DOPDEES

(Dial an Operator Partial Differential Equation Evaluator and Solver)

User’s Guide and Reference Manual

Alp H. Gencer

Version: 99.11.08



Contents

1 Introduction 2
1.1 Overview of concepts . . . . . . . . . . L 2

1.2 Invoking DOPDEES . . . . . . . . . ... o 3

2 An overview of Tcl 4
2.1 Description of syntax . . . . . . . ..o Lo 4
2.1.1 Substitutions . . . . . . . .. .. 4

2.1.2 Grouping . . . . ... 5

2.2 Tclcommands. . . . . . . . . . e 6
2.2.1 Variable commands . . . . . . . . .. ... 6

2.2.2 Listcommands . . . . . . . . . . ... 7

2.2.3 Control flow commands. . . . . . . .. ... ... ... ... ..... 7

2.2.4 Procedures. . . . . . . . ... e 8

3 DOPDEES commands 9
3.1 The structure command . . . . . . . . . . . .. ... ... 10
3.2 Theregioncommand . ... ... ... ... ... ... ... 10
3.3 The field command . . . . . . . . . . . . . ..o 11
3.4 The func command . . . . . . . . ... 12
3.5 Theopcommand . ... ... ... ... ... 12
3.6 The solver command . . . . . . . . . . . . ... 13
3.7 Supporting commands . . . . .. ..o Lo 14
3.7.1 The writetofile command . .. .. ... . . . ... .. ....... 14

3.7.2 The integrate command . . ... ... ... .. ... ........ 14

3.7.3 The arrhenius command . . .. .. .. .. ... .. ... ...... 14

4 Operator and Function Reference 15
4.1 Bulkoperators . . . . . . . . . .. . 15
4.2 Interface operators . . . . . . . . . . ... 16
4.3 Functions . . . . . . . . . e 16

A A word about the units 19

© 1996-98 by Alp H. Gencer



Chapter 1

Introduction

DOPDEES is a multi-purpose PDE initial value solver in one spatial dimension that uses
dial-an-operator paradigm for specification of the equation system. The primary aim of the
code is rapid development of continuum models and may be used in a variety of systems. It
is intended to be easy to use and easy to extend with new operators.

DOPDEES can be used in any system where the user wants to get solutions of coupled
partial differential equations. The program was originally written to solve diffusion/reaction
problems, but can be suited to any purpose. If the operators or functions the user needs are
not included in the code, it is relatively easy to add them. Other nice features include allowing
the user to select the integration engine, as different systems might benefit from different
numerical algorithms. There are commands for grid generation and result extraction.

The user interface of DOPDEES is in Tcl, which provides a powerful way of scripting for
the input. The Tcl syntax, as well as the basic Tcl commands are explained in Chapter 2.
The commands that DOPDEES adds to Tcl are explained in Chapter 3. The list of operators
and functions defined in DOPDEES is discussed in Chapter 4.

1.1 Overview of concepts

DOPDEES solves a given set of partial differential equations. The (one dimensional) space is
assumed to be divided into chunks called regions, and it is assumed that different equations
need to be solved in different regions. The solution variables are called fields and it is assumed
that for all fields equations of the type 0f/0t = ... exist, that describe the PDEs. A field
specified in one region doesn’t exist in others, unless you explicitly specify it. Actually, the
only communication between regions can happen through boundary transfers.

The right hand side of partial differential equations are specified as a sum of operators:
df/0t = > op; This approach is called the dial-an-operator approach, since the user can
choose the operators on the right hand side. The operators can make use of functions, which
calculate a certain function of their inputs.

Advantages

e Easy to learn user interface in Tcl.



e Small, easily expandable and fast code in C++.
e Different systems of equations can be specified in different regions, with different fields.

e User-selectable integration engines.

Shortcomings

e 1-dimensional.

e Supports only parabolic equations of type df/0t = ... In practice, this shouldn’t be
a problem, since PDEs involving higher order time derivatives may be decoupled into
sets of PDEs with first order time derivatives.

