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Ion implantation of silicon introduces excess point defects that quickly recombine during annealing

leaving net interstitial and vacancy populations. For higher energy implants, the separation be-

tween interstitials and vacancies is larger, leading to a vacancy rich region towards the surface and

an interstitial rich region deeper in the bulk. The high supersaturation of vacancies in the near

surface region can lead to their aggregation into vacancy clusters or voids. In this work, we have de-

veloped a continuum model for vacancy clusters using discrete cluster sizes. Results from atomistic

calculations 1 are used for the energetics of the cluster growth/dissolution. The model is compared

to data from Venezia et al.
2 for Au indi�usion subsequent to Si high energy implants. We found

good agreement with experimental data using this model without any tuning of the parameters.

However, this model is too complex and computationally expensive to be e�ectively incorporated

into continuum TCAD solvers. Hence, we reduced this system of discrete rate equations into a

two-moment model by carefully considering the behavior of the full model under a range of con-

ditions. The parameters of the moment-based model follows from the full model, which in turn is

based on atomistic calculations. The resulting simple and computationally eÆcient model is found

to accurately reproduce the Au labelling experiments.

1. Introduction

Modeling the annealing of an ion-implanted silicon is a complicated process. Large numbers of

point defects are created during the implant, and these can coalesce to form various extended defects.

Recent experimental observations suggest that the annealing process for low/medium energy implants is

independent of the initial implant cascade and mainly dependent on the distribution of the implanted

ion.3,4 This is because implantation creates large but nearly equal numbers of interstitials and vacancies

that quickly recombine, leaving behind the introduced extra ion-interstitial. However, it is possible to

achieve a larger separation between interstitial and vacancy distributions after the implant cascade via

high energy implantation which kicks interstitials deeper into the bulk. In this case, recombination leaves

a substantial vacancy rich region near the surface.

Several experiments have indicated the presence of this vacancy rich region. Enhanced di�usion of Sb

marker layers have been observed after MeV Si implants.5 For high energy implants, metallic impurities

getter not only at Rp, the projected range of the implant but also at Rp/2.
6 The gettering at Rp is

attributed to interstitial type defects, whereas the gettering at Rp/2 is explained by the presence of the

excess vacancies from the implant. It is also possible to create a vacancy rich region by higher mass

implants. Pb implants have been found to decrease boron clustering in shallow boron marker layers.7

This vacancy rich layer can be used as a tool to reduce the depth and increase activation of boron or

phosphorus junctions. For instance, use of MeV Si implants have been found to reduce the interstitials in

end of range loops from high dose implants.8 Similarly, use of higher energy sub-amorphizing Si implants

have been found to reduce transient enhanced di�usion (TED) for medium dose boron implants.9

Since the vacancy induced e�ects seem to last over a signi�cant annealing time,5 vacancies most likely

agglomerate into vacancy clusters or voids. Understanding and modeling vacancy clusters is thus essential



to modeling di�usion following well formation and exploring the novel use of vacancies in the formation of

next generation devices. In this work, we model the formation and subsequent annealing of this vacancy

rich layer.

2. Model

Bongiorno et al : performed tight binding molecular dynamics (TBMD) calculations to obtain forma-

tion and binding energies for vacancy clusters in silicon for n � 35.1 Their results show that di�erent

growth patterns for cluster formation exist. The binding energy Eb(n) for adding a vacancy to a n� 1

size cluster is not a smooth function of size. For small clusters (n < 24), Hexagonal Ring Clusters (HRC,

clusters grown by removing Si atoms from the 6-membered rings present in the Si crystal structure) are

energetically favorable with respect to Spheroidal Clusters (SPC, clusters grown by removing Si atoms

from successive shells of neighbors surrounding a given atom). Hence, we use calculated values for SPC

for larger clusters and HRC for smaller clusters. In the absence of TBMD calculations for clusters larger

than 35, we use a functional form for the binding energy from Jaraiz et al :10

In our analysis, discrete reactions are solved at each cluster size. Clusters can grow or dissolve with

addition or release of a vacancy,

Vn�1 +V, Vn: (1)

