82
parameter definition table 3-82
REGION parameter 3-82
T.ELECTR parameter 3-82

RENAME 3-82
RESISTAN parameter, CONTACT
statement
Circuit Analysis Examples 12-1
Diode and Lumped Element
Examples 6-15
RETURN
description 3-442

\section*{RETURN 3-442}
reverse leakage simulation with stress 6-12
reverse leakage simulation without stress 6-11
Richardson's Constant model 2-161
RIGHT parameter, SPREAD statement N -Channel MOSFET Examples 4-4

\section*{S}
.SAVE
ASCII parameter 3-458
IVFILE parameter 3-458
MESH parameter 3-458
SOLUTION parameter 3-458
. SAVE 3-458
SAVE
AC.CN parameter 3-271
AC.COMP parameter 3-272
AC.CP parameter 3-271
AC.JCOND parameter 3-271
AC.JDISP parameter 3-271
AC.JN parameter 3-271
AC.JP parameter 3-271
AC.JTOT parameter 3-271
AC.POTEN parameter 3-271
AC.SCOMP parameter 3-272
AC.TL parameter 3-271
AC.TN parameter 3-271
AC.TP parameter 3-271
ALL parameter 3-271
ASCII parameter 3-270
BANDS parameter 3-271
BB.GENER parameter 3-272
BOUND parameter 3-272

Circuit Analysis Examples 12-15
COMPONEN parameter 3-271
CONDUC.B parameter 3-272
CURRENTS parameter 3-271
description 3-274
DOPING parameter 3-272
E.FIELD parameter 3-273

ELECTRON parameter 3-272
ELE.TEMP parameter 3-272
ELE.VEL parameter 3-273
GENERATI parameter 3-271
G.GAMN parameter 3-273
G.GAMP parameter 3-273
G.GAMT parameter 3-273
G.IN parameter 3-273
G.IP parameter 3-273
G.IT parameter 3-273

HOLES parameter 3-272
HOL.TEMP parameter 3-272
HOL.VEL parameter 3-273
II.GENER parameter 3-272

Interface Examples 10-5
J.CONDUC parameter 3-273
J.DISPLA parameter 3-273
J.EFIELD parameter 3-273
J.ELECTR parameter 3-273
J.HOLE parameter 3-273
J.TOTAL parameter 3-273

LAT.TEMP parameter 3-273
Lattice Temperature Examples 13-10
MESH parameter 3-270
NET.CARR parameter 3-272
NET.CHAR parameter 3-272
OUT.FILE parameter 3-270
parameter definition table 3-270
PHOTOGEN parameter 3-272
POTENTIA parameter 3-272
QFN parameter 3-272
QFP parameter 3-272
RECOMBIN parameter 3-272
SOLUTION parameter 3-270
STRUCTUR parameter 3-270
TIF parameter 3-271
VACUUM parameter 3-272
VALENC.B parameter 3-272
W.MODELS parameter 3-271
X.MOLE parameter 3-273

