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GHAPTER5 . Secattering by Simple Barriers

the magmtude of the .i'nCidEntI‘Wave alone. Multiple scattering effects are there-
fore automatically inchided in (5+6-11).

5.6.2 The ‘Barn Approximation

So far, (5+6-11) is exact. Suppose now that the scattering potential is so we:
that the scattered-waye contribution of the integral in (5+6-11) is evérywhere
small compared to the incident plane. wave. The contribution of the integral
may then bé approximated by replacing the actual wave function ¢ with the
incident wave ! ‘

KB WAVE FUNCTIONS .
ExameLe: HARMONIC OSCILLATOR .o .
GENERAL CONNECTION RULES ACROSS A CLASSICAL TURNING POINT
“TUNNELING - '

Pl = Yl = olr) f Gr — RVERGR d°R. | (5+6-12

This is the first-order Born approximation. Physically, the approximatior
of replacing 4 by tn inside the scattering integral implies neglecting al
multiple-scattering effects. ;
. Itis sometimes possible to improve the approximation by re-inserting th
first-order wave function ¢ into. the integral, leading to a second-order wav:
function . The process can be repeated ad infinitum. Because only straight
forward integrations over known functions are involved, this kind of iterativ
improvement of the wave function i well adapted to computer calculation
' Unfortunately, higher-order Born approximations are no panacea. Math
- ematically, the iteration represents a disguised power series expansion of th
wave function, in terms of the powers of the overall strength of the perturbin
potential. Each order adds a riew power to the series. Like other power serie
expansions, the Born approximation may. diverge. Indeed, it is usually ont;
geini-convergént: The higher-order corrections tend to stop decreasing past
certain optimum order and then oscillate with increasing amplitude, leading to;
‘an alternating divergent series. For weak scattering potentials without gingu-
larities, this iltimate divergence is usually of no practical consequence, b
cause the overshoot oscillations do not set in until long after one has cut off th
series, They are, however, a problem with scattering potentials that are very
strong or that contain singularities, such as the Coulomb potential V(x) = 1/r:
it the case of the Coulomb potential, a very peculiar phenomenon occurs: The.
first-order Born approximation happens to coincide with the known exact solu:
tion of the scatiering problem, but the second-order initegral diverges. Truncat:
ing the expansion after the first order then leads to the correct answer. Unfor-
tunately, one cannot count on such lucky accidents. Alternative methods have
been developed for suchi cases, but their discussion lies outside the scope of this

text.

WKB WAVE FUNCTIONS.

6.1.1 Plane Waves. with Variable Wavelength

and Amplitude * © * |

|
Except for the Born approximation in the preceding ch | -
always been concerned with exact soluﬁionspof' the S%hro?eggflgefzq?;‘;?oio \fgz
now tum' to .another approximation method, the so-called WKB approxi.ma-
tion, vPrhlch is an excellent approximation for slowly varying one-dimensional
Potent'lals and hence bridges the gap between classical and guantum mechan-
ics. It is named after Wentzel, Kramers, and Brillouin, who, around 1926, we
the ﬁx.'st to employ this approximation in guantum mechan’ics even thm;: h s
a basa:r mzﬁmmaﬁcal technique, it is much older.! ’ e
e take as our point of departuré the remark in secti i

presence of a force, both the local wave number K and the tll)ggbigilﬁl; fi::]:;;

i#: For complete references, and-an i ot
. , and- an in-depth treatment, see N. Fri; G
| mplete 1 /ar n-dept] ment, - Fréman and P. O. Froman, “JWKB
5 f:::ommatmn Amst:erdam. -1_-‘§701'th_-Holland, 1965. Another excellent discussion, centered a d
erous examples, is found'in Fliigge, cited inlappendix G. ' o
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HAPTER 6  WKB Approximation

of an object wave must be funciions of position. Consider_, therefore, a timeé
1dependent wave function of a form similar to the terms in (5+2-2a), ie.,

R [+‘JxK( )dy]
() N exp| i ¥ ,

rith a wave number K(x) that depends on position according to

Kx) = V%‘r[e - Vix)] if E=V..