1.2 Invoking DOPDEES

DOPDEES can be invoked in either interactive mode or can be made to process a script by
giving the script name as an argument. In either case, it first searches a user preferences
script, and executes it. This script is usually ~/.dopdeesrc, but can be changed by setting
the DOPDEESRC environment variable. The environment variable BUSTOPDIR has to be set
to the directory contaioning the BUSTOP programs prior to using any BUSTOP program.
Also, add the directory $BUSTOPDIR/bin to your path.

If DOPDEES is invoked with no command line arguments it goes into interactive mode.
It prints out a prompt and waits for the user to type commands. After each command typed,
DOPDEES processes the command and prints out the result of the command. This mode
is usually not very well suited for running simulations, but may be used for quick checks.



Chapter 2

An overview of Tcl

2.1 Description of syntax

This section is intended to give a brief overview of the capabilities and syntax of Tcl, without
going into the details of the “language”. Users who wish to learn more about Tcl may refer
to the following references:

e J.K. Osterhout. Tcl and the Tk toolkit. Addison Wesley (1994). ISBN 0-201-63337-X.

e B.B. Welch. Practical programming in Tcl and Tk. Prentice Hall (1995). ISBN 0-13-
182007-9.

I think it is important to realize that Tcl is a string parser and not a programming
language in the sense we think (such as C and perl, both of which have very complicated
syntactical rules). Actually, Tcl shows that a language can be created with very little syntax
and clever definition of commands. The basic building blocks of a Tcl script are commands
which consist of words (command name and arguments) separated by spaces:

command argl arg2 ...

Newlines and semicolons serve as command separators. Long lines can be continued on
the next line by ending the line with a backslash. Whitespace serves as word separator. The
important thing to note about Tcl is that all commands, including flow control, assignment
and subroutines have this generic form.

A special “command” is the pound character (#), which is the “comment command”.
Thus you can type a pound and then a comment whenever Tcl is expecting a command.
If at the current position of the script, Tcl isn’t expecting the beginning of a command,
(meaning it’s not the beginning of a line or it is not the first character after a semicolon) the
pound is interpreted literally.

2.1.1 Substitutions

As mentioned, Tcl is basically a string parsing language. Thus everything happens in the
form of strings flying back and forth. A very important concept is the concept of string
substitutions which gives you a very powerful way of manipulating strings. There are three
kinds of string substitutions that can occur in a Tcl script:

4



Backslash substitutions

This is similar to many languages: a backslash followed by a character has a special meaning.
Favorite examples are \n for newline, \077 for octal codes, \$ for a literal dollar sign, etc.
Backslash-newline sequences are replaced by a space, and this is why you can continue on
the next line when you end a line with backslash.

Variable substitution

A dollar sign followed by a variable name causes a variable substitution. All variables in Tcl
have string values, thus this substitutions is literally a string insertion. $day will substitute
the value of variable day at this point of the script. If the context is such that the variable
name cannot be identified, curly braces must be used, such as in ${day}th day of week.

Command substitution

This is one of the most powerful features of Tcl. A command enclosed in square brackets
like [command args] causes the output of the command to be substituted at this point of
the script. This works much like the back ticks in a shell script. This provides the way to
manipulate the outputs of Tcl commands.

2.1.2 Grouping

The words are separated by whitespace. It is important to note that groping occurs be-
fore substitutions. Thus in a construct like wordl $var word3, even if the variable’s value
contains a space, it is considered to a single word.

Tecl provides you with two ways of grouping. When we talk about grouping, we mean the
clumping of words (separated by whitespace) into a single word.

Grouping with substitutions

The first way to quote is with double quote signs (") as in "This is a quote.". All
characters until the next quote sign are count as a single word, even if spaces occur within
the quotation. Substitutions of all three kinds do occur within double quotes. Thus in a
construct like "The price is $price." the value of the variable price will be substituted.
If you want to use a double quote character within double quotes, you may use a backslash
substitution (\").

