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ABSTRACT

Dopant diffusion in silicon has been studied for many years because of its im-
portance in establishing dopant profiles in very large scale integrated devices, and
because it is more complicated than would be predicted by Fick’s law. As electronic
devices become smaller and smaller, understanding the atomistic mechanisms for
dopant diffusion becomes crucial for the continued rapid advance in technologies.

In this work, dopant diffusion in silicon is studied using kinetic lattice Monte
Carlo (KLMC) and ab-initio calculations. The KLMC approach is used to span the
time and length scales between microscopic and macroscopic diffusion regimes. A
model based on a lattice occupied by different particles (dopants, vacancies, intersti-
tials, silicon atoms) with medium range interactions (up to tenth nearest neighbor) is
employed with a range of boundary conditions. Hopping rates are based on changes
in system energy and satisfy detailed balance. Different diffusion mechanisms (e.g.,
ring, kick-out) are implemented. KLMC parameters (e.g., interactions energies) are
obtained from both experiment as well as ab-initio and empirical potential MD cal-

culations.
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Problems investigated include: anomalous dopant diffusion in heavily doped sili-
con, corrections to continuum models for defect mediated dopant diffusion, damage
annealing following ion implantation, boron diffusion in silicon. A computer program

LAMOCA has been written to investigate these phenomena.
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Chapter 1

Introduction

Dopant diffusion in silicon has been studied for many years because of its major
technological importance as an elementary process step in fabrication of silicon based
integrated circuits. Dopants atoms are introduced into silicon substrates with the
purpose of changing the electrical conductivity of the host material. These dopants
then diffuse during some of the subsequent steps required to make electronic devices.
Diffusion of dopants in silicon is more complicated than predicted by Fick’s law, and
for the last 30 years continuum models, based on solving coupled diffusion equations
for dopants and point defects, have been the standard approach. Although com-
putationally fast, they have become very complex and as such their predictions are
uncertain.

Due to significant improvements in computer power and computational methods
in last decades a new field has emerged between the traditional experimental and
theoretical physics which is computational physics or computer simulation[10].

The information provided by analitic theories is exact only in rare cases and for
other cases uncertain approximations are required. For instance statistical problems

which are solvable for three dimensional geometry are idealized cases like coupled



harmonic oscillators or ideal gases or ideal solutions.

Experiments on the other hand are almost never precisely characterized since
the chemical constitution of a sample is known only approximatly. And in this way
computer simulation could fill the gap between theory and experiment by testing if
the model correctly represent the real system or not.

A new trend is emerging in the study of dopant diffusion in silicon which consists
in using experimental results and a broad range of numerical methods (e.g., first prin-
ciple calculations, molecular dynamics, kinetic lattice Monte Carlo, coupled diffusion
equations) to gain insight into the interactions of dopants with point defects.

In this work, dopant diffusion in silicon will be studied using kinetic lattice Monte
Carlo (KLMC) and ab-initio calculations. The KLMC approach is used to span the
time and length scales between microscopic and macroscopic regimes. A lattice
model with different particles (dopants, vacancies, interstitials, silicon atoms) with
medium range interactions (up to tenth nearest neighbor) is employed with a range
of boundary conditions. Hopping rates are based on changes in system energy and
satisfy detailed balance. Different diffusion mechanisms (e.g., ring, kick out) are
implemented. KLMC parameters (e.g., interactions energies) are obtained from both

experiment as well as from ab-initio and empirical-potential MD calculations.



Chapter 2

Background

2.1 Point Defect Properties

2.1.1 Definition of Point Defects

Perfect crystals can be regarded as made of identical building blocks, unit cells,
stacked in a repetitive array that defines the translational symmetry of the crystal
structure. The crystal surface destroys the symmetry of the crystal. Its effects are
neglected by definition in the study of bulk properties. While other extended defects
are present in the crystal, point defects are of principal interest from the perspective
of dopant diffusion in silicon. Two types of point defects may be identified: impurities
and thermally activated point defects. Impurities are incorporated in silicon crystals
from the growth process or in subsequent steps meant to introduce dopants that upon
activation will change the electrical properties of silicon. Thermally activated point
defects or native point defects are present in the equilibrium structure of crystals
at non-zero temperatures. Atomic motion associated with thermal energy causes
atomic coordinates to fluctuate about their time average values and may have the

effect of displacing the atoms from lattice sites into interstices where they may find



new equilibrium positions as interstitial atoms. The empty site left behind when
an interstitial is created is called vacancy (see Fig. 2.1. This defect is also called
a Schotcky defect. A vacancy can exist in different charged states V*, V*+ VO
V-, V=~ (see Watkins et al.[1] for a complete study of vacancy in different charged
states). For every charged state, the lattice presents a different distortion. These local
distorsions will be ignored in the lattice model that will be used to study diffusion.
Only for a vacancy in the neighborhood of a dopant they are accounted for indirectly
via the dopant-vacancy interaction potential. An interstitial is an atom transferred
from a lattoce site to a position not occupied by an atom in a perfect crystal. An

interstitialcy is a defect which consists of two atoms sharing a lattice site. A dopant

@) O O O O @)
O O O
@)
—C
Vacancy Interstitial Interstitialcy

Figure 2.1: Native point defects of interest for silicon: vacancy - an empty lattice
site, interstitial - an atom transfered from a lattice site to a position not occupied by
an atom in the perfect crystal, and interstitialcy - two atoms sharing a site.

atom which resides on a lattice site is called a substitutional defect.

2.1.2 Why Study Point Defects ?

Dopant atoms dissolve substitutionally in silicon. It was assumed that only by inter-
acting with point defects, vacancies and interstitials, dopant atoms will performe long
range diffusion. Although the importance of the vacancy and interstitial mechanism

on dopant diffusion is still debated experiments suggest that P and B have the most



substantial interstitial component on diffusion, while Sb appears dominated by a va-
cancy mechanism. Oxidation of a silicon surface above an impurity doped layer leads
to a large increase in the impurity diffusion above what is normally observed[2, 3].

At the same time extended defects - stacking faults grow (see Fig. 2.2. TEM obser-

Nitride Mask Oxidation

PHOSPHORUS

OED

N

o p \/

Figure 2.2: A schematic picture that shows the enhanced diffusion of phosphorous
under the oxidazing region and the growth of stacking faults. Hu[4] proposed that the
two phenomena have a common origin in the injection of silicon self interstitials. This
type of experiment suggests that difussion of impurities like P and B are dominated
by an interstitial mechanism.

vation of stacking faults show that they were interstitial type defects. It was known
that these defects grow by adding silicon atoms to the dislocation ends in oxidizing
ambients. Hu[4] linked the growth of stacking faults and oxidation enhanced diffusion
of dopants by proposing that they are due to silicon interstitials injected during oxi-

dation. Under the same conditions antimony diffusion is retarded which is explained



trough decrease in the vacancy concentration due to the excess of interstitials and is

evidence for a dominating vacancy mechanism for antimony diffusion.

2.1.3 Thermodynamics of Point Defects

Why do point defects exist ? Usually silicon wafers are kept at constant temper-
ature and pressure. Under these conditions the thermodynamical potential that is

minimum at equilibrium is the Gibbs free energy:
G=H-TS (2.1)

where H is the enthalpy, T is the absolute temperature, S is the entropy. At any non-
zero temperature the silicon crystal will have a finite concentration of point defects,
due to the fact that the energy cost for formation of a point defect is compensated
by the entropy contribution and in this way the presence of point defects minimizes
the free energy. Upon formation of a defect X (interstitial or vacancy) the change in

the free energy is:

AGx = AHL — TASx (2.2)

AH }; is the enthalpy required to form a point defect X. The total entropy is the sum
of three terms:

ASx = AST + ASS + ASL (2.3)

(mixing, configuration and formation entropies). The entropy of mixing depends on
the number of different possible arrangements of point defects within the crystal and

is defined as the difference in the entropy associated with the presence of ny point



defects versus nx_i.

’U)(’I’Lx) ]

ASY = klnw(nx) — klnw(nx — 1) = kln[w(n gy (2.4)

Where w(ny) is the number of different possible arrangements of vacancies within
the crystal. The configuration entropy, which depends on the number of different

configurations of the vacancy 0y is just:
ASS = klnfx (2.5)

The remaining entropy change is called formation entropyAng. At equilibrium

AGx = 0 and substituting for the entropy terms we obtain:

AH) — T(AST + ASS + ASL) = AH, — TASY — kTln lex(cc——c)(] (2.6)
X

After some rearrangements and in the limit of dilute solutions(Cx < C;) we obtain:

f
C% ~ 0xCgexp l—%} =0 (2.7)

where AG% = AHL —TASY, C, is the concentration of sites and Cy is the concen-

tration of defects.

