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Minimum energy paths for generating intrinsic, extrinsic and twin planar faults were calculated for a number of face-centered
cubic (fcc) metals via ab initio techniques. It is found that when the lattice is faulted sequentially, the interaction with the existing
fault tends to remain minimal for nearly all the fcc metals. Accordingly, a universal scaling law may be deduced based on a single
parameter, namely the ratio between the intrinsic stacking fault energy and the relevant energy barrier.
© 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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The plastic deformation of crystalline ductile
materials at low temperatures is mediated by dislocation
slip as well as by mechanical twinning [1-3]. In compar-
ison to coarse-grained polycrystalline materials, an en-
hanced dislocation density due to emission of partial
dislocations, perfect dislocations and microtwins from
grain boundary sources have been reported in several
nanostructured face-centered cubic (fcc) metals [4-9].
The underlying fundamental processes and defect struc-
tures are not yet fully understood. For example, in mate-
rials with high energies of intrinsic stacking faults (ISFs)
and high coherent twin boundary energies such as Al,
twinning is believed to be difficult. Nevertheless, atomis-
tic simulations and experimental observations suggest
twinning occurs readily in Al [4,5]. On the other hand,
recent experiments indicate that yield strength as well
as ductility can be enhanced in materials with low ISF
energies such as Cu [10-13] and stainless steels [14]
due to preexisting nanoscale twins. However, similar ef-
fects do not seem to exist in Al [15-19].

Energies of planar faults are fundamental properties
underlying mechanical deformation, solid-state phase
transformation and diffusion of alloying elements in
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materials of different crystalline structures [1-3]. The
minimum energy barrier, namely the unstable fault en-
ergy, provides an essential measure to produce a stable
fault within a perfect lattice [20-22]. Both stable and
unstable fault energies can be calculated according to
the minimum energy pathway along a fault plane, also
known as the generalized stacking-fault (GSF) energy
curve or y-surfaces. Although GSF energies for fcc met-
als and alloys have been well-studied recently via vari-
ous computational approaches [23-34], it remains
unclear how planar faults multiply and interact with
existing faults in different materials.

In this paper, energies associated with ISFs extrinsic
stacking faults (ESFs) and twin faults (TFs) in fcc lattice
are calculated to elucidate correlations among stable
and unstable fault energies. To clarify the general mate-
rial dependence, we shall try to deduce a universal scal-
ing law based on a single parameter, A, the ratio
between the ISF energy and the unstable stacking fault
energy associated with an ISF. In order to do so, the
minimum energy barriers of following paths were calcu-
lated (see Fig. 1 for Al, Cu and Pt):

o y(perfect lattice — ISF): the energy path of a crystal
when it is transformed from a perfect fcc lattice into
an ISF of energy y;r. The saddlepoint of the transi-
tion defines the unstable stacking fault energy, y.sr
(Fig. 1, left-hand diagram).
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Figure 1. Fault/twinning pathways produced by displacing the two
parts of a crystal along a (1 1 1) fault plane. The displacement along
each pathway is given by the Burgers vector of a Shockley partial
dislocation, by = (1 12). Upper panel: schematic of stacking fault
formation via {1 1 1} (112) slip in fcc metals. Lower panel: minimum-
energy pathways (y-surfaces) for Al, Cu and Pt, obtained via converged
NEB-DFT calculations. Along each path, five images were used to build
the elastic band between the given initial and final state. The saddlepoint
energy (the energy extremes) defines the unstable fault energy. The
y-surface is defined by y = (E — Ey)/A4, where E is the energy of the
optimized elastic band, E, is the energy of the fault-free state and 4 is the
area of the fault plane. Stable and unstable energies are marked
following the pathway for Al Vertical bars measure the relation
Yust 2 Ve — 3 Vit 2 Vo5, Which applies to Al and Cu but not for Pt.

e y(ISF — ESF): the energy path of a crystal when it
transforms from an ISF into an ESF of energy yesr.
The saddlepoint of the transition defines the unstable
energy, 7., (Fig. 1, middle diagram).

e Y(TF — TF’): the energy path for twinning based on a
single twin boundary or a TF of energy 7. The sad-
dlepoint energy defines the unstable energy for twin-
ning, y% (Fig. 1, right-hand diagram). In this way
an extrinsic fault may develop into two well-sepa-
rated twin faults to form a thick twin lamella.