\section*{SAVE 3-270}
scalar quantities, SAVE statement 3-272
Schottky contacts 2-62
S.DELTA parameter, E.LINE
statement
N-Channel MOSFET Examples 4-32
second doping regrid from PLOT . 2D
line 25, file mdex2 Fig. 5-54
second part of file bipdef0 listing available parameters and their defaults Fig. A-14
second part of simulation input file
mdex12b Fig. 12-13
mdex13a Fig. 12-18
mdex13b Fig. 12-20
mdex13c Fig. 12-24
mdex14b Fig. 13-13
mdex15a Fig. 13-20
mdex15p Fig. 13-24
mdexl6 Fig. 14-4
mdex17 Fig. 14-10
mdex18a Fig. 15-4
mdex19a Fig. 16-6
mdex19b Fig. 16-10
mdex1a Fig. 4-31
mdexlb Fig. 4-38
mdexldt Fig. 4-45
mdexlf Fig. 4-20
mdex2m Fig. 5-72
mdex2pp Fig. 5-65
mdex5 Fig. 7-6
mdex6 Fig. 7-14
mdex8a (the simulation) Fig. 9-3
mdex8bp Fig. 9-14
mdex9a Fig. 10-8
s3ex9a Fig. 10-4
second part of simulation output file mdex14s Fig. 13-5
second part of template file mosdef0 listing parameters and their default values Fig. A-5
second part of TSUPREM-4 input file s4ex9b Fig. 10-15
second pass through the outermost loop from PLOT . 1D and LABEL lines 34 to 57, file mdexlf Fig. 4-24
second portion of listing, file mdexl Fig. 4-3
semiconductor material parameters default values 3-298
semiconductor material parameters, REGION statement 3-73
semiconductor materials, REGION statement 3-71
semiconductor parameters
ANISOTROPIC statement 3-345 MATERIAL statement 3-281
shirahata mobility model 2-36
shirahata mobility model parameters, MOBILITY statement 3-315
Shockley-Read-Hall recombination 2-3
short circuit current plot generated lines 13 to 19, file mdex19b.inp Fig. 16-11
SIGE parameter, MATERIAL statement Heterojunction Examples 14-6
SIGE parameter, REGION statement Heterojunction Examples 14-2
simulated generation rate near a LOCOS isolation structure with and without
stress Fig. 6-12
simulation input file
mdexll Fig. 4-15, 12-4
mdex12a Fig. 12-10
mdex13d Fig. 12-28
mdex13e Fig. 12-32
mdex15b Fig. 13-22
mdex15c Fig. 13-22
mdex16f Fig. 14-6
mdex18b Fig. 15-9
mdexld Fig. 4-13
mdexlg Fig. 4-11
mdexlt Fig. 4-25
mdex2 Fig. 5-52
mdex20a Fig. 16-15
mdex20b Fig. 16-18
mdex22 Fig. 17-2
mdex2f Fig. 5-55
mdex2p Fig. 5-62
mdex3 Fig. 6-2
mdex3e Fig. 6-8
mdex3h Fig. 6-7
mdex4l Fig. 6-17
mdex4r Fig. 6-14
mdex6h Fig. 7-17
mdex7b Fig. 8-13
mdex7n Fig. 8-2
mdex7pci Fig. 8-8
\(m d e x 8 b\) (structure specification and
simulation) Fig. 9-11
mdex9b Fig. 10-19
mdex9c Fig. 10-26
mdex9d Fig. 10-29
mdexstress Fig. 6-10
simulation mesh
CALL line 64, file mdex14b Fig. 13-14
CALL line 64, input file mdex 11
Fig. 12-5
PLOT . 2D line 17, file mdex3 Fig. 6-3
PLOT.2D lines 18 to 20, file mdex 5 Fig. 7-5
simulation mesh from CALL to template file
bipstr0 line 63, file mdex7b Fig. 8-14
mosstr0 line 69, file \(m d e x 7 p\) Fig. 8-10
simulation structure, output file specification 4-5
simulations, three-dimensional effects 2-67
sinusoidal steady-state analysis 2-105
six different spread statements on initially uniform mesh Fig. 3-55
smoothing, mesh
element 2-99
node 2-99
obtuse elements 2-101
overview 2-98
SOI
drain characteristics example 13-1
Lattice Temperature Examples 13-1
lattice temperature from lines 67 to 68, file mdex14s Fig. 13-7
simulation mesh from line 33 of file mdex14s Fig. 13-6
solar cell
A-silicon example 16-1
back-lit 7-1
Photogeneration Examples 7-1
wavelength of light 7-2
solution files
interface parameters 4-21
overview 1-11
saved 1-12
Solution Specification 3-107
Solution Specification, input statements
METHOD 3-147
MODELS 3-108
PHOTOGEN 3-118
SOLVE 3-161
SYMBOLIC 3-144
TRAPS 3-136
Solution Strategy Fig. 2-141
SOLVE
AC.ANALY parameter 3-167
AC.CHARG parameter 3-168
AC.SOURC parameter 3-168
ALL parameter 3-169
ASCII parameter 3-169
BANDS parameter 3-169
bias selection 3-172
C.AUTO parameter 3-164
C.DVMAX parameter 2-81, 3-165
C.IMAN parameter 2-81
C.IMAX parameter 2-81, 3-165
C.IMIN parameter 3-165
circuit analysis 3-173
Circuit Analysis Examples 12-21
COMPONEN parameter 3-169
continuation method 3-173
CONTINUE parameter 2-79, 3-164
C.RMAX parameter 3-165
C.TOLER parameter 2-80, 3-164

CURRENTS parameter 3-169
C.VMAX parameter 2-81, 3-165
C.VMIN parameter 2-81, 3-165
C.VSTEP parameter 2-80, 3-164
description 3-171
Diode and Lumped Element
Examples 6-4
DQDV parameter 3-166
DT.CBET parameter 3-167
DT.MAX parameter 3-165
DT.VBET parameter 3-167
DT.VBHT parameter 3-167

ELECTROD parameter 3-164
ELEMENT parameter 3-168
ENDRAMP parameter 3-166
Energy Balance Examples 9-2
final value specification 3-173
FLUX parameter 3-170
FN.CUR parameter 3-166
FREQUENC parameter 3-167
FSTEP parameter 3-167
gate current 3-175
GATE.CUR parameter 2-113, 3-166
GENERATI parameter 3-169
Heterojunction Examples 14-6
HI.FREQ parameter 2-107, 3-168
I name parameter 3-163
IMPACT.I parameter 3-166
initial guesses 3-171
INITIAL parameter 3-162
INTENSIT parameter 3-170
INT.STEP parameter 3-170
ISTEP parameter 3-164
IT.CUR parameter 3-167
IT.METH parameter 3-167
LAMBDA parameter 3-170
LAMBDA.E parameter 3-170
LAMBDA.N parameter 3-170
LAMBDA.S parameter 3-170
Lattice Temperature Examples 13-10
L.MODULA parameter 3-171