Grouping without substitutions

If you group with curly braces { }, no substitutions will occur (not even backslash substi-
tutions). For any opening brace, Tcl finds the matching closing brace and treats everything
within as a single word. This is a very powerful technique for grouping large portions of Tcl
scripts into a single word.



2.2 Tcl commands

As you can see, we have described the whole Tcl syntax in just two pages. With this string
manipulation techniques, and the built-in commands described below, it is amazing how
much you can do with Tcl. In description of the syntax below, command names appear
boldface and arguments appear slanted.

2.2.1 Variable commands

These are the commands in Tcl that manipulate variables:

® expr expression

The expr command concatenates all of its arguments into a single string and evaluates
it as a mathematical expression. It returns the resulting number, or an error message
if the evaluation fails. expr understands most C operators, as well as some built-in
math functions. Examples:

— expr 7+3: returns in 10.

— expr $a + 3 : returns 3 plus the value of variable a.

— expr [command]/5 : returns the result of command divided by 5.

— expr log($b) : returns the natural logarithm of the value of variable b.

e set variable value
The set command sets the variable variable to the value value. If value is omitted it
returns the value of the variable. Thus [set variable] is equivalent to $variable.
Examples:
— set a 3: sets a to 3.
— set b $a+4 : sets b to 3+4 (and not 7).
— set b [expr $a+4] : sets b to 7.

e unset variablel variable2 ...

The unset command deletes all the variables that are specified as arguments to it.

e incr variable “count?

Increment variable by count, by 1 if count is not specified.

e eval args

Evaluates its arguments and returns the result. Useful when you need a second round
of evaluations.



2.2.2 List commands

Tcl provides a data structure called list, which is nothing but a list of strings. There are
numerous commands that manipulate lists, we have selected a few of them:

e list argl arg?2 ...

The list command takes all of its arguments and makes a list out of them, and returns
the list. Even if any of the arguments is a list itself, it still will be a single element in
the new list.

e concat argl arg? ...
Similar to list, but concat concatenates multiple lists together, thus arguments that
are lists have their elements separated.

e lindex list i

Returns the ith element of list.

o llength list

Returns the number of elements in list.

e lappend listVariable argl arg?2 ...

Appends elements to an existing list.

2.2.3 Control flow commands

Control flow, like anything else, is handled by commands in Tcl, many of which should be
familiar to experienced programmers. The most important ones are:

e if expr then bodyl elseif expr2 body2 ... else bodyn

This is how if command is implemented in Tcl. expr is an expression which will be
evaluated by if (thus, you don’t need to specify [expr ...]), and if it is true, body1l
will be executed as a Tcl script, if it is false, testing will go on. Don’t forget to quote
the bodies with braces, otherwise they will be evaluated before if gets a chance to
decide which one to execute. It is also a good idea to put the expressions in braces to
prevent any surprises (such as when including spaces in the expression). Don’t forget
to put spaces between the closing and opening braces, since this is how Tcl breaks up
the command into “words”. Example:

if {$x <0} {

set $abs [expr -$key]
} else {

set $abs $key
}



e while expr body

The while command evaluates expr and executed the body repeatedly until expr be-
comes false. It is crucial that you supply the expr in braces, otherwise it will get
evaluated once before the while command is executed, and you’ll never get out of the
loop. As usual, body must be supplied within braces, as well and the space between
the two arguments can’t be omitted.

e foreach variable list body
The foreach command assigns variable the value of each element in the list and exe-
cutes the body.

e for initial expr final body
The for command first executes initial as a script, and then executes body followed by
final until expr becomes false. Don’t forget to put all arguments in braces.

e source file

Executes file as a Tcl script and returns the result of last command in that file.

e exec command

Executes the shell program command and returns the output.

e exit

Terminates the current script.