2.1.4 Nature of the Dopant Defect Interaction Potential

For analysing dopant diffusion in silicon in the following chapters will be usefull to
know how a dopant and a point defect interact. This interaction is described trough
an interaction potential and is calculated using quantum mechanics via what is called

first principle calculations which will be presented in the next chapter. There are two



main contributions to the dopant-point defect interaction: Coulombic and elastic.
The dopant and the defect usually carry electric charge and as such a Coulombic

potential between an ionized dopant atom and a charged point defect arises:

4192

AEcoy = ——
dmegeg;T

(2.8)

where ¢; and ¢y are the charges on the two interacting particles, r the distance be-
tween them, and eg; is the macroscopic dielectric constant of Si (eg;=11.7). For
close range interaction one performs more sofisticated corrections, Madelung like, in
the previous equation. In Fig. 2.3 the dopant-vacancy interaction potential from
Pankratov et al.[5] and Nelson et al.[6, 7] is shown for As and P. Some distor-
tion of the lattice must occur in order to accomodate either native point defects
or dopant atoms. Atoms with shorter bonding radii than silicon (rg; = 1.17A)
are said to be “smaller” than silicon. Such dopants are P and B (rp = 1.14,
rp = 0.884). All other dopants(Al, Ga, In, As, Sb and Bi) are “larger” than silicon
(ra = 1.26,1.26,1.44,1.18,1.36,1.45A respectively. The size of the dopant atoms
has a visible effect on the silicon lattice. Thus small atoms contract the lattice, big
atoms dilate the silicon lattice. Nelson et al. have calculated the bond lenght for
substitutional impurities and found that they follow the general trend of shorter bond
lenghts with atomic size (see Table 2.1). The bond lenghts calculated are consistent
with predictions based on a sum of covalent radii. The lattice relaxes inward for
small atoms (B, C, N) and outward for big atoms (Al, Sb). As a result one finds
smaller binding energy between a dopant with a inward relaxation and a vacancy,
and a larger binding energy between a dopant and a vacancy.

Self diffusion and dopant diffusion, as will be discussed at large in the following



Interaction potential [eV]

e———o As-PRB 56, 131772 (1997)
- - -~ P-schematic APL 73, 247 (1998)

-15 . | . | . | .
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Vacancy coordinate [A]

Figure 2.3: The As-vacancy and P-vacancy interaction potential. The dopant atom
is placed in the origin of the horizontal axis. The numbers on the horizantal axis
enumerate lattice sites relative to the dopant atom. AFE,, is the energy barrier for
the As atom to hop in the empty site (dopant-vacancy exchange), AE;, AFE, and
AFj5 are the binding energies for for the dopant-vacancy pair at first, second and
third nearest neighbor, AEP" is the migration barrier for the As-vacancy pair.

chapters, can be described by an Arrhenius expression:

d = doexp(—Q/kT) (2.9)

Experiments[3] find the activation energy for dopant diffusion to be 1 eV or more
lower than self-diffusion. If one mechanism is dominant over the other then the

activation energy is written as a sum of the defect formation enthalpy H }; and defect
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Table 2.1: Si impurity bond lenghts

Dopant Calculated bond lenght Sum of covalent radii

B 2.06 1.98
C 2.01 1.94
N 2.02 1.87
Al 2.39 2.42
Si 2.33 2.34
P 2.33 2.27
Sb 2.60 2.58

migration enthalpy H¥:

Qu=H} +HY (2.10)

2.2 Atomistic Models for Point Defect Mediated

Diffusion

2.2.1 Vacancy Mechanism

One way a substitutional dopant can diffuse through the lattice is by moving onto an
adjacent vacant site. A schematic of this process is shown in Fig. 2.4. This diffusion
mechanism has been proposed for silicon based on the experimental observation that
vacancy is the main point defect in metals[8]. At an atomistic scale this mechanism
presents some particularities given the different dopant-vacancy interactions. For As
for instance, the vacancy mechanism does not occur through just a simple dopant
vacancy exchange, but through what is called “ring mechanism”. The vacancy not
only is exchanging its position with the dopant but has to reach the third nearest
neighbor with respect to the dopant and approach the dopant from a new direction
for a long range migration of the dopant to take place. This mechanism is possible

given the energy barriers associated with silicon or dopants atom hops onto the empty
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00

Figure 2.4: The dopant vacancy pair migration on the silicon lattice. The empty site
(vacancy) is shown as a dark particle to explain the mechanism better. In the upper
left figure the dopant and the vacancy are first nearest neighbors. The hopping rates
are such that the dopant can hop into the empty site and backwards many times (
a phenomenon ’called’ caging in metals) without any effect on diffusion. The host
atoms though could hop into the empty site such that at some point the vacancy
can be located as third nearest neighbor with respect to the dopant as in the upper
right figure. Then the vacancy can go around the six member ring of atoms and
approach the dopant from a different direction as in the lower left figure. In metals
this is called looping. Following another hop of the dopant into the empty site, as in
the lower right figure, the dopant makes one relevant step for diffusion. The dopant
vacancy pair has performed one step as a random walker. The ring mechanism for
diffusion is such a combination of dopant-vacancy interaction and geomtry of silicon
structure.

sites that are calculated by quantum mechanics via first principle calculations.
The activation energy is usually written for dopant diffusion as the sum of the

pair formation energy H f;v and and the pair migration energy H7}, .

Q= H}y, + HY, (2.11)
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Figure 2.5: Dopant diffusion via interstitial mechanism. The dark atom is an sub-
stitutional dopant. A silicon self interstitial hopping through the interstices of the
silicon lattice approaches the substitutional dopant and the energy barrier is low
enough that the dopant is kicked out of its site into an interstices and then could mi-
grate through the interstices of the Si lattice until kikcs out a host atom and becomes
substitutional again.

where the formation enthalpy of the pair H},, = H{, — EY%,, and E%,, is the binding
energy of the AV pair. For other dopants like P the limiting step is not the va-
cancy reaching the third nearest neighbor site with respect to the dopant but dopant

vacancy exchange.

2.2.2 Interstitial Mechanism

In this mechanism a silicon interstitial migrates trough the interstices of the lattice
and approaches a substitutional atom. If the energy barrier is low, the substitutional
dopant becomes an interstitial atom and could migrate through the lattice as a dopant

interstitial. This process is described by the reaction:
As+ 1< A, (2.12)

An example of the interstitial mechanism is shown in Fig. 2.5.



Chapter 3

Numerical Methods Employed

3.1 Kinetic Lattice Monte Carlo

3.1.1 Statistical Mechanics of KLMC

In the lattice model where KLMC will be used it is assumed that atoms oscillate with
small amplitudes about fixed sites, at high temperatures ar which diffusion usually
takes place, and now and then hop to empty sites if such sites are first nearest

neighbors. The classical hamiltonian contains a kinetic and a potential term [?]:

H(p,7)=T(P)+V(7) (3.1)
such that the probability density of finding the system in the neighborhood of a phase
. = .
space point (P,r) is :

P(p,7) = %exp(—ﬁH(B, 7)), (3.2)

13
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where 8 = 1/kgT, kp is Boltzmann’s constant and T is the absolute temperature. Z

is the partition function and has the value:
7= /d » /d D exp(—BH(P, 7)) (3.3)

In Monte Carlo method the momenta of the atoms are neglected. Integrating over
momenta one obtains the probability density of having the system in the neighbor-

hood of some set of spatial coordinates:

P(7) = 1/Qexp(—pV (7)) (3.4)
Now we introduce the harmonic approximation for the potential energy V(?) The
set of sites about which atoms vibrate are ]% for some configuration 7. When the
atoms occupy these sites the local energy is minimum and the atoms experience no
force. If the net displacements from these sites is given by 17, ?:ﬁz + . Within
the harmonic approximation the potential energy can be written as:

N —

V(r)~V(R)+=uD;u (3.5)

N | —

The integral over T is replaced with a sum over 7 and and integral over u. Assuming
that the dynamical matrix is independent of configuration and integrating over U we

get the probability of the system to be in the configuration i.

(3.6)
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3.1.2 Kinetics of KLMC

Transition from one state to another is governed by the Markovian master equation:

or;
ot

= —PWi+ 3 PiWii (3.7)
J

where P; is the probability of finding the system in a state i, Wj; is the rate of going

from a state 7 into another state j. At local equilibrium detailed balance holds:

Combining equations (3.4) and (3.8) we obtain:

D — exp(—BV (R;) — V(R)) (3.9)

J°

S| S

The transition rates from one state to another could be postulated or taken from

transition state theory (TST):
5 — —
Wiy = Woexp (= [V(Rj) - V(R,-)] (3.10)

where W, corresponds to the attempt frequency of crossing the barrier from one state
to another.

To obtain equation (3.10) other theories could be used like lattice gas theory
applied to a binary alloy[11] where the lattice is populated with different types of
atoms, say 1 and 2, numbering N; and N,, with the numbers of nearest neighbors

being Nii, Nao, Nig such that the configuration energy could be written as:

E = €11 N11 + €22Ng2 + €12N12 (3.11)
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where €11, €29 and €15 denote the interaction energies of the different types of pairs.

The number of particles could be kept constant as in Kawasaki models, or could
change during the evolution of the system like in Glauber models.

The time is defined such that the diffusivity of an individual vacancy matches the
value predicted from molecular dynamics calculations[12].

Note also that in a the KLMC method because the momenta of atoms are ne-
glected time is artificial.