LOCAL parameter 3-163
LSS parameter 3-171
MAX.INNE parameter 3-167
MULT.FRE parameter 3-167
multiple solutions 3-172
N.BIAS parameter 3-164

N -Channel MOSFET Examples 4-7 to 4-39
NFSTEP parameter 3-167
NPN Transistor Examples 5-56
N.REGION parameter 3-163

NSTEPS parameter 3-164
Optical Device Examples 16-14
OUT.FILE parameter 3-169
P2QFN parameter 3-163
P2QFP parameter 3-163
parameter definition table 3-162
P.BIAS parameter 3-164
P.LOCAL parameter 3-163
post-processing impact ionization
3-175
P.REGION parameter 3-164

PREVIOUS parameter 3-162
Programmable Device Examples 11-3
PROJECT parameter 3-163
Q name parameter 3-163
RAMPTIME parameter 3-166
ray tracing 3-177
R.SPARA parameter 3-168
S.AMPLIT parameter 3-166

SAVE.BIA parameter 3-169
S.FREQ parameter 3-166

SINE parameter 3-166
S.OMEGA parameter 3-167
S.PARAM parameter 3-168

SPECTR parameter 3-170
S.PHASE parameter 3-166

STRUCTUR parameter 3-169
synchronization 3-172
T name parameter 2-153, 3-163
T0 parameter 3-166
TD.STOP parameter 3-166
TERMINAL parameter 3-167
TIF parameter 3-169
T.INCREM parameter 3-166

TMULT parameter 3-165
TOLERANC parameter 2-87, 3-168
trace back 3-174
transient simulation 3-174
Trapped Charge Examples 15-8
TSTEP parameter 3-165
TSTOP parameter 3-165
UIC parameter 3-168
V name parameter 3-163
V.ELEMEN parameter 3-168

VSS parameter 3-167
VSTEP parameter 3-164
WAVE parameter 3-169
WAVE.END parameter 3-170
WAVE.STA parameter 3-170
SOLVE 3-161
SOR
AC analysis 2-107
convergence difficulties 2-107
ILUCGS 2-87
source impurity profile
PLOT . 1D line 30, file mdex9 Fig. 10-10
PLOT . 1D line 48, file mdexl Fig. 4-9
SOURCE parameter, LOG statement Interface Examples 10-32
source/drain profile
file s3ex9a Fig. 10-6
PLOT . 1D statement line 4, file mdex9b Fig. 10-21
S.OXIDE parameter, REGION statement
Trapped Charge Examples 15-10
spacing boxes 3-42
spatial terms, PHOTOGEN statement 3-119
special characters 3-11
specially assigned variables, TRAPS
statement 3-138
specification of non-uniform normal
spacing Fig. 3-46
specification of the photogeneration path Fig. 3-125
specifying larger values limitations,
METHOD statement 3-156
SPREAD
description 3-54
ENCROACH parameter 3-53
example illustration 3-55
examples 3-54
FIX.LOWE parameter 3-53
GR1 parameter 3-54
GR2 parameter 3-54
GRADING parameter 3-54
LEFT parameter 3-53
LOWER parameter 3-53
mesh statements 2-91
MIDDLE parameter 3-54
N -Channel MOSFET Examples 4-3
parameter definition table 3-53
RIGHT parameter 3-53
THICKNES parameter 3-53
UPPER parameter 3-53
VOL.RAT parameter 3-53
WIDTH parameter 3-53
Y.LOWER parameter 3-53
Y.MIDDLE parameter 3-54

SPREAD 3-53
SRAM cell
single event upset simulation 7-9
single event upset with circuit simulation 12-7
SRAM circuit with cylindrical diode Fig. 12-7
SRFMOB2 parameter, MODELS statement
N-Channel MOSFET Examples 4-7
stack of N material layers separated by parallel interfaces Fig. 2-173
Star-Hspice MOSFET model parameters, . MODEL statement 3-386
START
Circuit Analysis Examples 12-3
CIRCUIT parameter 3-364
example 3-364
INITIAL parameter 3-364
START 3-364
statement summary 3-461
statements
character expressions 3-9
continuation between parameter specifications 3-2
format 3-1
HBT (Heterojunction Bipolar
Transistors) 2-156
input limits 3-2
mesh specifications 2-91
order of appearance, importance 2-92, 3-14
specification limitations 2-132
statement description format 3-10
syntax 3-2
with parameters 3-2
without parameters 3-3
static current gain generated by lines 44 to 48, file mdex8bp Fig. 9-18
statistics
Boltzmann 2-10
Fermi-Dirac 2-14
steady state analysis parameters, SOLVE statement 3-164
STITCH
ASCII.IN parameter 3-103
BOTTOM parameter 3-103
description 3-104
ELEC.MER parameter 3-103
FLIP.X parameter 3-103
FLIP.Y parameter 3-103
IN.FILE parameter 3-103
LEFT parameter 3-103
parameter definition table 3-103
POLY.ELE parameter 3-103
REG.MERG parameter 3-103
RIGHT parameter 3-103
TIF parameter 3-103
TOP parameter 3-103
TSUPREM4 parameter 3-103
X.OFFSET parameter 3-103
Y.OFFSET parameter 3-103