1 the case of a constant potential, this is of course an exact solution of th_e
ichroedinger equation, with the amplitude A being a constant. o k
We might expect that in the case of a sufficiently slowly varying potentla.tl,.
. wave funetion of the form (6+1-1), with K(x) given by (6+1-2), m1gh!: remain
it least a good approximation. We note first that the position-denominator in
6+I-1) leads to a probability density inversely proportional fo K .and, hence, to
he local velocity v = AK/M,; as is needed in order to have a 'dlverge‘nce-i.'ree
wobability current density, an essential requirement for any approximation;

(6+1-1)

(6+1-2

?xerl'cise: Show that .
di= _ d o Qs dljf”;) -0 .
E = du ('1‘:’: dx e dx +

vhich means that current conservation is oheyed exactly. Show fl.xrther that this result
lepends, not on the choice (6+1-2) for K(x), but only on K(x) being real and nonzerg,

The most general wave function involving terms of the ,_forr_n (6+1-1) is a
inear superposition of the two terms with different signs in the exponent,

such as

. ) e
drwee () = W{A . expl:—t-r, f K(xy) dy]
+B. exp[—i f Ky dy]},

where both A and B are constants, The (unstated) lower integration limits in
‘Be1-4) depénd on the choice of the phase of the two arppl_itudes A and B. Ip
affect, those limits establish reference planes for the waves. ' )

It is left to the reader to show that the probability current density associ

ated with (6+1-4)—for positive K—is ‘

#

T (6°1-5
Y

(AP - |BP.

. are complicated conditions. While: the
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6.1.2 Validity Conditions.

In order to determine how 'gdod=-an apf;rbx_imatibn the WEB wave function is,
we look at its second.deﬁvative. The l_jeadér may-confirm that

R K'_rr ’ 3 (K gt
- e (AN 8 (AN
e () -1E) T
for both .. and —. The WKB ,Si_PP?f'Qximé.ﬁoh is obtained if we specifically selact
K(x) according to (6+1-2), assuming that | =

£ > V(x), (6‘ 1_7)

to make sure that K(x) is real. The case £ < V(x) will be discussed later.

If we choose the form (6+1-2) for K(x), the K*y-term in (6+1-6) represents
the Schroedinger equation by itself. The other terms are extra terms; their
magnitude is a measure of the degree of deviation of the approximation (6+1-1)
from an exact solution. In order for (6+1-1) to be a good approximation, these
extra terms must remain small compared to the K*y-term, i.e.,

io() ()

To understand the meaning of this ¢ondition better, we convert it to the for

4
B Vv 5 IVJ 2 .
- — 4+ — o]
5+ 325 | 619
where A = 27/K is the local de Broglie wavelength. Both (6-1-8) and (6-1-9)
 they might-in.principle be satisfied by a
mutual cancellation of the terms.on:the left-hand sides, this is-of little impor-
tance in practice. We therefore impose|the stronger: condition that both of the
terms.on the left-hand side: of (6+1-8) be separately small. This leads to two
conditions that may be written . . 2

AV = |V A] <28

(6+1-6)

(6+1-8)

< |K[.

AP = 1647,

VA (6+1-10)

|&— V] =112|¢~ V|
and . i

AVa =iV A*| < 8u%|e - V| =~ 79.0|6 - V|. (6+1~11)

"~ We refer to these as the first and second WKB conditions. Both have a

simple meaning, which we can bring ol:lt-_as follows, If the potential V varies
slowly enough with position, the quantity AV, represents the ¢hange in poten-
tial along one wavelength (Fig. +1- (a)); similarly, AV, represents that
change in potential that would build uP Aue to the curvature of the potential
along one wavelength, starting with:V” T ‘0(Fig. 6+1<1(b}). The relations (6*1—
9) and (6-1-10) then state that'the changes in potential, both due to a finite

!




. WKB Approximation

CHAPTER 6

4

{(a)

vy

Figure 6+1-1. (a) The first WKB
condition is that the potent1
change along a wavelength °

gufficiently small compared to the

- A - minimal kinetic energy along the
path of that wavelength. (b) The
» second WKB condition demands
o that the curvature of the potenti
by ‘be small.