Diffusion is by its nature a nonequilibrium phenomenon. In our case we will
use a latice model where each site is either empty or occupied by a host atom or
a dopant atom. The vacant site will be treated for simplication as another species.
The dopant atoms that occupy interstitial sites can also hop with hopping rates that

will be postulated.

3.2 Ab-initio Pseudopotential Calculations

3.2.1 Introduction in Pseudopotential Method

In solving the Schrodinger equation for solids, space can be divided into two re-
gions with quite different properties. The regions near nuclei, the “core regions”,
are composed of tightly bound electrons which respond very little to the presence of
neighboring atoms, while the remaining volume contains the valence electrons den-
sity which are involved in the bonding together of the atoms. Although the potential
in the core is strongly attractive for valence electrons, the requirement that valence
electrons be orthogonal to those of the core produces a large kinetic energy which
contributes an effective repulsive potential for the valence states. The valence elec-

trons are responsible for the main properties of solids. To find the eigenstates and
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eigenvalues of these valence electrons one needs to solve the Schrodinger equation
with some boundary conditions at the core radius r..

We obtain the same valence eigenfunctions and eigenvalues if we work with a ‘pseu-
dopotential’(which inside the core is very weak and produces a nodeles ‘pseudofunc-
tion’) identical with the real potential outside the core, as long as the “pseudofunc-
tion” produces the same boundary condition as the real eigenfunction. In this way
the valence electrons ‘do not know’ that something was changed in the core region.
But we have now a weak pseudopotential that can be treated by the perturbation
theory.

The pseudopotential approach represents a major achievement in band structure
calculation. Usually in band structure calculation one deals with difficult questions
related to self-consistent crystal potentials which very often obscure the underlying
physical features.

By contrast the pseudopotential method avoids these difficulties at very little, if
any, cost in acccuracy.

One area of application for pseudopotential method is the study of energetics of point
defects.

The pseudopotential method grew out of the orthogonalized plane wave (OPW)
method, in which wave functions were expanded in a set of plane waves (PW) which

are orthogonalized to all of the core wavefunctions |¥,):

core

OPW,K) = [PW,K) — 3 [W,)(¥[PW,K) (3.12)

where the wavevector K labels the PW or OPW.

The construction of a pseudopotential can be demonstrated in terms of the exact
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core and valence states |U.), |¥,) , which satisfy:

We can substract the core orthogonality wiggles to obtain the pseudostates |®,) given
by:

@) = [T0) + D [Te)ae (3.14)

with ag, = (U.|®,). Applying H to |®,) gives:

H|®,) = E,|V,) + ZEC|\IIC)am, = FE,|®,) + Z(Ec — E)|¥.)aw (3.15)

or

{H + Z(Ev - Ec)|lllc><‘1’c|} ‘(I)v> = Ev‘¢v> (316)

Thus the valence pseudostates |®,) satisfy a Schrodinger equation with an energy-

dependent pseudo-Hamiltonian:
Hps(E) =H+ Z(E - Ec)“l]cx‘llc' (317)

3.2.2 Density Functional Theory

A periodic system is considered with atoms at positions R + 7 ,where R is a Bravais
lattice vector locating a unit cell of the crystal and 7 is a basis vector giving the

positions in the unit cell. The Hamiltonian of the system is given by:

H=-3 —V243 Vipa(rs) + = S vt — 15) + Vi_s (3.18)
=1 2m =1 2 i#j
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which describes N electrons at positions r;j interacting via the Coulomb potential

v(r) = €?/|r| and moving in the potential of the static ions given by:

zon Z ‘/;(02 I' - - 7—S) (319)

The ion ion repulsion is given by:
z’: Z,Z ¢
[ ‘Rm'i_Ts Rm' _Ts'|

mm Ss

Vi = (3.20)

DN | =

where the m = m’, s = s is to be omitted from the summation. I will use in this
report Rydberg atomic units = 1, 2m = 1, €2 = 2, distances beeing measured in
Bohr and energies in Rydbergs. The first three terms in eq. 3.18 could be lumped
together as the electron energy operator H®. A central result in DFT is that the

ground state electronic energy E¢ of the system is given by:

E = Ty[n] + / Vien(T)n(r)dr + Ep[n] + +Eye[n] (3.21)

where Ty[n] is the kinetic energy of a system of non-interacting electrons with density

n(r), Fy is the classical interaction energy:

2// v(r —r)n(r )drdr (3.22)

and F,. is the exchange-correlation energy, which is a functional of n.

Then E; is minimized with respect to density:

SE%[n]
on(r)

=u (3.23)

n=no
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where p is the chemical potential of the electronics system.
The last equation is satisfied if the following set of the Kohn-Sham equations is

solved self-consistently:

1

Vo Veff(r;n)} Ui(r) = 6 0;(r) (3.24)

ni(r) = {
Ver(t;n) = Vien(r) + Va(rin) + Vae(rsn) (3.25)
n(r) = ; @;(r)[* (3.26)

Here {¥;} and {¢;} are the orthonormal eigenfunctions and the eigenvalues of the
one-electron Hamiltonian h. The Hartree and exchange-correlation (XC) potentials

are given by:

Vi(r;m) = / v(r — r)n(r)dr (3.27)
Vaelrin) = 2570 3.29

U, and ¢; resemble the excited wavefunctions and energies of the many body systems.

3.3 Local Density Approximation

The success of the density functional theory would not have bee possible if not for
an approximation related to the exchange-correlation of the electronic system called
local density approximation. In thia approximation it is assumed that the exchange-
correlation energy per electron at point r in the electron gas exc(r) is the same to

exchange-correlation energy per electron in a homogeneous electron gas that has the
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same density as the electron gas at point r.

Excln(r)] = / exc (r)n(r)dr (3.29)
with
exo(r)exe n(r)] (3.30)

3.4 Nudged Elastic Band Method

An important problem in diffusion processes in solids is the identification of the lowest
energy path for a rearrangement of a group of atoms from one stable configuration
to another[?]. The potential energy maximum along such a path is the saddle point
energy which gives the activation energy barrier, a quantity of central importance in
our kinetic lattice Monte Carlo studies of impurity diffusion in silicon.

Widely used methods for finding reaction paths and saddle points make use of
two point boundary condition, where both the initial and the final configurations for
the transition are given.

They are usually two local minima on the multidimensional potential energy
surface which may be obtained by Monte Carlo simulated annealing methods or
molecular dynamics. A chain of states (or images) of the system is generated be-
tween the end point configurations and all the intermediate images are optimized
simultaneously.

In the so called 'chain of states methods’ several images are connected together to
form a path and a function, called object fubnction is minimized with respect to the

intermadiate images to find the lowest energy path. One example of such a function
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in the space of configurations connected via springs is:

S(Ry, Ry ... Rp 1) = zpj V(R) + fj — (B = Ril) (3.31)

1=0 i=1

_)
where V(R;) is a potential function associated with a given configuration, the socond

term in the above parameter is the elastic energy associated to a spring connecting
images ¢ and j, k is a parameter which has the significance of a spring constant. The
end points Ry and Rp are kept fixed. This method is called the plain elastic method.

There are usually two problems with the plain elastic method. The force acting

on image ¢ is:

— — = =
= S V(R4 P (332
where
— — — g —
Fim by (B — ) — k(R — ) (3.33)

For a bigger value of k (e.g. k=1) the elastic band is too stiff and cuts the corner and
misses the saddle point. For a smaller value of k£ (e.g. k=0.1) the images slide down
and avoid the barrier region, reducing the resolution of the path in the critical region.
The solution to the above problems in nudged elastic band method is to project out
the perpendicular component of the spring force and the parallel component of the

true force, such that the force on image 7 becomes:

- — —

Fi= =V V(R)|+ F #pm (3.34)

where 7| is the unit tangent to the path.



Chapter 4

Corrections to Continuum Models

4.1 Corrections to pair diffusion model

A central question in understanding dopant diffusion is how to relate the macro-
scopic diffusion behavior to the microscopic processes involving interactions between
individual particles. For a strong dopant-vacancy binding energy, as shown in Fig.
2.2, migration of dopant-vacancy pairs occurs. The “pair diffusion” model[16, 17],
as also described by Eq. 2.11, is currently the standard approach used in continuum
simulators [3]. Previous work[15] studied the validity of this model and that of an
alternative “non Fickian diffusion” model[18, 19] by taking into account a variety of
assumed dopant-vacancy interaction potentials. It was found that for an attractive
potential the dopant flux is in the same direction as the vacancy flux, and is depen-
dent on the difference between activation energy of the dopant diffusivity and that
of tracer diffusion.

In this work the direction and the magnitude of a dopant flux in a vacancy gradient
is studied for two substitutional dopants, As and P, related to their diffusion via a

vacancy mechanism in silicon at moderate doping levels. A lattice model is used

23
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with transition rates based on recent first-principle calculations [5, 6, 7] for dopant-
vacancy interaction up to third nearest neighbor distance (4.5 A) for P and sixth
nearest neighbor (6.65 A) for As. Results over a range of temperatures are compared
to the pair diffusion model.