STOP
description 3-442
STOP 3-442
strained energy bandgap model 2-158
stress-induced bandgap change 2-13
stress-induced effects in silicon 3-116
stress-induced leakage example 6-9
reading and specification of the device structure 6-10
reverse leakage simulation with stress 6-12
reverse leakage simulation without stress 6-11
stress-induced mobility 2-60
stress-induced mobility, MOBILITY statement 3-321
STRUCTUR parameter, PHOTOGEN statement
Circuit Analysis Examples 12-9
STRUCTUR parameter, PLOT . 2D statement
Circuit Analysis Examples 12-22
STRUCTUR statement (TSUPREM-4)
Interface Examples 10-13
structure and mesh files modify with
Michelangelo 14-8
structure generation and solution creation 16-13
structure parameters, SAVE statement

3-272
STUDIO command editor, see Appendix E
subdivision performed on rectangle grid element Fig. 3-62
SUBSTRAT parameter, LOG statement Interface Examples 10-29
substrate currents
during walk-out line 42 , file
mdex18d Fig. 15-17
lines 539 to 542, file mdex8a Fig. 9-7
vs. Vgs from PLOT . 1D and
LABEL lines 20 to 21, file mdexli Fig. 4-17
successive over-relaxation see SOR
SUPRA parameter, SAVE statement (TSUPREM-4)
Interface Examples 10-24
surface degradation factors,
MOBILITY statement 3-313, 3-325
surface generation, angle-dependent gate model 2-118
surface mobility model 2-29
degradation factors 2-29
interface cautions 2-30
parameters, MOBILITY statement 3-316, 3-327
surface scattering 2-29
surface scattering, surface mobility degradation factors 2-29
symbol definitions 2-184
SYMBOLIC
BICGS parameter 3-145
BLOCK.MA parameter 3-145
CARRIERS parameter 2-152, 3-144
charge boundary condition 2-143
Circuit Analysis Examples 12-31
COUP.ELE parameter 2-132,
3-144
COUP.HOL parameter 2-132,
3-144
COUP.LAT parameter 2-132, 3-145
description 3-145
Diode and Lumped Element
Examples 6-4
EB.POST parameter 2-139, 3-144
ELECTRON parameter 3-144
ELE.TEMP parameter 2-132,
3-144
GUMMEL parameter 2-152, 3-144
HOLES parameter 3-144
HOL.TEMP parameter 2-132, 3-144
ILUCGS parameter 2-107, 3-145

LAT.TEMP parameter 2-149, 3-144
Lattice Temperature Examples 13-3
MIN.DEGR parameter 2-84, 3-145
N -Channel MOSFET Examples 4-7
to 4-36
NEWTON parameter 2-152, 3-144
parameter definition table 3-144
Photogeneration Examples 7-7
PRINT parameter 3-145
relevant statements 2-71
STRIP parameter 2-82, 3-145
usage 3-146
virtual nodes 2-165
VIRTUAL parameter 2-166, 3-145
SYMBOLIC 3-144
syntax
character expressions 3-9
circuit mode similarity to SPICE
program 3-358
delimiters 3-361
parameter lists 3-11
syntax and use
active circuit elements 3-362
circuit elements 3-359
circuit nodes 3-359
control statements 3-359
current nodes 3-360
Medici devices 3-360
order of execution 3-359
parameters 3-360
punctuation and case 3-359