:slope and due to a ﬁmte curvature, taken per wavelength, must stay small
.compared to the stated large multiples of the kinetic energy of the particle.
: Both conditions are easily met, and whenever they are satisfied, the WEKRB
wave function (6+1-4) with constant amplitudes A end B is a good approximate
solution of the Schroedinger equation.
" If the correction terms in (6+1-6) cannot be neglected, the true wave
function can still be written in the form (6+1-4), but then the amplitudes A and
B no longer can be treated as constants, but become themselves position depen-
dent. Tt is left to the reader to show that in this case the continuity equatmn

(6+1-3) requires that.
|A@ = |B@x)? = constant.

" Pogition- dependent amplitudes mean that scattering is takmg place between
the forward- and backward-propagating waves; the WKB approxtmatwn itself
is a zero-scatfering approximation.

" It is in- principle possible to extend the WKB approximation to high
orders, but they are hardly ever used. A much more practical approach to the
caleulation of any reflected waves is simply inserting the first-order WKB wave
functmn into the Born approximation,

‘ (6+1-12)
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e

. 6 1.3 Exponentlally Growmg and Decaymg Approxumatlons

for Negatwe Kmetlc Energy; the Connectlon Problem

The precedmg dlscussmn assumed that the total energy &of the partlcle ex-
ceeds the potential enérgy, ie., £ > V(x) However, the relation (6+1-6) holds
regardless of this assumption, as do the. validity conditions .(6+1-8) through
(6+1-11) that follow from (6. 1-6). Thig means that wave functions of the form
(6-1-1) with imaginary K remain. good apprommatlons ever for £ < V{x), un-
der the same conditions (6-1-8) through (6+1-11). In fact, this applicability to
both positive and negative kinetic energies forms the basis for one of the moit
important. apphcatmns of the WKB approxiniation: tunneling through barriers.

The only change we make in the negative-energy case is again a replace-
ment of K by ix, where .

k() = \/?tm) —gife<y.

(6+1-13)
With this change, wé obtain, instead of (6+1-4),
1 e
wzs(x) = ————{C . exp[-»f “w(y) dy]
o Vet : (8+1-14)

+D- e:ip[+f &(y) dy]}.

The conditions (6+1-9) through (6+1-11) still hold, except that the \yavelength
A is replaced by

A= 2m/k, (6+1-15)"

What does assume a significantly, diﬂ‘erent form is the expression for the
probability current density. It is again left to the reader to show that, instead
of (6+1-5), we now have ’

j= ﬁ (CD* — C*D), {6+1-16)
Note. that a current can flow only if both a right-évanescent (C’) and a left-
evahesecent (D)) wave are present and the ratm of the two amphtudes is a
complex nuniber,

In bound—state problems, the ran e for wlnch V(x) > £ extends to infinity.
In those cases, one of the two coéfficients,in {(6+1-14) must be zero. For x — oo,
we must have D = 0, or else the wave function would become infinite there.
Similarly, forx > —, we must have C 0, for the same reason. In either case,
there is, of course, no eiirrent:

In order for the Schroedmger equatlon to have any physmally meaningful
solutions at all, we must have V(x) < 6 over at leaet some range of x, and this
means that there must be at least one classical turning point x = g where
Vix) — € changes its S1gn In realistic problems Vi) — & wﬂl go through zero

A
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as a continuous function, rather than as a step. In the immediate vicinity of the
classical turning point, neither the first nor the second WKB condition can be
satisfied, and both the oscillating form (6+1—4) and the evanescent form
(6+1-14) of the WKB approx1mat10n diverge, s1gna]mg the collapse of the ap-

proximation. . B

- Suppose, however, that sufficiently far from x = ¢, the WKB approxim

tion is applicable on both sides of a, on one side in the form (6+1-4) and on the
other in the form (6+1-14), with neither form remaining a valid approximation
if it is extended right up to o. This raises the question: what is the relationship
between the coefficients 4 and B on one side to ¢ and D) on the other? This is
the connection problem of the WKB approximation, to be treated in the sectmns
that follow..