We consider all the common fcc metals in our calcula-
tions (cf. Table 1). The y-surfaces were mapped out via
fully converged calculations with the climbing-image
nudged elastic band (ciNEB) method [35]in combination
with the ab initio density-functional theory (DFT). The
NEB method [36] s an efficient technique for finding cor-
responding minimum energy paths between a given
initial state and a final state of a transition, with essen-

tially no limitation on the degrees of freedom for atom-
ic/fionic  relaxations. DFT computations were
performed using the Vienna ab initio simulation package
(VASP) [37,38]. The full-potential projector augmented-
wave method was used with core—valence electron inter-
actions treated within the standard Blochl scheme
[39,40]. Details of computations can be found in Supple-
mentary data.

Converged minimum-energy pathways are shown in
Figure 1 (lower panel) for Al, Cu and Pt. All obtained
stable and unstable fault energies are summarized in
Table 1. As may be seen in Table 1, these fault energies
were found to correlate according to the following linear
relations:

(i) For stable faults, the energy 7y is close to y;r and
nearly twice yqp, 1.€. Visr = Yest = 271, CONsistent with
the well-known rule of thumb reported in the liter-
ature [1]. This implies that both ISFs and ESFs can
be thought of as one pair of TFs on neighboring
planes, with energies nearly the same as for two
well-separated TFs.

(i) When a fault is produced by sliding two parts of a
crystal across a single atomic plane, the transition
state energy satisfies

1 oo
Yust = ’ylluf - Eyisf = Yuir (1)

This relation implies that the resisting force of the
lattice neither changes significantly from one pathway
to another, nor is altered by an existing fault. In other
words, when the lattice is faulted sequentially, Eq. (1)
holds as long as the interaction with existing fault remains
minimal. It applies for nearly all metals we considered so
far except for Pt, which shows reduced energy barriers
along both ESF and TF pathways (Fig. 1).

Based on these observations, the ratio A = /7
(see Table 1) can be used as a characteristic material
measure by which a scaling law can be deduced accord-
ing to Eq. (1):

yinf/yusf = A/2 + 1 (2)

As can be seen in Figure 2a, the plot reveals that,
from Ag to Pb, our data scales remarkably well accord-
ing to the linear relation, Eq. (2). The Lennard—Jones
(LJ) system has been included as a limiting case on the
left-hand side because for this well-studied model mate-
rial the stacking fault and TF energies are nearly zero,
with 4 ~0 and y! /y. ~ 1. On the right-hand side,

Table 1. Stable and unstable fault energies calculated using ciNEB-DFT methods (units in mJ m~2). Correlation parameters, oo, o1, §; and f.., are
dimensionless ratios defined according to yir = %oYies Vet = %1745 Ve — %yisf = Pyt and 755 = P Vuse» respectively. The parameters o, o; are close to
2, and f; and f, are close to unity for all metals considered except for Pt. The ratio A = y,;/7.s has been introduced as a characteristic material