2.2.4 Procedures

You can define your own commands as Tcl procedures. Once defined, a procedure behaves
like any other command. You can define your procedures using:

e proc name args body

The proc command is used to define procedures. name is the name by which the
procedure (command) will be referred. params is a list of parameters. If the last
parameter is the special args then all parameters not assigned to the ones before will
be lumped as a list to args. body is the procedure body. The example below reverses
the order of its arguments and returns a list:

proc reverse {args} {
# Start with empty list
set result {}
for {set i [expr [llength $args]-1] } {$i>=0} {incr i -1} {
lappend result [lindex $args $il
}

return $result



Chapter 3
DOPDEES commands

As with any Tecl application, DOPDEES adds a few commands to Tcl. When you use
DOPDEES, in addition all Tcl commands, you may use the commands described in this
section.

DOPDEES commands expect certain arguments to be of a certain type. We have used
some conventions for the arguments of commands throughout this manual. They are listed
in Table 3.1. None of the delimiter characters may actually be typed, they are just used to
indicate the type of the argument in an easy manner.

Argument Meaning

| number | A floating point number (scalar)
#field# A field name

<evaluable> | An evaluable

hregiony A region name

"string" A string

literal Word must be typed literally

Table 3.1: Conventions for arguments used throughout this manual.

Note that whenever a DOPDEES command expects an evaluable, you may use any of
the following:

e A function that you explicitly specify (with the func command, see below)
e A valid field name in the active region.
e A floating point number.

Every structure has a region called “Ambient”, which surrounds all regions in the struc-
ture. That is, the leftmost and rightmost regions in a structure are called “Ambient”. In
“Ambient” no grid or fields can be defined, but functions can be defined. The functions
defined in region “Ambient” can be called from any region.



3.1 The structure command

The structure command is used for actions related to the current structure in memory.
The structure can be abbreviated down to stru without conflicting with other commands.
These are the actions that can be performed by the structure command:

e structure load "filename"

Loads the structure file denoted by "filename" into the memory (no quotes are actu-
ally necessary). The syntax of a structure file is described in the appendix. Returns
an error message if an error occurs, otherwise returns nothing.

e structure save "filename"
Saves the current structure in memory to the file denoted by "filename". Returns an
error message if an error occurs, otherwise returns nothing.

e structure clear

Deletes the current structure in the memory.

3.2 The region command

The region command is used for creating, selecting and performing various operations on
regions. Here are its options:

e region create %region
Creates a new region named Jjregionj, to the right of the current region. The new
region is also made the active region.

e region remove

Removes the current region from the structure. Ambient is made active.

e region select Yregion/

Makes the region denoted by %region active. All functions and operators until the
next region select command will apply to the active region.

e region current

Returns the name of the current region.

e region neighbors

Returns a list of the names of the regions surrounding the current region.

e region list

Returns a list of regions in the structure.

10



e region eval <eval>

Returns information about the evaluable <eval> in the current region. If the evaluable
has a time independent value, this value is returned. If the evaluable is a field, the
name of the field is returned. If the evaluable is a function, the formula for this function
is returned. Very useful in debugging the program.

3.3 The field command

The field command is used for creating, deleting and performing various operations on
fields. It acts only on fields in the current region. Here are its options:

e field create #name# <eval>

Creates a field with the name #name#, and initializes it to value calculated by the
<eval>. The fields created previously can be used in the script and the field “x”
stands for current z coordinate. Any field is local to the active region and will not
reappear in the next one.

e field set #name# {CO C1 C2 ...}
Creates a field with the name #name#, and initializes it to the list of values specified.
Useful for reading a saved structure.

e field interpolate #name# lin|log filename

Creates a field with the name #name#, and initializes it to values interpolated from
the table in the file filename. The file must list one x and one y value at each line.
lin or log must be specified, which tells whether the interpolation will be linear or
logarithmic.

e field delete #name#

Deletes the field named #name#.

e field list

Returns a list of fields in the active region.

e field tabulate <evall> ...