;

AMPLE: HARMONIC OSCILLATOR
6.2.1 Phase Connection Rule

Tt is useful to discuss the WKB wave functions and their connection rules foi'
a case for which we know already the exact wave functions: the energy elgen-
states of the harmonic oscillator.

We write the potent1al energy in the form

Vie) = §Mw?x?, (6°2-1)
and we recall that the energy eigenvalues are then given by
= (n + 3how, (602—2)

where the n are the nonnegative integers. We will also need the classwa
turning peints from (2.3-24), ie.,

= \/Zn +1-L, (6+2-3
where o ;
= ViMw (624

is the natural unit of length for the oscillator (see (2+3-7)). )

Because for a one-dimensional stationary bound state there can be no ne
current flow, the WEB wave function (6+1—4) must be a pure standing wave. Ini
this case, the two propagating waves in that function may be lumped togethe
into a real cosine wave, which may be written in the form

lx) = \/m cos[ J Kdy - ]

with a real amplitude A and a suitable phase angle . In (642—5) we hav
- gelected the phase angle o in such a way that the left classical turning poin
serves as one of the integration limits and, hence, as a reference plane for th

(6+2-5
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phase of the wave;-even though- at’ that point: (6+2-5) is no longer a good
approx1mat10n W1thout loss of generahty, we may restrict o to the range

w2 <a< +'JT/2 (6+2-6)

For € = &,, the local WKB wave number Kin Eq. (6+1-2) in the clagsically
allowed range |x] < x, iy given by

K(x) = \/_ﬁ?(e,, - Mot = Vel — o 62D
For later use, we note :tha't ‘
Vinv1 '
KO=ps=—F— (029

o0 o .
We insert (6+2-7) into'(6-2-5), evaluate the result at x = 0, and.compare
it with the known exact wave function at'that pomt To be specific, we agsume
that » is an even number 2 In this’ case, the exact wave function s symmetric
about the point x = 0, and it has n/2 nulls on each side of the plane x = 0. In
order for the WKB wave function to be itself an even function of x, with the
same number of nulls, it is necessary that the- argument of the cosine function
in Eq, (622-5), evaluated at x = 0, be ‘fm integer multiple of &, with the multi-

plier n/2: ‘
| .
\
f dewa-——f %c dx‘ua:—g—ﬁ. {6-2-9)
The integral is 51mp1y the area of' a quarter—mrcle of radius x,.:
f Vil —x%dx = f Hﬂxzdx?z-xz
(6+2-10)
(2n +-1)- L2

'

Here, in the last equahty, we have used (6+2-3). Insertion into (6+2-9) yields

5

o =

T
Z {6+2-11)

independent of the quantum number ‘n, harmonic oscillator. This is the WKB
phase connection rule. Inserted into (6+2-5), (6=2~11) gives
. e -

T

%[’.(x)=&-cosU‘x,de-— ] ‘ :
.. vE - Ly | ":L“ . (62-12a)

2The reader is invited to carry through the argument for odd values of n. While the details are
Qifferent, the final results are the same.

A
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- .Although we have derived this result here for the harmonic oscillator, we
shall ee that it'holds generally, provided that the potential energy varie
sufficiently smoothly across the classical turning point, that it may be approx-
imated by a harmonic oscillator parabela until well into the ranges on both
sides where the WKB wave functions are good approximations. .

Su;iﬁ:h of‘ Reference Plane

In the preceding treatment, we arbitrarily used theleft-hand classical turning
point as reference plane. We could just as well have used the right-hand clas-
sical turning point. It is left to the reader to show that in this case, the WKB
wave function between the two turning points may be written as '

| p@ _24 cos[f+and —’—’] (642121
EVE L, T4l - |

_Whéfe Al = (- 1}”A_. Note that in this formulation, the variahle x appears as the
lower rather than the upper integration limit, and that the integral remains
p_ps_itive. The phgse shift remains #/4. :

622 The WKB Amplitudes and Their Connection Rule’

To determine the WKB amplitudes A and C, and especially their ratio C/A, wi
match the WKB wave functions to the true harmonic oscillator wave function;
atx = 0 and for large values of x. ‘ : :
From the second term inthe recursion relations (2«3-30) for the harmoni
oscillator wave functions, we find, for even order n, that S
(=1 Vn!

