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Point-defect-mediated diffusion processes are investigated in strained SiGe alloys using kinetic
lattice Monte Carlo �KLMC� simulation technique. The KLMC simulator incorporates an
augmented lattice domain and includes defect structures, atomistic hopping mechanisms, and the
stress dependence of transition rates obtained from density functional theory calculation results.
Vacancy-mediated interdiffusion in strained SiGe alloys is analyzed, and the stress effect caused by
the induced strain of germanium is quantified separately from that due to germanium-vacancy
binding. The results indicate that both effects have substantial impact on interdiffusion. © 2010

American Vacuum Society. �DOI: 10.1116/1.3294704�
I. INTRODUCTION

Fundamental modeling of diffusion in pure silicon as well
as alloys is challenging as the time scales in which practical
diffusion processes occur are significantly larger than the
time scales that can be achieved by simulation techniques
such as molecular dynamics �MD�.1 In contrast to MD ap-
proaches, kinetic lattice Monte Carlo �KLMC� simulations
ignore atomic vibrations and treat diffusion as stochastic
transitions between locally metastable states. Therefore, dif-
fusion can be simulated with macroscopic system sizes and
practical time scales. By replicating the sequence of atomic
transitions and arrangements, KLMC provides an approach
to fundamentally, yet efficiently, simulate atomistic diffusion
processes.

In addition to the potential for simulating diffusion over a
large time scale, KLMC proves even more useful for com-
plicated diffusion mechanisms, such as stress-dependent in-
terdiffusion in strained SiGe alloys. By replicating actual
crystal structure, KLMC simulations can be used to predict
diffusion and aggregation behavior that is not captured in
continuum simulations or nonlattice kinetic Monte Carlo
�KMC�. This is particularly critical for SiGe alloys in which
every lattice site has a different environment. Experiments2,3

have been carried out to probe the interdiffusivity in SiGe
alloys, but it is difficult to separate stress effects from alloy
effects as required for general predictive models. KLMC can
capture explicitly the local variations in alloy distribution
and stress tensor and how they affect stochastic diffusion
processes, therefore accurately predicting nanoscale atomic
redistribution. This gives KLMC the potential for simulating
stress-dependent interdiffusion in strained SiGe alloys.

In this article, we use a KLMC simulator to investigate
vacancy-mediated Si–Ge interdiffusion in strained SiGe al-
loys. The simulations use an augmented discrete lattice struc-
ture and include the major atomic transition events taking
place in the system. The inputs of the KLMC model, such as
the activation energies for atomic hops and the induced strain
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values of point defects, are obtained from density functional
theory �DFT� calculations summarized in previous works.4–6

II. MODELS

A. Simulation domain

The KLMC simulations consist of a large number of dis-
crete sites on which atomic species can transition from one
site and/or configuration to another. The unit cell of the do-
main is the crystalline silicon cubic structure, which consists
of eight substitutional lattice sites. In addition, we augment
the constituent sites to include high symmetry sites, which
are involved in diffusion processes as listed in Table I. Illus-
trations of all these sites in one unit cell are shown in Fig. 1.
The simulation domain includes a three-dimensional array of
such cubic cells using three-dimensional periodic boundary
conditions.

B. Atomic and point defect species

The atomic species that can be included in the system are
silicon, germanium, and common dopants. Point defects in-
clude vacancies, intrinsic silicon self-interstitials, and extrin-
sic interstitials. From DFT calculations,5 the most stable sili-
con self-interstitial structures are �110� oriented split
interstitials Si�X� that occupy substitutional sites, and Si�H�
interstitials that occupy hexagonal sites. Figure 2 illustrates a
�110� split interstitial sitting on a substitutional site. We also
consider germanium interstitials having similar structures,
with Ge�H� being hexagonal interstitials and Ge�X� being
�110� split interstitials. Note that the Ge�X� interstitial con-
sists of one germanium and one silicon atom, not two ger-
manium atoms.