Tabulates the values taken by <eval>s. As usual, the <eval>s can be field names or
functions. If the x coordinates are to be tabulated as the first column, simply specify
x as the first <eval>.

e field x {Ix0] |dxO| Ix1| |dx1] ...}

Creates a grid in the current region with grid points at |x|s and spacings of |dx|s.
Grid points are added to make the spacing equal to |dx|s. The grid spacing is changed
smoothly if the specified |dx|s are different. IMPORTANT: |x|s must be in increasing
order. |dx| cannot be zero.

11



e field xset {Ix0| Ix1| I|x2| ...}

Creates a grid in the current region with grid points only at |x|s.

field create, field set or field interpolate commands cannot be used before the
grid is specified. Only one field x or field xset command may be specifed in a region.

3.4 The func command

The func command is used to specify a function. The syntax is:
func "name" argl arg2 ...

where argl, arg2, etc are arguments to the function. It returns the function created. The
function will be defined in the active region only, and must be respecified if one wants to use
in another region (except when the active region is “Ambient”, in which case the specified
function can be used in any region).

If "name" is omitted, it returns a list of available functions in DOPDEES. The list of
available functions can be found in Section 4.3.

Note that whenever a DOPDEES command expects an evaluable, you may use any of
the following:

e The result of a func command as in [func "name" args]

e A valid field name in the active region. The function is then a function returning the
value of that field.

e A floating point number. Then the function is a constant function.

The func command returns a symbolic name for the defined function. Any given function
will be calculated only once at each time step, even if it is used in multiple places. To use a
function in multiple places, store the result of the func command in a variable, and substitute
it to every place you want to use the function.

3.5 The op command
The op command is used to specify operators in the current region. The syntax is:
op "name" #lhsi# ... argl arg2 ...

Similar to functions, each operator has an effect only in one region, namely the active
region. #1lhs# ... specify the left hand side field(s) of the operator, and argl ... are the
arguments to the operator.

If "name" is omitted, it returns a list of available operators in DOPDEES. The list of
available operators can be found in Section 4.1.

12



3.6 The solver command

The solver command is used to specify the actions and parameters of the PDE solver. The
solver command may be abbreviated down to sol without conflicting with other commands.
Here are the actions taken by the solver command:

e solver tolerance |reltol| |abstol|

Sets the relative tolerance to |reltol| and absolute tolerance to |abstoll| (optional).
The default relative tolerance is to 0.01.

e solver engine "ODE_engine"

Specifies which integration engine to be used. The default engine is dvode-nj. Cur-
rently the following engines can be specified:

— rkc: Runge-Kutta-Chebyshev ODE solver written by B.P. Sommeijer, J.G. Verner
and L.F. Shampine. This is a non-stiff integration engine.

— 1sode: Livermore Solver of Ordinary Differential Equations written by A.C. Hind-
marsh. It uses between Adam’s formula for non-stiff problema and Backward
Differences formula for stiff problems. Four variants of this engine have been
implemented in DOPDEES:

* lsode-ns: Non-stiff 1sode. Uses Adam’s fomula.

% lsode-nj: Stiff 1sode with numerical evaluation of the (banded) jacobian.

* lsode-aj: Stiff 1sode with analytical evaluation of the (banded) jacobian.
This requires more coding than 1sode-nj, but is faster for systems with more
than 5 fields in at least one region.

* lsode-fj: Stiff 1sode with numerical evaluation of the full jacobian. This is
very slow, but must be used when an odefunc function is used.

— dvode: Variable-coefficient Ordinary Differential Equation Solver written by P.N. Brown,

A.C. Hindmarsh and G.D. Byrne. Again, four variants of this engine have been
implemented in DOPDEES:

* dvode-ns: Non-stiff dvode.

* dvode-nj: Stiff dvode with numerical evaluation of the (banded) jacobian.

* dvode-aj: Stiff dvode with analytical evaluation of the (banded) jacobian.
This requires more coding than dvode-nj, but is faster for systems with more
than 5 fields in at least one region.