P (0) = Aom, (6213

where Ag is the normalization coefficient of the ground-state wave function
fiom (2-3-10) or {2-3-15), depending on the normalization employed. On't
other hand, the WKB wave function (6+2-5), taken atx =0, is
o '_' 24 - . : : 2(*1)"/2\/5
,kww(o) = ) - cos(nm/2) = A - @n + i

-where, in th.e second equality, we have drawn on (6-2-8) and (6-2-9). Equatix;lf
- the WKB value to the exact value yields the WKB amplitude A inside th
classically allowed range: S
A V4l

A = _..‘Ai . (zn - 1) i (6-2_1

VI 22 /2t

3The d,erivé;tion of thé'a.n"gplitud_e connection rule, contained in this sub-zsection, is fairly tedig
The reader may safely skip the details and move directly to the final result, Eq. (6-2-26).

+
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‘ In the opposite limit, @ — =, the:exact wave function is.dominated by the
highest power term in the Iermite polynomial part of the wave function. The
asymptotic limit is obtained -easily from the leading term in the recursion
relation (2+3-30), namely,

. | 2n,/2 . N . i ',

¥ (@) — Ao Vi Q exp(*f)2/2). ‘ (6+2-16)
where !

@ = x/L. (6+2-17)

In the classically forbidden ranges, the WKB wave function mitst be
purely evanescent. Inthe right-hand range, x > +x,, we may write it as

roms (o) == \_/_.'c - expl — de’ . © (6+2-18)
The integral in the exponent has the _:value'
“ ,_ %3 x + (% — x2)/? x - (x? — B2
L ndx' = opE 1‘.‘[ PR ] e . (@219)
In tht_a limit of large x, this goes over into |
s TeETaA T
B @ im (6-2-20)
— . ln \/: o —— = = P
“ , T [Q, m]+2 |‘2+ ’
where, in the second equality, we have substituted x = QL and
2 L ; . .
Rk = 1
prEi=m= n. +3. (6+2-21)

All omittec.l‘ terms decrease with in:crqasing‘x' and Q.
If we insert (6+2-22) and (6+2-20) into (6+2~18) and simplify the pre-factor

according to ’

_1 Q
=i ;c:? — x m T (6+2-22)
we obtain the asymptotic relation |+
; _ Qe \m/2. | Q2 )
Yrwre(Q) — IC\/E . (E) | Q" e_xp(—?). (6-2-28)
Equating (§+2-16) with (6-2-23) yields
S A 11 fmyml
o= - - (-—é«) . (6-2—24)

VL 274 V/nl
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... Weé are principally interested in the ratio C/A of the two amplitudes:

C 2Y2 (2n+ 1V (n/2)!

A e al
I‘lﬁs rather elaborate-looking expression is simpler than it appears: For n = 2,
1, 6, one obtains the numerical values 1.013, 1.006, 1.004, rapidly converging.

toward the (exact) limit 1.0, i.e.,

(6+2-25)

ﬁmgz 1.

(6+2-26)
Lo 2 ]

This is the WKB amplitude connection rule for the harmonic oscillator. Likg
the phase connection rule, it holds more generally, as we shall see presently.

NERAL CONNECTION RULES ACROSS A CLASSICAL
RNING POINT

6.3.1 The Problem

We now show that the phase and amplitude connection rules (6+2-11) and
(6+2-26) for the harmonic oscillator remain applicable to the connection across
the classical turning points of many other “well-behaved” potentials.
Consider a particle of energy &, moving in a potential V{x), with a classica
turning point at x = ¢ (Fig. 6+3-1). Suppose that :

Vix) > eforallx > ¢, (6'3_1.,

and that the second derivative of the potential at the classical turning peint i

positive, _ ' ;
. If the potential varies sufficiently smoothly with position, there w'111 be

wide interval (x:, x1) straddling the classical turning point, inside which th

Figure 6-3-1. Connection acros

Ve a classical turning point. The WKB

wave function, forming a valid a

1 _, proximation ouiside the interv.
xn % (xg, o) is connected across this in
terval using a piece of the solutio

of an exactly solvable potentia

such as the harmonic oscillator p

tential.