C. Major transitions

In KLMC, a transition is a process in which an atom
jumps from one site and/or configuration to another. Here,
we only consider transitions that are associated with diffu-
sion. There are two major categories of mechanisms for dif-

fusion in Si, namely, vacancy and interstitial mechanisms.
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The vacancy mechanism involves a silicon-vacancy ex-
change process, while the interstitial mechanism involves a
two step migration process denoted as Si�X�→Si�H�
→Si�X�.5 In our analysis, we assume that the same diffusion
mechanisms can be extended to germanium. Table II sum-
marizes the transitions that are typical for self-diffusion in Si
and/or interdiffusion in SiGe alloys.

For the interstitial X→H→X mechanism, we take into
account the orientation constraint, which implies that for the
most energetically favorable transition the hopping directions
and the split orientations are the most closely aligned. This
limits the number of possible hops. For a �110� split intersti-
tial, there are 12 neighboring hexagonal sites; however, for
any specific split orientation, only 4 sites are accessible, 2 for
each of the atoms forming the split interstitial.5 Figure 3
shows the 12 hexagonal neighbors around a lattice site and
the 4 accessible sites for the orientation pictured. Similarly,
when a hexagonal interstitial hops to a substitutional site, the
orientation of the resulting �110� split interstitial has only
two choices.

TABLE I. Sites in the unit cell of the simulation domain and their numbers
per cubic cell. A substitutional site is simply the silicon lattice site. A tetra-
hedral site is at the center of a tetrahedron formed by four substitutional
sites. A hexagonal site is at the center of a hexagonal ring formed by six
substitutional sites. A bond-centered site is at the center of a Si–Si bond.
Lattice coordinates for typical substitutional, tetrahedral, hexagonal, and
bond-centered sites are �0, 0, 0�, �1/4, 1/4, 3/4�, �5/8, 3/8, 3/8�, and �1/8, 1/8,
1/8�, respectively �see also Fig. 1�.

Sites Numbers

Substitutional �S� 8
Tetrahedral �T� 8
Hexagonal �H� 16
Bond-centered �B� 16

FIG. 1. �Color online� Illustration of sites in the unit cell of the simulation
domain: substitution sites �light/yellow�, a tetrahedral site �dark/red, upper
left�, a hexagonal site �dark/brown, right�, and a bond-centered site �dark/

blue, lower left�.
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D. System energies

The energy of the system is defined as follows:

E = Ef + Eb = �
i

Ef
i + �

i�j
� Eb

i,j , �1�

where i and j run through all the defects and impurities in the
system. The first term is the total formation energy of all
species, which is dependent on the external stress. The for-
mation energy of a species in the presence of an external
applied stress � is calculated as

Ef
i = Ef0

i − V0��εi · �� , �2�

where Ef0
i is the formation energy under the stress-free con-

dition, V0 is the atomic volume of the silicon lattice, and �εi

is the induced strain of the point defects/impurities. Both
stress and strain tensors are written in the contracted
notation.7

The second term is the binding energy, which is a measure
of the binding strength between a pair of defects/impurities.
The binding energy is the sum of all pair energies of the
system, extending from first nearest neighbors �1NNs� to nth
nearest neighbors �nNNs�. In our analysis here we simply
consider interactions among 1NNs.

TABLE II. Hopping events and their associated stress-free migration barriers.
S, X, and H denote a single atom on a substitutional site, a split interstitial
on a substitutional site, and a single interstitial on a hexagonal site, respec-
tively.

Hopping events Notations

Forward
barrier
�eV�

Reverse
barrier
�eV�

Si diffusion-V �i� V�S�+Si�S�↔Si�S�+V�S� 0.35 0.35
Si diffusion-I �ii� Si�X�↔Si�S�+Si�H� 0.34 0.25
Ge diffusion-V �iii� V�S�+Ge�S�↔Ge�S�+V�S� 0.17 0.17
Ge diffusion-I �iv� Ge�X�↔Ge�S�+Si�H� 0.53 0.11
Ge diffusion-I �v� Ge�X�↔Si�S�+Ge�H� 0.47 0.25

FIG. 2. �Color online� Illustration of a �110� split interstitial �dark/red, lower
left�.
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E. Transition rates

In KLMC, each transition is associated with three states,
which are initial, transition, and final states. The rate of a
transition is an Arrhenius function of the associated migra-
tion barrier Em,

