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Chapter 1

Theory

Nucleation and growth processes play a critical role in a large range of materials process-
ing systems. Classical modeling approaches divide such processes into two discrete steps,
with nucleation and growth being modeled using fundamentally different assumptions, each
valid only under idealized conditions. Thus, although these approaches are very useful for
understanding qualitative behavior, they are unsuitable in many cases for the developmen-
t of quantitative models, particularly under complex annealing conditions (e.g., multi-step
anneals). Noting the power of modern computers to solve complex systems of coupled d-
ifferential equations, we have developed a unified approach to modeling of nucleation and
growth processes which extends nucleation theory to include the behavior of supercritical as
well as sub-critical aggregates.

This manual describes briefly the theory that’s underlying the Kinetic Precipitation Mod-
el (KPM) and the specific implementation. User’s that are only interested in using the model
can confine themselves to Chapter 2, although a short look at this chapter should help to
understand the parameters.

1.1 Full Kinetic Precipitation Model

The major challenge in modeling the evolution of precipitates and extended defects is the
fact that different sized defects have very different properties. The Full Kinetic Precipitation
Model (FKPM) [3] treats precipitates of different sizes as independent species (f,) and
accounts for their kinetics by considering the attachment and emission of solute atoms.

The driving force for precipitation is the minimization of the free energy of the system,
where the free energy of a size n extended defect is given by:

AG, = —nkTIn g“ + AGe (1.1)

Here, C* is the solid solubility and AGT* is the excess surface and strain energy of a size n
extended defect.

The main reaction in the system is the attachment and emission of solute atoms to and
from precipitates. If I,, denotes the net growth rate from size n to n + 1 we may write the



following equation:
I — D)\, (Cafn — CF fry1) forn>2 (1.2)
" D)\l (Ci — Cikfg) forn=1 '

Note that I; is different from other terms, because it represents the rate for formation of the
defects by reaction of two interstitials.

The growth rate of precipitates is written in the form D),, where )\, incorporates effects
of both diffusion to the precipitate/silicon interface and the reaction at the interface. A,
is calculated based on solving the steady-state diffusion equation in the neighborhood of a
precipitate, taking its shape into account. C) represents the interstitial concentration at
which a size n precipitate would gain no energy by growing from size n to size n + 1:
exc AG%XC)
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The evolution of the size distribution f,, is given by the difference between the net rate
at which defects grow from size n — 1 to n (I,,_1) and the net rate of growth from size n to
n+1 (I,). Since the fundamental growth process is the incorporation of a solute atom, the
total change in C'4 includes a term from each growth reaction, giving a sum over I,:
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1.2 Reduced Kinetic Precipitation Model

The Full Kinetic Precipitation Model adds an extra dimension, namely precipitate size, to
the problem being solved. To minimize the computational budget, Clejan and Dunham
[1] have developed a more efficient version of this model, based on the same principles.
Instead of calculating all the f,,, one needs to calculate only the lowest three moments of
the distribution (m; = $°,n'f,, where 1 = 0,1,2) and make a closure assumption. In
particular, the closure assumption used is that the distribution is the one that minimizes
the free energy, given the moments. The resulting system, known as the Reduced Kinetic
Precipitation Model (RKPM), has the following set of continuity equations:
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Note that the sums over the [, can all be written in terms of sums over f,, and nf,, and
hence can be calculated from the three moments.[1] However, these calculations require the
solution of a non-linear equation system at every time step and each grid point. To make
the simulation computationally efficient, the sums are pre-tabulated for a range of m; values
and interpolation from these values is used during the simulation. The resulting system is
thus:
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1.3 Algorithm of the Table Generator

At the heart of the implementation of the Reduced Kinetic Precipitation Model lies the
look-up table, that is used to get the values of ~; during the simulation. Since the 7; and
the moments are related by means of strongly non-linear sets of functions, a table look-up
and interpolation method is used to calculate ;.

The distribution of the defects over sizes is given by the function derived from the closure

assumption:
exc
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with K, z; and 29 are chosen given the moments. Obviously, K is just a normalization
constant, hence we can normalize the distribution by dividing by my. We denote normalized
values with f,:

0 ~
n=2

ann = my (19)
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Figure 1.1: Black regions denote the physically impossible values of ms and grey regions
denote portions of the mq,m, plane where “narrow” is called. The pattern repeats itself
continuously to the right.

The shape of the distribution, which is determined by z; and z, depends only on m;
and my. To generate the look-up table, we find 21,2, values corresponding to various my,ms
values, and calculate 7; from that.

1.3.1 Layout of the grid

There are, however, some issues related to the limits of the table and the grid spacing. The
first obvious limit is that r; >= 2. Also, for any statistical distribution 1y >= r?.

There is, however, one more interesting point due to the discreteness of the precipitate
sizes: The relationship 7y = m? for any distribution is true only if there is a single size
present, namely m;. What if m; is non-integer? Then, obviously the above equality cannot
hold, since there will be at least two distinct sizes present: the two integer numbers that
bracket ;. So, if we plot the minimum 7, — Mm? that is theoretically possible versus the
size, we get something like Fig. 1.1.