Two approaches can be used to relate the flux of dopants driven by a gradient
of vacancies when a local thermodynamic equilibrium is assumed. In a first, more
general approach[15, 20] following Onsager’s[21] linearized nonequilibrium transport

theory, the dopant flux is described by the following equation:

Ja=—AgaVips — AayVuy, (4.1)

where A4 and A4y are the Onsager coefficients and 4, py are the chemical po-
tentials of dopants and vacancies. Writing the chemical potentials as functions of

particle concentrations C'4, C'y for low concentrations one obtains:

Ji=—DsaVCy — DayVCy, (4.2)

where D 44 is the effective diffusion coefficient of dopant and D 4y accounts for the
flux of dopant driven by a vacancy gradient.

A second approach, based on the pair diffusion model, finds a similar expression
from Fick’s first law and the mass action law (Cay = K4y CyCly) for the reaction of

a substitutional dopant and a vacancy[16, 17]:

Ja= —KAVdAV[CVVCA + CAVCV], (4.3)

where C'y and Cy are dopant and vacancy densities, and d 4y is the pair diffusivity.

See Appendix A for proof.
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This expression is widely used in process simulators[22]. To quantify the results

of this work, Equation (3) is modified to include a correction factor :
Ja= —KAVdAV[CVVCA + ’)/CAVCV]. (4.4)

Comparing Equations (2) and (4), Daa = KaydayCy and Dy = YK 4y dayCa.

In the pair diffusion model v is assumed to be 1.

In this work, 7 is calculated by performing kinetic lattice Monte Carlo (KLMC)
simulations[23, 24, 25] with ab-initio dopant-vacancy interactions based on ab-initio
results[5, 6, 7] (Table 4.1). The ab-initio method employed is described in references
[4-6]. The dopant vacancy pair is treated as neutral, with the dopant in positively
charged state and the vacancy in a negatively charged state, as is the case for moder-
ately to heavily As or P doped silicon due to the linear dependence of the diffusivity
on n/n;, where n and n; are the electron concentrations under extrinsic and in-
trinsinc doping conditions. Simulations were initiated by placing one dopant and
one vacancy randomly on a silicon lattice. At each step the vacancy exchanges its
site with a dopant atom or a silicon atom. Only hops to first nearest neighbor sites
are considered. Transition rates satisfy detailed balance and are postulated to be:

E; — Ef]

T (4.5)

Z/Zl/meXp[

where E; — Ey is the change in the system energy associated with a possible hop, kg
is Boltzmann’s constant, and 7T is the absolute temperature. The correction factor
is the same if different transition rates based on ab-initio saddle points[26] are used.
At each step, time is incremented by the inverse of the sum of all transition rates.

For exchanges with silicon atoms, the value of v, associated with vacancy hops
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Table 4.1: Exchange energy barrier and binding energies up to sixth nearest neighbor
for As-vacancy and up to third nearest neighbor for P-vacancy from recent ab-initio
calculations[5, 6, 7]. All energies are given in eV.

Dopant FE.... F; E: E} E/ E> FE
As 0.58 1.17 046 0.36 0.29 0.29 0.23
p 1.05 1.05 0.59 0.47

is chosen such that the diffusivity of vacancies in pure silicon (D,=0.125va?) is
D, = 1.18 x 10 *exp(—0.2eV/kgT) cm?/sec, where 0.2 eV is the migration en-
thalpy as obtained from ab-initio calculations[7] and the prefactor (which does not
effect the calculation of the correction factor ) is from tight binding molecular dy-
namics calculations[12]. Ab-initio calculations have an error of 0.1 eV for migration
enthalpy and experimental values[1] are between 0.18 eV and 0.45 eV for vacancy in
different charged states. 0.2 eV values has been used because it was obtained by the
same method as the one that found the exchange and binding energies. Thus the
parameters used are a self consistent set. Tests with migration enthalpy between 0.1
eV and 0.3 eV found the same value for the correction factor . For dopant-vacancy
exchange, the migration enthalpy in v, is changed to match the calculated exchange
barriers (Table 4.1). Note that a very large exchange barrier is calculated for P, such
that P-V exchange, rather than separation to third-nearest neighbor distance is the
rate limiting step for diffusion|[25].

The vacancy gradient is implemented by adding a bias to vacancy transition rates

between the bottom (z = N, — 1) and top (z = 0) of the simulation cell.

v(l = 2) = vexp(+b) (4.6)

Otherwise periodic boundary conditions are imposed. In Fig. 4.1 we see that the

probability to find the vacancy on one of the (001) planes perpendicular to the
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Figure 4.1: Time-averaged probability of finding a vacancy one of the (001) planes,
perpendicular on the gradient direction (labeled from 0 to 39) from KLMC simula-
tions with and without a vacancy gradient present. The number of sites was 8x10?;
the bias parameter b=2.

gradient direction (we have four equidistant planes per unit cell) has a constant
gradient, while there is no dopant gradient.

From Eq. 4.4 we see that v can be found if we know the dopant flux and the
dopant diffusivity, with a vacancy gradient present as shown in Fig. 4.1. The dopant
flux is calculated from the dopant mean displacement. As was observed in lattice-
gas models for binary alloys[20], the mean displacement is self-averaging, hence we
monitored this quantity for sufficiently long times. This technique allowed us to
obtain more accurate results than in our earlier work[25]. In Fig. 4.2, one can see

the mean displacement versus time for As at different temperatures. While the mean
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Figure 4.2: Mean displacement of As as function of time in a vacancy gradient for
different temperatures. The number of sites was 8 x103, the bias parameter b=2.

squared displacement of the dopant in a vacancy gradient could be used to find dopant
diffusivity by subtracting the drift term, the diffusivity obtained in this way is noisy
and a run with no vacancy gradient was preferred. Mean squared displacement for
As at four temperatures is shown in Fig. 4.3.

Shorter times were used and many more simulations (a few hundreds) were per-
formed to reduce statistical errors. Tests performed for As at 1300°C with cells of
6.4x10* sites found the same value for v as with 8x10? sites, so the smaller system
was used for the bulk of the simulations. For mean displacements larger than 50 A,
the standard deviation of the mean is smaller than the size of the symbols in Fig. 4.2

and as such it is not shown.
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Figure 4.3: Mean squared displacement of As as function of time with no vacancy gra-
dient for different temperatures. The number of sites was 8 x 102, the bias parameter
b=2.

We can look first at the diffusivity versus temperature as a test of the KLMC
simulations and our understanding of the diffusion processes. For vacancy-mediated
diffusion, a vacancy must separate to third-nearest neighbor distance and return
along a different path in order for long-range diffusion to occur. Thus, for As, the
pair diffusivity depends on the activation barrier between nearest neighbor binding
and the second to third neighbor transition For KLMC simulations with one vacancy
and one dopant, the As-V pair diffusivity (o exp(—0.96/kgT")) must be corrected by
the probability that the dopant and vacancy are paired [1 4+ 2000exp(—1.17/ kBT)]_l.

This correction is more significant at high temperatures, leading to curvature on the
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Figure 4.4: The As and P diffusion coefficients versus temperature from kinetic
lattice Monte Carlo simulations with 8x10% sites, one dopant and one vacancy,
and no vacancy gradient. As diffusivity (o exp(—0.96eV /kgT)) and P diffusiv-
ity (ox exp(—1.05eV/kgT)) are corrected by the probability of a site, first nearest
neighbor from the dopant, to be occupied by a vacancy, relative to the occupation
probability of a site far away from the dopant, (1 + 2000exp(—1.17eV/kgT)) ', and
(1 + 2000exp(—1.05eV /kgT)) !, respectively.

Arrhenius diffusivity plot (as seen in Fig. 4.4).

Since the number of vacancies is fixed the formation energy of a vacancy is not
included. For P, pair diffusivity is limited by the large exchange barrier (1.05 eV),
which is well above that for the second to third neighbor transition (0.72 eV). Note
that the KLMC simulation does not include the vacancy formation energy.

For As in a vacancy gradient, we find (Fig. 4.5) that the correction factor - is

positive, meaning that the As flux is in the same direction as the vacancy flux. At
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Figure 4.5: Correction factor v from kinetic lattice Monte Carlo simulations for As
and P as a function of temperature and range of interaction (3nn: third nearest
neighbor, 6nn: sixth nearest neighbor. The number of sites was 8x103, the bias
parameter b=2.

700°C, ~ is close to one, matching the prediction of the pair diffusion model. At
higher temperatures, however, v drops, with a value at 1300°C of about one third
the value predicted by the pair diffusion model.

The basis for this behavior can be understood by considering the microscopic
processes. Pair diffusion assumes that the pair is strongly bound and makes many
hops before dissociating. As the temperature rises, the thermal fluctuations kgT
become larger relative to the difference in activation energy between pair diffusion
and dissociation, reducing the number of hops made before the pair breaks up. At the

same time, the first dopant hop is likely to be in the direction opposite the vacancy
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flux as that is the direction from which the V is more likely to approach. As the
number of hops for a pair drops, the bias induced by the first hop becomes more
important dropping <y, which depending on the interaction potential, can become
negative[24], approaching the -2 value seen for tracer diffusion (in agreement with
the statistical model of List et al.[15]).