\section*{T}

T0 parameter, PHOTOGEN statement
Photogeneration Examples 7-14
TAUN parameter, TRAPS statement
Trapped Charge Examples 15-5
TAUP parameter, TRAPS statement
Trapped Charge Examples 15-5
Taurus-Lithography
electric field distribution simulation with Medici 10-25
Interface Examples 10-1
interface to Medici 10-23
output of file deex9c Fig. 10-24
plot created by file deex9c Fig. 10-24
TC parameter, PHOTOGEN statement Photogeneration Examples 7-14
TC-AAM
analysis with trapped charge 2-168 overview 2-168
trapped charge examples 15-1
TCAD compatibility 2-95
TCAD Graphics B-1 to B-14
direct device drivers B-2
driver subroutine B-1
graphics device characteristics B-9
graphics devices B-2
mdpdev listing B-12
\(m d p d e v\) plot device definition file B-9
plot device definition file B-9
software library drivers B-4
special device drivers B-6
specifying the graphics device \(B-1\)
unique operating system specifications B-14
Technology Interchange Format (TIF)
D-1 to D-7
core records D-3
current applications D-1
format D-2
informational group D-2
introduction D-1
optional records D-5
record types D-2
three-dimensional structure records D-6
TIF example D-7
Technology Interchange Format see TIF
Template Examples 8-1
3D. SURF statement 8-15
ASSIGN statement 8-2, 8-13
CALL statement 8-1 to 8-17
example specifications \(8-1\)
n-channel LDD MOSFET 8-1
NPN bipolar junction transistor 8-12
p-channel MOSFET 8-7
PLOT . 3D statement 8-13
PRINT parameter, CALL statement 8-1
REGRID statement 8-2
simulation input files \(m d e x 7 b\) (bipolar junction transistor) 8-13
\(m d e x 7 n\) (n-channel
MOSFET drain characteristics) 8-2
\(m d e x 7 p c i\) (p-channel MOSFET gate characteristics) 8-8
Template Files A-1 to ??, A-18
available templates A-2
bipolar bias template bipgum0 A-17
bipolar default value file bipdef0 A-11
bipolar structure definition template bipstr0 A-16
bipolar templates A-11
introduction A-1
MOS bias templates mosgat0 and mosdrn0 A-8
MOS default value file mosdef0 A-3

MOS structure definition templates mosstr0 and mosstrl A-7
MOS templates A-3
NMOS and PMOS template examples A-8
single carrier solutions A-11
template files, see Appendix A Template Files A-1
temporal terms, PHOTOGEN statement 3-120
temporary scratch files 1-16
terminal characteristics plot parameters,
PLOT . 1D statement 3-206
TERMINAL parameter, SOLVE statement
NPN Transistor Examples 5-56
TFT
see thin film transistor example
TGBT
onset of latch-up from PLOT . 2D,
CONTOUR, and LABEL line 15, file mdex15p Fig. 13-25
second latch-up from PLOT . 2D,
CONTOUR, and LABEL line 15, file mdex15p Fig. 13-25
THERMAL parameter, ELECTRODE statement
Lattice Temperature Examples 13-2
thermal run-away
analysis 13-7
device failure 13-7
PLOT . 1D and LABEL lines 379
to 390, file mdex 14 b Fig. 13-15
thin film transistor example 15-1
third doping regrid from PLOT . 2D line
28, file mdex2 Fig. 5-55
third part of simulation input file
mdex8a (plots) Fig. 9-5
mdex8bp Fig. 9-15
s3ex9a Fig. 10-5
third pass through the outermost loop
from PLOT . 1D lines 34 to 57, file mdexlf Fig. 4-24
three-dimensional effects, simulations 2-67
TIF files
created by Michelangelo Fig. D-7
heterojunction device AAM parameters, SAVE statement 3-273
lattice temperature AAM
parameters, SAVE statement
3-273
SAVE statement 3-271
scalar quantities, SAVE statement 3-272
structure parameters, SAVE
statement 3-272
vector quantities, SAVE statement 3-273
time dependent potential, electric field, and gate current lines 7 to 15 , file mdex18d Fig. 15-15
time parameters, application 3-128
time steps
dynamic error tolerance 2-103
restrictions 2-103
selection 2-103
tolerance, initial conditions 12-27
user specifications 2-103
TIMEDEP parameter, TRAPS statement
Trapped Charge Examples 15-8
TITLE
Lattice Temperature Examples 13-2
TITLE 3-402
TMA SUPREM-3
gate characteristics simulation with Medici 10-7
Interface Examples 10-1
interface to Medici example 10-2
TMPDIFF parameter, MODELS
statement
Energy Balance Examples 9-3
TMPMOB parameter, MODELS
statement
Energy Balance Examples 9-3
TMULT parameter, SOLVE statement
Trapped Charge Examples 15-13
total current vectors
PLOT . 2D, and LABEL lines 21 to 24, file \(m d e x 2 p p\) Fig. 5-67
PLOT.2D, VECTOR, and LABEL lines 21 to 24 , file \(m d e x 2 f p\) Fig. 5-60
total trapped charge 2-171
.TRAN
DT parameter 3-459
example 3-459
failed convergence 3-459
failed time points 3-459
parameter definition table 3-459
TMAX parameter 3-459
TSTOP parameter 3-459
UIC parameter 3-459
. TRAN 3-459
transient analysis parameters, SOLVE statement 3-165
transient device simulation
BDF1 formula 2-101
BDF2 formula 2-102
impulse response 2-103
overview 2-101
time step restrictions 6-4
time steps selection 2-103
transient parameter, TRAPS statement 3-138
transient turn-off response of BJT with different trap models lines 22, 29, and 36 to 40, file mdexl8b Fig.