Thus, we use a minimum value of 7, — Mm? equal to 0.25 for the look-up table, and use
a routine called narrow for 1, — m? values less than 0.25. The routine narrow assumes no
specific distribution function as given in (1.8), but assumes that precipitates are limited to
only three sizes: the two bracketing 7;, and one smaller or larger than these (whichever is
closer to 7). Then, it solves three equations (1.10) for the three unknown f,, and calculates
7v; from that.

If the average precipitate size is less than some number, it is assumed that only precipi-
tates of size 2, 3 and 4 are present, and again narrow is used.

The remaining portion of m,my plane is grided and a look-up table is generated. To



make the griding equally spaced, and to correctly set the origin of the table, the following
transformed variables are used as the base of the grid:

my = log(rhy — (mP™® —_1)) (1.10)
Ty = log (%)

1

(1.11)

This ensures that the lower left-hand corner of the grid is at (0,0). The grid is equally
spaced with the fineness the user specifies.

1.3.2 Filling the table

The table is “adaptive”, i.e. a grid point is generated only when it is needed. The lookup
routine calculates first m,my values and determines from that whether a table interpolation
is needed or narrow routine will be called. The interpolation routine calculates m4,mo values
and finds into which box they fall. Then, the four grid points surrounding that box are
requested from the table. If they had been previously generated, the ; values are returned
immediately, otherwise the table generator tries to generate these points.

Since my,mo and 21,25 are related through highly non-linear functions, a Newton-Raphson
multi-dimensional root finder is used to find the z;,z, values corresponding the requested
point. Since Newton-Raphson may become unstable and not converge, we need a close
starting point, like the next grid point to the one requested. So, 21,29 values for that point
are asked, and if that point hasn’t been previously generated, first that point is generated.
This search process continues until a generated point is found. The table always starts with
one point, the lower left-hand corner point, which is filled during initialization.

Upon exit, the generated portion of the table is written to disk, with the user-specified
file name. So, successive calls to a table with the same parameters causes the table to be
read from the disk, expanded if necessary, and then to be rewritten to disk.

1.3.3 Re-discretization

The sums that appear in the expressions for v; (Eq. 1.7) can easily be calculated by direct
summation over the range of sizes of interest. However, for systems where the sizes can
get very large, such as dislocation loops in silicon, doing the sums from, say from size 2 to
1,000,000 becomes very cumbersome. We may gain in speed if we realize that for larger sizes
the distribution will not vary considerably from one size to the neighboring one. Thus, we
will only need some representative value of f, for a range of n values. We assume that the
distribution is continuous for large sizes and then re-discretize it.

The n; values that we will consider in the sum are found by the following procedure: We
start with ng = 2 and dny = 1, and find n;,; = n; +dn;, where we multiply dn; by a constant
factor a after each step, and go up to a user-specified maximum size ny,,. We make sure
that n; is always an integer. Then, each n; gets a weight in the sums depending on the range
it represents, w; = %(niﬂ —n;_1). The sums then are performed with this weight.



Chapter 2
Using KPM

2.1 KPM commands

2.1.1 The defect command

The defect command creates a new defect/precipitate and returns it. It’s syntax is as
follows:

defect {cnstar script} {lambda script} |step| |maxsizel

The {cnstar script} is a script returning C}/C®. Any valid Tcl script can be used
for CxC®. When the script is invoked the Tcl variable n is set to the current precipitate
size. The script should return CC* as a function of the precipitate size. Note that C/C*
should be a function such that by definition:

*

lim G, =1

n—oo (/58

Imaxsize| and |step| show rediscretization parameters (see section 1.3.3), which may
be omitted. If they are omitted, Imaxsize| defaults to 1,000,000 and |stepl| defaults to
0.1.

The {lambda script} is a script returning the kinetic forward rate, again as a function
of the precipitate size, n. For customary defect sizes, Tcl procedures have been defined.
All procedures are called with a single argument, the precipitate size, and return )\, as
determined by the geometry. Some preset Tcl variables can be used to determine the char-
acteristics of the functions. In particular, KPM_capture should be set to the capture radius
of the precipitate (defaults to 2.7 1A, the value for silicon) and KPM_lambda should be set to
the interface reaction distance (D/k)at the precipitate/matrix interface. The default value
is 2.71A. Here is a list of procedures for calculating lambda:

e KPM_Spherical: For spherical precipitates. KPM_rho is used to determine the density
of solute atoms in the precipitate (defaults to 2.5 x 10*2cm~3)

e KPM_Loop: For dislocation loops (disc shaped). KPM_loop_sigma is used to deter-
mine the areal density of interstitial atoms in the dislocation loop (defaults to 1.57 x
10%cm—2)



e KPM_311: For {311} defects (elongated planar defects). KPM_311_sigma is used to
determine the areal density of interstitial atoms in {311} defects (defaults to 10*cm ?)
and KPM_311_wmax is used to determine the maximum width {311} defects can attain

(defaults to 90A)

2.1.2 The table command

The table command creates a new RKPM lookup table and returns it. Thus, the table
command is only necessary when RKPM (and not FKPM) is used. It’s syntax is as follows:

table "defect" "filename" |basel| |base?2]|

Here, "defect" is the output of a defect command and "filename" is the name of the
file the calculated table will be written to. Try to use a consistent naming scheme, so that
tables can be reused. |basel| and |base2| are the grid spacings of the table in the 7, and
my directions, respectively. If omitted, they both default to 0.05.