The values of correction factor v are smaller if interactions up to sixth nearest
neighbor (current ab-initio results are available only up to this range for As) are taken
into account. This can be understood by noting that a longer-range interaction is
associated with a larger effective capture cross-section, and thus conversely also an
increased dissociation rate.

For P, the large exchange barrier leads to two significant changes relative to As.
First, the large barrier reduces the number of hops made by the pair before breaking
up, thus tending to reduce . Second, since exchange is inhibited, captured vacancies
are likely to diffuse in the neighborhood of the dopant (separating to third neighbor
distance and returning) before exchanging, greatly reducing the bias associated with
the initial hop. The net result of these two compensating effects is a weaker temper-
ature effect than for As. At lower 7', v is smaller for P than for As, while at higher
temperatures P has a larger value of v than As (Fig. 4.5).

Recent ab-initio calculations were used to describe the attractive interaction be-
tween a dopant and a vacancy in KLMC simulations of dopant diffusion in a vacancy
gradient. It is found that for As the dopant flux driven by a vacancy gradient has the
same direction as the vacancy flux with a magnitude that approaches that of ideal
pair diffusion at low temperatures (700°C) and drops with increasing temperature.
The dopant flux decreases if long range interactions are taken into account. Due to a
large exchange barrier which becomes the rate limiting step for pair diffusion, P has

a similar behavior, but a weaker temperature dependence, leading to dopant fluxes
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which are smaller at low 7', but larger at high 7.

4.2 Capture Radius for Frenkel Pair Recombina-
tion

Ion implantation is an efficient method for introducing dopants in silicon.[27] The
implantation process produces considerable lattice damage due to the energetic col-
lisions of ions with the lattice atoms.

In continuum models[17] as well as Monte Carlo simulations which do not repli-
cate the silicon lattice,[31, 32] the annihilation between vacancies and interstitials
is described by a capture radius which is not well characterized. Previous TBMD
calculations[12] showed that there is a long range interstitial-vacancy interaction ex-
tending up to the sixth-nearest neighbor distance. In order to quantify the interstitial-
vacancy interaction more completely, molecular dynamics calculations were per-
formed using a recently developed environment dependent interatomic potential
(EDIP).[33, 34, 35] Those results are then used in KLMC simulations to determine
the capture radius for Frenkel pair recombination and how it depends on the inter-
action range.

Constant temperature MD with environment dependent interatomic potential
(EDIP)[33, 34, 35] was used for the calculation of the interaction potential between
interstitials and vacancies as a function of relative location. For each configuration,
the atomic positions were relaxed at 0.1K to obtain the total energy of the system.
Our calculations confirm that the (110) split interstitial is the lowest energy con-
figuration for a single self-interstitial with formation energy of EIf = 3.4eV. The

calculated vacancy formation energy is E\J; = 3.2eV. A 512 atom supercell was used.
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Test calculations with supercell size of 1728 atoms give formation energies within 0.1
eV.

Initial conditions in KLMC method are obtained a) by having the vacancy and
the Si self-interstitial randomly located on a 3D lattice, as in the case of finding the
capture radius for I-V recombination as function of interaction range. Transition
rates for vacancy and interstitial satisfy detailed balance and are postulated to be as

in Eq. 4.5:

E,—F
V = Up €Xp (TTJE) : (4.7)

where v, is the migration frequency, £ is Boltzmann’s constant, 7" is the absolute
temperature, and F; — Ef is the change in the system energy associated with a
possible hop. The values of v, associated with interstitial and vacancy hops are
chosen so that the diffusivities of isolated point defects match the TBMD[12] values
of D, =1.18 x 10 *exp(—0.1/kT) cm?/sec and D; = 0.158exp(—1.37/kT) cm? /sec.

I-V interactions energies versus distance are calculated via MD calculations as
described above. Vacancy-vacancy and interstitial-interstitial interactions are chosen
to match cluster binding energies from Jaraiz et al.[31] Only hops to first nearest
neighbor sites are considered.

Periodic boundary conditions are considered for I-V capture radius calculations.
The MD simulation results for interstitial-vacancy interaction is presented first. ¢ As
initial conditions, a split interstitial is placed at one site and an atom is removed
from another site creating a vacancy. The system is then relaxed via MD and the
energy and configuration saved. This process is repeated for different initial vacancy-
interstitial displacements. We find that the vacancy-interstitial interaction potential

depends strongly not only on distance, but also on direction (Fig. 4.7). Specifically,
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[110]

Figure 4.6: Numbers enumerate n-th nearest neighbor lattice sites for the vacancy
relative to the split interstitial.
at short range the binding energy is much larger for vacancies located in the direction
of buckling of the split interstitial (“up” in Fig. 4.7), with minimal binding even for
close proximity in the opposite direction (“down”). The analysis shows that long
range interactions are present, particularly along the (110) chain oriented in the
direction of the split interstitial (0.6eV at fifth nearest neighbor distance).

In continuum(17] and off-lattice Monte Carlo[31, 32] models for dopant diffusion
in silicon, the annihilation between a vacancy and a self-interstitial is described by a
rate constant:

k‘[,V = 47ra1,V(D1 + Dv), (48)

where the capture radius ayy is often chosen arbitrarily. Since KLMC simulations
explicitly include the silicon lattice structure, the Frenkel pair recombination rate
kry and thus the capture radius can be calculated based on the I-V interaction

potential as obtained from MD. Using initial random I and V displacements within
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Figure 4.7: EDIP potential has been used to calculate the interaction potential be-
tween an interstitial and a vacancy as a function of distance. A long-range binding
was found which depended strongly on the displacement direction relative to the
orientation of the split interstitial. The distance (vacancy coordinate) is measured
relative to the ideal lattice sites where interstitial and vacancy were introduced.

a simulation box of volume (2, the recombination rate is given by:

(4.9)

kI,V = <T>Q’

where (7) is the average recombination time. In Fig. 4.8, one can see that for short
range interaction (first nearest neighbor binding which results in second nearest
neighbor capture) the capture radius is 3.5 A. The capture radius is 6.7 A if long
range interaction is taken into account (up to sixth nearest neighbor). With no I-V
interaction (and thus only nearest-neighbor capture) the capture radius is 2.21 A.
These calculations were performed at 900°C. It is found that the capture radius in-

creases slightly as the temperature is reduced, as might be expected since at low
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Figure 4.8: Capture radius for Frenkel pair recombination (a;y) with short (INN)
and long (6NN) range interstitial-vacancy binding as calculated with different system
sizes expressed in number of unit cells.

T the capture probability increases for the weaker binding energies seen at larger
distances.

Molecular dynamics calculations show the existence of a long range interaction be-
tween vacancies and silicon self-interstitials which extends up to eigth nearest neigh-
bor. This interaction is dependent on separation distance, but also on the direction
of displacement of the vacancy with respect to the orientation of the split interstitial.

This long-range interaction increases the the rate of Frenkel pair recombination.



Chapter 5

Anomalous Diffusion in Highly

Doped Silicon

5.1 No Fermi Level Correction

In diffusion of dopants at very high concentrations anomalous behavior has been ob-
served. Rapid thermal annealing (RTA) experiments by Larsen[40] made at 1050°C
for 10 seconds indicate that below a threshold concentration (~ 2 x 10*° cm3),
the diffusivity of group IV and V impurities (As, Sb, Sn and Ge) increases linearly
with dopant concentration, while above this concentration the diffusivity increases
dramatically with increasing donor concentration (o< C™, n~ 3—6). Earlier investiga-
tions [41] carried out over longer times (several hours) found that in the temperature
range 1000-1100°C, the diffusivity of dopants (As) decreases rather than increases
at very high concentration (see Fig. 5.1). Mathiot and Pfister proposed a percola-
tion model while Dunham and Wu proposed a Lattoce Monte Carlo approach which
provides a better description taking into account quantities like correlation factor,

interaction range and random location of defects.

38
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Figure 5.1: Diffusion coefficient as function of dopant cncentration from isoconcen-
tration experiments by Larsen et al. and from Fair et al.

On the other hand impurity diffusion and aggregation depend on the underlying
atomic-level processes. Recently it has become possible to use ab-initio calculations
based on density functional theory (DFT) and the local density approximation (LDA)
to investigate these atomic-scale processes. As an example that will be applied in this
work, the binding energies for dopants, vacancies and related clusters in silicon have
been calculated as functions of the local configuration by several groups [5, 7, 38|
(see Chapter 2). In contrast with simple pair diffusion models which provide the ba-
sis for most continuum modeling, these calculations show that relatively long-range
interactions exist between dopants and vacancies (out to at least tenth nearest neigh-

bor distances). The presence of long-range interactions opens the door for relatively
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complex interactions among multiple dopants with multiple vacancies, particularly
at high doping levels.

In order to explore how the nature of these dopant-vacancy interactions controls
macroscopic diffusion and aggregation behavior, the Kinetic Monte Carlo method is
applied.