* dvode-fj: Stiff dvode with numerical evaluation of the full jacobian. This is
very slow, but must be used when an odefunc function is used.

e solver run |start_time| {timelist} {script}

This command actually starts the PDE solver and runs it from the time specified by
|start_time| to each time in the list {timelist}. If a {script} has been specified,
it will be run after every run to times in the {timelist}. This is useful for extracting
intermediate results. Before the {script} is executed, the Tcl variable ¢ is set to the
current time.

13



3.7 Supporting commands

The following set of commands are actually not defined by DOPDEES, but by an initializa-
tion script, which is run every time DOPDEES is invoked. They support native DOPDEES
commands for increases in productivity.

3.7.1 The writetofile command
The writetofile command writes a string to a file. The syntax is:
writetofile filename string

Here filename is the name of the file to be used (the file is created, or if it exists it is
overwritten), and string is the string. Typical usage for this command is to write a profile,
returned by field tabulate command, to a file:

writetofile cb.out [field tabulate x CB]

3.7.2 The integrate command

The integrate command is used to calculate the integral over the spatial coordinate of a
profile. This is useful for calculating the total dose. The syntax is:

integrate profile |[numcomp]|

Here, profile is the output of a field tabulate command. |numcomp]| is the number of
expressions in the profile, and if omitted, is assumed to be 1 (the profile of a single variable).
Typical usage:

puts [integrate [field tabulate x CB]]
puts [integrate [field tabulate x CI CV] 2]

3.7.3 The arrhenius command

For quantities which have an Arrhenius type dependece on temperature, the arrhenius
command may be used:

arrhenius PRE ENERGY ?UNIT?

The arrhenius command will calculate the value of the quantity by assuming an Ar-
rhenius dependence on temperature with PRE being the pre-factor and ENERGY being the
activation energy in eV. The command assumes that a global variable called TEMPK has been
set to the temperature in Kelvin. UNIT is optional and if omitted the quantity is assumed
to be unitless (i.e. having units of 1).

14



Chapter 4

Operator and Function Reference

4.1

Bulk operators

op func #field# <function> +|-

funcop adds or subtracts the value returned by <function> to the residual of #fieldit.
It can be used to built arbitrary zeroth order operators.

op diff #C# <D> <F>

diff is the diffusion operator (second order spatial derivative). It adds the following

to the residual of C at grid point

(Diy1 + D) Ezle _(p, + ;) Bl

Ti+1—Z; Ti—Ti—1

Tit1 — Ti—1

op ddx #C# <F> <kk>

ddx is the first spatial derivative operator. <F> is the function to be taken the derivative
of, and <kk> is a function that will multiply the evaluated derivative.

op upwind #C# <F> <v>

upwind is another version of the first spatial derivative operator. It adds the follwing

to the residual of #C#:
oF

_/l)—
ox
A backward difference is used when v > 0, otherwise a forward difference is employed.
op cluster #fieldD# #fieldC# <Css> <k> |[Cmin|

Implements a one-moment clustering model of dopant #fieldD# into cluster #fieldC#.
If the concentration of #fieldD# is larger than the solid solubility (<Css>), that is,
the clusters are forming and growing, then the following is added to the residual of
#fieldD# and subtracted from the residual of #fieldC#:

k ((Cp = Cw)Cc +2(Cp — C)?)

15



If Cp < Cg, that is if the clusters are dissolving the second term is set to zero. Cmin
denotes the cluster concentration, below which the model will be turned off (to avoid
numerical problems when all clusters have been desolved).

4.2 Interface operators
Interface operators have the following generic syntax:
op operator_name "other_region" #field# argl arg2 ...