15-10
transistor structure line 19, file mdex18a Fig. 15-6
transmittance and reflectance from
PHOTOGEN and FILE. REG
line 33, file mdex19a.inp Fig. 16-7
transmittance from lines 5 to 11 , file
mdex19b.inp Fig. 16-11
transverse field-dependent mobility
model parameters, MOBILITY statement 3-321, 3-330
transverse field-dependent mobility model 2-36
calibration 2-40
parameter specifications 2-40
trap density states function to be modeled Fig. 3-140, 15-2
trap net charge possibilities Fig. 2-170
trap occupation lines 16 to 28 , file mdex18d Fig. 15-16
trap parameters, TRAP statement 3-137
trap states, recombination process 3-139
trapped charge
electron trap 2-170
hole trap 2-170
modeling 2-168, 2-169
recombination 2-168
total 2-171
transient simulation trap states 2-170
Trapped Charge Advanced Application Module
see TC-AAM
Trapped Charge Examples 15-1 to 15-17
bipolar transistor turn-off with traps 15-7
breakdown walk-out in power MOS device \(15-10\)
CONDITIO parameter, TRAPS statement 15-5
DISTRIB parameter, TRAPS
statement 15-5, 15-6
DVLIMIT parameter, METHOD
statement 15-13
E1 parameter, TRAPS statement 15-8
example specifications \(15-1\)
GATE2 parameter, MODELS statement 15-12
IMPACT.I parameter, SOLVE statement 15-13
N. TOTAL parameter, TRAPS statement 15-5, 15-6
simulation input files mdex18a (thin film
transistor) 15-3,
15-4
mdex18b (bipolar junction turn-off) 15-9
mdex18c (breakdown walk-out in power MOS) 15-11
SOLVE statement 15-8
S. OXIDE parameter, REGION
statement 15-10
TAUN parameter, TRAPS
statement 15-5
TAUP parameter, TRAPS statement 15-5
thin film transistor example 15-1
TIMEDEP parameter, TRAPS statement 15-8
TMULT parameter, SOLVE
statement 15-13

\section*{TRAPS}

ALL.CHAR parameter 3-137
CHARGE \(i\) parameter 3-137
CONDITIO parameter 3-137
description 3-138
DGEN \(i\) parameter 3-137
DGEN parameter 2-169
DISTRIB parameter 3-136
E \(i\) parameter 3-137
FREEZE parameter 3-138
heterojunction limitations 3-143
interface traps 3-142
MIDGAP parameter 3-137
model 3-138
N.LEVEL parameter 3-136
N.TOTAL parameter 2-169, 3-137

OUT.FILE parameter 3-136
parameter definition table 3-136
Q.FIX parameter 3-137
recombination process 3-139
specially assigned variables 3-138
statement examples 3-139
TAUN parameter 2-169, 3-137
TAUP parameter 2-169, 3-137
TIME.DEP parameter 3-138
trap states 3-139
X.PLOT parameter 3-136
Y.PLOT parameter 3-136

TRAPS 3-136
traps
bipolar transistor turn-off simulation 15-7
thin film transistor 15-2
Trapped Charge Advanced
Application Module (TC-AAM)
2-168
trapped charge examples 15-1
triangles, in regrid 2-96
TSTEP parameter, SOLVE statement
Diode and Lumped Element
Examples 6-4

Programmable Device Examples 11-3
TSTOP parameter, SOLVE statement
Circuit Analysis Examples 12-27
Diode and Lumped Element
Examples 6-4
Programmable Device Examples 11-3
TSUPREM-4
initial mesh, file \(s 4 e x 9 b\) Fig. 10-16
Interface Examples 10-1
interface to Medici 10-12
source/drain profile, file s4ex9b Fig. 10-16
structure from PLOT. 2D line 13,
file \(m\) dex 9 b Fig. 10-21
uses in Medici 10-17
TSUPREM4
description 3-69
FLIP parameter 3-69
IMPURITY parameter 3-69
IN.FILE parameter 3-68
mesh statements 2-92
SYMMETRI parameter 3-69
X.INTERF parameter 3-69
X.LEFT parameter 3-68
X.MAX parameter 3-68
X.MIN parameter 3-68
X.OFFSET parameter 3-68
X.RIGHT parameter 3-68
Y.BOT parameter 3-68
Y.MAX parameter 3-68
Y.MIN parameter 3-68
Y.OFFSET parameter 3-69
Y.TOP parameter 3-68