In the KLMC simulations, periodic boundary conditions are used on a three-
dimensional (3D) array of cubic cells, each with 8 lattice sites as in the silicon (or
diamond) structure. Dopant-vacancy interactions are specified in terms of energy as a
function of atomic configuration. Interactions energies are assumed to be additive, an
assumption which is close to what is found by ab-initio calculations[38]. To initialize
the system, dopants are placed randomly within the 3D structure according to the
designated doping density. The vacancies are then placed with the probability of
occupation depending on the binding energy for each site as calculated based on the

dopants in the neighboring region:

0
DPv
— 5.1
PV = 0 T 0= 19 exp(AE/KT) (5-1)

where p, is the probability of occupation for sites far from any dopant atom, k is

Boltzmann’s constant and 7 is the absolute temperature. The energy AFE is:

=1

n; being the number of dopants atoms as i

-nearest neighbor and AF; the corre-
sponding dopant-vacancy binding energy. We consider values of n between 3 and 6
in this work, since as recognized by Hu[39], long range migration of a dopant via

vacancy-mediated diffusion requires separation to the third-nearest neighbor (3NN)
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site with respect to a dopant, while the long-range migration of an As,V complex re-
quires dopant-vacancy separation to a 6NN distance. Values for the arsenic-vacancy
binding energies are used from the ab-initio calculations of Pankratov[5] see Table 1,
Chapter2. The system evolves by considering the hopping of vacancies (actually the
hopping of adjacent atoms onto the vacant site) with transition rates from Eq. (3.10).
At each step, we update the hopping rates for vacancies, choose a hop based on the
relative rates, and increment the time. In the end, the mean squared displacement
is calculated to obtain the diffusivity.

Previous calculations [23, 24] using rough estimates of dopant-vacancy binding
energies provided good agreement with the experimental observations of Larsen[40],
predicting both the doping level at which the onset of enhanced diffusion occurs
and as well as the dependence of diffusivity on increasing concentration. Using pa-
rameters from ab-initio calculations in the framework of 3NN interactions, again a
strong enhancement in diffusivity for high doping levels and short simulation times
is found (see Fig. 5.9, noting that Fermi level effects have been normalized out).
However, at longer simulation times is found that the diffusivity enhancement de-
creases substantially (see Fig. 5.3), in agreement with experimental observations at
longer times [41], the phenomenon being more pronounced at high doping levels. A
comparison between diffusivity drop with time for different dopant concentrations is
also shown in Fig. ??7. To understand this behavior the evolution in the number
of As,V complexes in the system is examined (see Figs. 4(a) and 4(b). The role
of As,V complexes in the overall diffusion process has been discussed recently by
Ramamoorthy and Pantelides[38]. Based on their calculations, they proposed AsyV
to be mobile and to have a significant role in the dopant diffusion. What KLMC
simulations find is that because of the strong dopant-vacancy binding, at high dop-

ing levels the number of As,V complexes is higher than the number of AsV pairs



42

T T L ] T T

10000 |

8000 |

6000 |

Dp/Degat

4000 |

2000

(])_018 1019 - 1020 1021

Dopant Concentration (cm-3)

Figure 5.2: Normalized arsenic diffusivity versus doping density at 900°C from LMC

simulations using ab-initio parameters[5, 6] after 10* t.u. 1 t.u. = 1/v° where 1/? is the

hopping frequency of a free vacancy. Note the strong increase above C= 2x10*cm=3.

The normalized diffusivity obtained by dividing by the vacancy component of silicon
self-diffusion (DyC},), thus removing the Fermi level dependence.
and that their number grows with time, while the number of pairs decreases. As
time progresses larger clusters such as As3V and As,V supplant the As,V complexes.
Since the larger complexes are much less mobile than the pairs, this is the source of
the diffusivity reduction observed in our simulations.

To investigate further the role of As,V complexes, the dopant-vacancy interac-
tions is extended up to the sixth-nearest-neighbor (6NN) distance, since for long-
range diffusion of the As,V it is necessary for the vacancy to move away until it is

at distances of 3NN and 6NN from the two dopants, respectively. By examining the
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Figure 5.3: Normalized arsenic diffusivity versus doping density at 900°C from KLMC
simulations using ab-initio parameters[5, 6] after 10° t.u. . The diffusivity actually
drops rather than increases as in Fig. 5.9 due to clustering.

motion of isolated complexes (e.g., a one vacancy, two arsenic atom system), it is
found that the diffusivity of As,V complexes is about 50 times smaller than that of
pairs at 900°C. However, as seen in Figs. 5.5 and 5.6, at high doping level the
number of AssV complexes greatly exceeds that of pairs, so these complexes can
have a significant role in diffusion. In fact by combining the equilibrium concen-
trations of complexes with their diffusivity, it is found that for a concentration of
10%cm™2 at 900°C, the contribution of As,V to diffusion exceeds that of pairs (Fig.

5). However, a transition from diffusion dominated by pairs to domination by AsyV
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Figure 5.4: Arsenic diffusivity versus doping density at 900°C from KLMC simula-
tions as function of time.

leads only to an increase of one in the order of the diffusivity increase with doping,
in contrast to the much more abrupt increase observed both experimentally and in
LMC simulations. Thus, although mobile complexes may play a significant role at
high concentrations, the rapid increase in diffusivity with doping at very high levels
is due predominantly to collective effects involving the interactions of vacancies with
multiple nearby dopant atoms. Dopant/vacancy binding energies versus distance
from ab-initio calculations [5, 7, 38] in lattice Monte Carlo simulations of vacancy-
mediated diffusion in silicon. As observed experimentally [40], a strong diffusivity
enhancement for arsenic in heavily doped silicon is found. Arsenic clustering takes
place for longer times, again in agreement with experiments [41]. The role of mobile

As,V complexes was also explored, leading to the conclusion that these complexes
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Figure 5.5: Number of As,V clusters versus simulation time at 900°C for dopant
density of 5 x 10%m™3

are in fact mobile and can contribute significantly to diffusion, although their diffu-
sivity is much smaller than the diffusivity of pairs, since they are present in higher
numbers at high doping levels. However, the large enhancement in diffusivity at
high doping levels is due primarily to collective effects involving the interactions of

vacancies (even those in complexes) with several dopant atoms.
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Figure 5.6: Number of As,V clusters versus simulation time at 900°C for dopant
density of 4x10%%cm 3.

5.2 With Fermi Level Correction

As the doping level in silicon changes the position of the Fermi level changes also:

n (Ef—EZ'
— = €eX
n; P kT

) (5.3)

As result if vacancies are assumed to single negatively charged then the concentration

of vacancies is :

) (5.4)
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Figure 5.7: Relative diffusivities of arsenic due to AsV pairs and As,V complexes

versus doping level at 900°C. The contribution of AsyV to diffusion is predicted to

dominate above C = 2 x 10cm 3.

One can see in Fig. 5.8 the mean square displacement for three different dopant
concentration at 1050°C and H{, = 3.65¢V, S{, = 9k, simulation box of 100 unit

cells.
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Figure 5.9: A 3D picture of dopants (grey atoms) and vacancies (black atoms) after
a long simulation time when vacancies formed clusters with dopant atoms.



Chapter 6

3D Atomistic Simulations of

Submicron Device Fabrication

It is predicted that by 2012[42] MOS devices will have 50nm channel lengths and
20nm junction depths. A device with these dimensions and a dopant concentration
of 10”cm~2 has only 500 dopants in the channel region with the number of clusters
and precipitates even smaller. Therefore for deep submicron devices, the atomic
scale behavior will be important. Kinetic Lattice Monte Carlo[23, 25](KLMC) has
emerged as an effective method for evolving a 3D system to times accessible by
experiments. There are two reasons for this. On one hand, the fundamental time
step in KLMC is related to hops (the time between 10™° — 107% s ) rather than the
vibration period (107** — 107! s ) as in molecular dynamics simulations. On the
other hand, the method considers only dopants and defects present in the system
(101% — 102'¢em™?), which is much smaller than the atom density (5 x 1022cm™3). As
far as the comparison with continuum models goes, as the devices become smaller
continuum models become more complex, while KLMC computational requirements

scale with L? and are inherently 3D.

20
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6.1 Ion Implant Simulation

A Monte Carlo ion implant simulation (UT-Marlowe[36]) is performed to generate
a 3D distribution of dopants, interstitials and vacancies. The arsenic implant is a
room-temperature implant, 5 keV, 4x10*cm™2 into (001) Si, 7° tilt, 30° rotation.
Boron implant is also a room-temperature implant 5keV, 10*cm=2 into (001) Si, 7°

tilt, 30° rotation.