Vacancy clusters can also interact with interstitials,

Vn + I, Vn�1: (2)

The net rate of formation of size n cluster from size n� 1 is given by the di�erence of the rates of Eqs. 1

and 2 as:

IVn = I
V=Vn�1

Vn
� I

I=Vn

Vn
: (3)

We assume vacancy incorporation reaction kinetics are di�usion limited, and hence the rate of forma-

tion I
V=Vn�1

Vn
of Vn from Eq. 1 is given by,

I
V=Vn�1

Vn
= �

V=Vn�1
n�1 DV

0
@CVn�1CV �

CVn

K
V=Vn�1
Vn

1
A ; (4)

where DV is the vacancy di�usivity and �
V=Vn�1
n�1 is the capture radius of the reaction and is de�ned as

�V=Vn�1n =
A
V=Vn�1
cap

ahop
: (5)

ahop is the hop distance and is taken to be equal to a0, the lattice constant of silicon. A
n
cap is the capture

cross-section and is given by,

AV=Vn�1
cap = 4�(rV=Vn�1cap )2 = 4�(n� 1)2=3a20: (6)

K
V=Vn�1
Vn

is the equilibrium constant for Eq. 1 and is given as,

K
V=Vn�1
Vn

=

�
1

5� 1022 cm�3

�
exp

�
Eb(n)

kT

�
(7)



Table 1: Point defect parameters used for the simulations. (a) Ref. 10, (b) Ref. 12, (c) Ref. 13, (d) Ref. 14.

Parameter Pre-exponent Energy (eV) Ref.

DV(cm
2=s) 1� 10�3 0.43 (a)

DVC
�
V(cm

�1s�1) 6:95 � 1021 3.88 (b)

DI(cm
2=s) 0:158 1.37 (c)

DIC
�
I (cm

�1s�1) 1:5 � 1026 4.95 (d)

The reaction rate for Eq. 2 is given as,

I
I=Vn

Vn
= �I=Vnn DI

0
@CVnCI �

CVn�1

K
I=Vn
Vn

1
A : (8)

The equilibrium constant for this reaction can be obtained as,

K
I=Vn
Vn�1

=
1

K
V=Vn�1
Vn

C�I C
�
V

: (9)

We assume a small barrier EI=V of 0.2 eV to I/V recombination11 and hence

�I=Vnn =
A
I=Vn
cap

ahop
exp

�
�
EI=V

kT

�
(10)

= 4�(n)2=3a0 exp

�
�
EI=V

kT

�
: (11)

The point defect parameters used in this work are tabulated in Table 1.10,12,13,14 The vacancy cluster

energies from Bongiorno et al :1 are shown in Table 2. For larger vacancy clusters, the binding energy

used from Jaraiz et al :10 is

Eb(n) = 3:65 � 5:15
h
n(2=3) � (n� 1)(2=3)

i
: (12)

Net I�V and net V�I concentrations from TRIM15 are used as initial conditions. The net I�V concen-

tration is de�ned as max(CI � CV; 0), and similarly, the net V�I concentration is max(CV � CI; 0). At

the start of simulations, these concentrations are added to the equilibrium interstitial and vacancy con-

centrations, respectively. We use an analytical model for interstitial type extended defects from previous

work by Gencer et al :16,17,18,19 As per this model, interstitials agglomerate into f311g defects and further

transform into loops. The f311g and loop models are calibrated to transmission electron microscopy

(TEM) data.20,21

3. Initial Damage

Fig. 1 shows a typical set of defect and dopant pro�les from TRIM,15 a Monte Carlo ion implanta-

tion simulator. As discussed earlier, the large initial interstitial and vacancy pro�les are nearly equal.

Subtracting them reveals that the surface is vacancy rich while interstitials are kicked deeper into the

substrate. For the implant energy of 40 keV Si, the separation between vacancies and intersitials is low.

Close proximity to the surface leads to rapid annihilation of the excess vacancies. Hence this agrees with



Table 2: Parameters from Bongiorno et al. (Ref. 1) used for the simulations. Ef(n) is the formation energy and

Eb(n) is the binding energy in eV. We use SPC formation energies for n > 24 and HRC for the clusters smaller

than 25.

