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Abstract— Stress effects play an increasing role in processing
and performance of current nanoscale ULSI devices. In this
paper, we show how first principle calculations can be used to
predict stress effects on equilibrium concentration and diffusion
of defects in silicon. The method used is capable of treating arbi-
trary strain states, which is an extension beyond the hydrostatic
case. For biaxial strain, we find strongly anisotropic diffusion of
interstitials (I). We also extended our analysis to B and found
similar behavior, leading to the prediction of enhanced lateral
diffusion in strained Si on SiGe structures.

I. INTRODUCTION

As ULSI devices enter the nanoscale, stress effects become
more important as steep doping gradients and heterointer-
faces induce stress gradients and reduced dimensions make
any variation in diffusivity critical. On top of this, stress is
induced purposefully to enhance carrier mobility [2]. Since
experiments are difficult and in the case of boron diffusion lead
to contradictory results [1], we utilize ab-initio calculations to
predict stress effects on the formation and migration of point-
defects and dopant/defect complexes which control dopant
diffusion as well as dopant activation. In contrast to previous
work, our analysis extends beyond simple hydrostatic activa-
tion volumes [3] in order to be able to predict anisotropies
associated with more complex stress states (e.g. differences
between in-plane and perpendicular diffusion due to biaxial
strain). We determine both strain tensors as well as changes
in elastic constants due to defects and migration saddle points.

II. METHOD

The elastic constants Cαβ of a given material relate a
stress/strain state to its energy:

E =
1
2

∑

α

εασα =
1
2

∑

α,β

εαCαβεβ . (1)

Thus, once the elastic constants and induced strain for a given
equilibrium structure or transition state are known, the change
in formation Ef and migration energy Em can be calculated,
which leads directly to modified equilibrium concentrations
and diffusivities. For our calculations we used the density func-
tional theory (DFT) code VASP [9] with ultrasoft Vanderbilt
type pseudopotentials [10]. All calculations were performed
in general gradient approximation (GGA) with a 64 silicon

atom supercell and a 23 Monkhorst-Pack k-point sampling.
The energy cut-off was 200eV for pure Si structures with the
exception of the I transition state, which was calculated with
150eV. The cut-off for structures including B was 340eV.

The elasticity tensor for the different structures (e.g. Si, I,
and V) is determined by calculating the energy change for
strain applied in different directions (hydrostatic, x-, y-, and z-
direction). Different strains are applied by changing the lattice
constant in a particular direction, while the lattice constant is
kept fixed in all other directions. The systems are not under
pure uniaxial stress, since relaxation due to the Poisson ratio
ν is not allowed. By combining the results of straining the
system in different directions, the elasticity constants Cαβ and
modified equilibrium lattice dimensions can be extracted.

III. STRESS EFFECT ON DEFECT FORMATION ENERGIES

Figure 1 shows the energy versus hydrostatic strain for pure
Si, a <110> split interstitial (Isplit), and a vacancy (V). The
data shown in Figs. 1 and 2 enable the calculation of the
bulk modulus (K), the Young’s modulus (E), and the Poisson’s
ratio (ν) of Si, all of which are in excellent agreement with
experimental data (Table III). Table I and II list the data
extracted from Figs. 1 and 2 respectively. The calculations
show that the dominant effect of stress in the case of I and
V is to modify the equilibrium lattice dimensions. In contrast,
the difference in the curvatures and the resulting change in
Cαβ have a secondary effect.

System a [eV/Å2] b0 [Å]

Si 112.839 5.4578
Isplit 100.361 5.4754
V 96.8374 5.4389

TABLE I

ASSUMING LINEAR ELASTIC BEHAVIOR, THE DATA SHOWN IN FIG. 1 CAN

BE FITTED TO E(b) = E0 + a(b − b0)2 .

Since the equilibrium lattice constant for Si depends on the
point-defect concentration, it is convenient to use the following
parameterization:

Cαβ → CSi
αβ + xI,V ∆CI,V

αβ , (2)

εα → εα + xI,V εI,V
α . (3)
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Fig. 1. Energy vs. unit cell lattice constant b for hydrostatic strain for
system with 2 × 2 × 2 = 8 cells (64 Si atoms in defect-free system). The
reference energy E0 is defined as the minimum energy as function of unit
cell size. Vacancies (V) prefer the lattice constant to be reduced by 0.3% in
comparison to Si, whereas interstitials (I) show the opposite behavior, with
the lowest energy configuration a 0.3% increased lattice constant.
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Fig. 2. Energy vs. uniaxial strain in different directions for Si and Isplit
oriented in the [110] direction. The reference energy E0 is defined as the
minimum energy for a given configuration.

where εα is the strain applied in reference to unstrained
silicon and xI,V = CI,V /CS denotes the relative defect
concentration. In this work, x = 1/64 since our supercell
contains 64 Si lattice sites. Using Table I and II the elastic
constants Cαβ can be calculated for Si, V, and Isplit. The
results are shown in Table III and IV. Our results indicate
that in addition to inducing strain, vacancies and to a lesser
extent interstitials soften the lattice (Table I and IV).