General Connection Rules across a Classical Turning Point 175

t

potential may be approximated by a fsection of a harmonic oscillator parabola
of the form .

Valx) = Voo -+ %sz(x‘_ xq)z. {6-3-2a)

We also assume that the eherg'y Ehapfpens to coincide with one of the harmonic
oscillator eigenvalues: B

Sec, 6.3

(6+3-2b)

&= Voo + Fw (n + %)

Exercise: Given specific valies of &a, V'(d), aﬁd Va), dei;ermine the associated fitting
parameters Voo, @, xo, and n. i

Suppose now that the fitting inq‘erval (%1, xn) is sufficiently wide and the
potential sufficiently smooth that the WKB approximation is a good approxi-
mation at both ends of the interval’ and beyond. :

Under the assumption (6+3-1), there can again be no net current flow, and
the WKB wave function in the claSSiﬁ:ally- allowed range must once more be a
pure standing wave of the form (6+2-5), with K = K{(x) given by {6+1-2). Most
important, the phase angle « must} then againibe given by (6+2-11), ie.,
a = —w/4. This is readily seen by the following argument. If the WKB approx-
imation is indeed applicable in the range x >> xy1, then the WKB wave function
must be a pure right-evanescent __wav%: of the form (6-2-18). Because the WKB
approximation is a zero-scattering approximation, a purely right-evanescent
WEKB wave function must connect to a purely right-evanescent harmonic oscil-
lator wave function. But the latter is just the function (6+2-5) with & = —#/4.

Similarly, one also confirms that under the stated assumptions, the am-
plitude connection rule also carries over. If the curvature of the potential is
small, we are in the high-n limit (6:2-26), and we have

C=A. (6+3-3}

6.3.2 Example: An Electron in a;.U_niTorm‘EIectric-FieId
We illustrate the use of theWKB phase connection rule by determining the
energy-levels of.an electron that. is, driven against an infinitely high abrupt
potential wall by anelectric field E (Fig. 6-3-2). :

The potential energy is - .- E

Vix) = {eE_x} for {x N 0}.

The quantum-mechanical problem corresponding to this potential can be
solved rigorously in'closed form, in- Terms'of the so-called Airy function, a

(6-3—4j
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Figure 6+-3-2. Potential energf;
___ for an electron in a uniform electri
x field at a potential wall.

inear superposition of Bessel functions of the order =1/3. The exact valueso
he energy eigenvalues are

£ = Anks, n=1,23, ..
where A, is the nth root of the Airy function® and & is the quantity
. ﬁZ(e E)2 1/3
& = ——'—'] ,

2me.

(6+3-5

(6+3-6
>

which we may view as the natural unit of energy of the problem, deﬁned i
terms of the coefficients 42/2m, and eE occurring in the Schroedinger equation

Along with the energy &, a natural unit L of length may be associater
with the problem, defined by the requirement

ﬁ2
‘EOﬁEELﬁEEeL—Z’ (6 3—7
which leads to
ﬁz 1/8 .
= - 1 ] _...8
[2mgeE] ' (63
Numerically, for an electric field of, say, 10° V/em,
=725 meV; L =0.725 nm. (6+3-9a

We will use here the WKB approximation to obtain an approximate valu
for the various energy levels, to be compared with the exact value.

Because of the infinitely high potential wall at x = 0, the wave function
must vanish there. This means that the argument of the cosine functlon i

4Sse, for example, problem 40 in the book by Fligze, cited earlier, For the Airy fanction itself and(
its roots, see M. Abramowitz and A. Segun, Handbook of Mathemat;cal Functions New York:

‘Dovex, 1965), chapter 10.,
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(6°2-12b), evaluated at.x = 0, must be an odd multiple of 7/2:

J K(x) dx — §= (2n'— b ,:g (6+3-10)

Here we have written ¢ instead of x,, for the as—yet unknown classical turning
point,
& £
a = e— Tn L - —
ek T & :

and the different values of n belong to the different energy e1genva1ues start-

(6-3—11)

- ing with n = 1.