Size 1 2 3 4 5 6 7 8 9

Ef(n) 3.40 5.20 7.14 9.36 10.68 11.37 13.7 14.08 14.72

Eb(n) - 1.60 1.46 1.18 2.08 2.71 1.07 3.02 2.76

Size 10 11 12 13 14 15 16 17 18

Ef(n) 15.58 17.84 18.27 18.86 19.61 22.03 22.44 23.05 23.79

Eb(n) 2.54 1.14 2.97 2.81 2.65 0.98 2.99 2.79 2.66

Size 19 20 21 22 23 24 25 26 27

Ef(n) 25.27 26.31 26.91 28.36 29.86 30.06 30.71 31.04 31.38

Eb(n) 1.92 2.36 2.80 1.95 1.90 3.20 2.75 3.07 3.06

Size 28 29 30 31 32 33 34 35

Ef(n) 31.51 31.87 32.67 33.45 34.22 35.00 36.12 36.4

Eb(n) 3.27 3.04 2.6 2.62 2.63 2.62 2.28 3.12

the fact that no visible enhancements have been observed for Sb under such conditions.22 For a high

energy implants, the situation is much di�erent. As seen in Fig. 2, there is a distinct net vacancy rich

region for a 2 MeV Si implant. The vacancy rich region extends well over 1�m and has net vacancy

concentrations on the order of 1018 cm�3. This huge vacancy supersaturation can lead to the formation

of vacancy type clusters.

4. Comparison To Experiments

One of the primary problems associated with modeling vacancy clusters is the diÆculty in directly

observing the defects. Most of the available experiments provide indirect evidence of the presence of

vacancy clusters. In this paper, we use Au in-di�usion data from Venezia et al.
2 for MeV Si implants. In

the experiments considered, Si was implanted to a dose of 1016cm�2 at di�erent MeV energies. The im-

plants were performed at 300ÆC to promote recombination of point defects and thus avoid amorphization.

Following implantation, the samples were annealed at various temperatures. They were then implanted

with Au and annealed at a lower temperature (750ÆC). Au from the implant was found to getter around

Rp/2 and was measured by RBS. The �nal Au concentration was reported to be relatively insensitive

to the time of Au drive-in di�usion and is much higher than its equilibrium solubility in silicon. TEM

images reveal Au related precipitates approximately 150 �A in diameter distributed over a depth similar

to that indicated by the RBS pro�les.

Au di�uses rapidly in Si via an interstitial mechanism. Hence, an increase in vacancy concentration

moves Aui more strongly onto substitutional sites, either via Aui+V ! Aus or by decoration of vacancy

clusters or voids. The total Au concentration is dependent on the interaction of the Aui with vacancies

and vacancy clusters. A recent study, based on controlled injection of interstitials into the vacancy layer

indicates the ratio of Au to vacancies to be closer to unity.23

Simulations show that vacancy clusters are fairly stable in the vacancy rich layer and can lead to en-

hancement of vacancy di�users like Sb. For example, we obtain a time averaged vacancy supersaturation
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Fig. 1: Monte Carlo simulation showing initial distributions of interstitials and vacancies following a 40 keV,

2�1014 cm�2 Si implant. Note that in this case the vacancy rich region is close to the surface and hence can be

quickly annihilated.
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Fig. 2: Monte Carlo simulation showing net initial distributions of interstitials and vacancies following a 2 MeV,

1�1016 cm�2 Si implant. The vacancy rich layer extends well over a �m.



|

1
|

10
|

100

|
|

|
|

| | |

|
|

|
|

 Cluster Size 

 950oC
 750oC

108

1010

1012

1014

 T
ot

al
 V

ac
an

ci
es

 in
 C

lu
st

er
 (

cm
-2

)

Fig. 3: Simulated size distribution of vacancy clusters after short time anneals at 750ÆC and 950ÆC. The distri-

butions are integrated over depth into the silicon. Clusters ripen into larger clusters more predominantly at the

higher temperature. This also shows the most stable small cluster sizes to be around 6, 10, 14, 18 and 24.