TSUPREM4 3-68
TSUPREM4 parameter, MESH statement Interface Examples 10-17
TSUPREM-4 structure saved in Medici format Fig. 3-70
turn on characteristics from CALL to template file mosstr0 line 502, file mdex7p Fig. 8-11
two examples of Medici structures after importing the TSUPREM-4 structure Fig. 3-70
two-dimensional analysis, process files 1-8
two-dimensional profiles from data files,
PROFILE statement 3-88
typical triangular element used in Medici Fig. 2-53

\section*{U}

UNCHANGE parameter, PLOT . 1D statement
Diode and Lumped Element
Examples 6-6
uncouples method, initial guesses 2-132
unformatted key file mduky0 1-14
uniform profile, PROFILE statement 3-85
universal mobility model parameters, MOBILITY statement 3-317
problems 2-32
universal mobility model parameters, MOBILITY statement 3-328
unstrained bandgap model 2-159
using Medici 1-1 to 1-17
authorization file mdauth 1-14
base.cont temp file 1-17
base.prs temp file 1-16
base.ttn temp file 1-16
binary plot output files 1-10
boundary files 1-11
command input file 1-7
command input file identifiers head and root 1-5
diagnostic output file base.dia 1-9
environment variables 1-7
error message file mderr0 1-15
execution command 1-1
execution errors and warnings 1-3
execution time files 1-13
file specifications 1-4
formatted key file \(m d f k y 01-15\)
formatted plot output files 1-10
graphical output 1-4, 1-10
informational output file base.inf 1-9
initially assigned names 1-5
input files 1-7
introduction 1-1
library directory 1-7
log files 1-12
mesh files 1-11
miscellaneous files 1-13
one-dimensional process files 1-8
output file identifiers base 1-4
output files 1-9
path file mdpath 1-13
plot device definition file mdpdev 1-14
printed output 1-3
profiles files 1-11
program execution and output 1-1
program output 1-3
saved solution files 1-12
solution files 1-11
standard output file base.out 1-9
syntax errors 1-2
temporary scratch files 1-16
TIF files 1-11
two-dimensional process files 1-8
unformatted key file mduky0 1-14
using the FACTOR option 3-100
equations 3-377
example 3-377
EXP parameter 3-376
\(f c\) parameter 3-376
freq parameter 3-376
fs parameter 3-376
mdi parameter 3-376
name definition table 3-375
name parameter 3-375
node- parameter 3-375
node + parameter 3-375
per parameter 3-376
PULSE parameter 2-103, 3-376
SFFM parameter 3-376
SIN parameter 3-376
taul parameter 3-376
tau2 parameter 3-376
\(t d\) parameter 3-376
tdl parameter 3-376
\(t d 2\) parameter 3-376
\(t d s\) parameter 3-376
tf parameter 3-376
theta parameter 3-376
tp parameter 3-376
tr parameter 3-376
v0 parameter 3-376
va parameter 3-376
value parameter 3-375
v 3-375
VECTOR
AC.CN parameter 3-240
AC.CP parameter 3-240
AC.IMAG parameter 3-241, 3-242
AC.MAGN parameter 3-241, 3-242
AC.PHAS parameter 3-241, 3-242
AC.POTEN parameter 3-240
AC.REAL parameter 3-241, 3-242
AC.TL parameter 3-240
AC.TN parameter 3-240
AC.TP parameter 3-240
AC.VECT parameter 3-241, 3-242
AC.XCOMP parameter 3-241, 3-242
AC.YCOMP parameter 3-241, 3-242
CLIPFACT parameter 3-241, 3-242
COLOR parameter 3-243
description 3-243
Diode and Lumped Element
Examples 6-14
E.FIELD parameter 3-240

EXITING parameter 3-241, 3-242
INCIDENT parameter 3-241,
3-242

INTERNAL parameter 3-241, 3-242
J.CONDUC parameter 3-240
J.DISPLA parameter 3-240
J.ELECTR parameter 3-240
J.HOLE parameter 3-240
J.TOTAL parameter 3-240

LINE.TYP parameter 3-243
LOGARITH parameter 3-241, 3-242
MAXIMUM parameter 3-243
MINIMUM parameter 3-243
NORM.LOG parameter 3-241, 3-242
NPN Transistor Examples 5-60
parameter definition table 3-240
PAUSE parameter 3-243
RAYTRACE parameter 3-241, 3-242
V.SIZE parameter 3-241, 3-242