With the help of (6¢ 3-7), the WKB ‘wave number may be written

K@) = 2mg Va — x,

7 (€ — eEx) = (6°3-12)

L5=°'_f2
and the integral in (6-3—10) is easily f(é)und to be

f K() d = f Va= x dx = —(“)m = %(E)m. (6+3-13)
: L 3\ & o

If this is mserted into (6-3—10) we obtam an expression in the form (6+3-5) for
the approxl_mate energy levels, with

T2/2
An = [3%]-(4-”/ o 1):] .

The three lowest values are

(6-3—14) '

A, = 2.321, Az = 4.082, Az = 5.517, (6°3—15a,b,c)
remarlkably close to the ﬁrst three roolI s of the A1ry functmn,
Ay =2338,  As=4088) Ay =5521. - (6-3-16a,b,¢)

Even the lowest level dlﬁ"ers from the exact value by less than 1%.

6.3.3 Ampljtudg Conngcﬁon Ruies

We combine the phase connection rule (6-2-11) with the amphtude connection
rule (6+3-3) to write the connection between the standmg wave (6 2-5)and the
right-evanescent wave (6-2—18) in the form

2 i ! N
@.cos K dx "4 <——\7_; exp| ~ Cxdx’ |,

where ¢ indicates tl}e classical turiﬁné ﬁoint.

(6+3-17a)
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In the form (6+3-17a), the connection rule applies to the case where the
evanescent wave decays into a barrier to the right of the classical turning point.
In the case of an evanescent wave decaying into a barrier to the left of the
clagsical turning point, we have

e

| (6-3;17b)

o

Note that we have indicated the connection between the two wave func-
tions with unidirectional arrows. What is meant by this is the following. If we
start from a purely decaying wave function on the classmally forbidden side of
the turning point, the wave function on the allowed side will, to a good approx-
imation, be given by the cosine-type wave function with the indicated ampli-
tude and phase. However, if a wave function on the allowed side ‘of the barrier
ig of the cosine type, as in {(6+3—17a) or (6+3-17b), the continuation of this wave
function as a purely evanescent wave deep into a barrier is not necessarily a
good approximation! It would be valid only if the WKB approximation and the
connection rules were exact, for arbitrary barriers. But they are only approxi-
mations, which means that an exaet continuation of the cosine-type wave func-
tion into the interior of the barrier would very likely contain a small contriba-
tion from the exponentially growing wave function. Near the classical turning
point this contribution is likely to be negligible, but unless it is exactly zero, it
will ultimately dominate if we continue the wave function sufficiently deep into
the barrier. Hence, we write the unidirectional arrow. .

NNELING
6.4.1 The WKB Wave Function inside a Barrier

As long as we-are dealing with infinitely thick classically forbidden bariers, the
connection rules (6+3-17a) and (6+3-17b} are all we ever need. The situation
changes, however, when we consider tunneling ¢through a barrier of finite
width, as in Fig, 6+4-1. Inside a tunneling barrier, both left-evanescent and
right-evanescent waves will in general be present simultaneously, and the
overall wave function will be a superposition of the form (6+1-14). Further-
more, a current will in general be flowing through the barrier, related to the
two amplitudes C and D in (6+1~14) via the relation (6+1-16). Ev1dently, C and
D cannot both be real, and the wave function becomes complex, as is appropn.
ate for wave functions representmg a current-carrying state.

The case of main interest is that of a purely outgoing wave on the exit 51dj
of the barrler, which we may write in the form ‘

. F ar ‘
: = - || K(ywdy -~ =|7, 6ed—1
ifr(2) VES exp{LU; {¥) dy 4]} (
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W1thout logs in generality, we may assume that all phases are chosen
such that F is real, in which case the probability current density to the right of
the classical turning point is snnply

Figure K 6+4-1. Smooth barrier
potential, ‘

j= 3 2 (6+4-2)

This current densmy must be equal to the current density (61-16) inside
the barrier, which leads to the condition

i{(CD* — C*D) = i | (6+4-3)

With the wave function on each side of the classical turning peint bemg
complex, we need connection rules for both the real and the imaginary parts.
The relation (6+3-17b) is ev1dent1y the comlectmn rule for the real part. This
implies that