(< CV=C
�
V >) of approximately 20 after a 950ÆC/600 s anneal of a 2 MeV 1016 cm�2 Si implant. Fig. 3

shows a typical size distribution after a short time anneal at 750ÆC. As shown here, the most stable

clusters are of cluster sizes n = 6, 10, 14, 18 and 24. Also shown in the same plot is the distribution at

950ÆC. It is clear that larger clusters play a more important role at higher temperatures for which there

is a rapid growth to larger sizes.

Fig. 4 shows predicted depth pro�les for vacancies in clusters compared to observed Au distributions 2

for a 2 MeV 1016 cm�2 Si implant annealed at 750ÆC. We obtain a very good match to the experimental

data. At 750ÆC, the clusters are very stable and almost no change in total clustered vacancy concentration

is seen between 10 min and 1 h anneals.2 Fig. 5 shows comparisons to data at 950ÆC. Note that the

simulations again agree well with the time dependence of the data.

One might note that in Figs. 4 and 5, the experiments indicate signi�cant Au concentration down

to 1.5�m, in contrast to the simulations for which the clustered V concentration drops o� at about

1.2�m. This discrepancy may be due to neglecting channeling in the implant pro�les. In the simulated

as-implanted pro�les, the transition from vacancy-rich to interstitial-rich occurs at about 1.3�m(Fig. 2).

Including channeling would extend this crossover deeper into the silicon, giving corresponding deeper V

cluster distributions after annealing.

At higher temperatures, vacancy clusters are annihilated by an increased dissolution of interstitial

defects from the bulk and surface annihilation of vacancies. Shown in Fig. 6 is the comparison to 1000ÆC

data. The clusters around Rp/2 are the largest and therefore the most stable. Hence there is a peak in

cluster concentration at Rp/2 in the simulations similar to that observed in the experimental data.2

We can further analyze our results to see the fraction of vacancies in smaller sized clusters (n < 36).

Note that these were the clusters for which we used TBMD results from Bongiorno et al :1 Fig. 7 shows

the signi�cance of the addition of larger sized clusters. At 750ÆC, a signi�cant fraction of smaller sized

clusters are present. However, at 950ÆC most of the clusters, especially around Rp/2, have ripened into

larger clusters (n > 35).
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Fig. 4: Simulated clustered vacancy concentrations compared to Au RBS data for 750ÆC anneals of 10 min and

1 h. Simulations show that there is very little change in the clustered vacancy concentration between 10 min and

1 h. This is in agreement with results from Venezia et al : (Ref. 2) who also report that Au concentrations are

nearly constant for longer anneals up to 8 h at 750ÆC. Note that the surface peak in the data is because of the Au

implant used for the in-di�usion.
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Fig. 5: Simulated and clustered vacancy concentrations compared to Au RBS data after 950ÆC anneal of 10 s and

10 min. At 950ÆC, vacancy clusters are annihilated by an increased dissolution of interstitial defects from the bulk

and loss to the surface. Note that the simulations agree well with the time dependence of the data. Experimental

Au concentration data is from Venezia et al. (Ref. 2).
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Fig. 6: Simulation and clustered vacancy concentrations compared to Au RBS data after a 1000ÆC anneal of 10

min. At 1000ÆC, the vacancy clusters are increasingly annihilated from the surface and the dissolution of interstitial

defects from the bulk. The clusters around Rp/2 are the largest and therefore the most stable. Hence there is

a peak in cluster concentration at Rp/2 (0.9 �m) in the simulations similar to that observed in the experimental

data. Experimental Au concentration data is from Venezia et al. (Ref. 2).

An important factor in matching the vacancy clustering is related to the interstitial clustering model

used. Since these simulations involve a deep, high dose of implant, we can expect to see considerable

transformation to loops. Indeed, in all the simulations most of the f311g defects transform into loops.

If we use only a f311g model and do not consider loop formation, the vacancy clusters are quickly

annihilated by the interstitials from the bulk at the higher temperatures. As seen in Fig. 8, using only

a f311g model without any loop formation leads to dissolution of all the clusters in a time span of less

than 60 s at 950ÆC, contrary to the experimental observations.