measure.
Vist Vesf it Vusf Vllnf Vuoif o o ﬁl ﬂoo A

Silver 16 12 8 91 100 93 2.08 1.56 1.0 1.01 0.18
Copper 36 40 18 158 179 161 2.0 2.22 1.02 1.02 0.23
Gold 25 27 12 68 79 72 1.98 2.16 0.98 1.04 0.36
Nickel 133 138 65 258 323 251 2.05 2.12 0.99 0.97 0.52
Iridium 334 327 160 625 818 624 2.09 2.04 1.04 1.0 0.53
Palladium 134 129 63 202 261 190 2.13 2.05 0.96 0.94 0.66
Aluminum 112 112 50 140 196 135 2.24 2.24 1.0 0.96 0.80
Lead 48 48 23 55 79 53 2.07 2.05 1.0 0.96 0.88
Platinum 286 284 137 286 305 189 2.09 2.07 0.57 0.66 1.0
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Figure 2. (a, left) Scaling plot of stable and unstable fault energies.
Filled symbols represent our ciNEB-DFT results. Cross symbols in
grey are data obtained via NRLTB methods (non-NEB calculations)
[26,27]. With increasing A, those elements are Ag, Pb, Cu, Pd, Au, Ir,
Pb’, Al Pt, I’ (a prime appears if a different set of tight-binding
parameters was used for the same element). For Cu-Al alloys (at.%
Al), data were taken from Ref. [32]. (b, right) The universal trend of
twinning according to a twinnability measure (7) defined in Ref. [45].

Al (A4 ~0.8) and Pb (A ~ 0.88) are found to be quite
close to the other limiting case, a fcc material with
A=1andy! /7. = 3/2. For Pt the value of A is found
to be exactly unity; however, the yl./7, ratio for Pt
turns out to be merely 1.07, far from expected. To
understand why Eq. (1) applies to other metals but
not to Pt, we examined both ionic displacements and
charge distributions when the lattice is faulted.

For metals with large A values, charge density plots
reveal that y-surfaces are dominated by directional
bonds associated with the s—p band for the simple met-
als such as for Al and Pb or with a partially filled d-band
for transition metals such as Ni, Pd, Ir and Pt. When
two parts of a crystal are displaced relative to each
other, the bonds retreat locally to resist shear (see e.g.
Fig. 3a for Al). The reduced bonding gives rise to the en-
ergy of the y-surface. If the change in bonding character-
istic is confined within two adjacent planes, the energy
barrier remains unaltered from one path to another
(Eq. (1) and Fig. 1). This justifies that y,, together with
7isr» Mmay define a characteristic material measure (A)
such that Eq. (2a) applies.

As shown in Figure 3a, to generate a fault in Al, only
ions belonging to the two adjacent {11 1} fault planes
undergo large strains and significant charge redistribu-
tions. That is, as a fault (e.g. ESF or TF) is generated
based on an existing fault (e.g. ISF) a minimum interac-
tion with the existing fault is maintained due to the lat-
tice rigidity (see Fig. 2a).

This does not apply for Pt. In the case of Pt, the elec-
tronic structure is changed significantly in at least two
{111} atomic planes. Several atomic planes are there-
fore involved and couple strongly as a new fault is gen-
erated (Fig. 3b). As can be seen in Figure 3b, together
with the change in bonding characteristic, atoms in sev-
eral adjacent {11 1} lattice planes are displaced due to
strong interactions between the existing fault and the
newly generated fault.

The linear scaling shown in Figure 2a is also supported
by results in several previous publications [25-32]. Data
obtained recently for a number of fcc elements via the
Naval Research Lab Tight-Binding (NRLTB) codes
[26,27] have been depicted in the same plot. They scale
equally well and obey the same trend despite the fact that
the calculated As for the same element depend on the par-
ticular set of tight-binding parameters. While stacking
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Figure 3. Charge distributions associated with forming an ESF in Al (a)
and Pt (b). Vector plots at the right-hand side represent ionic
displacements between the saddlepoint image and its neighboring “up-
hill” image (cross symbols, cf. Fig. 1, lower panel), magnified by a factor
of 2.5 (ionic positions of the initial image (ISF) and the final image (ESF)
are drawn with open circles and dots, respectively; as visual guides,
dashed and full lines are used to indicate ionic positions at different
states). Charges are depicted at an isosurface value, 0.18 eA~?for Aland
0.23 eA for Pt, with ions shown by blue balls. In both metals the
atomic bonds are highly directional. Like other metals, redistribution of
charges in Al appears almost solely within the two adjacent fault planes,
emphasizing that the interaction between faults tends to be minimal. In
Pt, extended redistributions across about 5 (11 1) layers (marked by
horizontal dashed lines) are observed, suggesting strong coupling
between faults or change of bonds involving multiple (1 1 1) layers for
both stable and unstable fault configurations.

fault energies of alloy systems may depend strongly on
alloying elements and concentrations, we found that
Eq. (2) still applies for Cu—Al alloys [32] (Fig. 2a).