D-Fp2 o 6r4)
and- that Cis 1magma.ry Insertlon of D = F/2 into (6+4-3) yields '
C=- (6+4-5)

_He_nce, we obtain the overall complex connection rule across the classical
turning point at & = b, the exit of a barvier:’

Ao+ [ ol )]

& X

1 {(6+4-6)
“VE® e U ]}
The imaginary part. alone may be wntten
Y Y IR W | P
Ve ) 1\/? ay — 4 (8+4-T7)

Note the absence of the factor 2, compared to (6+3—17h).
While (6+3—17b) is the connecmlon rule between a standing wave and an
evanescent wave that decays going| 1nto a barrier to the left, (6 4-7) is the




{APTER 6 WKB A‘pproximation

:nnectmn rule for a wave that grows going into a barrier to the left. If the.

1rr1er is'to the right of a classical turning point at x = a, we obtain

. 1 . 1 .
csin| | Kdy - Z| e - (fd)- g
/——K(x) smU; ‘y 4] Wexp + ) Ky (6 ! ‘)

4,2 The Tunpeling Probability

'e are now ready 1o calculate the probability of a particle incident on the ‘

arrier from the left actually penetrating through the barrier. We work our

ay from the exit side of the barrier to the entry side. We assume that an
1tgoing wave of the form (6+4—1) is present to the right of the barrier, with an-

s-yet unknown real amplitude F. As we saw, this outgoing wave is connected

» the complex superposition of left- and right-evanescent waves (6+4-6). We:
»write this superposition by shifting the integration limits, which serve as’
rference planes, to the left classical turning pomt x = a. This leads to the’
Irm

a 3

‘here

s ool )

"G

i the attenuation factor of the amplitude of each of the evanescent waves.

wide the barrier, in the direction of evanescence.

The case of prlnmpal interest to us 1s that of a relatively opaque barrier,

haractenzed by the condition

y<1l. : (B4-11)

' this limit, the rlght—evanescent term in (6+4-9) will dominate near the left.

urning pomt and we may, to the first order, neglect the left-evanescent term

hut aceording to {6+3—17a), this right- evanescent term is connected across the:
aft classwal turmng point to a standmg ‘wave of the form (6+2-5), W1th an.

mphtude
A= ~§ F. & (6+4-12)

If we write the cosine function in (6+2-5) as a superposition of an mmdent'

nd a reflected plane wave, we see that the incident plane wave has the ampli-

ude A spem.ﬁed by (6 4—12), corresponding to an incident probablhty current

len31ty .
. A A |FP?
=, 2 = —

(6+4-18)

B F Z " “T; . _ X ‘ ] .:
v el )5 el )} e
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But 1E,he ratio of the transmitted current density (6+4—2) to the'incident current
density is, of course, the tunneling probability 7%

a

- ’ b
= JT
T's—"= [AE = %.EXP(T“Z f ‘Kd.’)’)- (6+4-14)

In cur treatment, we assumed specifically that the potential changed
smoothly through both classical turning points, se that the WKB connection
rules had to be nsed at. both ends of.the tunnel. In several cases of practical
interest this is not the case. It then becomes necessary to treat the discontinu-
ous end(s) of the tunnel by the propagation matrix method developed in chap—
ter 5. Problem 6.4-1, next, is an example

'PROBLEM TO SECTION 6.4

#6-4—1 Tunnellng through a Barrler WIth an Applled Voltage

In solid-state physws, one encounters the ‘problem of the tunneling of electrons through
a thin oxide layer between two metals, ag a function of the voltage AV applied between
the metals, A simple model of this problém is the tun.nelmg through the trapezoidal
barrier shown in Fig. 6.4-2.

Flgure 6+4-2. Trapezoidal bar-
rier model for the tunneling of elec-
trons through an oxide barrier be-
" tween two metals.

Determine t.he tunnehng probabmty asa tunctmn of AV, prov:ded that AV remains less
than Vo~ & For simplification, assume that ‘L'and Vy are large enough that the total
tunneling probab111ty remains very small compared to unity, -

1

I