5. Moment Based Models

The physical rate equation model described in the previous sections is computationally very expensive

since the full size distribution is tracked at each point in space. Even if one limits the number of

precipitate sizes that will be solved for via rediscretization, the number of variables is still very large for

eÆcient solution of the equation system. If the system has multiple spatial dimensions, the number of

solution variables becomes prohibitively large. Clejan et al. developed a more eÆcient approach based on

considering the size distribution in terms of a small number of moments.24 Only the evolution of those

moments are considered rather than the full distribution at each point in space. The moments are de�ned

as: 24

mi =
1X
n=2

nifn; (13)

where i = 0; 1; 2; : : :. The zeroth order moment of the distribution is simply the precipitate density,

while the �rst moment corresponds to the density of precipitated solute atoms. Higher order moments

further describe the shape of the size distribution. Di�erentiating Eq. 13 leads to the following system
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Fig. 7: The above �gure shows the signi�cance of the addition of larger sized clusters. At 750ÆC, smaller sized

clusters dominate. However, at 950ÆC most of the clusters especially around Rp/2 have ripened into larger clusters

(n > 35). Experimental data is from Venezia et al. (Ref. 2).



�

�  {311} + Loops
�  {311}

|

1
|

10
|

100
|

1000

|
|

|
|

| | | |

|
|

|
|

 Time (s)

Equilibrium vacancy dose

 Au Dose (950oC)

108

1010

1012

1014

 T
ot

al
 V

ac
an

cy
 D

os
e(

 c
m

-2
)

950oC simulations using

� �
�

�
� �

�
�

�
�

�
�

�

�

�

�
� �

Fig. 8: Time dependence of vacancies in system (depth of 1000 �m). Using only a f311g model without any

loop formation leads to dissolution of all the clusters by about 60 s, contrary to experiments. It should be noted

that the experimental value reported by Venezia et al : is measured between 0.2 { 1 �m to avoid including the

Au implant pro�le. This method thus leaves out the dose of vacancies below 0.2 �m. Hence the experimental

results are expected to be slightly lower than the simulation results despite having a good agreement in the

depth distributions. Also, without loops the vacancy concentration drops below the equilibrium value due to the

interstitial supersaturation from the dissolving f311g defects. Experimental data is from Venezia et al. (Ref. 2).

of equations: 24

@mi

@t
= 2iI1 +

1X
n=2

h
(n+ 1)i � ni

i
In (14)

where, In is I
V=Vn

Vn+1
as given in Eq. 4. Note that the sums over the In can all be written in terms of sums

over fn, nfn, etc. Hence, they can be calculated from the moments if the �nite number of moments

considered are suÆcient to describe the size distribution. This reduces the system of equations to be

solved to: 18

@mi

@t
= DV

h
2i�1C

2
V +m0CV


+
i
�m0Css


�
i

i


+
i

=
1X
n=2

h
(n+ 1)i � ni

i
�nf̂n (15)


�
i

= �1Ĉ
�
1 f̂2 +

1X
n=2

h
ni � (n� 1)i

i
�n�1Ĉ

�
n�1f̂n

where Ĉ�n = C�n=Css and f̂n = fn=m0.

If we allow interstitials react with the vacancy clusters, we need to add extra terms to the moment

equations. With the same de�nitions of 
i as before and setting �
0 = �2f̂2, the moments can be derived

to be: 18
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h
�1CV
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0

i
�DICIm0�
0
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h
�
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...
@CV

@t
= �DV

h
2�1CV

2 +m0CV

+
1 �m0Css


�
1

i
+DICIm0�
0

@CI

@t
= �DICIm0

h
�
0 + 
+1

i

Since we want to develop the most computationally eÆcient model, we consider the possibility of

representing the system in terms of its �rst two moments following the work of Gencer and Dunham
18. To further simplify, we can assume that the kinetic precipitation rate �n is a weak function of the

precipitate size, and can replace �n by a constant e�ective value �e� for all sizes. �e� can be found

approximately from a weighted sum of �n as:

�e� =

P1
n=2 �nfnP1
n=2 fn

(17)