6.2 KLMC simulation

Following the ion implantation it is assumed that in the regions where the concen-
tration of interstitials is higher than 5x 10*'¢cm™3 the material recristalizes and as
result interstitials and vacancies are removed from these regions. Also, since the
anneal that is to be simulated is done at 900°C and KLMC calculations show a fast
interstitial vaacncy recombination at this temperature, nearest neighbor recombina-
tion for interstitials and vacancies is taken into account. The dopants and point
defects are mapped to the nearest site on the silicon lattice. Then a box 75x75x200
unit cells, which represents a quadrant of an NMOS transistor is chosen to be sim-
ulated using KLMC, the top surface, through which the implant has been made, is
assumed to be a perfect sink for defects and all the other surfaces have reflecting
boundary conditions. The mobile species considered in KLMC are vacancies, inter-
stitials and dopant interstitials. Migration and binding energies used in simulations
are presented in Table 1. For interstitial arsenic ab-initio results are not available,
so arsenic interstitial interaction similar to boron is assumed but with smaller bind-
ing energy for the As,-I pair and no binding for the As;-As; pair. In KLMC the

transitions rates are calculated according to Eq. (3.10)



52

The 3D picture of the 50nm NMOS quadrant with the locations of dopants is
presented in Fig. 6.1, shown immediately after the ion implantation, (time=0), and
after the KLMC simulated annealing at 900°C for time=10ms and time=0.1s.

In Fig. 6.2 it is shown the total number of point defects and interstitial dopants as
functions of time. Between 1 ps and 1us vacancies and interstitials are present in large
numbers, the dominant processes being vacancy-silicon exchanges, interstitial hops
and interstitial vacancy recombination. Dopants go from interstitial to substitutional
state, either due to dissociation or interaction with vacancies. Looking at the number
of boron clusters in Fig. 6.3 one can see that mostly isolated boron interstitial is
present.

Next during this period a time interval (1 to 100us) is found where most of the
dopants are in substitutional state. After 10° ns vacancies exist mostly in the form
of vacancy-arsenic clusters. It is shown in Fig. 6.4 a boron implant identical with
the one used for initializing the MOS device. Here it is seen that vacancies disappear
much faster. From 10°ns one can also see that the boron starts being kicked out
in interstitials. Initially one starts with isolated boron interstitials but, as boron
interstitials migrates through the lattice pairs with boron substitutional and forms
pairs. The number of pairs reaches a maximum at 10%ns when there is also a peak

in the total number of boron interstitials in Fig. 6.2.

Table 6.1: Simulation parameters. Binding energies up to first nearest neighbor only.

binding energies migration energies exchange, kick-in and kick out barriers
E(As-V)=1.18 eV]5] EY=0.3 eV[44] FEezen (As-V)=0.66 eV[5]

E(Ass-1)=0.6 eV E!f =0.9 eV[43] Eezen (B-V)=2.5 eV[6]
E(As;i-Asy)=0.0 eV EBi=0.3 eV[43] Ekick—out(B)=1.0 eV[43]
E(B-V)=0.17 eV|[6] Els5i=0.3 eV FEick—in(B)=0.6 eV[43]

E(B,-I)=1.0 eV[43]
E(B;-B,)=1.8 eV[43]




93

0
; ([ ASi
50 .. ® Asg
. -
100} ¢ o Bg
] : o .. .
150 . 150 . 150
zooz\_\z 2004_\,%‘6% 20 L\%é%
0 204060 b 0 204060 204060
a) b) c)

Figure 6.1: A quadrant ( 75x75x200 unit cells) of a 50nm nMOS transistor where
dopants, arsenic and boron, in substitutional or interstitial state are shown, after ion
implant simulation time=0 a). Also shown is the evolution of this system during an
anneal at 900°C at time=10%ns b) and time=10%ns c).
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Figure 6.2: The number of vacancies, interstitials, dopant interstitials as function of
time. The horizontal line represents the total number of dopant interstitials at the
beginning of the KLMC simulation.

As the interstitials reach the surface where they are annihilated, there is not
enough interstitials in the system for the number of pairs to keep growing. So they
find more stable configurations in the form of bigger clusters: B3I (a boron interstitial
with two substitutional boron as first nearest neighbor(1NN)), B4I (one B; and three
Bs as INN ) and B5I one B; and four Bs as 1NN). Given the energetics that is
used here, these last clusters do not dissociate over the time that is simulated. It is
expected that the big boron clusters grow and that small ones disappear freeing some
interstitials in the process the same way the boron interstitial boron substitutional
pairs decrease in favor of bigger clusters. It is found that the behavior of boron
clusters is very much dependent on the binding energy of the boron interstitial boron

substitutional pair. A simulation with only 1 eV for this energy produces much
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Figure 6.3: The number of boron interstitial clusters as function of time. Horizontal
line is the number of boron atoms implanted.

less boron clusters. After 10s one can see that the number of total interstitials
gets smaller than the initial number of interstitial dopants due to the perfect sink
condition assumed for the top surface.

A time interval in which dopants are mostly substitutional is found. The presence
of arsenic makes vacancies last longer in the system due to arsenic vacancy clusters.
Simulating a 50nm MOs transistor is possible and further work will have to produce
faster algorithms, since present simulations take about 50 hours as serial jobs on
Origin2000. The dependence of energy on clusters size, and its influence on the
overall system needs also further investigation, since the behavior of these clusters is

very sensitive to the energies involved.
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Figure 6.4: Number of vacancies, interstitials and boron interstitials as function of
time for the annealing of a boron implant, 5keV, 10%cm 2, 7° tilt, 30° rotation.
Horizontal line is the number of boron ions implanted.

6.3 The Si self interstitial excess as function of
energy and dose

Ion implantation is an efficient method for introducing dopants in silicon.[27] The
implantation process produces considerable lattice damage due to the energetic col-
lisions of ions with the lattice atoms. Understanding the damage evolution follow-
ing ion implantation is crucial for accurately modeling transient enhanced diffusion
(TED).[28, 29] Present theories assume that TED is associated with the excess inter-
stitials resulting from the implant damage, which aggregates into extended defects
during annealing. The annealing process is often described through a +1 model[30]

which assumes that after all Frenkel pairs generated during ion implantation recom-
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bine, the number of interstitials left equals the number of implanted ions.

Corrections to the +1 model in the form of “effective +N” models[32] have been
proposed to account for differences in TED associated with changes in implant species
and ion energies. It was found that heavy ions leave a larger number of interstitials
after Frenkel pair recombination due to the greater separation between interstitial
and vacancy profiles. Here the initial stages of damage anneal are studied by using
the interstitial-vacancy interaction described in Chapter 2.

Initial conditions in KLMC method are obtained a) by performing Monte Carlo
implant simulations (UT-Marlowe[36]) that generate 3D distributions of dopants,
vacancies and Si self-interstitials[37] (initial correlations) or b) depth distribution of
point defects is like in a) but they are randomly located in the plane perpendicular on
depth (no initial correlations). The implant ion is substituted by a Si self-interstitial.
Transition rates for vacancies and interstitials satisfy detailed balance and are de-
scribed by Eq. (3.10). The values of v, associated with interstitial and vacancy hops
are chosen so that the diffusivities of isolated point defects match the TBMD[12]
values of D, = 1.18 x 10 *exp(—0.1/kT) cm?/sec and D; = 0.158exp(—1.37/kT)
cm? /sec.

Pair interactions are considered in determining system energies. The binding
energy for vacancy-vacancy and interstitial-interstitial interactions as well as for

vacancy-interstitial interactions are described by the following expression:

Ex(i) =) Exy[Ny(j)], (6.1)

Yj

where Ex (i) is the sum of binding energies for a point defect X (vacancy or in-
terstitial) at site ¢ with other point defects Y within the range of interaction. For

example, N;(1) is the number of interstitials as first nearest neighbor to a given site
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and Fy (1) is the associated binding energy. I-V interactions energies versus distance
are calculated via MD calculations[48] Vacancy-vacancy and interstitial-interstitial
interactions are chosen to match cluster binding energies from Jaraiz et al.[31] Only
hops to first nearest neighbor sites are considered.

The top surface is assumed to be a perfect sink and all the other surfaces are
assumed to have reflection boundary conditions based on symmetry considerations.

The influence that the initial correlation of implant damage and the interstitial-
vacancy interaction range has on the annealing behavior is studied through calculat-
ing the evolution in the net number of interstitials remaining (number of interstitials
minus number of vacancies) as the Frenkel pairs generated during ion implantation
recombine and diffuse to the surface. These excess interstitials are responsible for
TED, which increases as the net interstitial excess increases. We define the +N num-
ber by the ratio of net interstitials to the implanted ions, which equals the interstitial
excess in the +1 model. As shown in Fig.6.5 and Fig. 6.6, the value of N increases
during recombination as the faster diffusing species (vacancies) diffuse to the surface.
The +N factor after all the vacancies are gone is significantly reduced by both the
initial correlation as well as the long range interaction. This is to be expected as
both of these factors enhance the probability that a vacancy will recombine before
diffusing to the surface.