� = �0 exp�− Em/kBT� , �3�

where �0 is the attempt frequency and T is the system tem-
perature. The migration barrier can be expressed as the sum
of Em0, an unbiased barrier, plus the change in the barrier due
to other effects, such as pair binding and external stress.
Table II lists the unbiased stress-free barriers of transitions
included in this work, as obtained from DFT calculations.4

The change in the migration barrier due to other effects can
be expressed as a combination of the change in state energies
that satisfies detailed balance8

Em = Em0 + ��Etr − �Ein +
�Efi − �Ein

2
	 , �4�

where �E is the change in state energies due to pair binding
and applied stress, and the subscripts in, tr, and fi represent
initial, transition, and final states, respectively. Tables III and
IV are induced strain vectors used to calculate the change in
the state formation energies via Eq. �2�. The elapsed time �t,
for each hop, is calculated as the inverse of the summation of
all possible transition rates,

FIG. 3. �Color online� Twelve neighboring hexagonal sites �small spheres� of
a �101� split interstitial �dark/red bonded pair, large spheres�. The four light/
gray ones are accessible sites and the eight dark/brown ones are not.

TABLE III. Induced strain vectors of point defects/impurities which are as-
sociated with the energies of the initial and the final states of a hop. The
induced strain for Si�X� and Ge�X� is orientation dependent. The table shows
values for the �110� orientation.

V�S� Ge�S� Si�H� Si�X� Ge�H� Ge�X�

��xx �0.22 0.05 0.20 0.26 0.25 0.31
��yy �0.22 0.05 0.20 0.26 0.25 0.31
��zz �0.22 0.05 0.20 0.05 0.25 0.10
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�t =
1

�N�N
, �5�

where N runs through all possible transitions.

III. SIMULATIONS AND RESULTS

We have applied the KLMC simulation approach de-
scribed above to investigate Si–Ge interdiffusion in strained
SiGe alloys. Since the Si–Ge interdiffusion is predominately
vacancy mediated,9,11 we have carried out calculations on
vacancy-mediated diffusion to see how stress and alloy con-
centration affect diffusion mechanisms. Generally, Ge has
two effects on interdiffusion: one is the alloy effect due to
Ge-V binding; the other is the stress effect. In the analysis
below, a Ge-V binding of 0.31 eV has been included, which
is obtained from DFT calculations.6 Binding among other
species are significantly lower ��0.13 eV� �Ref. 10� and are
thus neglected in the simulation. To simplify the analysis, we
treat all the stress-free formation energies as zero. To capture
stress effects, we have included the induced strain vectors
shown in Tables III and IV. These values are used to calcu-
late the stress-induced changes in the formation energies,
which, in turn, change transition rates. We assume that stress
is only a function of Ge concentration. When calculating the
stress, shear components can be neglected as they are zero
for configurations considered, which results in a three-
dimensional vector form

� = C · ε , �6�

where C is the stiffness tensor of Si and ε is the external
normal strain due to the presence of Ge atoms.

The structure that we have simulated is an epitaxial layer
of pure Si grown on top of a relaxed Si1−x0Gex0 layer. Gen-
erally, due to the positive induced strain of Ge atoms, the
equilibrium lattice constant of Si1−xGex is different from that
of Si, a0, with a relation given by6

a�x� = a0 + 0.194x + 0.035x2. �7�

Considering the fact that the underlying SiGe layer is re-
laxed, the external strain of a point in the interface region
with a Ge fraction of x is expressed as

�
�x� =
a�x� − a�x0�

,

TABLE IV. Induced strain vectors of the transition states of hops. The indices
of hopping mechanisms are shown in Table II. Hopping mechanisms �ii�,
�iv�, and �v� are orientation dependent. The table shows values for hopping
vectors along �311�.

�i� �ii� �iii� �iv� �v�

��xx �0.42 0.54 �0.37 0.59 0.59
��yy �0.42 0.07 �0.37 0.12 0.12
��zz �0.42 0.07 �0.37 0.12 0.12
a�x0�
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���x� = − ��
�x� , �8�

where �
 and �� denote the strain components within and
perpendicular to the interface plane, respectively, � is Pois-
son’s ratio, and x0 is the germanium fraction in the underly-
ing SiGe layer. Plugging Eq. �9� into Eq. �7� results in a
biaxial tensile stress for the silicon and interdiffusion region.