This e�ectively reduces the number of summations involved and thus our system reduces to:

@m0

@t
= I1 = D�1

�
C2
V �m0Css
0

�
�DI�1CIm0�
0

@m1

@t
= 2I1 +D�e�m0 (CV � Css
1)�DICIm0

�
�e� � �
0�1

�
(18)

@CV
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h
2I1 +D�e�m0 (CV � Css
1) +DI�1CIm0�
0

i

@CI

@t
= �DICIm0

�
�e� + �1�
0

�

with


0 = Ĉ�1 f̂2

�
0 = f̂2 = 
0=Ĉ
�
1 (19)


1 =
1X
n=2

Ĉ�nf̂n+1

In order to solve this system of equations, we need to assume that it is possible to write the 
i in terms

of the moments for which we are solving, m0 and m1. Since the 
i are functions of the normalized size

distribution f̂n, they depend on m0 andm1 only through their ratio m̂1 = m1=m0, the average size. Thus

we can write:


0 = 
0(m̂1)


1 = 
1(m̂1) (20)

To validate our assumption on the nature of fn, it is possible to calculate the 
i numerically and thus

verify if 
i are indeed uniquely dependent on m̂1. This approach was previously used by Hobler et al.

for I aggregation.25 The full discrete rate equation model was simulated at a single grid point. A large

maximum size of 1000 was chosen to remove any errors due to pile-up at the largest size. The simulation
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Fig. 9: 
0 values extracted from simulations of the full system of rate equations for three di�erent temperatures

(400, 800, 1000ÆC). Also shown in the same plot is 
0 value for a 1000
ÆC anneal after a preanneal at 400ÆC. Note

that the 
0 is almost independent of its thermal history.

was run for di�erent times to extract 
i and m̂1. Figs. 9 and 10 show 
i plotted against m̂1 extracted

from the full model. It can be noted that 
i satisfy the following limits as expected:18

lim
m̂1!2


0 = Ĉ�1

lim
m̂1!1


0 = 0 (21)

lim
m̂1!2


1 = 0

lim
m̂1!1


1 = 1

For larger m̂1, 
i are found to have only a weak dependence on temperature. Further, 
i seem to be

unique functions of m̂1 within reasonable errors. However to con�rm this hypothesis it is necessary to be

able to obtain the same 
i irrespective of its thermal history. Figs. 9 and 10 include comparisons between

single and two-step anneal. It was found that samples simulated at 1000ÆC with and without a 400ÆC

preanneal gave very similar 
i, giving credence to the possibility of using only the �rst two moments to

model this system.

It is now possible to �nd analytic expressions to �t the obtained 
i. For example, Figs. 11(a) and (b)

show �ts to the calculated 
i. We can use the obtained 
i in Eq. 18. We refer this model as the analytic

kinetic precipitation model (AKPM). There are no other free parameters in this system. Note that Css

can be taken as C�V and is not a �tting parameter. However, using the 
i thus derived, we found the

simulation to be numerically unstable due to the strong change in 
i at small average sizes. Hence, a new

set of 
i were constructed neglecting small size e�ects. A kinetic barrier can be added to correct for the

growth rate at small sizes. This is appropriate as kinetic factors are primarily signi�cant at short times,

and the large gamma values at small sizes inhibit the initial cluster formation and growth (see Eq. 18).

Figs. 12(a) and (b) show such 
i values. A barrier of 0.4 eV was added to the clustering reactions as a

correction to include small size e�ects. This system was found to match closely both the experimental

data and the full rate equation model. Fig. 13 illustrates this for anneals at 950 and 1000ÆC.
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6. Summary

A set of discrete clusters are used to model vacancy cluster evolution after high energy ion-implantation

in Si. The parameters for this system are from atomistic calculations. It was found that this system is

able to predict the temperature, time and depth dependence of vacancy clusters seen in the experimental

results. A procedure has been proposed to reduce this complex model into a simple two-moment model.

The parameters for this two moment model are derived from the full rate equation model and are found to

give good prediction to data. This eÆcient two-moment model can be easily incorporated into technology

modeling tools and applied to model more complex situations.
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