The knowledge of the elastic constants enables calculation
of the formation energy of a defect for any strain state. Strain
effects for vacancies are isotropic. However, since <110> split
interstitials induce the largest strain in the x- and y-directions
(Fig. 2), uniaxial or biaxial strain can lead to larger changes
in the equilibrium point-defect concentration than would be
predicted based on the hydrostatic activation volume. Figure
3 shows the stress dependence of the equilibrium interstitial

System under strain a [eV] ε0[10−3]
(uniaxial or shear)

Si (<100>-strain) 668.903 0.301
Si (shear strain) 360.374 5.35 × 10−4

V (<100> strain) 517.685 −6.203
V (shear strain) 298.446 −2.2 × 10−3

Isplit ([100]-strain) 593.507 6.405
Isplit ([001]-strain) 601.717 4.330

TABLE II

ASSUMING LINEAR ELASTIC BEHAVIOR, THE DATA SHOWN IN FIG. 2 CAN

BE FITTED TO E(ε) = E0 + a(ε − ε0)2 .

Silicon Property DFT Literature

C11 [GPa] 164.8 166 Ref. [5], [6]
C12 [GPa] 55.6 64 Ref. [5], [6]
E<100> [GPa] 136.8 130 Ref. [5], [6]
ν<100> 0.252 0.278 Ref. [5], [6]

K [GPa] 92 97 Ref. [7], [8]

TABLE III

COMPARISON OF DFT RESULTS FOR Cij , YOUNG’S MODULUS (E),

POISSON’S RATIO (ν), AND BULK MODULUS (K) FOR SI WITH

EXPERIMENTAL DATA. E AND ν ARE NOT INDEPENDENT PROPERTIES,

SINCE THEY ARE DIRECTLY RELATED TO C11 AND C12 . THEY ARE JUST

LISTED FOR THE CONVENIENCE OF THE READER.

concentration (C∗
I ) under biaxial strain. Only the dominant

effect due to the induced strain (difference in lattice dimension
due to I incorporation) is included. In the dilute approximation,
the formation energy for I can be written as:

Ef
I (�ε) = Ef

I (0) + ∆Ef
I (�ε) = Ef

I (0) + Ω�εI · (CSi · �ε), (4)

where �εI is the induced strain vector, �ε is the applied strain
vector, CSi is the elasticity tensor for Si, and Ω is the Si atomic
volume.

In the case of biaxial strain:

C∗
I (ε)

C∗
I (0)

=
1
3

exp

(
−∆Ef

in(ε)
kT

)
+

2
3

exp

(
−∆Ef

out(ε)
kT

)
,

(5)
where Ef

in is the change in energy for in-plane interstitials
(e.g. [110] or [−110] orientation for strain in x-y plane),
whereas Ef

out is the change for split interstitials with out of
plane components (e.g., [011] orientation). Figure 3 shows a
strong strain dependence of C∗

I , particularly for in-plane [110]
interstitials. Interstitials prefer to be oriented in-plane under
tensile strain and out of plane under compressive strain.

IV. STRESS EFFECTS ON DEFECT AND B DIFFUSION

Stress effects are even larger and more anisotropic for the
I transition state. Figure 4 shows the transition barriers for
interstitial migration in unstrained silicon calculated using
the nudged elastic band method (NEB). Interstitial migra-
tion occurs via a two step process [4] (see Fig. 4). First,
an interstitial moves from a split site to a hexagonal site
(Isplit → T1 → Ihex), while passing through the transition

0-7803-7826-1/03/$17.00 © 2003 IEEE- 148 -



 0.1

 1

 10

-0.01 -0.005  0  0.005  0.01

C
I* /C

I* (0
)

strain

T=1000oC

in-plane
out-of-plane

total

Fig. 3. Strain dependence of C∗
I (ε)/C∗

I (0) in biaxially strained Si at T =
1000◦C. For strain applied in the x-y plane, 1/3 of all <110> interstitials
are purely in-plane, while 2/3 have out of plane components. The plot shows
the contributions from the different alignments and the resulting total.

Elastic Constant ∆Cαβ [GPa]

∆CV
11 = ∆CV

22 = ∆CV
33 −2387.2

∆CV
12 = ∆CV

13 = ∆CV
23 −57.6

∆CI
11 = ∆CI

22 −1190.4

∆CI
33 −1062.4

TABLE IV

CHANGE IN ELASTIC CONSTANT IN COMPARISON TO SI DUE TO

INCORPORATION OF V AND Isplit .

state T1. The second step consists of moving from the hexag-
onal site back to a split site (Ihex → T2 → Isplit). Since the
transition is symmetric, the transition states T1 and T2 are
equivalent configurations. Similar to the calculations discussed
above, we calculated the energy change of these transition
states with respect to applied strain. The results as shown in
Fig. 5 and Table V indicate a strong anisotropy in the strain
interactions.