VECTOR 3-240
vector quantities, SAVE statement 3-273
vertical cross-section plots of doping concentration in BJT through emitter and base Fig. 9-13
vertical doping slices
CALL line 64, file mdex14b Fig. 13-15
source/drain S/D, LDD, and channel Fig. 9-6
vertical grid spacing 10-12
viewing parameters, PLOT . 3D
statement 3-225
viewport, plot axes, and rotation angles
Fig. 3-229
virtual memory requirements 2-90
virtual nodes
heterojunction currents 2-166
heterojunction devices 2-165
Poisson equation and band alignment 2-166
thermionic emission current model 2-167
tunneling current model 2-167, 2-168
VOL.RAT parameter, SPREAD
statement
N-Channel MOSFET Examples 4-4 voltage current from PLOT . 1D line 38, file mdex6 Fig. 7-16
example 3-378
name definition table 3-378
name parameter 3-378
node- parameter 3-378
node + parameter 3-378
nodec1- parameter 3-378
nodec 1+ parameter 3-378
nodec 2 - parameter 3-378
nodec \(2+\) parameter 3-378
value parameter 3-378
W 3-378
warnings
corrective actions 1-3
execution 1-3
WAVE parameter, SOLVE statement
Optical Device Examples 16-3
waveform from PLOT .1D lines 38 to
45, input file \(m d e x 12 b\) Fig. 12-13
wavelength of light
Photogeneration Examples 7-2
WIDTH parameter, LOG statement Interface Examples 10-29
WIDTH parameter, PROFILE statement
Interface Examples 10-7
N-Channel MOSFET Examples 4-31
NPN Transistor Examples 5-70
WIDTH parameter, SPREAD statement
N-Channel MOSFET Examples 4-4
WIDTH parameter, X . MESH statement NPN Transistor Examples 5-70
W.MODELS parameter, SAVE statement
Circuit Analysis Examples 12-3

\section*{X}

X parameter
ELECTRODE statement, Interface Examples 10-25
REGION statement, Interface
Examples 10-25
X.CHAR parameter, PROFILE statement
Interface Examples 10-8
X.END parameter, PHOTOGEN
statement
Photogeneration Examples 7-7
X.ERFC parameter, PROFILE
statement
Interface Examples 10-8
X.MESH
description 3-32
Diode and Lumped Element
Examples 6-2
examples 3-34
grid spacings 2-92
H1 parameter 2-93, 3-32
H2 parameter 2-93, 3-32
H3 parameter 2-93, 3-32
Interface Examples 10-25
LOCATION parameter 2-95, 3-32
mesh statements 2-91
MIN.SPAC parameter 2-93, 3-32
N-Channel MOSFET Examples 4-3
NODE parameter 2-93, 3-32
node placement methods 3-33
N.SPACES parameter 2-93, 3-32
parameter definition table 3-32
Photogeneration Examples 7-3
RATIO parameter 2-93, 2-95, 3-32
SPACING parameter 2-93, 3-32
SUMMARY parameter 3-32
TCAD compatibility 2-95
WIDTH parameter 2-93, 3-32
X.MAX parameter 2-93, 3-32
X.MIN parameter 3-32
X. MESH 3-32
X.MIN parameter, EXTRACT statement

N -Channel MOSFET Examples 4-31
X.MIN parameter, PROFILE statement

Interface Examples 10-7
NPN Transistor Examples 5-70
X.PEAK parameter, PROFILE
statement
Interface Examples 10-7
X.START parameter, PHOTOGEN statement
Photogeneration Examples 7-7
XY.RATIO parameter, PROFILE statement
Interface Examples 10-8

\section*{Y}

Y parameter
ELECTRODE statement, Interface Examples 10-25
REGION statement, Interface
Examples 10-25
Y.AXIS parameter, PLOT . 1D
statement
Circuit Analysis Examples 12-9
Y.END parameter, P HOTOGEN
statement
Photogeneration Examples 7-7
Y.MAX parameter, MESH statement

Interface Examples 10-17
Y.MAX parameter, REGION statement

NPN Transistor Examples 5-63
Y.MESH

DEPTH parameter 2-93, 3-35
description 3-36
Diode and Lumped Element
Examples 6-2
examples 3-37
H1 parameter 2-93, 3-35
H2 parameter 2-93, 3-35

H3 parameter 2-93, 3-35
Interface Examples 10-25
LOCATION parameter 2-93, 3-35
mesh statements 2-91
MIN.SPAC parameter 2-93, 3-35
N -Channel MOSFET Examples 4-3
NODE parameter 2-93, 3-35
node placement 3-36
NPN Transistor Examples 5-52, 5-53
N.SPACES parameter 2-93, 3-35
parameter definition table 3-35
Photogeneration Examples 7-3
RATIO parameter 2-93, 3-35
SPACING parameter 3-35
SUMMARY parameter 3-35
vertical spacing 2-93
Y.MAX parameter 2-93, 3-35
Y.MIN parameter 2-93, 3-35
Y. MESH 3-35
Y.ORG parameter, PHOTOGEN statement Optical Device Examples 16-14
Y.START parameter, PHOTOGEN
statement
Photogeneration Examples 7-7```

[^0]: Characteristics Simulation

 Drain The remainder of the input file is used to simulate the drain characteristics of the device. The I-V results are stored in the log file MDEX9BI and a plot of the results is shown in Figure 10-24, p.10-23.