Formetals of low-A4, such as Cu with a filled d-band, the
bonding can be mapped quite well for central-force type
atomic interactions. The scaling law revealed by Eq. (2)
in general applies. In some cases, central-force interatomic
potentials underestimate the ratio 7. /7, although the
ratio A may be reproduced reasonably well [26,28]. The
scaling law (Eq. (2)) therefore constitutes a useful guide
for fitting empirical interatomic interactions (Supplemen-
tary data and [41]).

A more generalized version of Eq. (2) can be written
as y} ¢ /7es = A/2 + B. The minimum interaction princi-
ple satisfies if §; ~ 1 (see Table 1) and the planar fault
configuration in this case is characterized by localized
bonding effects. Note that for hcp metals such as Mg,
the same scaling rule (ff; ~ 1) is obeyed when faults
are generated sequentially along basal planes [42].

In nanostructured fcc metals, the trend to emit partial
dislocations, perfect dislocations and twins can be under-
stood in terms of the energy barriers on y-surfaces. For
large values of A (e.g. Al), emission of trailing partials
leading to perfect dislocations is generally favored over
twin nucleation (7, — i VS Vi — 7isr)» but once nucle-
ated, twins can grow readily (Yo% — 7 VS. Yusr) [4,15-18].
For small values of A (e.g. Cu), there is little difference
in the barriers associated with twin growth and the emis-
sion of independent leading partials, so the latter is
likely to dominate the response to deformation and
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the strengthening role due to existing twins can be ex-
pected to be most significant [10-16].

The scaling law of Eq. (2) encompasses a broad range
of fcc materials. If Eq. (2) holds, it can be readily applied
to reveal a general trend of mechanical twinning for fcc
metals. Based on mechanical analyses of dislocation vs.
twin emission from a crack-tip [43], a dimensionless
measure, the so-called “twinnability”, was introduced
by Tadmor and Hai [44] as an intrinsic material prop-
erty. Asaro and Suresh [45] proposed that in nanostruc-
tured fcc materials, the relative occurrence of dislocation
vs. microtwin emission from grain boundary sources is
similar to that from a crack-tip. They considered the
most favorable geometry condition for twinning and de-
rived a modified twinnability measure [45]:

T= \/(3Vusf - 2?isr)/3’lnf 3)

The twinnability, 7, offers a mechanical criterion: if
T> 1, twin emission is favored over the emission of a
trailing partial dislocation and thus of the emission of
a perfect dislocation. Using the single ratio A4 and our
scaling law, T can be converted into:

T~ \/(3-24)/(1+ A)2) 4)

Using the same set of data as in Figure 2a, the com-
puted twinnability 7" according to Eq. (3) is plotted to-
gether with the scaling trend based on Eq. (4) as shown
in the right diagram of Figure 2. It is evident that to eval-
uate the trend of twin emission for different fcc materials,
one has to consider A instead of the ISF energy alone.

Eq. (4) suggests that in general twinning should be
prohibited in nanostructured metals with A4 > 0.8. Other-
wise, twinning constitutes a competitive mode of defor-
mation along with dislocation-mediated slip. This is in
agreement with experimental observations of twinning
in metals such as Cu, Ni and Pd [7-9]. In the plot, Al rep-
resents a marginal case for the occurrence of twin emis-
sion, which is also consistent with the experimental
conclusion that twinning rarely occurs for this metal
[18]. However, it has been argued that in the nanoscale
domain, small grain size increases the partial dislocation
separation distance, aiding twinning [7]. For Pt, twin
emission is most difficult according to our results as well
as NRLTB calculations [26,27]. Since the twinnability
measure given by Egs. (3) and (4) relies on the assumption
that microtwin emission from grain boundary sources is
similar to that from a crack-tip, it may fail if deformation
twinning occurs via different mechanisms [46-50].
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Supplementary data associated with this article can
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