To avoid clustering effects, simulations are carried out
with a single vacancy present and then normalized for actual
equilibrium vacancy concentrations. The vacancy is initially
generated at a random location in the system. Vacancy me-
diates Si and Ge diffusion as described in Table II �no inter-
stitial mechanisms are included as vacancy mechanisms gen-
erally dominate SiGe interdiffusion9,11�. Initially, the Ge
concentration profile is a step function, with a Ge fraction of
0 on one side and 20% on the other. Figure 4 shows an initial
configuration of the SiGe alloy system, where Ge atoms are
confined to the right side. Ge concentration in the domain is
monitored as time proceeds. Our simulation temperature is
920 °C. Simulation is carried out for two cases: one that
includes stress effects and the other that does not �no forma-
tion energy changes due to stress�.

In our simulation, we initialize the system with one va-
cancy in a 5�5�64 array of silicon unit cells. This implies
that the vacancy concentration under the simulation condi-
tion is not necessarily the vacancy concentration under equi-
librium conditions. In order to compare the simulated results
with experimental data, the simulated results have to be
scaled to yield behavior for equilibrium vacancy concentra-
tions. In our analysis, we use free vacancy concentration,
which is the vacancy concentration in the Ge-free region, to
normalize the vacancy concentration since it can be readily
compared to simple calculation. Once we determine the free
vacancy concentration under the simulation condition, we
can scale the result to equilibrium case. If the total elapsed
time to reach the final profile is calculated to be t in the
simulation, then the elapsed time to reach the same profile
for the vacancy concentration under the equilibrium condi-
tion, t�, is calculated as

t� =
CV

CV
� t , �9�

where CV
� and CV are the free vacancy concentrations under

FIG. 4. �Color online� Initial configuration. Light/yellow and dark/blue
spheres represent Si and Ge atoms, respectively. The left end represents pure
silicon region and the rest represents SiGe with random alloy arrangement
�Ge fraction equals 20%�.
the equilibrium and the simulation conditions, respectively. It
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can be seen that the elapsed time and the vacancy concentra-
tion have an inverse relation. This is consistent with the
physical intuition that the higher the vacancy concentration,
the faster the vacancy-mediated interdiffusion process, and
thus the shorter time required to obtain a given profile. An-
other way to interpret this for CV

� �CV �as in our simulations�
is to think of the equilibrium case as if the system is attached
to a huge reservoir which it equilibrates with. The difference
between t� and t represents the expected time during which
the system is expected to not have any vacancies present, and
thus no changes will occur in the system.

Before we proceed to the analysis of the equilibrium dif-
fusivity as function of the Ge fraction, the determination of
the free vacancy concentrations under both the equilibrium
and simulation conditions should be elucidated. The free va-
cancy concentration under the equilibrium condition is a
stress-dependent property and is closely related to the forma-
tion energy change due to stress,5

CV
�����

CV
��0�

= exp�−
�Ef

V����
kT

	 , �10�

where CV
����� and CV

��0� represent the equilibrium free va-
cancy concentration with and without stress, respectively.
�Ef

V���� is calculated from Eq. �2� with induced strain values
of vacancy from Table III. CV

����� corresponds to the equilib-
rium free vacancy concentration for the case where stress
effect due to Ge is included, while CV

��0� corresponds to that
for the case where the stress effect is absent. Since we are
not interested in their absolute values, the ratio in Eq. �10� is
enough to make the comparison between the two cases.

To obtain the free vacancy concentration under the simu-
lation condition, we calculate the free time ratio R as the
ratio of the average time the vacancy spends on any one site
in the Ge-free region to the total elapsed time

R =
t̄0

t
=

�1/N0��i=1
N0 ti

�i=1
N ti

, �11�

where ti is the cumulative time that vacancy is on site i
during the simulation, N is the total number of sites in the
simulation, and N0 is the total number of sites in the Ge-free
region. From the probability perspective, each site within
that region has a probability of R to be occupied by a va-
cancy at any given time. Thus, the free vacancy concentra-
tion can be derived from the concentration of sites, Cs in that
region, which is simply the silicon lattice site concentration
�5�1022 cm−3�,