2.1.3 Support commands

The moments command: This command is used (in DOPDEES) to initialize a moment
variable. The syntax is:

moments |num| |mihat| |mO]

Here, |num| indicates the number of moments to be initialized (3 for RKPM), |milhat |
is the average size, and |mO| is the zeroth moment. This commands returns a list of values
(of length |num|) where each element has the value morn’ with 0 < ¢ < |num].

The KPM-init command: This command is used to reinitialize the KPM library.

2.1.4 Using UNITS

Included with KPM distribution is a package called UNITS, which has simple commands for
resolving unit discrepancies. Please read the documentation for this package, which can be
found in the directory KPM/UNITS.

IMPORTANT: One thing to be careful is that if the user changes the unit system, the
KPM library has to be re-initialized using the KPM-init command.

2.2 KPM Operators and Functions

2.2.1 RKPM operators in DOPDEES

Within DOPDEES, there are 3 operators that call the RKPM routines. Each of the 3
routines are used for different systems:



e op rkpm-dop #CA# #M# <CA> <DA> |Css| "table"

rkpm-dop is the basic RKPM operator and is used for systems as described in Chap-
ter 1. #CA# is the name of the solute atom, and <CA> is a function returning its active
value. #M# is a vectorial field (with 3 components) denoting the 3 moments. <DA> and
[Css| are the diffusivity and the solid solubility of the solute, respectively. The last
argument, "table" is the output of a table command.

e op rkpm-iv #CI# #CV# #M# <CI> <CV> <DI> <DV> |Css| "table"

rkpm-iv is a modification of the rkpm-dop operator for systems where the precipi-
tate size can grow by incorporating one atom or shrink by incorporating another one.
Extended defects in silicon, which can grow by incorporating interstitials or shrink
by incorporating vacancies, are an example. The equations governing this system are
slightly different.

e op rkpm-bic #CB# #M# <CB> <DB> <theta> |Css| "table"

rkpm-bic is for systems where two atoms form a precipitate, as in boron interstitial
clusters (B,l,,) or arsenic vacancy clusters (As,l,;). Kinetics and energetics of such
systems are slightly different.

Specifying any RKPM operator once updates the residuals of all components. More
than one RPM operator may be specified, with different parameters and fields, so that two
processes may be going on at the same time (e.g., interstitial agglomeration and dopant
precipitation).

In addition, there is a function that is written for systems where the rkpm-bic operator
will be used:

e func kpm-theta <CIO> |CIO*| |kTalpha| |gamma|

This function returns the <theta> parameter needed for the rkpm-bic operator. <CI0O>
is a function returning concentration of neutral interstitials, |CI0*| is their equilibrium
number, |kTalphal is ¥7/« in the model. The function returns:

(CIO>_7 l kT 2 (Cp)]
. exp |[—— In "
0 4o 10

2.2.2 RKPM functions in Alamode

Due to structural differences between Alamode and DOPDEES, RKPM has been imple-
mented in Alamode as functions, rather than operators. They have same names and similar
syntax as their DOPDEES counterparts. Since Alamode doesn’t support field names that
are vectors, all three components of the moment vector must be specified explicitly.

Since the function can return a single value, a last argument comp has been added to
each function. The function will return only the residual of the component indicated by
comp, which then can be added to comp’s equation using rhsFunction. The moments have
component numbers equal to their indices, and the last component(s) is(are) the solute
concentration(s). It should be obvious that the function has to be used 4(5) times — once
for each component — to obtain a complete set.




e rkpm-dop:
Parameters: My M; My, C4 Dy Cgs table comp

Ca D, are fields or functions.
e rkpm-iv:
Parameters: My My My C; Cy Dy Dy Cgs table comp
Ct Cv Dy Dy are fields or functions.
e rkpm-bic:
Parameters: My M, M, Cg Dg © Cy, table comp

Cp Dp © are fields or functions.

For all functions following arguments are common:
e My My M, are fields indicating the three moments.
e (, is a variable holding the solid solubility.
e table is the output of a table command.
e comp is a number indicating the component number.
Again, there is the kpm-theta function, which returns the © argument for rkpm-bic:
e kpm-theta:
Parameters: Cro C}o kT vy

Cho is a field or function.

To kKT« vy are variables.

2.2.3 FKPM operator in DOPDEES

DOPDEES also provides a fkpm operator as the implementation of Full Kinetic Precipitation
Model. FKPM uses many fields at every grid point and is thus much slower than RKPM,
but it is much more stable and doesn’t have the closure assumption of RKPM. The syntax
is:

e op fkpm #F# #M# <D> |Css| defect

Here, #F# is a field with as many components as in the model, #M# is a field having two
components for handling large sizes, <D> is the diffusivity of the solute atom, |Css| is
the solid solubility and defect is the output of a defect command (when using fkpm
there is no need for a table command).
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