Fig. 6.7 and Fig. 6.8 show how the +N factor depends on dose, implant energy,
and modeling assumptions. The 4N factor increases for lower doses, since the sparser
damage increases the probability of vacancies making it to the surface. This increase
is reduced when the initial defect correlations and long-range I-V interactions are
included. The dependence on energy is more complicated. Although the effect is rel-
atively weak, the +N factor appears to increase and then decrease with energy when

the initial correlation is included, but only decrease with energy when the correla-
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tion is ignored. A possible explanation for this behavior is that N decreases at larger
energies because the damage is located further from the surface and thus vacancies
are less likely to make it to the surface before recombining. At lower energies, the
separation between I and V increases with energy due to the increased momentum
transfer. This effect, which is only included when the initial defect correlations are
included, reduces the initial probability of Frenkel pair recombination. This effect
becomes less significant at higher energies as electronic stopping becomes dominant.
For higher doses, the +N number appears to be almost independent of energy and
modeling assumptions. This is due to the dense implant damage ensuring nearly
complete Frenkel pair recombination. It may be noted that N does not reduce to
1, but instead to about 2 for arsenic implants. This is due to the separation be-
tween interstitial and vacancy distributions due to momentum transfer. When local
Frenkel pair recombination is complete, a vacancy-rich region is left near the surface.
These vacancies can diffuse readily to the surface, leaving greater than +1 excess
interstitials.

Atomistic techniques were used to explore the initial phases of ion implant anneal-
ing in order to predict the resulting effect on transient enhanced diffusion. Kinetic
lattice Monte Carlo simulations were used to calculate corrrections to the +1 model
for effective damage distributions used in TED simulations as a function of dose,

“1N” factor was calculated which is

energy, and modeling assumptions. An effective
proportional to the number of interstitials remaining after vacancies have recombined.
This factor increases at lower doses since faster-diffusing vacancies can diffuse to the
surface rather than recombining with interstitials. Using 3D damage distributions
from MC implant simulations, it was found that the spatial correlations between

vacancies and interstitials immediately following implantation is an important factor

in determining the number of interstitials remaining after recombination. The long
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Figure 6.7: +N numbers after vacancies recombine for different doses and energies
taking into account short range interaction between an interstitial and a vacancy.
Cluster binding energies from Jaraiz et al.[31] Interstitial-vacancy interactions from
this work.
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range [-V interaction determined from MD was also found to reduce the +N factor.



Chapter 7

Dopant - Defect Interaction

7.1 Boron - Interstitial Interaction

As it was shown in Chapter 2, dopant impurities like B diffuse via an interstitial
mechanism. The impurity is converted for short time intervals into a fast migrating

intemediate species, dopant interstitial B;. The relevant reactions for diffusion via

B; are [45]:
I+ B, = B (7.1)
V+B; =B, (7.2)
I+V =0 (7.3)

Eq. (7.3) plays an important role by modifying the concentrations of interstitials
and vacancies available for reactions (7.1) and (7.2).
The intermitent diffusion is more complicated than the Fickian diffusion. The

migration distance has an anomalous temperature dependence:

A = Aoexp(+EN/kT) (7.4)

63



64

where ) is the jump distance between two migration events. Previous calculations[46]
showed that reaction (7.1) is exotermic (1.0eV).

This equation implies that as the temperature decreases the dopant migrates for
longer distances. Here the Boron interstitial interaction is studied using the ab-initio
method discussed in Chapter 3. Besides the use of density functional theory(DFT)
and local density approximation (LDA) efficient plane-wave ultrasoft pseudopotential
and a 4> Monkhorst-Pack k-point sampling are used. The code VASP[47] was used
for these calculations. Also a 64 atom supercell is used throughout these calculations.

The formation energy of the self-interstitial is defined as:

/(S#) = E(Sits) — B (S (7.5)

where E(Sigs) is the total energy for a 65-atom supercell containing a Si self-interstitial
and F(Sig4) is the total energy for a 64 atom supercell of pure bulk Si.

The formation energy for the Boron substitutional Si self-interstitial pair is defined
as:

Ef(Bs — Si;) = E(SigaB) — E(Sig3B) — ;—41«7(51'64) (7.6)

Si; assited B diffusion starts from a bound pair of B and Si;. The lowest energy is
found for a pair with B substitutional and Si; tetrahedral, see Fig. 7.1a. The binding
energy of this pair is 0.9 eV with respect to the more stable dissociation products
Si; ™ and B;. A 0.7 eV barrier is found for kiking out Boron from a substitutional
position to a hexagonal site (see Fig. 7.1b), which is significantly lower than the 1.1
eV barrier found previously[43]. Then instead of following a hexagonal tetrahedral

path as found by Zhu et al.[43], Boron kicks in as Boron substitutional. The energetics

for the neutral systems is shown in Fig. 7.2. The activation energy for the diffusion
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Figure 7.1: Boron diffusion in Si following a substitutional-hexagonal- substitutional
path. In a) we have a Boron substitutional Si self interstitial in a tetrahedral po-
sition pair, in b) Boron is kicked-out in a hexagonal position becoming interstitial,
in ¢) Boron becomes substitutional again and in d) Boron is kicked-out in another
hexagonal position. The migration process ends when the pair dissociates.
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Figure 7.2: The nudged-elastic band total energy (eV) for a neutral system relative to
the energy of the initial system of B — S%; complexes as function of the hyperdistance
of the system from the initial configuration. a) within the GGA aproximation, b)
within LDA approximation. See Windl et al. for complete details.

mechanism described above is given by:

Q(Bs) = Ef(B - SZ’L) + Em(Bs) (77)

and is found to be 3.0 eV which is the lower bound of the experimental range. This
mechanism is also able to explain the anomalous increase in diffusion lenght with
decreasing temperature the same way the kick-out mechanism does. As the tem-
perature decreases the Boron substitutional Si interstitial is less likely to dissociate

leading to an increase in the diffusion lenght.



Chapter 8

Conclusions

Recent ab-initio calculations have been used to describe the attractive interaction
between a dopant and a vacancy in kinetic lattice Monte Carlo calculations of dopant
diffusion in a vacancy gradient. It was found that for As the dopant flux driven by
a vacancy gradient has the same direction as the vacancy flux with a magnitude
that approaches that of ideal pair diffusion at low temperatures (700 C) and drops
with increasing temperature. The dopant flux decreases if long range interactions
are taken into account. Due to a large exchange barrier which becomes the rate
limiting step for pair diffusion, P has a similar behavior but a weaker temperature
dependence, leading to dopant fluxes which are smaller at low temperatures, but
larger at high temperatures.

Using the vacancy interstitial potential from molecular dynamics calculations the
capture radius for Frenkel pair recombination was found to be dependent on the
interaction range. At short range interaction it has the value of 3.75 A. At long
range interaction it has the value of 6.5 A.

The large enhancement in diffusivity at high doping levels is due primarily to

collective effects involving the interactions of vacancies with several dopant atoms.
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Complexes like AsyV are mobile and contribute significantly to diffusion.

A 50nm nMOS transistor with As doped drain and B doped source was simulated
and the evolution in the number of dopant substitutional and dopant interstitial was
followed as function of time. A time interval in which B is mostly substitutional was
found.The presence of As makes vacancies last longer in the system due to As vacancy
clusters. Further work will have to produce faster algorithms. The dependence of
energy on clusters size and its influence on the overall system needs also further
investigation, since the behavior of these clusters is very sensitive to the energies
involved.

Also the initial phases of ion implant annealing were explored in order to predict
the resulting effect on transient enhanced diffusion. A factor +N was calculated
which is proportional to the number of interstitial remaining after vacancies have
recombined. This factor increases at lower doses since faster diffusing vacancies can
diffuse to the surface rather than recombining with interstitials. The long range
interstitial vacancy interaction determined from MD was also found to reduce the
+N factor.

Using ab initio calculations a new mechanism for B diffusion in silicon was found.
Rather than a kick out of B into a mobile channel a direct diffusion mechanism for
the B interstitial pair was found. The activation energy of 3.5-3.8 eV, migration
energy of 0.4-0.7 eV and diffusion lenght exponent of -0.6 - 0.2 eV are in excellent

agreement with experiment.



Appendix A

Dopant Diffusion in a Vacancy

Gradient

From a phenomenological perspective a dopant (A) interacts with a point defect (V)

to form a pair:

A+V & AV (A1)

Mass action law gives the concentration of AV pairs as function of concentration of

point defects and dopants:

Cay =Ky -Ca-Cy (A.2)

where K 4y is the reaction constant. The dopant flux can then be written as:

Ja=Jay =—-Day-VCuy = —Day - Kay - [CyVC4 + C4VCy] (A.3)
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Kinetic Lattice Monte Carlo (KLMC) predicts a correction y to the above equation

such that the dopant flux can be written now as:

Ja=—Dyy - -Kay- [CVVCA + - CAVCV] (A4)

The numerical implementation of the vacancy gradient is such that there is no dopant
gradient. Thus:
JA = —’}/DAV . KAV - CAVCV (A5)

Isoconcetration experiments performed by Larsen et all. find an effective diffusivity

D®F = D,y - Ky - Cf. With this substitution we obtain:

Cv
Cy

JAZ—’Y-Deff-CA'V (A.G)

Effective diffusivity is found by calculating the mean squared displacement of the

dopant:
Detf = % S [Arf? (A7)

where the summation is carried over all dopants present in the simulated system.
Introducing the mean displacement < z > and the dopant velocity v we find :

_Ja <z> Cy

=24 _ = —~v-Dy-V
) : Ve Fers Vg

(Y

(A.8)

From this last relation one finds v by finding all quantities v, D/, V¥ numerically.
\4
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