In order to account quantitatively for strain effects, the two
step transition needs to be considered. The different spatial
orientations of the transition states T1 and T2 with respect to
the applied strain are responsible for the anisotropic diffusion
behavior. Each I site is surrounded by 12 hexagonal sites.
The orientation of the transition state, and therefore the hop
direction, determine the transition rate to each hexagonal site:

Γi = Γ0 exp
[
−∆Em

i (�ε)
kT

]
, (6)

where Γ0 is the transition rate in unstrained Si and ∆Em
i (�ε)

is the energy change of the i’s migration barrier due to the
present strain. Each hexagonal site is surrounded by six I sites.
The rates Γj from the hexagonal site to the final I location
determine the probability pj for each process. Knowing the
displacement from the initial I site ∆x2

j and neglecting correla-
tion between subsequent two-step (Isplit → T1 → Ihex) hops,
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Fig. 4. Migration path for Isplit < 110 >→ Ihex → Isplit < 110 > tran-
sition in unstrained Si. Due to the symmetry of the transition, T1 and T2 are
equivalent configurations.

System in uniaxial strain a [eV] ε0[10−3]
Itrans ([100]-strain) 540.716 11.3549
Itrans ([010]-strain) 577.472 5.71637
Itrans ([001]-strain) 568.861 7.19477
Vtrans ([100]-strain) 540.883 −10.3011

TABLE V

ASSUMING LINEAR ELASTIC BEHAVIOR, THE DATA SHOWN IN FIG. 5 CAN

BE FITTED TO E(ε) = E0 + a(ε − ε0)2 .

the diffusivity in the x-direction can be written as:

Dx =
1
2

12∑

i=1

Γi




6∑

j=1

pj∆x2
j



 . (7)

The other directions follow equivalently. pj is defined by:

pj =
Γj∑6
i=1 Γi

. (8)

∆Em
i (�ε) is assumed to have the form of Eq. 4. To simplify

the analysis, the transition state was assumed to be independent
of the initial orientation of the interstitial. This implies that for
a hop in the <311> direction, the induced strain for Itrans in
the y- and z-direction should be equal. Therefore the average
value from Table V was used.

Summing up all contributions in Eq. 7 for the in-plane and
out-of-plane directions leads to the anisotropy in the diffusivity
as a function of biaxial strain as shown in Fig. 6. Biaxial
tension (as in strained Si on SiGe) leads to significantly higher
in-plane diffusion compared to the perpendicular direction,
with lateral diffusivity predicted to be approximately 50%
higher than vertical diffusion for 1% tensile strain.

Boron, which has a similar migration path is expected
to behave similarly to I, with significant consequences for
the ability to control channel length and lateral abruptness.
Figure 7 and Table VI show preliminary results for the boron
transition state. The anisotropy (difference in components of
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Fig. 5. Energy vs. uniaxial strain in different directions for the transition
state of Isplit[110]→ Ihex with direction (3/8, 1/8, 1/8). Note that the strain
effect is largest in the dominant direction of motion.
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Fig. 6. Anisotropy of I diffusivity under biaxial strain. Shown are the in-
plane and out-of-plane components at T = 800◦C and T = 1000◦C as a
function of biaxial strain ε. DI(0) is the diffusivity in unstrained Si.

induced strain vector) is very similar to that calculated for
I, and thus a similar strong anisotropy in B diffusion is
anticipated.

V. CONCLUSION

We used ab-initio calculations to investigate the effect of
stress on point-defect equilibrium concentrations and diffusiv-
ities. The calculations show a strong anisotropy in the case of
I diffusion under biaxial strain. Similar effects are also seen
in the case of B diffusion, with significant implications for
controlling channel length and lateral abruptness.
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Fig. 7. Energy vs. uniaxial strain in different directions for the transition
state of Bs + Itet → Bhex with hop vector (3/8, 1/8, 1/8)b0. Note that the
strain effect is largest in the primary direction of motion. The transition state
behaves indentical under strain in the y- and z-direction.

System in uniaxial strain a [eV] ε0[10−3]
Btrans ([100]-strain) 505.919 6.546
Btrans ([010]-strain) 412.677 0.627
Btrans ([001]-strain) 411.923 0.629

TABLE VI

ASSUMING LINEAR ELASTIC BEHAVIOR, THE DATA SHOWN IN FIG. 7 CAN

BE FITTED TO E(ε) = E0 + a(ε − ε0)2 .
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