CV = RCs. �12�

Thus, we are able to scale the results from Eqs. �10�–�12�
and then perform Boltzmann–Matano analysis12,13 of the sys-
tem behavior under equilibrium vacancy concentration,

which gives the diffusivity as
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D�C�� = −
1

2t�� dz

dC
	�C��

0

C�
�z − zm�dC , �13�

where z is the depth within the simulation, zm is the
Boltzmann–Matano plane defined in Ref. 2, t� is time, and C
is the Ge concentration. To factor out the time variable, we
carried out the following substitution:

� =
z − zm

t�
, �14�

giving

D�C�� = −
1

2
� d�

dC
	�C��

0

C�
�dC . �15�

Plotting diffusivity as a function of � for both cases al-
lows us to compare the results directly. Figure 5 shows the
calculated data and smoothed curve based on fitting to a
constrained cubic spline function14 for the Ge profile after
simulation. Using the fitted curve, we can perform
Boltzmann–Matano analysis which yields the diffusivity ver-
sus concentration relationship shown in Fig. 6. Fitting the
data with an exponential relation between diffusivity and
germanium concentration

D�xGe�/D0 = exp�BxGe� . �16�

we have extracted the fitted values of B for both alloy and
stress effects of Ge in the system, which are shown in Table
V. Thus, we have isolated the stress effect from the alloy
effect, which indicates that under the simulation condition
given above, stress and alloy effects have comparable sensi-
tivity to the Ge concentration.

In our analysis, the exponential factor B of the total effect
is extrapolated to be 13.4. This can be compared to the ex-
tracted values from Boltzmann–Matano analysis of experi-
mental results2 from Xia et al. In their paper, interdiffusivity
is modeled in a piecewise exponential form with B of 8.1 and

FIG. 5. �Color online� Diffusivity as a function of the normalization factor �
for vacancy-mediated Si–Ge interdiffusion with and without consideration
of the stress effect. The results are obtained for temperature equal to
920 °C. “+”s are original data and lines are fitted curves.
23 in the tensile and compressive strain regime, respectively.
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Our analysis does not consider the different regimes of ap-
plied strain and gives a value that is close to the average of
the two values in their paper. Also note that the extracted
value of B under tensile strain in Xia et al.2 appears to un-
derestimate the experimentally observed dependence. Using
a stronger Ge concentration dependence under tensile strain
leads to extraction of a weaker dependence under compres-
sive strain conditions, thus bringing both values closer to our
result extracted from the simulation.

In general, Ge enhances V-mediated diffusion due to
Ge-V binding, as Ge on neighboring sites lowers V forma-
tion energy. In addition, the lower concentration of Ge leads
to tensile stress in the interdiffusion region that retards
vacancy-mediated diffusion. Vacancies have a negative in-
duced strain for the initial, final, and transition states, but the
one for the transition state has a larger absolute value. A
tensile stress will not only reduce the equilibrium vacancy
concentration but also increase the formation energy differ-
ence between the transition state and the initial state, and
therefore increase the migration barrier of the hop in Eq. �4�,
thus making vacancy-mediated migration less energetically
favorable. This is consistent with Fig. 5, where the Ge profile
is broader when stress effect is not present, which indicates
that tensile stress on Si side retards vacancy-mediated
diffusion.

IV. SUMMARY

We have presented kinetic lattice Monte Carlo simulations
to investigate interdiffusion in strained SiGe alloys. The in-
put values of KLMC including induced strains and migration
barriers were obtained from DFT calculations. Simulation of

FIG. 6. �Color online� Data and lines fitted to Eq. �16� for pure alloy effect
�w/o stress� and alloy effect combined with stress effect �w/stress� of Ge in
the system. The results are obtained for a temperature of 920 °C.

TABLE V. Fitted values of B in exponential model for SiGe interdiffusion
due to different effects of the Ge concentration.

Stress effect Alloy effect Total effect

7.6 5.8 13.4
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the SiGe alloy structure has separated stress and alloy effects
caused by the presence of germanium. The application of
KLMC approach to investigate diffusion processes indicates
its potential for simulating full multistep annealing of
nanodevices.
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