Obviously, one needs to specify on what interface the operator will be effective. "other_region"
is the name of one of the neighboring regions of the current region, and the operator will
apply to the interface of current region with "other_region".

e op mixed "other_region" #field# <Cint> <Ceq> <sigma>

Specifies a mixed boundary condition of the type:

oC

-D == — int _ oveq
9 o(C C*Y)

r=interface

This operator adds the following to the residual of #field# at the interface of current
region with "other_region" (Az is the grid spacing at the interface):

o

int _ ~veq
Aa (c C*Y)

e op transfer "other_region" #fieldl# #field2# <C1> <C2> <kk>

Boundary transfer operator at the boundary of current region and "other_region".
Note that these two regions must have a common interface. It first calculates the
following quantity:

R = —kk(Cy — Cy)

where (' is the value of <C1> at the interface in the current region and Cs is value
of <C2> at the other side of the interface. <C1> must be an evaluable in the current
region and <C2> an evaluable in the neighboring region. |kk| is a multiplier.

The operator adds R/Ax™ to the residual of #field1# in the current region, at the
interface, and subtracts R/Az~ from the residual of #field2# in the other region, at
the interface. Azt and Az~ denote the grid spacing on the current region side and
the other region side of the interface, respectively.

4.3 Functions

Currently, the following functions have been implemented:

16



func sum <F1> <F2> ...

Returns the sum of <F>s.

func prod <F1> <F2> ...

Returns the product of <F>s.

func div <F1> <F2>

Returns the quotient of <F1> over <F2>.

func power <F> |power]

Returns <F> to the power |power]|, if <F> is positive, zero otherwise.

func sqrt <F>

Returns the square root of <F>, if <F> is positive, zero otherwise.

func log <F>

Returns the natural logarithm of <F>, if <F> is positive, zero otherwise.

func exp <F>

Returns the exponential of <F>.

func min <F1> <F2>

Returns either the minimum of <F1> or <F2>.

func max <F1> <F2>

Returns either the maximum of <F1> or <F2>.

func time

Returns the current integration time.

func carrierconc <Cnet> |nil

Returns electron concentration divided by intrinsic carrier concentration (n/n;). Given
the net donor concentration (<Cnet>) and intrinsic carrier concentration (Inil), it
returns the following value:

(Cnet/Qni) + \/(Cnet/2ni)2 +1

func diffusivity <nni> [DO| [|D-| [|D+| |D=|

Returns the diffusivity calculated according to the following formula. The function
assumes that np = n?.

D° + (n/n;)D~ + (p/ni;)D* + (n/n;)>D~

17



e func arrh <pre> <energy> <temp>

Returns an Arrhenius function, depending on the Kelvin temperature (<temp>). The
functions returns the following value (kg = 8.62 x 107°eV):

E
Cpre eXp (kBT) )

18



Appendix A

A word about the units

DOPDEES doesn’t have any sense of units. Thus, the user must use a consistent set of units
for all variables. The input grid must also be specified in the unit system of choice. Usually,
it is best to choose a standard unit system, such as m-kg-s (MKS) system.

For systems in VLSI processing, the standard unit system is cm-s. Thus, concentrations
are given in cm 3, diffusivities in cm?/s and distances (including the input grid) should be
given in cm. DOPDEES doesn’t do a um to cm conversion like some other simulators.

However, this system of units results in a great discrepancy in the order of magnitudes
of the resulting variables. The concentrations are up to the order of 10?2, but diffusivities
are down to the order of 107!8, such that there are 40 orders of magnitude difference. This
may result in numerical problems if a concentration and a diffusivity are used as two fields
in the same file. The reason for this huge difference in order of magnitudes is that cm is not
an appropriate distance unit for VLSI systems. Almost all processes take place in distances
on the order of 0.1um in todays VLSI processes. The appropriateness of s as a unit can be
discussed, as the time range for processes is anywhere from 1s to 2 days. But it is certainly
advisable to use um as a unit in VLSI systems. Thus, concentrations should be given in
pm~3 diffusivities in ym?/s and distances (including the input grid) in um. This closes the
order of magnitude difference from 40 down to 20.

Included with DOPDEES distribution is a package called UNITS, which has simple com-
mands for resolving unit discrepancies. Please read the documentation for this package.

19



